1
|
Bouzid A, Belcadhi M, Souissi A, Chelly M, Frikha F, Gargouri H, Bonnet C, Jebali F, Loukil S, Petit C, Masmoudi S, Hamoudi R, Ben Said M. Whole exome sequencing identifies ABHD14A and MRNIP as novel candidate genes for developmental language disorder. Sci Rep 2025; 15:367. [PMID: 39747128 PMCID: PMC11696457 DOI: 10.1038/s41598-024-83115-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
Developmental language disorder (DLD) is a neurodevelopmental disorder involving impaired language abilities. Its genetic etiology is heterogeneous, involving rare variations in multiple susceptibility loci. However, family-based studies on gene mutations are scarce. We performed whole-exome sequencing (WES) of a first-time-described Tunisian-family with DLD. Analyses of segregation patterns with stringent filtering of the exome data identified disease-causing compound heterozygous variants. In the MRNIP gene, two variants were detected including a synonymous low-frequency variant c.345G > C and a nonsense rare variant c.112G > A predicted pathogenic. In the ABHD14A gene, four variants were identified including a rare missense variant c.689T > G and three splice-site variants c.70-8C > T, c.282-25A > T and c.282-10G > C with low-frequency MAF < 5%. Complementary analyses showed that these variants are predicted pathogenic and the missense variant Leu230Arg significantly affects the stability and structure modelling of the ABHD14A protein. Biological functions and interconnections analyses predicted the potential roles of ABHD14A and MRNIP in neuronal development pathways. These results suggest ABHD14A and MRNIP, as putative candidate genes for DLD susceptibility. Our findings reveal the involvement of novel candidate genes in the genetic etiology of DLD and explore the potential future utility of WES in the diagnosis of such complex disorders.
Collapse
Affiliation(s)
- Amal Bouzid
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, Sfax, Tunisia.
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
| | - Malek Belcadhi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, Sfax, Tunisia
- Department of Otorhinolaryngology, Farhat Hached University Hospital, Sousse, Tunisia
| | - Amal Souissi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Meryam Chelly
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, Sfax, Tunisia
- Department of Engineering, University of Messina, C.da Di Dio, I-98166, Messina, Italy
| | - Fakher Frikha
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, Sfax, Tunisia
- Faculty of Sciences of Sfax, Department of Biology, University of Sfax, Sfax, Tunisia
| | - Hela Gargouri
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Crystel Bonnet
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, Paris, F-75012, France
| | - Fida Jebali
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Salma Loukil
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Christine Petit
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, Paris, F-75012, France
- Collège de France, Paris, F-75005, France
| | - Saber Masmoudi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
- Division of Surgery and Interventional Science, University College London, London, UK.
- ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, Sharjah, United Arab Emirates.
- BIMAI-Lab, Biomedically Informed Artificial Intelligence Laboratory, University of Sharjah, Sharjah, United Arab Emirates.
| | - Mariem Ben Said
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, Sfax, Tunisia.
| |
Collapse
|
2
|
Boerma T, Ter Haar S, Ganga R, Wijnen F, Blom E, Wierenga CJ. What risk factors for Developmental Language Disorder can tell us about the neurobiological mechanisms of language development. Neurosci Biobehav Rev 2023; 154:105398. [PMID: 37741516 DOI: 10.1016/j.neubiorev.2023.105398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/03/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
Language is a complex multidimensional cognitive system that is connected to many neurocognitive capacities. The development of language is therefore strongly intertwined with the development of these capacities and their neurobiological substrates. Consequently, language problems, for example those of children with Developmental Language Disorder (DLD), are explained by a variety of etiological pathways and each of these pathways will be associated with specific risk factors. In this review, we attempt to link previously described factors that may interfere with language development to putative underlying neurobiological mechanisms of language development, hoping to uncover openings for future therapeutical approaches or interventions that can help children to optimally develop their language skills.
Collapse
Affiliation(s)
- Tessel Boerma
- Institute for Language Sciences, Department of Languages, Literature and Communication, Utrecht University, Utrecht, the Netherlands
| | - Sita Ter Haar
- Institute for Language Sciences, Department of Languages, Literature and Communication, Utrecht University, Utrecht, the Netherlands; Cognitive Neurobiology and Helmholtz Institute, Department of Psychology, Utrecht University/Translational Neuroscience, University Medical Center Utrecht, the Netherlands
| | - Rachida Ganga
- Institute for Language Sciences, Department of Languages, Literature and Communication, Utrecht University, Utrecht, the Netherlands
| | - Frank Wijnen
- Institute for Language Sciences, Department of Languages, Literature and Communication, Utrecht University, Utrecht, the Netherlands
| | - Elma Blom
- Department of Development and Education of youth in Diverse Societies (DEEDS), Utrecht University, Utrecht, the Netherlands; Department of Language and Culture, The Arctic University of Norway UiT, Tromsø, Norway.
