1
|
Morén C, Olivares-Berjaga D, Martínez-Pinteño A, Bioque M, Rodríguez N, Gassó P, Martorell L, Parellada E. Mitochondrial Oxidative Phosphorylation System Dysfunction in Schizophrenia. Int J Mol Sci 2025; 26:4415. [PMID: 40362652 PMCID: PMC12072258 DOI: 10.3390/ijms26094415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Schizophrenia (SCZ) is a severe, chronic mental disorder of unknown etiology and limited therapeutic options. Bioenergetic deficits in the oxidative phosphorylation system (OXPHOS) during early postnatal brain development may underlie disrupted neuronal metabolism and synaptic signaling, contributing to the neurodevelopmental and behavioral disturbances observed in patients. This narrative review summarizes updated evidence linking mitochondrial-OXPHOS dysfunction to SCZ pathophysiology. The novelty lies in the focus on OXPHOS dysfunction at the enzymatic/functional level, rather than on genetic, transcriptional, or oxidative parameters. While complex I impairment has long been highlighted and proposed as a peripheral marker of the disease, recent studies also report alterations in other OXPHOS complexes and their precursors. These findings suggest that OXPHOS dysfunction is not isolated to a single enzymatic component but affects broader mitochondrial function, alongside oxidative stress, contributing to disease progression through mechanisms involving apoptosis, accelerated aging, and synaptic deterioration. OXPHOS dysfunction in both central and peripheral tissues further supports its relevance to SCZ. Overall, the literature points to mitochondrial OXPHOS abnormalities as a significant biological feature of SCZ. Whether these alterations are causal factors or consequences of disease processes remains unclear. Understanding OXPHOS dysregulation may open new avenues for targeted therapies.
Collapse
Affiliation(s)
- Constanza Morén
- Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic of Barcelona, 08036 Barcelona, Spain; (M.B.); (E.P.)
- Schizophrenia Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (D.O.-B.); (A.M.-P.); (N.R.)
- Department of Fundamental and Clinical Nursing, Nursing Faculty, University of Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - David Olivares-Berjaga
- Schizophrenia Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (D.O.-B.); (A.M.-P.); (N.R.)
- Basic and Clinical Practice Department, University of Barcelona, 08036 Barcelona, Spain
| | - Albert Martínez-Pinteño
- Schizophrenia Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (D.O.-B.); (A.M.-P.); (N.R.)
- Basic and Clinical Practice Department, University of Barcelona, 08036 Barcelona, Spain
| | - Miquel Bioque
- Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic of Barcelona, 08036 Barcelona, Spain; (M.B.); (E.P.)
- Schizophrenia Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (D.O.-B.); (A.M.-P.); (N.R.)
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Natàlia Rodríguez
- Schizophrenia Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (D.O.-B.); (A.M.-P.); (N.R.)
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Basic and Clinical Practice Department, University of Barcelona, 08036 Barcelona, Spain
| | - Patricia Gassó
- Schizophrenia Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (D.O.-B.); (A.M.-P.); (N.R.)
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Basic and Clinical Practice Department, University of Barcelona, 08036 Barcelona, Spain
| | - Lourdes Martorell
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Hospital Universitari Institut Pere Mata (HUIPM), Institut d’Investigació Sanitària Pere Virgili (IISPV-CERCA), Universitat Rovira i Virgili (URV), 43206 Reus, Spain
| | - Eduard Parellada
- Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic of Barcelona, 08036 Barcelona, Spain; (M.B.); (E.P.)
- Schizophrenia Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (D.O.-B.); (A.M.-P.); (N.R.)
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
2
|
Vellucci L, Mazza B, Barone A, Nasti A, De Simone G, Iasevoli F, de Bartolomeis A. The Role of Astrocytes in the Molecular Pathophysiology of Schizophrenia: Between Neurodevelopment and Neurodegeneration. Biomolecules 2025; 15:615. [PMID: 40427508 PMCID: PMC12109222 DOI: 10.3390/biom15050615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/05/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Schizophrenia is a chronic and severe psychiatric disorder affecting approximately 1% of the global population, characterized by disrupted synaptic plasticity and brain connectivity. While substantial evidence supports its classification as a neurodevelopmental disorder, non-canonical neurodegenerative features have also been reported, with increasing attention given to astrocytic dysfunction. Overall, in this study, we explore the role of astrocytes as a structural and functional link between neurodevelopment and neurodegeneration in schizophrenia. Specifically, we examine how astrocytes contribute to forming an aberrant substrate during early neurodevelopment, potentially predisposing individuals to later neurodegeneration. Astrocytes regulate neurotransmitter homeostasis and synaptic plasticity, influencing early vulnerability and disease progression through their involvement in Ca2⁺ signaling and dopamine-glutamate interaction-key pathways implicated in schizophrenia pathophysiology. Astrocytes differentiate via nuclear factor I-A, Sox9, and Notch pathways, occurring within a neuronal environment that may already be compromised in the early stages due to the genetic factors associated with the 'two-hits' model of schizophrenia. As a result, astrocytes may contribute to the development of an altered neural matrix, disrupting neuronal signaling, exacerbating the dopamine-glutamate imbalance, and causing excessive synaptic pruning and demyelination. These processes may underlie both the core symptoms of schizophrenia and the increased susceptibility to cognitive decline-clinically resembling neurodegeneration but driven by a distinct, poorly understood molecular substrate. Finally, astrocytes are emerging as potential pharmacological targets for antipsychotics such as clozapine, which may modulate their function by regulating glutamate clearance, redox balance, and synaptic remodeling.
Collapse
Affiliation(s)
- Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry, Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy
| | - Benedetta Mazza
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry, Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry, Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| | - Anita Nasti
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry, Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| | - Giuseppe De Simone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry, Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona (UB), c. Casanova, 143, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona. c. Villarroel, 170, 08036 Barcelona, Spain
| | - Felice Iasevoli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry, Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry, Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
3
|
Arbabi K, Newton DF, Oh H, Davie MC, Lewis DA, Wainberg M, Tripathy SJ, Sibille E. Transcriptomic pathology of neocortical microcircuit cell types across psychiatric disorders. Mol Psychiatry 2025; 30:1057-1068. [PMID: 39237723 DOI: 10.1038/s41380-024-02707-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
Psychiatric disorders such as major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SCZ) are characterized by altered cognition and mood, brain functions that depend on information processing by cortical microcircuits. We hypothesized that psychiatric disorders would display cell type-specific transcriptional alterations in neuronal subpopulations that make up cortical microcircuits: excitatory pyramidal (PYR) neurons and vasoactive intestinal peptide- (VIP), somatostatin- (SST), and parvalbumin- (PVALB) expressing inhibitory interneurons. Using laser capture microdissection followed by RNA sequencing (LCM-seq), we performed cell type-specific molecular profiling of subgenual anterior cingulate cortex, a region implicated in mood and cognitive control. We sequenced libraries from 130 whole cells pooled per neuronal subtype (VIP, SST, PVALB, superficial and deep PYR) in 76 subjects from the University of Pittsburgh Brain Tissue Donation Program, evenly split between MDD, BD and SCZ subjects and healthy controls (totaling 380 bulk transcriptomes from ~50,000 neurons). We identified hundreds of differentially expressed (DE) genes and biological pathways across disorders and neuronal subtypes, with the vast majority in interneurons, particularly PVALB. While DE genes were unique to each cell type, there was a partial overlap across disorders for genes involved in the formation and maintenance of neuronal circuits. We observed coordinated alterations in biological pathways between select pairs of microcircuit cell types, also partially shared across disorders. Finally, DE genes coincided with known risk variants from psychiatric genome-wide association studies, suggesting cell type-specific convergence between genetic and transcriptomic risk for psychiatric disorders. Our study suggests transdiagnostic cortical microcircuit pathology in SCZ, BD, and MDD and sets the stage for larger-scale studies investigating how cell circuit-based changes contribute to shared psychiatric risk.
Collapse
Affiliation(s)
- Keon Arbabi
- The Krembil Centre for Neuroinformatics, Centre for Addiction & Mental Health, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Dwight F Newton
- Campbell Family Mental Health Research Institute, Centre for Addiction & Mental Health, Toronto, ON, Canada
| | - Hyunjung Oh
- Campbell Family Mental Health Research Institute, Centre for Addiction & Mental Health, Toronto, ON, Canada
| | - Melanie C Davie
- The Krembil Centre for Neuroinformatics, Centre for Addiction & Mental Health, Toronto, ON, Canada
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Wainberg
- The Krembil Centre for Neuroinformatics, Centre for Addiction & Mental Health, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Shreejoy J Tripathy
- The Krembil Centre for Neuroinformatics, Centre for Addiction & Mental Health, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Etienne Sibille
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Campbell Family Mental Health Research Institute, Centre for Addiction & Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Zhang F, Zhang J, Wang X, Han M, Fei Y, Wang J. Blood-Brain Barrier Disruption in Schizophrenia: Insights, Mechanisms, and Future Directions. Int J Mol Sci 2025; 26:873. [PMID: 39940642 PMCID: PMC11817713 DOI: 10.3390/ijms26030873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
The blood-brain barrier (BBB) plays a crucial role in maintaining the homeostasis of the central nervous system by regulating solute transport and preventing neurotoxic substances from infiltrating brain tissue. In schizophrenia, emerging evidence identifies BBB dysfunction as a key pathophysiological factor associated with neuroinflammation, tight junction abnormalities, and endothelial dysfunction. Recent advancements in neuroimaging techniques, such as arterial spin labeling (ASL), have provided valuable tools for investigating BBB permeability and its role in disease progression. This review synthesizes findings from postmortem studies, serum and cerebrospinal fluid biomarker analyses, and advanced neuroimaging research to elucidate BBB alterations in schizophrenia. It highlights the mechanistic roles of tight junction protein dysregulation, neurovascular unit dysfunction, and immune responses in disrupting BBB integrity. Furthermore, the review examines the bidirectional effects of antipsychotic medications on BBB, addressing both therapeutic opportunities and potential challenges. By emphasizing the pivotal role of BBB dysfunction in schizophrenia pathogenesis, this review underscores its translational potential. Through the integration of multidisciplinary evidence, it lays the foundation for innovative diagnostic approaches and therapeutic strategies, enhancing our understanding of schizophrenia's complex pathophysiology.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinhong Wang
- Department of Medical Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China; (F.Z.); (J.Z.); (X.W.); (M.H.); (Y.F.)
| |
Collapse
|
5
|
Dienel SJ, Wade KL, Fish KN, Lewis DA. Alterations in Prefrontal Cortical Somatostatin Neurons in Schizophrenia: Evidence for Weaker Inhibition of Pyramidal Neuron Dendrites. Biol Psychiatry 2025:S0006-3223(25)00052-6. [PMID: 39848397 DOI: 10.1016/j.biopsych.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND Certain cognitive processes require inhibition provided by the somatostatin (SST) class of GABA (gamma-aminobutyric acid) neurons in the dorsolateral prefrontal cortex (DLPFC). This inhibition onto pyramidal neuron dendrites depends on both SST and GABA signaling. Although SST messenger RNA (mRNA) levels are lower in the DLPFC in schizophrenia, it is not known whether SST neurons exhibit alterations in the capacity to synthesize GABA, principally via the 67-kilodalton isoform of glutamic acid decarboxylase (GAD67). METHODS GAD67 and SST mRNA levels were quantified in individual SST neurons using fluorescence in situ hybridization in DLPFC layers 2/superficial 3, where SST neurons are enriched, in individuals with schizophrenia (n = 46) and unaffected comparison (n = 46) individuals. Findings were compared with GAD67 and SST mRNA levels quantified by polymerase chain reaction and to final educational attainment, a proxy measure for cognitive functioning. RESULTS GAD67 (F1,84 = 13.1, p = .0005, Cohen's d = -0.78) and SST (F1,84 = 10.1, p = .002, Cohen's d = -0.64) mRNA levels in SST neurons were lower in schizophrenia, with no group differences in the relative density of SST neurons (F1,84 = 0.21, p = .65). A presynaptic index of dendritic inhibition, derived by summing the alterations in GAD67 and SST mRNAs, was lower in 80.4% of individuals with schizophrenia and was associated with final educational attainment (adjusted odds ratio = 1.44, p = .022). CONCLUSIONS Deficits in both GAD67 and SST mRNAs within SST neurons indicate that these neurons have a markedly reduced ability to inhibit postsynaptic pyramidal neuron dendrites in schizophrenia. These alterations likely contribute to cognitive dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Samuel J Dienel
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Kirsten L Wade
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kenneth N Fish
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania.
| |
Collapse
|
6
|
Chen JL, Wang R, Ma PQ, Wang YM, Tang QQ. Association between intercellular adhesion molecule-1 to depression and blood-brain barrier penetration in cerebellar vascular disease. World J Psychiatry 2024; 14:1661-1670. [PMID: 39564172 PMCID: PMC11572681 DOI: 10.5498/wjp.v14.i11.1661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND Cerebral small vessel disease (CSVD) is a prevalent cerebrovascular disease in clinical practice that is often associated with macrovascular disease. A clear understanding of the underlying causes of CSVD remains elusive. AIM To explore the association between intercellular adhesion molecule-1 (ICAM-1) and blood-brain barrier (BBB) penetration in CSVD. METHODS This study included patients admitted to Fuyang People's Hospital and Fuyang Community (Anhui, China) between December 2021 and March 2022. The study population comprised 142 patients, including 80 in the CSVD group and 62 in the control group. Depression was present in 53 out of 80 patients with CSVD. Multisequence magnetic resonance imaging (MRI) and dynamic contrast-enhanced MRI were applied in patients to determine the brain volume, cortical thickness, and cortical area of each brain region. Moreover, neuropsychological tests including the Hamilton depression scale, mini-mental state examination, and Montreal cognitive assessment basic scores were performed. RESULTS The multivariable analysis showed that age [P = 0.011; odds ratio (OR) = 0.930, 95% confidence interval (CI): 0.880-0.983] and ICAM-1 levels (P = 0.023; OR = 1.007, 95%CI: 1.001-1.013) were associated with CSVD. Two regions of interest (ROIs; ROI3 and ROI4) in the white matter showed significant (both P < 0.001; 95%CI: 0.419-0.837 and 0.366-0.878) differences between the two groups, whereas only ROI1 in the gray matter showed significant difference (P = 0.046; 95%CI: 0.007-0.680) between the two groups. ICAM-1 was significantly correlated (all P < 0.05) with cortical thickness in multiple brain regions in the CSVD group. CONCLUSION This study revealed that ICAM-1 levels were independently associated with CSVD. ICAM-1 may be associated with cortical thickness in the brain, predominantly in the white matter, and a significant increase in BBB permeability, proposing the involvement of ICAM-1 in BBB destruction.
Collapse
Affiliation(s)
- Ju-Luo Chen
- Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
- Department of Neurology, Fuyang People’s Hospital, Fuyang 236000, Anhui Province, China
| | - Rui Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Pei-Qi Ma
- Department of Neurology, Fuyang People’s Hospital, Fuyang 236000, Anhui Province, China
| | - You-Meng Wang
- Department of Neurology, Fuyang People’s Hospital, Fuyang 236000, Anhui Province, China
| | - Qi-Qiang Tang
- Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| |
Collapse
|
7
|
Ni P, Ma Y, Chung S. Mitochondrial dysfunction in psychiatric disorders. Schizophr Res 2024; 273:62-77. [PMID: 36175250 DOI: 10.1016/j.schres.2022.08.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
Psychiatric disorders are a heterogeneous group of mental disorders with abnormal mental or behavioral patterns, which severely distress or disable affected individuals and can have a grave socioeconomic burden. Growing evidence indicates that mitochondrial function plays an important role in developing psychiatric disorders. This review discusses the neuropsychiatric consequences of mitochondrial abnormalities in both animal models and patients. We also discuss recent studies associated with compromised mitochondrial function in various psychiatric disorders, such as schizophrenia (SCZ), major depressive disorder (MD), and bipolar disorders (BD). These studies employ various approaches including postmortem studies, imaging studies, genetic studies, and induced pluripotent stem cells (iPSCs) studies. We also summarize the evidence from animal models and clinical trials to support mitochondrial function as a potential therapeutic target to treat various psychiatric disorders. This review will contribute to furthering our understanding of the metabolic etiology of various psychiatric disorders, and help guide the development of optimal therapies.
Collapse
Affiliation(s)
- Peiyan Ni
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.
| | - Yao Ma
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Sangmi Chung
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
8
|
Okuda T, Kimoto S, Kawabata R, Bian Y, Tsubomoto M, Okamura K, Enwright JF, Kikuchi M, Lewis DA, Hashimoto T. Alterations in inhibitory neuron subtype-selective transcripts in the prefrontal cortex: comparisons across schizophrenia and mood disorders. Psychol Med 2024; 54:1-10. [PMID: 39478366 PMCID: PMC11578916 DOI: 10.1017/s0033291724002344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/19/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND In schizophrenia (SZ), impairments in cognitive functions, such as working memory, have been associated with alterations in certain types of inhibitory neurons that utilize the neurotransmitter γ-aminobutyric acid (GABA) in the dorsolateral prefrontal cortex (DLPFC). For example, GABA neurons that express parvalbumin (PV) or somatostatin (SST) have more prominent gene expression alterations than those that express vasoactive intestinal peptide (VIP). In bipolar disorder (BD) and major depression (MD), which exhibit similar, but less severe, cognitive impairments than SZ, alterations of transcript levels in GABA neurons have also been reported. However, the extent to which GABA neuron subtype-selective transcripts in the DLPFC are affected, and the relative magnitudes of the diagnosis-associated effects, have not been directly compared across SZ, BD, and MD in the same study. METHODS We used quantitative polymerase chain reaction to examine levels of GABA neuron subtype-selective transcripts (PV, potassium voltage-gated channel modifier subfamily-S member-3, SST, VIP, and calretinin mRNAs), as well as the pan-GABA neuron marker 67 kDa glutamate decarboxylase mRNA, in DLPFC total gray matter of 160 individuals, including those with SZ, BD, or MD and unaffected comparison (UC) individuals. RESULTS Relative to UC individuals, individuals with SZ exhibited large deficits in levels of all transcripts except for calretinin mRNA, whereas individuals with BD or MD showed a marked deficit only for PV or SST mRNAs, respectively. CONCLUSIONS These findings suggest that broader and more severe alterations in DLPFC GABA neurons might contribute to the greater cognitive impairments in SZ relative to BD and MD.
Collapse
Affiliation(s)
- Takeshi Okuda
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Sohei Kimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, 634-8521, Japan
- Department of Neuropsychiatry, Wakayama Medical University School of Medicine, Wakayama, 641-8509, Japan
| | - Rika Kawabata
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Yufan Bian
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Makoto Tsubomoto
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Kazuya Okamura
- Department of Neuropsychiatry, Wakayama Medical University School of Medicine, Wakayama, 641-8509, Japan
| | - John F. Enwright
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Mitsuru Kikuchi
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
- Research Center for Child Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - David A. Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Takanori Hashimoto
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Psychiatry, National Hospital Organization Hokuriku Hospital, Nanto, 939-1893, Japan
| |
Collapse
|
9
|
Hughes H, Brady LJ, Schoonover KE. GABAergic dysfunction in postmortem dorsolateral prefrontal cortex: implications for cognitive deficits in schizophrenia and affective disorders. Front Cell Neurosci 2024; 18:1440834. [PMID: 39381500 PMCID: PMC11458443 DOI: 10.3389/fncel.2024.1440834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
The microcircuitry within superficial layers of the dorsolateral prefrontal cortex (DLPFC), composed of excitatory pyramidal neurons and inhibitory GABAergic interneurons, has been suggested as the neural substrate of working memory performance. In schizophrenia, working memory impairments are thought to result from alterations of microcircuitry within the DLPFC. GABAergic interneurons, in particular, are crucially involved in synchronizing neural activity at gamma frequency, the power of which increases with working memory load. Alterations of GABAergic interneurons, particularly parvalbumin (PV) and somatostatin (SST) subtypes, are frequently observed in schizophrenia. Abnormalities of GABAergic neurotransmission, such as deficiencies in the 67 kDA isoform of GABA synthesis enzyme (GAD67), vesicular GABA transporter (vGAT), and GABA reuptake transporter 1 (GAT1) in presynaptic boutons, as well as postsynaptic alterations in GABA A receptor subunits further contribute to impaired inhibition. This review explores GABAergic abnormalities of the postmortem DLPFC in schizophrenia, with a focus on the roles of interneuron subtypes involved in cognition, and GABAergic neurotransmission within presynaptic boutons and postsynaptic alterations. Where available, comparisons between schizophrenia and affective disorders that share cognitive pathology such as bipolar disorder and major depressive disorder will be made. Challenges in directly measuring GABA levels are addressed, emphasizing the need for innovative techniques. Understanding GABAergic abnormalities and their implications for neural circuit dysfunction in schizophrenia is crucial for developing targeted therapies.
Collapse
Affiliation(s)
- Hannah Hughes
- Graduate Biomedical Sciences Program, School of Medicine, University of Alabama at Birmingham, Tuskegee, AL, United States
| | - Lillian J. Brady
- Department of Psychiatry, School of Medicine, University of Alabama at Birmingham, Tuskegee, AL, United States
- Comprehensive Neuroscience Center, University of Alabama at Birmingham, Tuskegee, AL, United States
| | - Kirsten E. Schoonover
- Department of Psychiatry, School of Medicine, University of Alabama at Birmingham, Tuskegee, AL, United States
- Comprehensive Neuroscience Center, University of Alabama at Birmingham, Tuskegee, AL, United States
- Department of Psychology and Sociology, College of Arts and Sciences, Tuskegee University, Tuskegee, AL, United States
| |
Collapse
|
10
|
O’Brien JT, Jalilvand SP, Suji NA, Jupelly RK, Phensy A, Mwirigi JM, Elahi H, Price TJ, Kroener S. Elevations in the Mitochondrial Matrix Protein Cyclophilin D Correlate With Reduced Parvalbumin Expression in the Prefrontal Cortex of Patients With Schizophrenia. Schizophr Bull 2024; 50:1197-1207. [PMID: 38412332 PMCID: PMC11349014 DOI: 10.1093/schbul/sbae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
BACKGROUND AND HYPOTHESIS Cognitive deficits in schizophrenia are linked to dysfunctions of the dorsolateral prefrontal cortex (DLPFC), including alterations in parvalbumin (PV)-expressing interneurons (PVIs). Redox dysregulation and oxidative stress may represent convergence points in the pathology of schizophrenia, causing dysfunction of GABAergic interneurons and loss of PV. Here, we show that the mitochondrial matrix protein cyclophilin D (CypD), a critical initiator of the mitochondrial permeability transition pore (mPTP) and modulator of the intracellular redox state, is altered in PVIs in schizophrenia. STUDY DESIGN Western blotting was used to measure CypD protein levels in postmortem DLPFC specimens of schizophrenic patients (n = 27) and matched comparison subjects with no known history of psychiatric or neurological disorders (n = 26). In a subset of this cohort, multilabel immunofluorescent confocal microscopy with unbiased stereological sampling methods were used to quantify (1) numbers of PVI across the cortical mantle (20 unaffected comparison, 14 schizophrenia) and (2) PV and CypD protein levels from PVIs in the cortical layers 2-4 (23 unaffected comparison, 18 schizophrenia). STUDY RESULTS In schizophrenic patients, the overall number of PVIs in the DLPFC was not significantly altered, but in individual PVIs of layers 2-4 PV protein levels decreased along a superficial-to-deep gradient when compared to unaffected comparison subjects. These laminar-specific PVI alterations were reciprocally linked to significant CypD elevations both in PVIs and total DLPFC gray matter. CONCLUSIONS Our findings support previously reported PVI anomalies in schizophrenia and suggest that CypD-mediated mPTP formation could be a potential contributor to PVI dysfunction in schizophrenia.
Collapse
Affiliation(s)
- John T O’Brien
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Sophia P Jalilvand
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Neha A Suji
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Rohan K Jupelly
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Aarron Phensy
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Juliet M Mwirigi
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Hajira Elahi
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Theodore J Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Sven Kroener
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
11
|
Burns JN, Jenkins AK, Yin R, Zong W, Vadnie CA, DePoy LM, Petersen KA, Tsyglakova M, Scott MR, Tseng GC, Huang YH, McClung CA. Molecular and cellular rhythms in excitatory and inhibitory neurons in the mouse prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.601880. [PMID: 39005410 PMCID: PMC11245095 DOI: 10.1101/2024.07.05.601880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Previous studies have shown that there are rhythms in gene expression in the mouse prefrontal cortex (PFC); however, the contribution of different cell types and potential variation by sex has not yet been determined. Of particular interest are excitatory pyramidal cells and inhibitory parvalbumin (PV) interneurons, as interactions between these cell types are essential for regulating the excitation/inhibition balance and controlling many of the cognitive functions regulated by the PFC. In this study, we identify cell-type specific rhythms in the translatome of PV and pyramidal cells in the mouse PFC and assess diurnal rhythms in PV cell electrophysiological properties. We find that while core molecular clock genes are conserved and synchronized between cell types, pyramidal cells have nearly twice as many rhythmic transcripts as PV cells (35% vs. 18%). Rhythmic transcripts in pyramidal cells also show a high degree of overlap between sexes, both in terms of which transcripts are rhythmic and in the biological processes associated with them. Conversely, in PV cells, rhythmic transcripts from males and females are largely distinct. Moreover, we find sex-specific effects of phase on action potential properties in PV cells that are eliminated by environmental circadian disruption. Together, this study demonstrates that rhythms in gene expression and electrophysiological properties in the mouse PFC vary by both cell type and sex. Moreover, the biological processes associated with these rhythmic transcripts may provide insight into the unique functions of rhythms in these cells, as well as their selective vulnerabilities to circadian disruption.
Collapse
Affiliation(s)
- Jennifer N. Burns
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261
| | - Aaron K. Jenkins
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261
| | - RuoFei Yin
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261
| | - Wei Zong
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261
| | - Chelsea A. Vadnie
- David O. Robbins Neuroscience Program, Department of Psychology, Ohio Wesleyan University, Delaware, OH 43015
| | - Lauren M. DePoy
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261
| | - Kaitlyn A Petersen
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261
| | - Mariya Tsyglakova
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261
| | - Madeline R. Scott
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261
| | - George C. Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261
| | - Yanhua H. Huang
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261
| | - Colleen A. McClung
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
12
|
Li S, Jiang J, Zhu W, Wang D, Dong C, Bu Y, Zhang J, Gao D, Hu X, Wan C. Increased cell-free DNA is associated with oxidative damage in patients with schizophrenia. J Psychiatr Res 2024; 175:20-28. [PMID: 38701608 DOI: 10.1016/j.jpsychires.2024.04.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/31/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Cell-free DNA (cfDNA) has been found to be elevated in patients with schizophrenia (SZ), potentially derived from activated apoptosis, but the underlying mechanisms remain unknown. Moreover, whether the concentrations of cfDNA are altered with disease stage has not been investigated, which limits its clinical application as an auxiliary diagnostic marker for SZ. Using an improved fluorescence correlation spectroscopy (FCS) method that does not require DNA extraction, we measured the molar concentrations of cfDNA in plasma samples of 191 patients with SZ, 78 patients with mood disorders (MD) and 65 healthy controls (HC). We also analyzed the cfDNA composition from either the nucleus or mitochondria, oxidation markers and biochemical indexes to explore the potential mechanistic associations of the increased cfDNA levels. We found that in SZ patients, the cfDNA levels were significantly increased (P = 0.003) regardless of the different disease stages or antipsychotic medication use. Furthermore, qPCR revealed that cell-free nuclear DNA (cf-nDNA) (P = 0.041) but not cell-free mitochondrial DNA (cf-mtDNA) was elevated in SZ patients. Moreover, decreased SOD activity in SZ patients (P = 0.005) was negatively correlated with cfDNA levels (P = 0.047), and fasting blood glucose was positively correlated with cfDNA levels in SZ patients (P = 0.013). Our study provides evidence to support that the elevated cfDNA may be a convenient, effective and stable trait indicator of SZ. Further analysis showed that it mainly came from nucleus, suggesting increased apoptosis, and potentially related to oxidative stress and high blood glucose levels in patients.
Collapse
Affiliation(s)
- Shuhui Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jie Jiang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Wenli Zhu
- The Fourth People's Hospital of Wuhu, Wuhu, 241003, China
| | - Dandan Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Chaoqing Dong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yangying Bu
- The Fourth People's Hospital of Wuhu, Wuhu, 241003, China
| | - Juan Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Daiyutong Gao
- Department of Mathematics, Nanjing University, Nanjing, 210093, China
| | - Xiaowen Hu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Chunling Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Mental Health Center, Shanghai Key Laboratory of Psychiatry Disorders, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
13
|
Schoonover KE, Dienel SJ, Holly Bazmi H, Enwright JF, Lewis DA. Altered excitatory and inhibitory ionotropic receptor subunit expression in the cortical visuospatial working memory network in schizophrenia. Neuropsychopharmacology 2024; 49:1183-1192. [PMID: 38548877 PMCID: PMC11109337 DOI: 10.1038/s41386-024-01854-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/14/2024] [Accepted: 03/06/2024] [Indexed: 05/23/2024]
Abstract
Dysfunction of the cortical dorsal visual stream and visuospatial working memory (vsWM) network in individuals with schizophrenia (SZ) likely reflects alterations in both excitatory and inhibitory neurotransmission within nodes responsible for information transfer across the network, including primary visual (V1), visual association (V2), posterior parietal (PPC), and dorsolateral prefrontal (DLPFC) cortices. However, the expression patterns of ionotropic glutamatergic and GABAergic receptor subunits across these regions, and alterations of these patterns in SZ, have not been investigated. We quantified transcript levels of key subunits for excitatory N-methyl-D-aspartate receptors (NMDARs), excitatory alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs), and inhibitory GABAA receptors (GABAARs) in postmortem total gray matter from V1, V2, PPC, and DLPFC of unaffected comparison (UC) and matched SZ subjects. In UC subjects, levels of most AMPAR and NMDAR mRNAs exhibited opposite rostral-to-caudal gradients, with AMPAR GRIA1 and GRIA2 mRNA levels highest in DLPFC and NMDAR GRIN1 and GRIN2A mRNA levels highest in V1. GABRA5 and GABRA1 mRNA levels were highest in DLPFC and V1, respectively. In SZ, most transcript levels were lower relative to UC subjects, with these differences largest in V1, intermediate in V2 and PPC, and smallest in DLPFC. In UC subjects, these distinct patterns of receptor transcript levels across the cortical vsWM network suggest that the balance between excitation and inhibition is achieved in a region-specific manner. In SZ subjects, the large deficits in excitatory and inhibitory receptor transcript levels in caudal sensory regions suggest that abnormalities early in the vsWM pathway might contribute to altered information processing in rostral higher-order regions.