| | - Corette J Wierenga
- Biology Department, Faculty of Science, Utrecht University, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
3
|
Liu X, Xu W, Leng F, Zhang P, Guo R, Zhang Y, Hao C, Ni X, Li W. NeuroCNVscore: a tissue-specific framework to prioritise the pathogenicity of CNVs in neurodevelopmental disorders. BMJ Paediatr Open 2023; 7:e001966. [PMID: 37407247 DOI: 10.1136/bmjpo-2023-001966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) are associated with altered development of the brain especially in childhood. Copy number variants (CNVs) play a crucial role in the genetic aetiology of NDDs by disturbing gene expression directly at linear sequence or remotely at three-dimensional genome level in a tissue-specific manner. Despite the substantial increase in NDD studies employing whole-genome sequencing, there is no specific tool for prioritising the pathogenicity of CNVs in the context of NDDs. METHODS Using an XGBoost classifier, we integrated 189 features that represent genomic sequences, gene information and functional/genomic segments for evaluating genome-wide CNVs in a neuro/brain-specific manner, to develop a new tool, neuroCNVscore. We used Human Phenotype Ontology to construct an independent NDD-related set. RESULTS Our neuroCNVscore framework (https://github.com/lxsbch/neuroCNVscore) achieved high predictive performance (precision recall=0.82; area under curve=0.85) and outperformed an existing reference method SVScore. Notably, the predicted pathogenic CNVs showed enrichment in known genes associated with autism. CONCLUSIONS NeuroCNVscore prioritises functional, deleterious and pathogenic CNVs in NDDs at whole genome-wide level, which is important for genetic studies and clinical genomic screening of NDDs as well as for providing novel biological insights into NDDs.
Collapse
Affiliation(s)
- Xuanshi Liu
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseaseas in Children, Beijing, China
- Genetics and Birth Defects Control Centre, National Centre for Children's Health, Beijing, China
| | - Wenjian Xu
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseaseas in Children, Beijing, China
- Genetics and Birth Defects Control Centre, National Centre for Children's Health, Beijing, China
| | - Fei Leng
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseaseas in Children, Beijing, China
- Genetics and Birth Defects Control Centre, National Centre for Children's Health, Beijing, China
| | - Peng Zhang
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseaseas in Children, Beijing, China
- Genetics and Birth Defects Control Centre, National Centre for Children's Health, Beijing, China
| | - Ruolan Guo
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseaseas in Children, Beijing, China
- Genetics and Birth Defects Control Centre, National Centre for Children's Health, Beijing, China
| | - Yue Zhang
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseaseas in Children, Beijing, China
- Genetics and Birth Defects Control Centre, National Centre for Children's Health, Beijing, China
| | - Chanjuan Hao
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseaseas in Children, Beijing, China
- Genetics and Birth Defects Control Centre, National Centre for Children's Health, Beijing, China
| | - Xin Ni
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- MOE Key Laboratory of Major Diseaseas in Children, Beijing, China
- National Centre for Children's Health, Beijing, China
| | - Wei Li
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- MOE Key Laboratory of Major Diseaseas in Children, Beijing, China
- Genetics and Birth Defects Control Centre, National Centre for Children's Health, Beijing, China
| |
Collapse
|
4
|
Yang S, Kim SH, Kang M, Joo JY. Harnessing deep learning into hidden mutations of neurological disorders for therapeutic challenges. Arch Pharm Res 2023:10.1007/s12272-023-01450-5. [PMID: 37261600 DOI: 10.1007/s12272-023-01450-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
The relevant study of transcriptome-wide variations and neurological disorders in the evolved field of genomic data science is on the rise. Deep learning has been highlighted utilizing algorithms on massive amounts of data in a human-like manner, and is expected to predict the dependency or druggability of hidden mutations within the genome. Enormous mutational variants in coding and noncoding transcripts have been discovered along the genome by far, despite of the fine-tuned genetic proofreading machinery. These variants could be capable of inducing various pathological conditions, including neurological disorders, which require lifelong care. Several limitations and questions emerge, including the use of conventional processes via limited patient-driven sequence acquisitions and decoding-based inferences as well as how rare variants can be deduced as a population-specific etiology. These puzzles require harnessing of advanced systems for precise disease prediction, drug development and drug applications. In this review, we summarize the pathophysiological discoveries of pathogenic variants in both coding and noncoding transcripts in neurological disorders, and the current advantage of deep learning applications. In addition, we discuss the challenges encountered and how to outperform them with advancing interpretation.