Collapse
Affiliation(s)
- Kirsten E Schoonover
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry and Behavioral Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Samuel J Dienel
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA
| | - H Holly Bazmi
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John F Enwright
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Ruzicka WB, Mohammadi S, Fullard JF, Davila-Velderrain J, Subburaju S, Tso DR, Hourihan M, Jiang S, Lee HC, Bendl J, Voloudakis G, Haroutunian V, Hoffman GE, Roussos P, Kellis M. Single-cell multi-cohort dissection of the schizophrenia transcriptome. Science 2024; 384:eadg5136. [PMID: 38781388 DOI: 10.1126/science.adg5136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/21/2023] [Indexed: 05/25/2024]
Abstract
The complexity and heterogeneity of schizophrenia have hindered mechanistic elucidation and the development of more effective therapies. Here, we performed single-cell dissection of schizophrenia-associated transcriptomic changes in the human prefrontal cortex across 140 individuals in two independent cohorts. Excitatory neurons were the most affected cell group, with transcriptional changes converging on neurodevelopment and synapse-related molecular pathways. Transcriptional alterations included known genetic risk factors, suggesting convergence of rare and common genomic variants on neuronal population-specific alterations in schizophrenia. Based on the magnitude of schizophrenia-associated transcriptional change, we identified two populations of individuals with schizophrenia marked by expression of specific excitatory and inhibitory neuronal cell states. This single-cell atlas links transcriptomic changes to etiological genetic risk factors, contextualizing established knowledge within the human cortical cytoarchitecture and facilitating mechanistic understanding of schizophrenia pathophysiology and heterogeneity.
Collapse
Affiliation(s)
- W Brad Ruzicka
- Laboratory for Epigenomics in Human Psychopathology, McLean Hospital, Belmont, MA 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shahin Mohammadi
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jose Davila-Velderrain
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Neurogenomics Research Center, Human Technopole, 20157 Milan, Italy
| | - Sivan Subburaju
- Laboratory for Epigenomics in Human Psychopathology, McLean Hospital, Belmont, MA 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Reed Tso
- Laboratory for Epigenomics in Human Psychopathology, McLean Hospital, Belmont, MA 02478, USA
| | - Makayla Hourihan
- Laboratory for Epigenomics in Human Psychopathology, McLean Hospital, Belmont, MA 02478, USA
| | - Shan Jiang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hao-Chih Lee
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Georgios Voloudakis
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vahram Haroutunian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research, Education and Clinical Centers, James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Gabriel E Hoffman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Neurogenomics Research Center, Human Technopole, 20157 Milan, Italy
| | - Manolis Kellis
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
15
|
Marín O. Parvalbumin interneuron deficits in schizophrenia. Eur Neuropsychopharmacol 2024; 82:44-52. [PMID: 38490084 PMCID: PMC11413553 DOI: 10.1016/j.euroneuro.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/16/2024] [Indexed: 03/17/2024]
Abstract
Parvalbumin-expressing (PV+) interneurons represent one of the most abundant subclasses of cortical interneurons. Owing to their specific electrophysiological and synaptic properties, PV+ interneurons are essential for gating and pacing the activity of excitatory neurons. In particular, PV+ interneurons are critically involved in generating and maintaining cortical rhythms in the gamma frequency, which are essential for complex cognitive functions. Deficits in PV+ interneurons have been frequently reported in postmortem studies of schizophrenia patients, and alterations in gamma oscillations are a prominent electrophysiological feature of the disease. Here, I summarise the main features of PV+ interneurons and review clinical and preclinical studies linking the developmental dysfunction of cortical PV+ interneurons with the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom; Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom.
| |
Collapse
|
16
|
Zhang X, Valeri J, Eladawi MA, Gisabella B, Garrett MR, Vallender EJ, McCullumsmith R, Pantazopoulos H, O’Donovan SM. Differentially Altered Metabolic Pathways in the Amygdala of Subjects with Schizophrenia, Bipolar Disorder and Major Depressive Disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.17.24305854. [PMID: 38699334 PMCID: PMC11065019 DOI: 10.1101/2024.04.17.24305854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Background and hypothesis A growing number of studies implicate a key role for metabolic processes in psychiatric disorders. Recent studies suggest that ketogenic diet may be therapeutically effective for subgroups of people with schizophrenia (SCZ), bipolar disorder (BPD) and possibly major depressive disorder (MDD). Despite this promise, there is currently limited information regarding brain energy metabolism pathways across these disorders, limiting our understanding of how brain metabolic pathways are altered and who may benefit from ketogenic diets. We conducted gene expression profiling on the amygdala, a key region involved in in the regulation of mood and appetitive behaviors, to test the hypothesis that amygdala metabolic pathways are differentially altered between these disorders. Study Design We used a cohort of subjects diagnosed with SCZ, BPD or MDD, and non-psychiatrically ill control subjects (n=15/group), together with our bioinformatic 3-pod analysis consisting of full transcriptome pathway analysis, targeted pathway analysis, leading-edge gene analysis and iLINCS perturbagen analysis. Study Results We identified differential expression of metabolic pathways in each disorder. Subjects with SCZ displayed downregulation of mitochondrial respiration and nucleotide metabolism pathways. In comparison, we observed upregulation of mitochondrial respiration pathways in subjects with MDD, while subjects with BPD displayed enrichment of pathways involved in carbohydrate metabolism. Several pathways associated with brain metabolism including immune system processes and calcium ion transport were also differentially altered between diagnosis groups. Conclusion Our findings suggest metabolic pathways are differentially altered in the amygdala in these disorders, which may impact approaches for therapeutic strategies.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA
| | - Jake Valeri
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | | | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | - Michael R. Garrett
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS
| | - Eric J Vallender
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | - Robert McCullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH
- Promedica Neuroscience Institute, Toledo, OH
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | | |
Collapse
|
17
|
Song N, Mei S, Wang X, Hu G, Lu M. Focusing on mitochondria in the brain: from biology to therapeutics. Transl Neurodegener 2024; 13:23. [PMID: 38632601 PMCID: PMC11022390 DOI: 10.1186/s40035-024-00409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Mitochondria have multiple functions such as supplying energy, regulating the redox status, and producing proteins encoded by an independent genome. They are closely related to the physiology and pathology of many organs and tissues, among which the brain is particularly prominent. The brain demands 20% of the resting metabolic rate and holds highly active mitochondrial activities. Considerable research shows that mitochondria are closely related to brain function, while mitochondrial defects induce or exacerbate pathology in the brain. In this review, we provide comprehensive research advances of mitochondrial biology involved in brain functions, as well as the mitochondria-dependent cellular events in brain physiology and pathology. Furthermore, various perspectives are explored to better identify the mitochondrial roles in neurological diseases and the neurophenotypes of mitochondrial diseases. Finally, mitochondrial therapies are discussed. Mitochondrial-targeting therapeutics are showing great potentials in the treatment of brain diseases.
Collapse
Affiliation(s)
- Nanshan Song
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shuyuan Mei
- The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166, China
| | - Xiangxu Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Gang Hu
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
- Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
18
|
Kaar SJ, Nottage JF, Angelescu I, Marques TR, Howes OD. Gamma Oscillations and Potassium Channel Modulation in Schizophrenia: Targeting GABAergic Dysfunction. Clin EEG Neurosci 2024; 55:203-213. [PMID: 36591873 PMCID: PMC10851642 DOI: 10.1177/15500594221148643] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 01/03/2023]
Abstract
Impairments in gamma-aminobutyric acid (GABAergic) interneuron function lead to gamma power abnormalities and are thought to underlie symptoms in people with schizophrenia. Voltage-gated potassium 3.1 (Kv3.1) and 3.2 (Kv3.2) channels on GABAergic interneurons are critical to the generation of gamma oscillations suggesting that targeting Kv3.1/3.2 could augment GABAergic function and modulate gamma oscillation generation. Here, we studied the effect of a novel potassium Kv3.1/3.2 channel modulator, AUT00206, on resting state frontal gamma power in people with schizophrenia. We found a significant positive correlation between frontal resting gamma (35-45 Hz) power (n = 22, r = 0.613, P < .002) and positive and negative syndrome scale (PANSS) positive symptom severity. We also found a significant reduction in frontal gamma power (t13 = 3.635, P = .003) from baseline in patients who received AUT00206. This provides initial evidence that the Kv3.1/3.2 potassium channel modulator, AUT00206, may address gamma oscillation abnormalities in schizophrenia.
Collapse
Affiliation(s)
- Stephen J. Kaar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- Division of Psychology and Mental Health, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Judith F. Nottage
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Ilinca Angelescu
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research London, London, UK
| | - Tiago Reis Marques
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
| | - Oliver D. Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, UK
| |
Collapse
|
19
|
Santos-Silva T, dos Santos Fabris D, de Oliveira CL, Guimarães FS, Gomes FV. Prefrontal and Hippocampal Parvalbumin Interneurons in Animal Models for Schizophrenia: A Systematic Review and Meta-analysis. Schizophr Bull 2024; 50:210-223. [PMID: 37584417 PMCID: PMC10754178 DOI: 10.1093/schbul/sbad123] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
BACKGROUND Consistent with postmortem findings in patients, most animal models for schizophrenia (SCZ) present abnormal levels of parvalbumin (PV), a marker of fast-spiking GABAergic interneurons, in the prefrontal cortex (PFC) and hippocampus (HIP). However, there are discrepancies in the literature. PV reductions lead to a functional loss of PV interneurons, which is proposed to underly SCZ symptoms. Given its complex etiology, different categories of animal models have been developed to study SCZ, which may distinctly impact PV levels in rodent brain areas. STUDY DESIGN We performed a quantitative meta-analysis on PV-positive cell number/density and expression levels in the PFC and HIP of animal models for SCZ based on pharmacological, neurodevelopmental, and genetic manipulations. RESULTS Our results confirmed that PV levels are significantly reduced in the PFC and HIP regardless of the animal model. By categorizing into subgroups, we found that all pharmacological models based on NMDA receptor antagonism decreased PV-positive cell number/density or PV expression levels in both brain areas examined. In neurodevelopmental models, abnormal PV levels were confirmed in both brain areas in maternal immune activation models and HIP of the methylazoxymethanol acetate model. In genetic models, negative effects were found in neuregulin 1 and ERBB4 mutant mice in both brain regions and the PFC of dysbindin mutant mice. Regarding sex differences, male rodents exhibited PV reductions in both brain regions only in pharmacological models, while few studies have been conducted in females. CONCLUSION Overall, our findings support deficits in prefrontal and hippocampal PV interneurons in animal models for SCZ.
Collapse
Affiliation(s)
- Thamyris Santos-Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Débora dos Santos Fabris
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Cilene Lino de Oliveira
- Department of Physiological Sciences, Center of Biological Sciences, University of Santa Catarina, Florianópolis,Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
20
|
Vinnakota C, Schroeder A, Du X, Ikeda K, Ide S, Mishina M, Hudson M, Jones NC, Sundram S, Hill RA. Understanding the role of the NMDA receptor subunit, GluN2D, in mediating NMDA receptor antagonist-induced behavioral disruptions in male and female mice. J Neurosci Res 2024; 102:e25257. [PMID: 37814998 PMCID: PMC10953441 DOI: 10.1002/jnr.25257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/24/2023] [Accepted: 09/23/2023] [Indexed: 10/11/2023]
Abstract
Noncompetitive NMDA receptor (NMDAR) antagonists like phencyclidine (PCP) and ketamine cause psychosis-like symptoms in healthy humans, exacerbate schizophrenia symptoms in people with the disorder, and disrupt a range of schizophrenia-relevant behaviors in rodents, including hyperlocomotion. This is negated in mice lacking the GluN2D subunit of the NMDAR, suggesting the GluN2D subunit mediates the hyperlocomotor effects of these drugs. However, the role of GluN2D in mediating other schizophrenia-relevant NMDAR antagonist-induced behavioral disturbances, and in both sexes, is unclear. This study aimed to investigate the role of the GluN2D subunit in mediating schizophrenia-relevant behaviors induced by a range of NMDA receptor antagonists. Using both male and female GluN2D knockout (KO) mice, we examined the effects of the NMDAR antagonist's PCP, the S-ketamine enantiomer (S-ket), and the ketamine metabolite R-norketamine (R-norket) on locomotor activity, anxiety-related behavior, and recognition and short-term spatial memory. GluN2D-KO mice showed a blunted locomotor response to R-norket, S-ket, and PCP, a phenotype present in both sexes. GluN2D-KO mice of both sexes showed an anxious phenotype and S-ket, R-norket, and PCP showed anxiolytic effects that were dependent on sex and genotype. S-ket disrupted spatial recognition memory in females and novel object recognition memory in both sexes, independent of genotype. This datum identifies a role for the GluN2D subunit in sex-specific effects of NMDAR antagonists and on the differential effects of the R- and S-ket enantiomers.
Collapse
Affiliation(s)
- Chitra Vinnakota
- Department of PsychiatryMonash UniversityClaytonVictoriaAustralia
| | - Anna Schroeder
- Department of PsychiatryMonash UniversityClaytonVictoriaAustralia
| | - Xin Du
- Department of PsychiatryMonash UniversityClaytonVictoriaAustralia
| | - Kazutaka Ikeda
- Addictive Substance ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Soichiro Ide
- Addictive Substance ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Masayoshi Mishina
- Brain Science Laboratory, The Research Organization of Science and TechnologyRitsumeikan UniversityKusatsuJapan
| | - Matthew Hudson
- Department of NeuroscienceMonash UniversityClaytonVictoriaAustralia
| | | | - Suresh Sundram
- Department of PsychiatryMonash UniversityClaytonVictoriaAustralia
- Mental Health ProgramMonash HealthClaytonVictoriaAustralia
| | - Rachel Anne Hill
- Department of PsychiatryMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
21
|
Gillespie B, Panthi S, Sundram S, Hill RA. The impact of maternal immune activation on GABAergic interneuron development: A systematic review of rodent studies and their translational implications. Neurosci Biobehav Rev 2024; 156:105488. [PMID: 38042358 DOI: 10.1016/j.neubiorev.2023.105488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Mothers exposed to infections during pregnancy disproportionally birth children who develop autism and schizophrenia, disorders associated with altered GABAergic function. The maternal immune activation (MIA) model recapitulates this risk factor, with many studies also reporting disruptions to GABAergic interneuron expression, protein, cellular density and function. However, it is unclear if there are species, sex, age, region, or GABAergic subtype specific vulnerabilities to MIA. Furthermore, to fully comprehend the impact of MIA on the GABAergic system a synthesised account of molecular, cellular, electrophysiological and behavioural findings was required. To this end we conducted a systematic review of GABAergic interneuron changes in the MIA model, focusing on the prefrontal cortex and hippocampus. We reviewed 102 articles that revealed robust changes in a number of GABAergic markers that present as gestationally-specific, region-specific and sometimes sex-specific. Disruptions to GABAergic markers coincided with distinct behavioural phenotypes, including memory, sensorimotor gating, anxiety, and sociability. Findings suggest the MIA model is a valid tool for testing novel therapeutics designed to recover GABAergic function and associated behaviour.
Collapse
Affiliation(s)
- Brendan Gillespie
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Sandesh Panthi
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Suresh Sundram
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Rachel A Hill
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia.
| |
Collapse
|
22
|
Dormann OD, Schuelert N, Rosenbrock H. Effects of the mGlu2/3 receptor agonist LY379268 on two models of disturbed auditory evoked brain oscillations in mice. Transl Psychiatry 2023; 13:150. [PMID: 37147311 PMCID: PMC10162958 DOI: 10.1038/s41398-023-02455-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
Cognitive impairment is a core feature of schizophrenia and is poorly addressed by currently available medication. This is partly because the underlying circuits are insufficiently understood, and available animal models for brain dysfunction do not adequately mimic human pathology. To improve the translatability of animal studies and complement behavioral data, EEG measurements are being increasingly used in preclinical research. Brain oscillations are similar across species and can be impaired via several means. In this study, we used two approaches to impair early sensory processing and cortical oscillations in mice: a pharmacological model targeting NMDA receptor function in the whole brain via systemic MK-801 application and an optogenetic model targeting parvalbumin-positive (PV+) interneurons locally in the medial prefrontal cortex (mPFC). We evoked brain activity using auditory stimulation, a tool with high translatability from mouse to human. We then investigated the effect of LY379268, an agonist of mGlu2/3 receptors, a potential therapeutic target for schizophrenia, on single neuron and EEG responses. LY379268 was able to rescue MK-801-induced deficits for a variety of clinically relevant early sensory EEG biomarkers. Single neuron recordings revealed a strong effect of LY379268 on the signal-to-noise ratio during auditory stimulation and optogenetic inhibition of PV+ interneurons. Our results contribute to a better understanding of how group II metabotropic glutamate receptors modulate neuronal population and network activity under sensory stimulation while challenged pharmacologically or optogenetically.
Collapse
Affiliation(s)
- Oana-Daniela Dormann
- Central Nervous System Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach Riss, Germany.
| | - Niklas Schuelert
- Central Nervous System Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach Riss, Germany
| | - Holger Rosenbrock
- Central Nervous System Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach Riss, Germany
| |
Collapse
|
23
|
Li Y, Sun Z, Zhu H, Sun Y, Shteyman DB, Markx S, Leong KW, Xu B, Fu BM. Inhibition of Abl Kinase by Imatinib Can Rescue the Compromised Barrier Function of 22q11.2DS Patient-iPSC-Derived Blood-Brain Barriers. Cells 2023; 12:422. [PMID: 36766762 PMCID: PMC9913366 DOI: 10.3390/cells12030422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/06/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
We have previously established that the integrity of the induced blood-brain barrier (iBBB) formed by brain microvascular endothelial cells derived from the iPSC of 22q11.2 DS (22q11.2 Deletion Syndrome, also called DiGeorge Syndrome) patients is compromised. We tested the possibility that the haploinsufficiency of CRKL, a gene within the 22q11.2 DS deletion region, contributes to the deficit. The CRKL is a major substrate of the Abl tyrosine kinase, and the Abl/CRKL signaling pathway is critical for endothelial barrier functions. Imatinib, an FDA-approved drug, inhibits Abl kinase and has been used to treat various disorders involving vascular leakages. To test if imatinib can restore the compromised iBBB, we treated the patient's iBBB with imatinib. After treatment, both trans-endothelial electrical resistance and solute permeability returned to comparable levels of the control iBBB. Correspondingly, changes in tight junctions and endothelial glycocalyx of the iBBB were also restored. Western blotting showed that imatinib increased the level of active forms of the CRKL protein. A transcriptome study revealed that imatinib up-regulated genes in the signaling pathways responsible for the protein modification process and down-regulated those for cell cycling. The KEGG pathway analysis further suggested that imatinib improved the gene expression of the CRKL signaling pathway and tight junctions, which agrees with our expectations and the observations at protein levels. Our results indicate that the 22q11.2DS iBBB is at least partially caused by the haploinsufficiency of CRKL, which can be rescued by imatinib via its effects on the Abl/CRKL signaling pathway. Our findings uncover a novel disease mechanism associated with 22q11.2DS.
Collapse
Affiliation(s)
- Yunfei Li
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031, USA
| | - Zhixiong Sun
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Huixiang Zhu
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Yan Sun
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - David B. Shteyman
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031, USA
| | - Sander Markx
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Bin Xu
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Bingmei M. Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031, USA
| |
Collapse
|
24
|
Sheikh MA, O'Connell KS, Lekva T, Szabo A, Akkouh IA, Osete JR, Agartz I, Engh JA, Andreou D, Boye B, Bøen E, Elvsåshagen T, Hope S, Frogner Werner MC, Joa I, Johnsen E, Kroken RA, Lagerberg TV, Melle I, Drange OK, Morken G, Nærland T, Sørensen K, Vaaler AE, Weibell MA, Westlye LT, Aukrust P, Djurovic S, Steen NE, Andreassen OA, Ueland T. Systemic Cell Adhesion Molecules in Severe Mental Illness: Potential Role of Intercellular CAM-1 in Linking Peripheral and Neuroinflammation. Biol Psychiatry 2023; 93:187-196. [PMID: 36182530 DOI: 10.1016/j.biopsych.2022.06.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Cell adhesion molecules (CAMs) orchestrate leukocyte trafficking and could link peripheral and neuroinflammation in patients with severe mental illness (SMI), by promoting inflammatory and immune-mediated responses and mediating signals across blood-brain barrier. We hypothesized that CAMs would be dysregulated in SMI and evaluated plasma levels of different vascular and neural CAMs. Dysregulated CAMs in plasma were further evaluated in vivo in leukocytes and brain tissue and in vitro in induced pluripotent stem cells. METHODS We compared plasma soluble levels of different vascular (VCAM-1, ICAM-1, P-SEL) and neural (JAM-A, NCAD) CAMs in circulating leukocytes in a large SMI sample of schizophrenia (SCZ) spectrum disorder (n = 895) and affective disorder (n = 737) and healthy control participants (n = 1070) controlling for age, sex, body mass index, C-reactive protein, and freezer storage time. We also evaluated messenger RNA expression of ICAM1 and related genes encoding ICAM-1 receptors in leukocytes using microarray (n = 842) and in available RNA sequencing data from the CommonMind Consortium (CMC) in postmortem samples from the dorsolateral prefrontal cortex (n = 474). The regulation of soluble ICAM-1 in induced pluripotent stem cell-derived neurons and astrocytes was assessed in patients with SCZ and healthy control participants (n = 8 of each). RESULTS Our major findings were 1) increased soluble ICAM-1 in patients with SMI compared with healthy control participants; 2) increased ITGB2 messenger RNA, encoding the beta chain of the ICAM-1 receptor, in circulating leukocytes from patients with SMI and increased prefrontal cortex messenger RNA expression of ICAM1 in SCZ; and 3) enhanced soluble ICAM-1 release in induced pluripotent stem cell-derived neurons from patients with SCZ. CONCLUSIONS Our results support a systemic and cerebral dysregulation of soluble ICAM-1 expression in SMI and especially in patients with SCZ.
Collapse
Affiliation(s)
- Mashhood A Sheikh
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Kevin S O'Connell
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Tove Lekva
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Attila Szabo
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ibrahim A Akkouh
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Jordi Requena Osete
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- NORMENT, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - John A Engh
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Vestfold Hospital Trust, Division of Mental Health and Addiction, Tønsberg, Norway
| | - Dimitrios Andreou
- NORMENT, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | | | | | - Torbjørn Elvsåshagen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Sigrun Hope
- Department of Neuro Habilitation, Oslo University Hospital Ullevål, Oslo, Norway
| | - Maren Caroline Frogner Werner
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Inge Joa
- Network for Clinical Psychosis Research, Division of Psychiatry, Stavanger University Hospital, Stavanger, Norway; Network for Medical Sciences, Faculty of Health, University of Stavanger, Stavanger, Norway
| | - Erik Johnsen
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway; NORMENT Centre of Excellence, Bergen, Norway
| | - Rune A Kroken
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway; NORMENT Centre of Excellence, Bergen, Norway
| | - Trine Vik Lagerberg
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Melle
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; NORMENT, University of Oslo, Oslo, Norway
| | - Ole Kristian Drange
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway; Department of Østmarka, Division of Mental Health, St. Olavs University Hospital, Trondheim, Norway; Department of Psychiatry, Sørlandet Hospital HF, Kristiansand, Norway
| | - Gunnar Morken
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Kjetil Sørensen
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Arne E Vaaler
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway; Department of Østmarka, Division of Mental Health, St. Olavs University Hospital, Trondheim, Norway
| | - Melissa Authen Weibell
- Network for Clinical Psychosis Research, Division of Psychiatry, Stavanger University Hospital, Stavanger, Norway; Network for Medical Sciences, Faculty of Health, University of Stavanger, Stavanger, Norway
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Srdjan Djurovic
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Center for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; NORMENT, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; NORMENT, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway.
| |
Collapse
|
25
|
Tran The J, Magistretti PJ, Ansermet F. The critical periods of cerebral plasticity: A key aspect in a dialog between psychoanalysis and neuroscience centered on the psychopathology of schizophrenia. Front Mol Neurosci 2022; 15:1057539. [PMID: 36590919 PMCID: PMC9795046 DOI: 10.3389/fnmol.2022.1057539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022] Open
Abstract
Through research into the molecular and cellular mechanisms that occur during critical periods, recent experimental neurobiological data have brought to light the importance of early childhood. These have demonstrated that childhood and early environmental stimuli play a part not only in our subjective construction, but also in brain development; thus, confirming Freud's intuition regarding the central role of childhood and early experiences of the environment in our psychological development and our subjective outcomes. "Critical periods" of cerebral development represent temporal windows that mark favorable, but also circumscribed, moments in developmental cerebral plasticity. They also vary between different cortical areas. There are, therefore, strictly defined temporal periods for learning language, music, etc., after which this learning becomes more difficult, or even impossible, to acquire. Now, research into these critical periods can be seen as having a significant part to play in the interdisciplinary dialog between psychoanalysis and neurosciences with regard to the role of early experiences in the etiology of some psychopathological conditions. Research into the cellular and molecular mechanisms controlling the onset and end of these critical periods, notably controlled by the maturation of parvalbumin-expressing basket cells, have brought to light the presence of anomalies in the maturation of these neurons in patients with schizophrenia. Starting from these findings we propose revisiting the psychoanalytic theories on the etiology of psychosis from an interdisciplinary perspective. Our study works from the observation, common to both psychoanalysis and neurosciences, that experience leaves a trace; be it a "psychic" or a "synaptic" trace. Thus, we develop a hypothesis for an "absence of trace" in psychosis; reexamining psychosis through the prism of the biological theory of critical periods in plasticity.
Collapse
Affiliation(s)
- Jessica Tran The
- INSERM U1077 Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France,Ecole Pratique des Hautes Etudes, Université Paris Sciences et Lettres, Paris, France,UFR de Psychologie, Université de Caen Normandie, Caen, France,Centre Hospitalier Universitaire de Caen, Caen, France,Cyceron, Caen, France,Agalma Foundation Geneva, Chemin des Mines, Switzerland,*Correspondence: Jessica Tran The,
| | - Pierre J. Magistretti
- Agalma Foundation Geneva, Chemin des Mines, Switzerland,Brain Mind Institute, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland,Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Francois Ansermet
- Agalma Foundation Geneva, Chemin des Mines, Switzerland,Département de Psychiatrie, Faculté de Médecine, Université de Genève, Geneva, Switzerland
| |
Collapse
|
26
|
Liu S, Won H, Clarke D, Matoba N, Khullar S, Mu Y, Wang D, Gerstein M. Illuminating links between cis-regulators and trans-acting variants in the human prefrontal cortex. Genome Med 2022; 14:133. [PMID: 36424644 PMCID: PMC9685876 DOI: 10.1186/s13073-022-01133-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/25/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Neuropsychiatric disorders afflict a large portion of the global population and constitute a significant source of disability worldwide. Although Genome-wide Association Studies (GWAS) have identified many disorder-associated variants, the underlying regulatory mechanisms linking them to disorders remain elusive, especially those involving distant genomic elements. Expression quantitative trait loci (eQTLs) constitute a powerful means of providing this missing link. However, most eQTL studies in human brains have focused exclusively on cis-eQTLs, which link variants to nearby genes (i.e., those within 1 Mb of a variant). A complete understanding of disease etiology requires a clearer understanding of trans-regulatory mechanisms, which, in turn, entails a detailed analysis of the relationships between variants and expression changes in distant genes. METHODS By leveraging large datasets from the PsychENCODE consortium, we conducted a genome-wide survey of trans-eQTLs in the human dorsolateral prefrontal cortex. We also performed colocalization and mediation analyses to identify mediators in trans-regulation and use trans-eQTLs to link GWAS loci to schizophrenia risk genes. RESULTS We identified ~80,000 candidate trans-eQTLs (at FDR<0.25) that influence the expression of ~10K target genes (i.e., "trans-eGenes"). We found that many variants associated with these candidate trans-eQTLs overlap with known cis-eQTLs. Moreover, for >60% of these variants (by colocalization), the cis-eQTL's target gene acts as a mediator for the trans-eQTL SNP's effect on the trans-eGene, highlighting examples of cis-mediation as essential for trans-regulation. Furthermore, many of these colocalized variants fall into a discernable pattern wherein cis-eQTL's target is a transcription factor or RNA-binding protein, which, in turn, targets the gene associated with the candidate trans-eQTL. Finally, we show that trans-regulatory mechanisms provide valuable insights into psychiatric disorders: beyond what had been possible using only cis-eQTLs, we link an additional 23 GWAS loci and 90 risk genes (using colocalization between candidate trans-eQTLs and schizophrenia GWAS loci). CONCLUSIONS We demonstrate that the transcriptional architecture of the human brain is orchestrated by both cis- and trans-regulatory variants and found that trans-eQTLs provide insights into brain-disease biology.
Collapse
Affiliation(s)
- Shuang Liu
- Waisman Center, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Hyejung Won
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Declan Clarke
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Nana Matoba
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Saniya Khullar
- Waisman Center, University of Wisconsin - Madison, Madison, WI, 53705, USA.,Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Yudi Mu
- Department of Statistics, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Daifeng Wang
- Waisman Center, University of Wisconsin - Madison, Madison, WI, 53705, USA. .,Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI, 53706, USA. .,Department of Computer Sciences, University of Wisconsin - Madison, Madison, WI, 53706, USA.
| | - Mark Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA. .,Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA. .,Department of Computer Science, Yale University, New Haven, CT, 06520, USA. .,Department of Statistics and Data Science, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
27
|
Asah S, Alganem K, McCullumsmith RE, O'Donovan SM. A bioinformatic inquiry of the EAAT2 interactome in postmortem and neuropsychiatric datasets. Schizophr Res 2022; 249:38-46. [PMID: 32197935 PMCID: PMC7494586 DOI: 10.1016/j.schres.2020.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
Altered expression and localization of the glutamate transporter EAAT2 is found in schizophrenia and other neuropsychiatric (major depression, MDD) and neurological disorders (amyotrophic lateral sclerosis, ALS). However, the EAAT2 interactome, the network of proteins that physically or functionally interact with EAAT2 to support its activity, has yet to be characterized in severe mental illness. We compiled a list of "core" EAAT2 interacting proteins. Using Kaleidoscope, an R-shiny application, we data mined publically available postmortem transcriptome datasets to determine whether components of the EAAT2 interactome are differentially expressed in schizophrenia and, using Reactome, identify which interactome-associated biological pathways are altered. Overall, these "look up" studies highlight region-specific, primarily frontal cortex (dorsolateral prefrontal cortex and anterior cingulate cortex), changes in the EAAT2 interactome and implicate altered metabolism pathways in schizophrenia. Pathway analyses also suggest that perturbation of components of the EAAT2 interactome in animal models of antipsychotic administration impact metabolism. Similar changes in metabolism pathways are seen in ALS, in addition to altered expression of many components of the EAAT2 interactome. However, although EAAT2 expression is altered in a postmortem MDD dataset, few other components of the EAAT2 interactome are changed. Thus, "look up" studies suggest region- and disease-relevant biological pathways related to the EAAT2 interactome that implicate glutamate reuptake perturbations in schizophrenia, while providing a useful tool to exploit "omics" datasets.