Collapse
Affiliation(s)
- Sumin Yang
- Department of Pharmacy, College of Pharmacy, Hanyang University, Rm 407, Bldg.42, 55 Hanyangdaehak-Ro, Sangnok-Gu Ansan, Ansan, Gyeonggi-Do, 15588, Republic of Korea
| | - Sung-Hyun Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Rm 407, Bldg.42, 55 Hanyangdaehak-Ro, Sangnok-Gu Ansan, Ansan, Gyeonggi-Do, 15588, Republic of Korea
| | - Mingon Kang
- Department of Computer Science, University of Nevada, Las Vegas, NV, 89154, USA
| | - Jae-Yeol Joo
- Department of Pharmacy, College of Pharmacy, Hanyang University, Rm 407, Bldg.42, 55 Hanyangdaehak-Ro, Sangnok-Gu Ansan, Ansan, Gyeonggi-Do, 15588, Republic of Korea.
| |
Collapse
|
5
|
Dominguez-Alonso S, Carracedo A, Rodriguez-Fontenla C. The non-coding genome in Autism Spectrum Disorders. Eur J Med Genet 2023; 66:104752. [PMID: 37023975 DOI: 10.1016/j.ejmg.2023.104752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/10/2023] [Accepted: 03/19/2023] [Indexed: 04/08/2023]
Abstract
Autism Spectrum Disorders (ASD) are a group of neurodevelopmental disorders (NDDs) characterized by difficulties in social interaction and communication, repetitive behavior, and restricted interests. While ASD have been proven to have a strong genetic component, current research largely focuses on coding regions of the genome. However, non-coding DNA, which makes up for ∼99% of the human genome, has recently been recognized as an important contributor to the high heritability of ASD, and novel sequencing technologies have been a milestone in opening up new directions for the study of the gene regulatory networks embedded within the non-coding regions. Here, we summarize current progress on the contribution of non-coding alterations to the pathogenesis of ASD and provide an overview of existing methods allowing for the study of their functional relevance, discussing potential ways of unraveling ASD's "missing heritability".
Collapse
Affiliation(s)
- S Dominguez-Alonso
- Grupo de Medicina Xenómica, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - A Carracedo
- Grupo de Medicina Xenómica, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain; Grupo de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - C Rodriguez-Fontenla
- Grupo de Medicina Xenómica, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
6
|
Geaghan MP, Reay WR, Cairns MJ. MicroRNA binding site variation is enriched in psychiatric disorders. Hum Mutat 2022; 43:2153-2169. [PMID: 36217923 PMCID: PMC10947041 DOI: 10.1002/humu.24481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 01/25/2023]
Abstract
Psychiatric disorders have a polygenic architecture, often associated with dozens or hundreds of independent genomic loci. Most associated loci impact noncoding regions of the genome, suggesting that the majority of disease heritability originates from the disruption of regulatory sequences. While most research has focused on variants that modify regulatory DNA elements, those affecting cis-acting RNA sequences, such as miRNA binding sites, are also likely to have a significant impact. We intersected genome-wide association study (GWAS) summary statistics with the dbMTS database of predictions for miRNA binding site variants (MBSVs). We compared the distributions of MBSV association statistics to non-MBSVs within brain-expressed 3'UTR regions. We aggregated GWAS p values at the gene, pathway, and miRNA family levels to investigate cellular functions and miRNA families strongly associated with each trait. We performed these analyses in several psychiatric disorders as well as nonpsychiatric traits for comparison. We observed significant enrichment of MBSVs in schizophrenia, depression, bipolar disorder, and anorexia nervosa, particularly in genes targeted by several miRNA families, including miR-335-5p, miR-21-5p/590-5p, miR-361-5p, and miR-557, and a nominally significant association between miR-323b-3p MBSVs and schizophrenia risk. We identified evidence for the association between MBSVs in synaptic gene sets in schizophrenia and bipolar disorder. We also observed a significant association of MBSVs in other complex traits including type 2 diabetes. These observations support the role of miRNA in the pathophysiology of psychiatric disorders and suggest that MBSVs are an important class of regulatory variants that have functional implications for many disorders, as well as other complex human traits.