Collapse
Affiliation(s)
- Sophie Asah
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Khaled Alganem
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | | | | |
Collapse
|
28
|
Kimoto S, Hashimoto T, Berry KJ, Tsubomoto M, Yamaguchi Y, Enwright JF, Chen K, Kawabata R, Kikuchi M, Kishimoto T, Lewis DA. Expression of actin- and oxidative phosphorylation-related transcripts across the cortical visuospatial working memory network in unaffected comparison and schizophrenia subjects. Neuropsychopharmacology 2022; 47:2061-2070. [PMID: 35034100 PMCID: PMC9556568 DOI: 10.1038/s41386-022-01274-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/09/2022]
Abstract
Visuospatial working memory (vsWM), which is impaired in schizophrenia (SZ), is mediated by a distributed cortical network. In one node of this network, the dorsolateral prefrontal cortex (DLPFC), altered expression of transcripts for actin assembly and mitochondrial oxidative phosphorylation (OXPHOS) have been reported in SZ. To understand the relationship between these processes, and the extent to which similar alterations are present in other regions of vsWM network in SZ, a subset of actin- (CDC42, BAIAP2, ARPC3, and ARPC4) and OXPHOS-related (ATP5H, COX4I1, COX7B, and NDUFB3) transcripts were quantified in DLPFC by RNA sequencing in 139 SZ and unaffected comparison (UC) subjects, and in DLPFC and three other regions of the cortical vsWM network by qPCR in 20 pairs of SZ and UC subjects. By RNA sequencing, levels of actin- and OXPHOS-related transcripts were significantly altered in SZ, and robustly correlated in both UC and SZ subject groups. By qPCR, cross-regional expression patterns of these transcripts in UC subjects were consistent with greater actin assembly in DLPFC and higher OXPHOS activity in primary visual cortex (V1). In SZ, CDC42 and ARPC4 levels were lower in all regions, BAIAP2 levels higher only in V1, and ARPC3 levels unaltered across regions. All OXPHOS-related transcript levels were lower in SZ, with the disease effect decreasing from posterior to anterior regions. The differential alterations in markers of actin assembly and energy production across regions of the cortical vsWM network in SZ suggest that each region may make specific contributions to vsWM impairments in the illness.
Collapse
Affiliation(s)
- Sohei Kimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, 634-8521, Japan
- Department of Neuropsychiatry, Wakayama Medical University School of Medicine, Wakayama, 641-8509, Japan
| | - Takanori Hashimoto
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Research Center for Child Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Kimberly J Berry
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Makoto Tsubomoto
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Yasunari Yamaguchi
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, 634-8521, Japan
- Department of Neuropsychiatry, Wakayama Medical University School of Medicine, Wakayama, 641-8509, Japan
| | - John F Enwright
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Kehui Chen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Rika Kawabata
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Mitsuru Kikuchi
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
- Research Center for Child Development, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Toshifumi Kishimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, 634-8521, Japan
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
29
|
Dienel SJ, Schoonover KE, Lewis DA. Cognitive Dysfunction and Prefrontal Cortical Circuit Alterations in Schizophrenia: Developmental Trajectories. Biol Psychiatry 2022; 92:450-459. [PMID: 35568522 PMCID: PMC9420748 DOI: 10.1016/j.biopsych.2022.03.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 01/01/2023]
Abstract
Individuals with schizophrenia (SZ) exhibit cognitive performance below expected levels based on familial cognitive aptitude. One such cognitive process, working memory (WM), is robustly impaired in SZ. These WM impairments, which emerge over development during the premorbid and prodromal stages of SZ, appear to reflect alterations in the neural circuitry of the dorsolateral prefrontal cortex. Within the dorsolateral prefrontal cortex, a microcircuit formed by reciprocal connections between excitatory layer 3 pyramidal neurons and inhibitory parvalbumin basket cells (PVBCs) appears to be a key neural substrate for WM. Postmortem human studies indicate that both layer 3 pyramidal neurons and PVBCs are altered in SZ, suggesting that levels of excitation and inhibition are lower in the microcircuit. Studies in monkeys indicate that features of both cell types exhibit distinctive postnatal developmental trajectories. Together, the results of these studies suggest a model in which 1) genetic and/or early environmental insults to excitatory signaling in layer 3 pyramidal neurons give rise to cognitive impairments during the prodromal phase of SZ and evoke compensatory changes in inhibition that alter the developmental trajectories of PVBCs, and 2) synaptic pruning during adolescence further lowers excitatory activity to a level that exceeds the compensatory capacity of PVBC inhibition, leading to a failure of the normal maturational improvements in WM during the prodromal and early clinical stages of SZ. Findings that support as well as challenge this model are discussed.
Collapse
Affiliation(s)
- Samuel J Dienel
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Kirsten E Schoonover
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania.
| |
Collapse
|
30
|
Mannekote Thippaiah S, Pradhan B, Voyiaziakis E, Shetty R, Iyengar S, Olson C, Tang YY. Possible Role of Parvalbumin Interneurons in Meditation and Psychiatric Illness. J Neuropsychiatry Clin Neurosci 2022; 34:113-123. [PMID: 35040663 DOI: 10.1176/appi.neuropsych.21050136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Parvalbumin (PV) interneurons are present in multiple brain regions and produce complex influences on brain functioning. An increasing number of research findings indicate that the function of these interneurons is more complex than solely to inhibit pyramidal neurons in the cortex. They generate feedback and feedforward inhibition of cortical neurons, and they are critically involved in the generation of neuronal network oscillation. These oscillations, generated by various brain regions, are linked to perceptions, thought processes, and cognitive functions, all of which, in turn, influence human emotions and behavior. Both animal and human studies consistently have found that meditation practice results in enhancement in the effects of alpha-, theta-, and gamma-frequency oscillations, which may correspond to positive changes in cognition, emotion, conscious awareness, and, subsequently, behavior. Although the study of meditation has moved into mainstream neuroscience research, the link between PV interneurons and any role they might play in meditative states remains elusive. This article is focused primarily on gamma-frequency oscillation, which is generated by PV interneurons, to develop insight and perspective into the role of PV interneurons in meditation. This article also points to new and emerging directions that address whether this role of PV interneurons in meditation extends to a beneficial, and potentially therapeutic, role in the treatment of common psychiatric disorders, including schizophrenia.
Collapse
Affiliation(s)
- Srinagesh Mannekote Thippaiah
- Department of Psychiatry, Valleywise Behavioral Health Center, School of Medicine, Creighton University, Phoenix (Mannekote Thippaiah, Olson); Division of Neuromodulation and Integrative Psychiatry, Department of Psychiatry and Pediatrics, Cooper Medical School, Rowan University, Camden, N.J. (Pradhan); Department of Psychiatry, Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, Glen Oaks, N.Y. (Voyiaziakis); Department of Neuroscience, College of Biological Sciences, University of Minnesota, Minneapolis (Shetty); American Museum of Natural History, New York (Iyengar); Psychiatry Division, District Medical Group, Phoenix (Olson); and College of Health Solutions, Arizona State University, Tempe (Tang)
| | - Basant Pradhan
- Department of Psychiatry, Valleywise Behavioral Health Center, School of Medicine, Creighton University, Phoenix (Mannekote Thippaiah, Olson); Division of Neuromodulation and Integrative Psychiatry, Department of Psychiatry and Pediatrics, Cooper Medical School, Rowan University, Camden, N.J. (Pradhan); Department of Psychiatry, Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, Glen Oaks, N.Y. (Voyiaziakis); Department of Neuroscience, College of Biological Sciences, University of Minnesota, Minneapolis (Shetty); American Museum of Natural History, New York (Iyengar); Psychiatry Division, District Medical Group, Phoenix (Olson); and College of Health Solutions, Arizona State University, Tempe (Tang)
| | - Emanuel Voyiaziakis
- Department of Psychiatry, Valleywise Behavioral Health Center, School of Medicine, Creighton University, Phoenix (Mannekote Thippaiah, Olson); Division of Neuromodulation and Integrative Psychiatry, Department of Psychiatry and Pediatrics, Cooper Medical School, Rowan University, Camden, N.J. (Pradhan); Department of Psychiatry, Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, Glen Oaks, N.Y. (Voyiaziakis); Department of Neuroscience, College of Biological Sciences, University of Minnesota, Minneapolis (Shetty); American Museum of Natural History, New York (Iyengar); Psychiatry Division, District Medical Group, Phoenix (Olson); and College of Health Solutions, Arizona State University, Tempe (Tang)
| | - Rashika Shetty
- Department of Psychiatry, Valleywise Behavioral Health Center, School of Medicine, Creighton University, Phoenix (Mannekote Thippaiah, Olson); Division of Neuromodulation and Integrative Psychiatry, Department of Psychiatry and Pediatrics, Cooper Medical School, Rowan University, Camden, N.J. (Pradhan); Department of Psychiatry, Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, Glen Oaks, N.Y. (Voyiaziakis); Department of Neuroscience, College of Biological Sciences, University of Minnesota, Minneapolis (Shetty); American Museum of Natural History, New York (Iyengar); Psychiatry Division, District Medical Group, Phoenix (Olson); and College of Health Solutions, Arizona State University, Tempe (Tang)
| | - Sloka Iyengar
- Department of Psychiatry, Valleywise Behavioral Health Center, School of Medicine, Creighton University, Phoenix (Mannekote Thippaiah, Olson); Division of Neuromodulation and Integrative Psychiatry, Department of Psychiatry and Pediatrics, Cooper Medical School, Rowan University, Camden, N.J. (Pradhan); Department of Psychiatry, Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, Glen Oaks, N.Y. (Voyiaziakis); Department of Neuroscience, College of Biological Sciences, University of Minnesota, Minneapolis (Shetty); American Museum of Natural History, New York (Iyengar); Psychiatry Division, District Medical Group, Phoenix (Olson); and College of Health Solutions, Arizona State University, Tempe (Tang)
| | - Carol Olson
- Department of Psychiatry, Valleywise Behavioral Health Center, School of Medicine, Creighton University, Phoenix (Mannekote Thippaiah, Olson); Division of Neuromodulation and Integrative Psychiatry, Department of Psychiatry and Pediatrics, Cooper Medical School, Rowan University, Camden, N.J. (Pradhan); Department of Psychiatry, Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, Glen Oaks, N.Y. (Voyiaziakis); Department of Neuroscience, College of Biological Sciences, University of Minnesota, Minneapolis (Shetty); American Museum of Natural History, New York (Iyengar); Psychiatry Division, District Medical Group, Phoenix (Olson); and College of Health Solutions, Arizona State University, Tempe (Tang)
| | - Yi-Yuan Tang
- Department of Psychiatry, Valleywise Behavioral Health Center, School of Medicine, Creighton University, Phoenix (Mannekote Thippaiah, Olson); Division of Neuromodulation and Integrative Psychiatry, Department of Psychiatry and Pediatrics, Cooper Medical School, Rowan University, Camden, N.J. (Pradhan); Department of Psychiatry, Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, Glen Oaks, N.Y. (Voyiaziakis); Department of Neuroscience, College of Biological Sciences, University of Minnesota, Minneapolis (Shetty); American Museum of Natural History, New York (Iyengar); Psychiatry Division, District Medical Group, Phoenix (Olson); and College of Health Solutions, Arizona State University, Tempe (Tang)
| |
Collapse
|
31
|
Henkel ND, Wu X, O'Donovan SM, Devine EA, Jiron JM, Rowland LM, Sarnyai Z, Ramsey AJ, Wen Z, Hahn MK, McCullumsmith RE. Schizophrenia: a disorder of broken brain bioenergetics. Mol Psychiatry 2022; 27:2393-2404. [PMID: 35264726 DOI: 10.1038/s41380-022-01494-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
Abstract
A substantial and diverse body of literature suggests that the pathophysiology of schizophrenia is related to deficits of bioenergetic function. While antipsychotics are an effective therapy for the management of positive psychotic symptoms, they are not efficacious for the complete schizophrenia symptom profile, such as the negative and cognitive symptoms. In this review, we discuss the relationship between dysfunction of various metabolic pathways across different brain regions in relation to schizophrenia. We contend that several bioenergetic subprocesses are affected across the brain and such deficits are a core feature of the illness. We provide an overview of central perturbations of insulin signaling, glycolysis, pentose-phosphate pathway, tricarboxylic acid cycle, and oxidative phosphorylation in schizophrenia. Importantly, we discuss pharmacologic and nonpharmacologic interventions that target these pathways and how such interventions may be exploited to improve the symptoms of schizophrenia.
Collapse
Affiliation(s)
- Nicholas D Henkel
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
| | - Xiajoun Wu
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Sinead M O'Donovan
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Emily A Devine
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Jessica M Jiron
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zoltan Sarnyai
- Laboratory of Psychiatric Neuroscience, Australian Institute for Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Amy J Ramsey
- Department of Pharmacology and Toxicology, Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Margaret K Hahn
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Robert E McCullumsmith
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Neurosciences Institute, ProMedica, Toledo, OH, USA
| |
Collapse
|
32
|
Cuenod M, Steullet P, Cabungcal JH, Dwir D, Khadimallah I, Klauser P, Conus P, Do KQ. Caught in vicious circles: a perspective on dynamic feed-forward loops driving oxidative stress in schizophrenia. Mol Psychiatry 2022; 27:1886-1897. [PMID: 34759358 PMCID: PMC9126811 DOI: 10.1038/s41380-021-01374-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022]
Abstract
A growing body of evidence has emerged demonstrating a pathological link between oxidative stress and schizophrenia. This evidence identifies oxidative stress as a convergence point or "central hub" for schizophrenia genetic and environmental risk factors. Here we review the existing experimental and translational research pinpointing the complex dynamics of oxidative stress mechanisms and their modulation in relation to schizophrenia pathophysiology. We focus on evidence supporting the crucial role of either redox dysregulation, N-methyl-D-aspartate receptor hypofunction, neuroinflammation or mitochondria bioenergetics dysfunction, initiating "vicious circles" centered on oxidative stress during neurodevelopment. These processes would amplify one another in positive feed-forward loops, leading to persistent impairments of the maturation and function of local parvalbumin-GABAergic neurons microcircuits and myelinated fibers of long-range macrocircuitry. This is at the basis of neural circuit synchronization impairments and cognitive, emotional, social and sensory deficits characteristic of schizophrenia. Potential therapeutic approaches that aim at breaking these different vicious circles represent promising strategies for timely and safe interventions. In order to improve early detection and increase the signal-to-noise ratio for adjunctive trials of antioxidant, anti-inflammatory and NMDAR modulator drugs, a reverse translation of validated circuitry approach is needed. The above presented processes allow to identify mechanism based biomarkers guiding stratification of homogenous patients groups and target engagement required for successful clinical trials, paving the way towards precision medicine in psychiatry.
Collapse
Affiliation(s)
- Michel Cuenod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Jan-Harry Cabungcal
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Ines Khadimallah
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland.
| |
Collapse
|
33
|
Di Biase MA, Geaghan MP, Reay WR, Seidlitz J, Weickert CS, Pébay A, Green MJ, Quidé Y, Atkins JR, Coleman MJ, Bouix S, Knyazhanskaya EE, Lyall AE, Pasternak O, Kubicki M, Rathi Y, Visco A, Gaunnac M, Lv J, Mesholam-Gately RI, Lewandowski KE, Holt DJ, Keshavan MS, Pantelis C, Öngür D, Breier A, Cairns MJ, Shenton ME, Zalesky A. Cell type-specific manifestations of cortical thickness heterogeneity in schizophrenia. Mol Psychiatry 2022; 27:2052-2060. [PMID: 35145230 PMCID: PMC9126812 DOI: 10.1038/s41380-022-01460-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 12/16/2022]
Abstract
Brain morphology differs markedly between individuals with schizophrenia, but the cellular and genetic basis of this heterogeneity is poorly understood. Here, we sought to determine whether cortical thickness (CTh) heterogeneity in schizophrenia relates to interregional variation in distinct neural cell types, as inferred from established gene expression data and person-specific genomic variation. This study comprised 1849 participants in total, including a discovery (140 cases and 1267 controls) and a validation cohort (335 cases and 185 controls). To characterize CTh heterogeneity, normative ranges were established for 34 cortical regions and the extent of deviation from these ranges was measured for each individual with schizophrenia. CTh deviations were explained by interregional gene expression levels of five out of seven neural cell types examined: (1) astrocytes; (2) endothelial cells; (3) oligodendrocyte progenitor cells (OPCs); (4) excitatory neurons; and (5) inhibitory neurons. Regional alignment between CTh alterations with cell type transcriptional maps distinguished broad patient subtypes, which were validated against genomic data drawn from the same individuals. In a predominantly neuronal/endothelial subtype (22% of patients), CTh deviations covaried with polygenic risk for schizophrenia (sczPRS) calculated specifically from genes marking neuronal and endothelial cells (r = -0.40, p = 0.010). Whereas, in a predominantly glia/OPC subtype (43% of patients), CTh deviations covaried with sczPRS calculated from glia and OPC-linked genes (r = -0.30, p = 0.028). This multi-scale analysis of genomic, transcriptomic, and brain phenotypic data may indicate that CTh heterogeneity in schizophrenia relates to inter-individual variation in cell-type specific functions. Decomposing heterogeneity in relation to cortical cell types enables prioritization of schizophrenia subsets for future disease modeling efforts.
Collapse
Affiliation(s)
- Maria A Di Biase
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia.
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Michael P Geaghan
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - William R Reay
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Jakob Seidlitz
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia, Randwick, NSW, Australia
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Alice Pébay
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Department of Surgery, Royal Melbourne Hospital, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - Melissa J Green
- Neuroscience Research Australia, Randwick, NSW, Australia
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia
| | - Yann Quidé
- Neuroscience Research Australia, Randwick, NSW, Australia
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia
| | - Joshua R Atkins
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
| | - Michael J Coleman
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sylvain Bouix
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Amanda E Lyall
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yogesh Rathi
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew Visco
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Megan Gaunnac
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jinglei Lv
- School of Biomedical Engineering & Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
| | | | - Kathryn E Lewandowski
- Division of Psychotic Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Daphne J Holt
- Massachusetts General Hospital, Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Matcheri S Keshavan
- Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Dost Öngür
- Division of Psychotic Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Alan Breier
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Melbourne School of Engineering, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
34
|
Hribkova H, Svoboda O, Bartecku E, Zelinkova J, Horinkova J, Lacinova L, Piskacek M, Lipovy B, Provaznik I, Glover JC, Kasparek T, Sun YM. Clozapine Reverses Dysfunction of Glutamatergic Neurons Derived From Clozapine-Responsive Schizophrenia Patients. Front Cell Neurosci 2022; 16:830757. [PMID: 35281293 PMCID: PMC8904748 DOI: 10.3389/fncel.2022.830757] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/28/2022] [Indexed: 11/26/2022] Open
Abstract
The cellular pathology of schizophrenia and the potential of antipsychotics to target underlying neuronal dysfunctions are still largely unknown. We employed glutamatergic neurons derived from induced pluripotent stem cells (iPSC) obtained from schizophrenia patients with known histories of response to clozapine and healthy controls to decipher the mechanisms of action of clozapine, spanning from molecular (transcriptomic profiling) and cellular (electrophysiology) levels to observed clinical effects in living patients. Glutamatergic neurons derived from schizophrenia patients exhibited deficits in intrinsic electrophysiological properties, synaptic function and network activity. Deficits in K+ and Na+ currents, network behavior, and glutamatergic synaptic signaling were restored by clozapine treatment, but only in neurons from clozapine-responsive patients. Moreover, neurons from clozapine-responsive patients exhibited a reciprocal dysregulation of gene expression, particularly related to glutamatergic and downstream signaling, which was reversed by clozapine treatment. Only neurons from clozapine responders showed return to normal function and transcriptomic profile. Our results underscore the importance of K+ and Na+ channels and glutamatergic synaptic signaling in the pathogenesis of schizophrenia and demonstrate that clozapine might act by normalizing perturbances in this signaling pathway. To our knowledge this is the first study to demonstrate that schizophrenia iPSC-derived neurons exhibit a response phenotype correlated with clinical response to an antipsychotic. This opens a new avenue in the search for an effective treatment agent tailored to the needs of individual patients.
Collapse
Affiliation(s)
- Hana Hribkova
- Department of Biology, Masaryk University, Brno, Czechia
| | - Ondrej Svoboda
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Elis Bartecku
- Department of Psychiatry, Faculty of Medicine and University Hospital Brno, Brno, Czechia
| | - Jana Zelinkova
- Department of Biology, Masaryk University, Brno, Czechia
| | - Jana Horinkova
- Department of Psychiatry, Faculty of Medicine and University Hospital Brno, Brno, Czechia
| | - Lubica Lacinova
- Center of Bioscience, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martin Piskacek
- Department of Pathological Physiology, Masaryk University, Brno, Czechia
| | - Bretislav Lipovy
- Department of Burns and Plastic Surgery, Faculty of Medicine and University Hospital Brno, Brno, Czechia
| | - Ivo Provaznik
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Joel C. Glover
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - Tomas Kasparek
- Department of Psychiatry, Faculty of Medicine and University Hospital Brno, Brno, Czechia
- *Correspondence: Tomas Kasparek,
| | - Yuh-Man Sun
- Department of Biology, Masaryk University, Brno, Czechia
| |
Collapse
|
35
|
Enwright III JF, Arion D, MacDonald WA, Elbakri R, Pan Y, Vyas G, Berndt A, Lewis DA. Differential gene expression in layer 3 pyramidal neurons across 3 regions of the human cortical visual spatial working memory network. Cereb Cortex 2022; 32:5216-5229. [PMID: 35106549 PMCID: PMC9667185 DOI: 10.1093/cercor/bhac009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 02/03/2023] Open
Abstract
Visual spatial working memory (vsWM) is mediated by a distributed cortical network composed of multiple nodes, including primary visual (V1), posterior parietal (PPC), and dorsolateral prefrontal (DLPFC) cortices. Feedforward and feedback information is transferred among these nodes via projections furnished by pyramidal neurons (PNs) located primarily in cortical layer 3. Morphological and electrophysiological differences among layer 3 PNs across these nodes have been reported; however, the transcriptional signatures underlying these differences have not been examined in the human brain. Here we interrogated the transcriptomes of layer 3 PNs from 39 neurotypical human subjects across 3 critical nodes of the vsWM network. Over 8,000 differentially expressed genes were detected, with more than 6,000 transcriptional differences present between layer 3 PNs in V1 and those in PPC and DLPFC. Additionally, over 600 other genes differed in expression along the rostral-to-caudal hierarchy formed by these 3 nodes. Moreover, pathway analysis revealed enrichment of genes in V1 related to circadian rhythms and in DLPFC of genes involved in synaptic plasticity. Overall, these results show robust regional differences in the transcriptome of layer 3 PNs, which likely contribute to regional specialization in their morphological and physiological features and thus in their functional contributions to vsWM.
Collapse
Affiliation(s)
- John F Enwright III
- Department of Psychiatry, University of Pittsburgh Thomas Detre Hall 3811 O'Hara Street Pittsburgh, PA 15213 United States
| | - Dominique Arion
- Department of Psychiatry, University of Pittsburgh Thomas Detre Hall 3811 O'Hara Street Pittsburgh, PA 15213 United States
| | - William A MacDonald
- Department of Pediatrics UPMC Children's Hospital of Pittsburgh 4401 Penn Avenue Pittsburgh, PA 15224-1334 United States,Health Sciences Sequencing Core 4401 Penn Avenue Rangos Research Building 8th Floor Pittsburgh, PA 15224 United States
| | - Rania Elbakri
- Department of Pediatrics UPMC Children's Hospital of Pittsburgh 4401 Penn Avenue Pittsburgh, PA 15224-1334 United States,Health Sciences Sequencing Core 4401 Penn Avenue Rangos Research Building 8th Floor Pittsburgh, PA 15224 United States
| | - Yinghong Pan
- The Institute for Precision Medicine 204 Craft Avenue, Room A412 Pittsburgh, PA 15213 United States
| | - Gopi Vyas
- The Institute for Precision Medicine 204 Craft Avenue, Room A412 Pittsburgh, PA 15213 United States
| | - Annerose Berndt
- The Institute for Precision Medicine 204 Craft Avenue, Room A412 Pittsburgh, PA 15213 United States
| | - David A Lewis
- Address correspondence to David A. Lewis, Department of Psychiatry, University of Pittsburgh, Biomedical Science Tower W1654, 3811 O’Hara Street, Pittsburgh, PA 15213-2593, United States.
| |
Collapse
|
36
|
Qi B, Boscenco S, Ramamurthy J, Trakadis YJ. Transcriptomics and machine learning to advance schizophrenia genetics: A case-control study using post-mortem brain data. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 214:106590. [PMID: 34954633 DOI: 10.1016/j.cmpb.2021.106590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 08/31/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Alterations of the expression of a variety of genes have been reported in patients with schizophrenia (SCZ). Moreover, machine learning (ML) analysis of gene expression microarray data has shown promising preliminary results in the study of SCZ. Our objective was to evaluate the performance of ML in classifying SCZ cases and controls based on gene expression microarray data from the dorsolateral prefrontal cortex. METHODS We apply a state-of-the-art ML algorithm (XGBoost) to train and evaluate a classification model using 201 SCZ cases and 278 controls. We utilized 10-fold cross-validation for model selection, and a held-out testing set to evaluate the model. The performance metric utilizes to evaluate classification performance was the area under the receiver-operator characteristics curve (AUC). RESULTS We report an average AUC on 10-fold cross-validation of 0.76 and an AUC of 0.76 on testing data, not used during training. Analysis of the rolling balanced classification accuracy from high to low prediction confidence levels showed that the most certain subset of predictions ranged between 80-90%. The ML model utilized 182 gene expression probes. Further improvement to classification performance was observed when applying an automated ML strategy on the 182 features, which achieved an AUC of 0.79 on the same testing data. We found literature evidence linking all of the top ten ML ranked genes to SCZ. Furthermore, we leveraged information from the full set of microarray gene expressions available via univariate differential gene expression analysis. We then prioritized differentially expressed gene sets using the piano gene set analysis package. We augmented the ranking of the prioritized gene sets with genes from the complex multivariate ML model using hypergeometric tests to identify more robust gene sets. We identified two significant Gene Ontology molecular function gene sets: "oxidoreductase activity, acting on the CH-NH2 group of donors" and "integrin binding." Lastly, we present candidate treatments for SCZ based on findings from our study CONCLUSIONS: Overall, we observed above-chance performance from ML classification of SCZ cases and controls based on brain gene expression microarray data, and found that ML analysis of gene expressions could further our understanding of the pathophysiology of SCZ and help identify novel treatments.
Collapse
Affiliation(s)
- Bill Qi
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Sonia Boscenco
- Faculty of Science, McGill University, Montreal, QC, Canada
| | | | - Yannis J Trakadis
- Department of Human Genetics, McGill University, Montreal, QC, Canada; Department of Medical Genetics, McGill University Health Center, Montreal, QC, Canada.
| |
Collapse
|
37
|
Juarez P, Martínez Cerdeño V. Parvalbumin and parvalbumin chandelier interneurons in autism and other psychiatric disorders. Front Psychiatry 2022; 13:913550. [PMID: 36311505 PMCID: PMC9597886 DOI: 10.3389/fpsyt.2022.913550] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Parvalbumin (PV) is a calcium binding protein expressed by inhibitory fast-spiking interneurons in the cerebral cortex. By generating a fast stream of action potentials, PV+ interneurons provide a quick and stable inhibitory input to pyramidal neurons and contribute to the generation of gamma oscillations in the cortex. Their fast-firing rates, while advantageous for regulating cortical signaling, also leave them vulnerable to metabolic stress. Chandelier (Ch) cells are a type of PV+ interneuron that modulate the output of pyramidal neurons and synchronize spikes within neuron populations by directly innervating the pyramidal axon initial segment. Changes in the morphology and/or function of PV+ interneurons, mostly of Ch cells, are linked to neurological disorders. In ASD, the number of PV+ Ch cells is decreased across several cortical areas. Changes in the morphology and/or function of PV+ interneurons have also been linked to schizophrenia, epilepsy, and bipolar disorder. Herein, we review the role of PV and PV+ Ch cell alterations in ASD and other psychiatric disorders.
Collapse
Affiliation(s)
- Pablo Juarez
- Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospital for Children and UC Davis School of Medicine, Sacramento, CA, United States.,Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, United States
| | - Verónica Martínez Cerdeño
- Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospital for Children and UC Davis School of Medicine, Sacramento, CA, United States.,Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, United States.,MIND Institute, UC Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
38
|
Năstase MG, Vlaicu I, Trifu SC, Trifu SC, Department of Psychiatry, Hospital for Psychiatry, Săpunari, Călăraşi County, Romania, Department of Neurosciences, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania. Genetic polymorphism and neuroanatomical changes in schizophrenia. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2022; 63:307-322. [PMID: 36374137 PMCID: PMC9801677 DOI: 10.47162/rjme.63.2.03] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The article is a review of the latest meta-analyses regarding the genetic spectrum in schizophrenia, discussing the risks given by the disrupted-in-schizophrenia 1 (DISC1), catechol-O-methyltransferase (COMT), monoamine oxidases-A∕B (MAO-A∕B), glutamic acid decarboxylase 67 (GAD67) and neuregulin 1 (NRG1) genes, and dysbindin-1 protein. The DISC1 polymorphism significantly increases the risk of schizophrenia, as well injuries from the prefrontal cortex that affect connectivity. NRG1 is one of the most important proteins involved. Its polymorphism is associated with the reduction of areas in the corpus callosum, right uncinate, inferior lateral fronto-occipital fascicle, right external capsule, fornix, right optic tract, gyrus. NRG1 and the ErbB4 receptor (tyrosine kinase receptor) are closely related to the N-methyl-D-aspartate receptor (NMDAR) (glutamate receptor). COMT is located on chromosome 22 and together with interleukin-10 (IL-10) have an anti-inflammatory and immunosuppressive function that influences the dopaminergic system. MAO gene methylation has been associated with mental disorders. MAO-A is a risk gene in the onset of schizophrenia, more precisely a certain type of single-nucleotide polymorphism (SNP), at the gene level, is associated with schizophrenia. In schizophrenia, we find deficits of the γ-aminobutyric acid (GABA)ergic neurotransmitter, the dysfunctions being found predominantly at the level of the substantia nigra. In schizophrenia, missing an allele at GAD67, caused by a SNP, has been correlated with decreases in parvalbumin (PV), somatostatin receptor (SSR), and GAD ribonucleic acid (RNA). Resulting in the inability to mature PV and SSR neurons, which has been associated with hyperactivity.
Collapse
Affiliation(s)
- Mihai Gabriel Năstase
- Department of Neurosciences, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania;
| | - Ilinca Vlaicu
- Department of Psychiatry, Hospital for Psychiatry, Săpunari, Călăraşi County, Romania
| | - Simona Corina Trifu
- Department of Neurosciences, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | | | | |
Collapse
|
39
|
Liu Y, Ouyang P, Zheng Y, Mi L, Zhao J, Ning Y, Guo W. A Selective Review of the Excitatory-Inhibitory Imbalance in Schizophrenia: Underlying Biology, Genetics, Microcircuits, and Symptoms. Front Cell Dev Biol 2021; 9:664535. [PMID: 34746116 PMCID: PMC8567014 DOI: 10.3389/fcell.2021.664535] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/27/2021] [Indexed: 12/29/2022] Open
Abstract
Schizophrenia is a chronic disorder characterized by specific positive and negative primary symptoms, social behavior disturbances and cognitive deficits (e.g., impairment in working memory and cognitive flexibility). Mounting evidence suggests that altered excitability and inhibition at the molecular, cellular, circuit and network level might be the basis for the pathophysiology of neurodevelopmental and neuropsychiatric disorders such as schizophrenia. In the past decades, human and animal studies have identified that glutamate and gamma-aminobutyric acid (GABA) neurotransmissions are critically involved in several cognitive progresses, including learning and memory. The purpose of this review is, by analyzing emerging findings relating to the balance of excitatory and inhibitory, ranging from animal models of schizophrenia to clinical studies in patients with early onset, first-episode or chronic schizophrenia, to discuss how the excitatory-inhibitory imbalance may relate to the pathophysiology of disease phenotypes such as cognitive deficits and negative symptoms, and highlight directions for appropriate therapeutic strategies.
Collapse
Affiliation(s)
- Yi Liu
- National Clinical Research Center on Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Pan Ouyang
- National Clinical Research Center on Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yingjun Zheng
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lin Mi
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jingping Zhao
- National Clinical Research Center on Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuping Ning
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China.,The First School of Clinical Medical University, Guangzhou, China
| | - Wenbin Guo
- National Clinical Research Center on Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
40
|
Zhu Y, Zhao Y, Xu X, Su H, Li X, Zhong N, Jiang H, Du J, Zhao M. Aberrant expression of BDNF might serve as a candidate target for cocaine-induced psychosis: insights from bioinformatics analysis and microarray validation. Gen Psychiatr 2021; 34:e100587. [PMID: 34723091 PMCID: PMC8506846 DOI: 10.1136/gpsych-2021-100587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/13/2021] [Indexed: 11/19/2022] Open
Abstract
Background Cocaine use disorder (CUD) and associated psychosis are major public health issues worldwide, along with high relapse outcome and limited treatment options. Exploring the molecular mechanisms underlying cocaine-induced psychosis (CIP) could supply integrated insights for understanding the pathogenic mechanism and potential novel therapeutic targets. Aims The aim of the study was to explore common alterations of CUD-schizophrenia-target genes and identify core risk genes contributing to CIP through data mining and network pharmacology approach. Methods Target genes of CUD were obtained from GeneCards, Comparative Toxicogenomics Database, Swiss Target Prediction platform and PubChem. Schizophrenia-related target genes were derived from DisGeNET, GeneCards, MalaCards and Online Mendelian Inheritance in Man databases. Then, the overlap genes of these two sets were regarded as risk genes contributing to CIP. Based on these CUD-schizophrenia-target genes, functional annotation and pathway analysis were performed using the clusterProfiler package in R. Protein–protein interaction network construction and module detection were performed based on the Search Tool for the Retrieval of Interacting Genes (STRING) database and Cytoscape software. Gene expression datasets GSE54839 and GSE93577 were applied for data validation and diagnostic capacity evaluation of interested hub genes. Results A total of 165 CUD-schizophrenia-target genes were obtained. These genes were mainly contributing to chemical synaptic transmission, neuropeptide hormone activity, postsynaptic membrane and neuroactive ligand–receptor interaction pathway. Network analysis and validation analysis indicated that BDNF might serve as an important risk gene in mediating CIP. Conclusions This study generates a holistic view of CIP and provides a basis for the identification of potential CUD-schizophrenia-target genes involved in the development of CIP. The abnormal expression of BDNF would be a candidate therapeutic target underlying the pathogenesis of CUD and associated CIP.
Collapse
Affiliation(s)
- Youwei Zhu
- Shanghai Drug Abuse Treatment Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhao
- Shanghai Drug Abuse Treatment Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomin Xu
- Shanghai Drug Abuse Treatment Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hang Su
- Shanghai Drug Abuse Treatment Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaotong Li
- Shanghai Drug Abuse Treatment Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Zhong
- Shanghai Drug Abuse Treatment Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haifeng Jiang
- Shanghai Drug Abuse Treatment Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Du
- Shanghai Drug Abuse Treatment Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhao
- Shanghai Drug Abuse Treatment Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China.,Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
41
|
Li Y, Xia Y, Zhu H, Luu E, Huang G, Sun Y, Sun K, Markx S, Leong KW, Xu B, Fu BM. Investigation of Neurodevelopmental Deficits of 22 q11.2 Deletion Syndrome with a Patient-iPSC-Derived Blood-Brain Barrier Model. Cells 2021; 10:cells10102576. [PMID: 34685556 PMCID: PMC8534009 DOI: 10.3390/cells10102576] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/13/2022] Open
Abstract
The blood–brain barrier (BBB) is important in the normal functioning of the central nervous system. An altered BBB has been described in various neuropsychiatric disorders, including schizophrenia. However, the cellular and molecular mechanisms of such alterations remain unclear. Here, we investigate if BBB integrity is compromised in 22q11.2 deletion syndrome (also called DiGeorge syndrome), which is one of the validated genetic risk factors for schizophrenia. We utilized a set of human brain microvascular endothelial cells (HBMECs) derived from the induced pluripotent stem cell (iPSC) lines of patients with 22q11.2-deletion-syndrome-associated schizophrenia. We found that the solute permeability of the BBB formed from patient HBMECs increases by ~1.3–1.4-fold, while the trans-endothelial electrical resistance decreases to ~62% of the control values. Correspondingly, tight junction proteins and the endothelial glycocalyx that determine the integrity of the BBB are significantly disrupted. A transcriptome study also suggests that the transcriptional network related to the cell–cell junctions in the compromised BBB is substantially altered. An enrichment analysis further suggests that the genes within the altered gene expression network also contribute to neurodevelopmental disorders. Our findings suggest that neurovascular coupling can be targeted in developing novel therapeutical strategies for the treatment of 22q11.2 deletion syndrome.
Collapse
Affiliation(s)
- Yunfei Li
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031, USA; (Y.L.); (Y.X.); (E.L.); (G.H.)
| | - Yifan Xia
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031, USA; (Y.L.); (Y.X.); (E.L.); (G.H.)
| | - Huixiang Zhu
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; (H.Z.); (Y.S.); (K.S.); (S.M.)
| | - Eric Luu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031, USA; (Y.L.); (Y.X.); (E.L.); (G.H.)
| | - Guangyao Huang
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031, USA; (Y.L.); (Y.X.); (E.L.); (G.H.)
| | - Yan Sun
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; (H.Z.); (Y.S.); (K.S.); (S.M.)
| | - Kevin Sun
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; (H.Z.); (Y.S.); (K.S.); (S.M.)
| | - Sander Markx
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; (H.Z.); (Y.S.); (K.S.); (S.M.)
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA;
| | - Bin Xu
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; (H.Z.); (Y.S.); (K.S.); (S.M.)
- Correspondence: (B.X.); (B.M.F.); Tel.: +1-212-650-7531 (B.M.F.)
| | - Bingmei M. Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031, USA; (Y.L.); (Y.X.); (E.L.); (G.H.)
- Correspondence: (B.X.); (B.M.F.); Tel.: +1-212-650-7531 (B.M.F.)
| |
Collapse
|
42
|
Varga TG, de Toledo Simões JG, Siena A, Henrique E, da Silva RCB, Dos Santos Bioni V, Ramos AC, Rosenstock TR. Haloperidol rescues the schizophrenia-like phenotype in adulthood after rotenone administration in neonatal rats. Psychopharmacology (Berl) 2021; 238:2569-2585. [PMID: 34089344 DOI: 10.1007/s00213-021-05880-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
Neuropsychiatric disorders are multifactorial disturbances that encompass several hypotheses, including changes in neurodevelopment. It is known that brain development disturbances during early life can predict psychosis in adulthood. As we have previously demonstrated, rotenone, a mitochondrial complex I inhibitor, could induce psychiatric-like behavior in 60-day-old rats after intraperitoneal injections from the 5th to the 11th postnatal day. Because mitochondrial deregulation is related to psychiatric disorders and the establishment of animal models is a high-value preclinical tool, we investigated the responsiveness of the rotenone (Rot)-treated newborn rats to pharmacological agents used in clinical practice, haloperidol (Hal), and methylphenidate (MPD). Taken together, our data show that Rot-treated animals exhibit hyperlocomotion, decreased social interaction, and diminished contextual fear conditioning response at P60, consistent with positive, negative, and cognitive deficits of schizophrenia (SZ), respectively, that were reverted by Hal, but not MPD. Rot-treated rodents also display a prodromal-related phenotype at P35. Overall, our results seem to present a new SZ animal model as a consequence of mitochondrial inhibition during a critical neurodevelopmental period. Therefore, our study is crucial not only to elucidate the relevance of mitochondrial function in the etiology of SZ but also to fulfill the need for new and trustworthy experimentation models and, likewise, provide possibilities to new therapeutic avenues for this burdensome disorder.
Collapse
Affiliation(s)
- Thiago Garcia Varga
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| | | | - Amanda Siena
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1524 - Ed. Biomédicas I, 2º andar, São Paulo, SP, 05508-900, Brazil
| | - Elisandra Henrique
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| | | | | | - Aline Camargo Ramos
- Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Tatiana Rosado Rosenstock
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1524 - Ed. Biomédicas I, 2º andar, São Paulo, SP, 05508-900, Brazil. .,Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
43
|
From serendipity to rational drug design in brain disorders: in silico, in vitro, and in vivo approaches. Curr Opin Pharmacol 2021; 60:177-182. [PMID: 34461562 DOI: 10.1016/j.coph.2021.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022]
Abstract
Prolonged life expectancy and stressful lifestyles have increased the risk of developing neurological disorders, including neurodegenerative and psychiatric illnesses. Despite obvious and immediate needs for effective treatment, drug discovery for neurological disorders has been largely serendipitous, whereas hypothesis-driven drug development programs have been remarkably poor. This may be partly due to insufficient knowledge of molecular mechanisms underlying disease pathophysiology, complex genetic and environmental risk factors, and oversimplified diagnostic criteria. Here, we review recent progress in cell type-specific investigations, bioinformatics analyses, and large reference databases, the integration of which, when combined with effective use of animal models, provides novel insights into disease mechanisms, suggests innovative drug development, and ultimately promises superior treatments for patients suffering from neurological disorders.
Collapse
|
44
|
Gokhale A, Lee CE, Zlatic SA, Freeman AAH, Shearing N, Hartwig C, Ogunbona O, Bassell JL, Wynne ME, Werner E, Xu C, Wen Z, Duong D, Seyfried NT, Bearden CE, Oláh VJ, Rowan MJM, Glausier JR, Lewis DA, Faundez V. Mitochondrial Proteostasis Requires Genes Encoded in a Neurodevelopmental Syndrome Locus. J Neurosci 2021; 41:6596-6616. [PMID: 34261699 PMCID: PMC8336702 DOI: 10.1523/jneurosci.2197-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 02/08/2023] Open
Abstract
Eukaryotic cells maintain proteostasis through mechanisms that require cytoplasmic and mitochondrial translation. Genetic defects affecting cytoplasmic translation perturb synapse development, neurotransmission, and are causative of neurodevelopmental disorders, such as Fragile X syndrome. In contrast, there is little indication that mitochondrial proteostasis, either in the form of mitochondrial protein translation and/or degradation, is required for synapse development and function. Here we focus on two genes deleted in a recurrent copy number variation causing neurodevelopmental disorders, the 22q11.2 microdeletion syndrome. We demonstrate that SLC25A1 and MRPL40, two genes present in the microdeleted segment and whose products localize to mitochondria, interact and are necessary for mitochondrial ribosomal integrity and proteostasis. Our Drosophila studies show that mitochondrial ribosome function is necessary for synapse neurodevelopment, function, and behavior. We propose that mitochondrial proteostasis perturbations, either by genetic or environmental factors, are a pathogenic mechanism for neurodevelopmental disorders.SIGNIFICANCE STATEMENT The balance between cytoplasmic protein synthesis and degradation, or cytoplasmic proteostasis, is required for normal synapse function and neurodevelopment. Cytoplasmic and mitochondrial ribosomes are necessary for two compartmentalized, yet interdependent, forms of proteostasis. Proteostasis dependent on cytoplasmic ribosomes is a well-established target of genetic defects that cause neurodevelopmental disorders, such as autism. Here we show that the mitochondrial ribosome is a neurodevelopmentally regulated organelle whose function is required for synapse development and function. We propose that defective mitochondrial proteostasis is a mechanism with the potential to contribute to neurodevelopmental disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Zhexing Wen
- Departments of Cell Biology
- Psychiatry and Behavioral Sciences
| | - Duc Duong
- and Biochemistry, Emory University, Atlanta, Georgia 30322
| | | | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior Department of Psychology, UCLA, Los Angeles, California 90095
| | | | | | - Jill R Glausier
- Departments of Psychiatry and Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - David A Lewis
- Departments of Psychiatry and Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | | |
Collapse
|
45
|
Ji JL, Helmer M, Fonteneau C, Burt JB, Tamayo Z, Demšar J, Adkinson BD, Savić A, Preller KH, Moujaes F, Vollenweider FX, Martin WJ, Repovš G, Cho YT, Pittenger C, Murray JD, Anticevic A. Mapping brain-behavior space relationships along the psychosis spectrum. eLife 2021; 10:e66968. [PMID: 34313219 PMCID: PMC8315806 DOI: 10.7554/elife.66968] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/14/2021] [Indexed: 12/29/2022] Open
Abstract
Difficulties in advancing effective patient-specific therapies for psychiatric disorders highlight a need to develop a stable neurobiologically grounded mapping between neural and symptom variation. This gap is particularly acute for psychosis-spectrum disorders (PSD). Here, in a sample of 436 PSD patients spanning several diagnoses, we derived and replicated a dimensionality-reduced symptom space across hallmark psychopathology symptoms and cognitive deficits. In turn, these symptom axes mapped onto distinct, reproducible brain maps. Critically, we found that multivariate brain-behavior mapping techniques (e.g. canonical correlation analysis) do not produce stable results with current sample sizes. However, we show that a univariate brain-behavioral space (BBS) can resolve stable individualized prediction. Finally, we show a proof-of-principle framework for relating personalized BBS metrics with molecular targets via serotonin and glutamate receptor manipulations and neural gene expression maps derived from the Allen Human Brain Atlas. Collectively, these results highlight a stable and data-driven BBS mapping across PSD, which offers an actionable path that can be iteratively optimized for personalized clinical biomarker endpoints.
Collapse
Affiliation(s)
- Jie Lisa Ji
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
- Interdepartmental Neuroscience Program, Yale University School of MedicineNew HavenUnited States
| | - Markus Helmer
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
| | - Clara Fonteneau
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
| | | | - Zailyn Tamayo
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
| | - Jure Demšar
- Department of Psychology, University of LjubljanaLjubljanaSlovenia
- Faculty of Computer and Information Science, University of LjubljanaLjubljanaSlovenia
| | - Brendan D Adkinson
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
- Interdepartmental Neuroscience Program, Yale University School of MedicineNew HavenUnited States
| | | | - Katrin H Preller
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry ZurichZurichSwitzerland
| | - Flora Moujaes
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry ZurichZurichSwitzerland
| | - Franz X Vollenweider
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry ZurichZurichSwitzerland
| | - William J Martin
- The Janssen Pharmaceutical Companies of Johnson and JohnsonSan FranciscoUnited States
| | - Grega Repovš
- Department of Psychiatry, University of ZagrebZagrebCroatia
| | - Youngsun T Cho
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
- Child Study Center, Yale University School of MedicineNew HavenUnited States
| | - Christopher Pittenger
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
- Child Study Center, Yale University School of MedicineNew HavenUnited States
| | - John D Murray
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
- Interdepartmental Neuroscience Program, Yale University School of MedicineNew HavenUnited States
- Department of Physics, Yale UniversityNew HavenUnited States
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
- Interdepartmental Neuroscience Program, Yale University School of MedicineNew HavenUnited States
- Department of Psychology, Yale University School of MedicineNew HavenUnited States
| |
Collapse
|
46
|
Limited Association between Schizophrenia Genetic Risk Factors and Transcriptomic Features. Genes (Basel) 2021; 12:genes12071062. [PMID: 34356078 PMCID: PMC8304922 DOI: 10.3390/genes12071062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
Schizophrenia is a polygenic disorder with many genomic regions contributing to schizophrenia risk. The majority of genetic variants associated with schizophrenia lie in the non-coding genome and are thought to contribute to transcriptional regulation. Extensive transcriptomic dysregulation has been detected from postmortem brain samples of schizophrenia-affected individuals. However, the relationship between schizophrenia genetic risk factors and transcriptomic features has yet to be explored. Herein, we examined whether varying gene expression features, including differentially expressed genes (DEGs), co-expression networks, and central hubness of genes, contribute to the heritability of schizophrenia. We leveraged quantitative trait loci and chromatin interaction profiles to identify schizophrenia risk variants assigned to the genes that represent different transcriptomic features. We then performed stratified linkage disequilibrium score regression analysis on these variants to estimate schizophrenia heritability enrichment for different gene expression features. Notably, DEGs and co-expression networks showed nominal heritability enrichment. This nominal association can be partly explained by cellular heterogeneity, as DEGs were associated with the genetic risk of schizophrenia in a cell type-specific manner. Moreover, DEGs were enriched for target genes of schizophrenia-associated transcription factors, suggesting that the transcriptomic signatures of schizophrenia are the result of transcriptional regulatory cascades elicited by genetic risk factors.
Collapse
|
47
|
Takahashi Y, Maynard KR, Tippani M, Jaffe AE, Martinowich K, Kleinman JE, Weinberger DR, Hyde TM. Single molecule in situ hybridization reveals distinct localizations of schizophrenia risk-related transcripts SNX19 and AS3MT in human brain. Mol Psychiatry 2021; 26:3536-3547. [PMID: 33649454 DOI: 10.1038/s41380-021-01046-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/20/2021] [Accepted: 02/02/2021] [Indexed: 11/09/2022]
Abstract
Genome-wide association studies have identified single nucleotide polymorphisms (SNPs) associated with schizophrenia risk. Integration of RNA-sequencing data from postmortem human brains with these risk SNPs identified transcripts associated with increased schizophrenia susceptibility, including a class of exon 9-spliced isoforms of Sorting nexin-19 (SNX19d9) and an isoform of Arsenic methyltransferase (AS3MT) splicing out exons 2 and 3 (AS3MTd2d3). However, the biological function of these transcript variants is unclear. Defining the cell types where these risk transcripts are dominantly expressed is an important step to understand function, in prioritizing specific cell types and/or neural pathways in subsequent studies. To identify the cell type-specific localization of SNX19 and AS3MT in the human dorsolateral prefrontal cortex (DLPFC), we used single-molecule in situ hybridization techniques combined with automated quantification and machine learning approaches to analyze 10 postmortem brains of neurotypical individuals. These analyses revealed that both pan-SNX19 and pan-AS3MT were more highly expressed in neurons than non-neurons in layers II/III and VI of DLPFC. Furthermore, pan-SNX19 was preferentially expressed in glutamatergic neurons, while pan-AS3MT was preferentially expressed in GABAergic neurons. Finally, we utilized duplex BaseScope technology, to delineate the localization of SNX19d9 and AS3MTd2d3 splice variants, revealing consistent trends in spatial gene expression among pan-transcripts and schizophrenia risk-related transcript variants. These findings demonstrate that schizophrenia risk transcripts have distinct localization patterns in the healthy human brains, and suggest that SNX19 transcripts might disrupt the normal function of glutamatergic neurons, while AS3MT may lead to disturbances in the GABAergic system in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Yoichiro Takahashi
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kristen R Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Madhavi Tippani
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins University, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA.
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
48
|
Fish KN, Rocco BR, DeDionisio AM, Dienel SJ, Sweet RA, Lewis DA. Altered Parvalbumin Basket Cell Terminals in the Cortical Visuospatial Working Memory Network in Schizophrenia. Biol Psychiatry 2021; 90:47-57. [PMID: 33892915 PMCID: PMC8243491 DOI: 10.1016/j.biopsych.2021.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/21/2021] [Accepted: 02/11/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Visuospatial working memory (vsWM), which is commonly impaired in schizophrenia, involves information processing across the primary visual cortex, association visual cortex, posterior parietal cortex, and dorsolateral prefrontal cortex (DLPFC). Within these regions, vsWM requires inhibition from parvalbumin-expressing basket cells (PVBCs). Here, we analyzed indices of PVBC axon terminals across regions of the vsWM network in schizophrenia. METHODS For 20 matched pairs of subjects with schizophrenia and unaffected comparison subjects, tissue sections from the primary visual cortex, association visual cortex, posterior parietal cortex, and DLPFC were immunolabeled for PV, the 65- and 67-kDa isoforms of glutamic acid decarboxylase (GAD65 and GAD67) that synthesize GABA (gamma-aminobutyric acid), and the vesicular GABA transporter. The density of PVBC terminals and of protein levels per terminal was quantified in layer 3 of each cortical region using fluorescence confocal microscopy. RESULTS In comparison subjects, all measures, except for GAD65 levels, exhibited a caudal-to-rostral decline across the vsWM network. In subjects with schizophrenia, the density of detectable PVBC terminals was significantly lower in all regions except the DLPFC, whereas PVBC terminal levels of PV, GAD67, and GAD65 proteins were lower in all regions. A composite measure of inhibitory strength was lower in subjects with schizophrenia, although the magnitude of the diagnosis effect was greater in the primary visual, association visual, and posterior parietal cortices than in the DLPFC. CONCLUSIONS In schizophrenia, alterations in PVBC terminals across the vsWM network suggest the presence of a shared substrate for cortical dysfunction during vsWM tasks. However, regional differences in the magnitude of the disease effect on an index of PVBC inhibitory strength suggest region-specific alterations in information processing during vsWM tasks.
Collapse
Affiliation(s)
- Kenneth N Fish
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Brad R Rocco
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Adam M DeDionisio
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Samuel J Dienel
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert A Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
49
|
Miyamae T, Hashimoto T, Abraham M, Kawabata R, Koshikizawa S, Bian Y, Nishihata Y, Kikuchi M, Ermentrout GB, Lewis DA, Gonzalez-Burgos G. Kcns3 deficiency disrupts Parvalbumin neuron physiology in mouse prefrontal cortex: Implications for the pathophysiology of schizophrenia. Neurobiol Dis 2021; 155:105382. [PMID: 33940180 PMCID: PMC8557947 DOI: 10.1016/j.nbd.2021.105382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 01/04/2023] Open
Abstract
The unique fast spiking (FS) phenotype of cortical parvalbumin-positive (PV) neurons depends on the expression of multiple subtypes of voltage-gated potassium channels (Kv). PV neurons selectively express Kcns3, the gene encoding Kv9.3 subunits, suggesting that Kcns3 expression is critical for the FS phenotype. KCNS3 expression is lower in PV neurons in the neocortex of subjects with schizophrenia, but the effects of this alteration are unclear, because Kv9.3 subunit function is poorly understood. Therefore, to assess the role of Kv9.3 subunits in PV neuron function, we combined gene expression analyses, computational modeling, and electrophysiology in acute slices from the cortex of Kcns3-deficient mice. Kcns3 mRNA levels were ~ 50% lower in cortical PV neurons from Kcns3-deficient relative to wildtype mice. While silent per se, Kv9.3 subunits are believed to amplify the Kv2.1 current in Kv2.1-Kv9.3 channel complexes. Hence, to assess the consequences of reducing Kv9.3 levels, we simulated the effects of decreasing the Kv2.1-mediated current in a computational model. The FS cell model with reduced Kv2.1 produced spike trains with irregular inter-spike intervals, or stuttering, and greater Na+ channel inactivation. As in the computational model, PV basket cells (PVBCs) from Kcns3-deficient mice displayed spike trains with strong stuttering, which depressed PVBC firing. Moreover, Kcns3 deficiency impaired the recruitment of PVBC firing at gamma frequency by stimuli mimicking synaptic input observed during cortical UP states. Our data indicate that Kv9.3 subunits are critical for PVBC physiology and suggest that KCNS3 deficiency in schizophrenia could impair PV neuron firing, possibly contributing to deficits in cortical gamma oscillations in the illness.
Collapse
Affiliation(s)
- Takeaki Miyamae
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Takanori Hashimoto
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan; Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.
| | - Monica Abraham
- Department of Mathematics, Faculty of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rika Kawabata
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Sho Koshikizawa
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Yufan Bian
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Yosuke Nishihata
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Mitsuru Kikuchi
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan; Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - G Bard Ermentrout
- Department of Mathematics, Faculty of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Guillermo Gonzalez-Burgos
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
50
|
Hu B, Won H, Mah W, Park RB, Kassim B, Spiess K, Kozlenkov A, Crowley CA, Pochareddy S, The PsychENCODE Consortium Ashley-KochAllison E.17CrawfordGregory E.17GarrettMelanie E.17SongLingyun17SafiAlexias17JohnsonGraham D.17WrayGregory A.17ReddyTimothy E.17GoesFernando S.18ZandiPeter18BryoisJulien19JaffeAndrew E.20PriceAmanda J.20IvanovNikolay A.20Collado-TorresLeonardo20HydeThomas M.20BurkeEmily E.20KleimanJoel E.20TaoRan20ShinJoo Heon20GirdharKiran34JiangYan34KundakovicMarija34BrownLeanne34WisemanJennifer R.34ZharovskyElizabeth34JacobovRivka34DevillersOlivia34FlatowElie34HoffmanGabriel E.34BelmontJudson34Del ValleDiane34FrancoeurNancy34HadjimichaelEvi34PintoDalila34van BakelHarm34RoussosPanos34FullardJohn F.34BendlJaroslav34HaubergMads E.34CharneyAlexander W.34HaroutunianVahram5LipskaBarbara K.21LewisDavid A.22HahnChang-Gyu23MangraviteLara M.24PetersMette A.24ChaeYooree24PengJunmin25NiuMingming25WangXusheng25WebsterMaree J.26BeachThomas G.27ChenChao28JiangYi28DaiRujia28WangYongjun28XiaYan2829ShiehAnnie W.29LiuChunyu29GrennanKay S.29VadukapuramRamu29GiaseGina29FitzgeraldDominic30ChengLijun30BrownMiguel30BrownMimi30BrunettiTonya30GoodmanThomas30AlsayedMajd30WhiteKevin P.30RayMohana30PolioudakisDamon13WamsleyBrie13YinJiani13De La Torre UbietaLuis13GandalMichael J.13SwarupVivek13SandersStephan J.31StateMatthew W.31WerlingDonna M.31AnJoon-Yong31SheppardBrooke31WillseyA. Jeremy31KefiAmira32MatteiEugenio33PurcaroMichael33WengZhiping33MooreJill33PrattHenry33HueyJack33BorrmanTyler33SullivanPatrick F.2Giusti-RodriguezPaola2KimYunjung2SzatkiewiczJin2RhieSuhn Kyong34ArmoskusChristoper34CamarenaAdrian34FarnhamPeggy J.34SpitsynaValeria N.34WittHeather34SchreinerShannon34EvgrafovOleg V.35KnowlesJames A.35GersteinMark36LiuShuang36NavarroFabio C. P.36WarrellJonathan36ClarkeDeclan36EmaniPrashant S.36GuMengting36ShiXu36XuMin36YangYucheng T.36KitchenRobert R.36GürsoyGamze36ZhangJing36CarlyleBecky C.6NairnAngus C.6LiMingfeng6SkaricaMario6LiZhen6SousaAndre M. M.6SantpereGabriel6ChoiJinmyung6ZhuYing6GaoTianliuyun6MillerDaniel J.6CherskovAdriana6YangMo6AmiriAnahita6CoppolaGianfilippo6MarianiJessica6ScuderiSoraya6SzekelyAnna6VaccarinoFlora M.6WuFeinan6WeissmanSherman6WangDaifeng37RoychowdhuryTanmoy38AbyzovAlexej38, Li Y, Dracheva S, Sestan N, Akbarian S, Geschwind DH. Neuronal and glial 3D chromatin architecture informs the cellular etiology of brain disorders. Nat Commun 2021; 12:3968. [PMID: 34172755 PMCID: PMC8233376 DOI: 10.1038/s41467-021-24243-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Cellular heterogeneity in the human brain obscures the identification of robust cellular regulatory networks, which is necessary to understand the function of non-coding elements and the impact of non-coding genetic variation. Here we integrate genome-wide chromosome conformation data from purified neurons and glia with transcriptomic and enhancer profiles, to characterize the gene regulatory landscape of two major cell classes in the human brain. We then leverage cell-type-specific regulatory landscapes to gain insight into the cellular etiology of several brain disorders. We find that Alzheimer's disease (AD)-associated epigenetic dysregulation is linked to neurons and oligodendrocytes, whereas genetic risk factors for AD highlighted microglia, suggesting that different cell types may contribute to disease risk, via different mechanisms. Moreover, integration of glutamatergic and GABAergic regulatory maps with genetic risk factors for schizophrenia (SCZ) and bipolar disorder (BD) identifies shared (parvalbumin-expressing interneurons) and distinct cellular etiologies (upper layer neurons for BD, and deeper layer projection neurons for SCZ). Collectively, these findings shed new light on cell-type-specific gene regulatory networks in brain disorders.
Collapse
Affiliation(s)
- Benxia Hu
- grid.410711.20000 0001 1034 1720UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Department of Genetics, University of North Carolina, Chapel Hill, NC USA
| | - Hyejung Won
- grid.410711.20000 0001 1034 1720UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Department of Genetics, University of North Carolina, Chapel Hill, NC USA
| | - Won Mah
- grid.410711.20000 0001 1034 1720UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Department of Genetics, University of North Carolina, Chapel Hill, NC USA
| | - Royce B. Park
- grid.59734.3c0000 0001 0670 2351Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Bibi Kassim
- grid.59734.3c0000 0001 0670 2351Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Keeley Spiess
- grid.410711.20000 0001 1034 1720UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC USA
| | - Alexey Kozlenkov
- grid.59734.3c0000 0001 0670 2351Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.274295.f0000 0004 0420 1184James J. Peters VA Medical Center, Bronx, NY USA
| | - Cheynna A. Crowley
- grid.410711.20000 0001 1034 1720Department of Genetics, University of North Carolina, Chapel Hill, NC USA
| | - Sirisha Pochareddy
- grid.47100.320000000419368710Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT USA
| | | | - Yun Li
- grid.410711.20000 0001 1034 1720Department of Genetics, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Biostatistics, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Computer Science, University of North Carolina, Chapel Hill, NC USA
| | - Stella Dracheva
- grid.59734.3c0000 0001 0670 2351Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.274295.f0000 0004 0420 1184James J. Peters VA Medical Center, Bronx, NY USA
| | - Nenad Sestan
- grid.47100.320000000419368710Department of Psychiatry, Yale School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Genetics, Yale School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Comparative Medicine, Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Program in Cellular Neuroscience, Neurodegeneration, and Repair and Yale Child Study Center, Yale School of Medicine, New Haven, CT USA
| | - Schahram Akbarian
- grid.59734.3c0000 0001 0670 2351Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Daniel H. Geschwind
- grid.19006.3e0000 0000 9632 6718Neurogenetics Program, Department of Neurology, David Geffen School of Medicine University of California, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, CA 90095 USA ,grid.19006.3e0000 0000 9632 6718Department of Human Genetics, David Geffen School of Medicine University of California, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, CA USA
| |
Collapse
|