Collapse
Affiliation(s)
- Michael P. Geaghan
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South WalesAustralia
| | - William R. Reay
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South WalesAustralia
- Precision Medicine Research ProgramHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Murray J. Cairns
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South WalesAustralia
- Precision Medicine Research ProgramHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| |
Collapse
|
7
|
Tielke A, Martins H, Pelzl MA, Maaser-Hecker A, David FS, Reinbold CS, Streit F, Sirignano L, Schwarz M, Vedder H, Kammerer-Ciernioch J, Albus M, Borrmann-Hassenbach M, Hautzinger M, Hünten K, Degenhardt F, Fischer SB, Beins EC, Herms S, Hoffmann P, Schulze TG, Witt SH, Rietschel M, Cichon S, Nöthen MM, Schratt G, Forstner AJ. Genetic and functional analyses implicate microRNA 499A in bipolar disorder development. Transl Psychiatry 2022; 12:437. [PMID: 36207305 PMCID: PMC9547016 DOI: 10.1038/s41398-022-02176-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 08/10/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Bipolar disorder (BD) is a complex mood disorder with a strong genetic component. Recent studies suggest that microRNAs contribute to psychiatric disorder development. In BD, specific candidate microRNAs have been implicated, in particular miR-137, miR-499a, miR-708, miR-1908 and miR-2113. The aim of the present study was to determine the contribution of these five microRNAs to BD development. For this purpose, we performed: (i) gene-based tests of the five microRNA coding genes, using data from a large genome-wide association study of BD; (ii) gene-set analyses of predicted, brain-expressed target genes of the five microRNAs; (iii) resequencing of the five microRNA coding genes in 960 BD patients and 960 controls and (iv) in silico and functional studies for selected variants. Gene-based tests revealed a significant association with BD for MIR499A, MIR708, MIR1908 and MIR2113. Gene-set analyses revealed a significant enrichment of BD associations in the brain-expressed target genes of miR-137 and miR-499a-5p. Resequencing identified 32 distinct rare variants (minor allele frequency < 1%), all of which showed a non-significant numerical overrepresentation in BD patients compared to controls (p = 0.214). Seven rare variants were identified in the predicted stem-loop sequences of MIR499A and MIR2113. These included rs142927919 in MIR2113 (pnom = 0.331) and rs140486571 in MIR499A (pnom = 0.297). In silico analyses predicted that rs140486571 might alter the miR-499a secondary structure. Functional analyses showed that rs140486571 significantly affects miR-499a processing and expression. Our results suggest that MIR499A dysregulation might contribute to BD development. Further research is warranted to elucidate the contribution of the MIR499A regulated network to BD susceptibility.
Collapse
Affiliation(s)
- Aileen Tielke
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany ,Salus Clinic Hürth, Hürth, Germany
| | - Helena Martins
- grid.5801.c0000 0001 2156 2780Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience, Swiss Federal Institute of Technology ETH & Neuroscience Center Zurich (ZNZ), Zurich, Switzerland
| | - Michael A. Pelzl
- grid.10253.350000 0004 1936 9756Institute for Physiological Chemistry, Philipps-University Marburg, Marburg, Germany ,grid.10392.390000 0001 2190 1447Present Address: Clinic for Psychiatry and Psychotherapy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Anna Maaser-Hecker
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Friederike S. David
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Céline S. Reinbold
- grid.5510.10000 0004 1936 8921Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway ,grid.6612.30000 0004 1937 0642Department of Biomedicine, University of Basel, Basel, Switzerland ,grid.410567.1Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Fabian Streit
- grid.7700.00000 0001 2190 4373Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Lea Sirignano
- grid.7700.00000 0001 2190 4373Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | | | | - Margot Albus
- grid.419834.30000 0001 0690 3065Isar Amper Klinikum München Ost, kbo, Haar, Germany
| | | | - Martin Hautzinger
- grid.10392.390000 0001 2190 1447Department of Psychology, Clinical Psychology and Psychotherapy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Karola Hünten
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Franziska Degenhardt
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany ,grid.410718.b0000 0001 0262 7331Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Sascha B. Fischer
- grid.6612.30000 0004 1937 0642Department of Biomedicine, University of Basel, Basel, Switzerland ,grid.410567.1Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Eva C. Beins
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Stefan Herms
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany ,grid.6612.30000 0004 1937 0642Department of Biomedicine, University of Basel, Basel, Switzerland ,grid.410567.1Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Per Hoffmann
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany ,grid.6612.30000 0004 1937 0642Department of Biomedicine, University of Basel, Basel, Switzerland ,grid.410567.1Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Thomas G. Schulze
- grid.7700.00000 0001 2190 4373Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany ,grid.5252.00000 0004 1936 973XInstitute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany ,grid.411984.10000 0001 0482 5331Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Stephanie H. Witt
- grid.7700.00000 0001 2190 4373Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany ,grid.7700.00000 0001 2190 4373Center for Innovative Psychiatry and Psychotherapy Research, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Marcella Rietschel
- grid.7700.00000 0001 2190 4373Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Sven Cichon
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany ,grid.6612.30000 0004 1937 0642Department of Biomedicine, University of Basel, Basel, Switzerland ,grid.410567.1Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland ,grid.8385.60000 0001 2297 375XInstitute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
| | - Markus M. Nöthen
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Gerhard Schratt
- grid.5801.c0000 0001 2156 2780Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience, Swiss Federal Institute of Technology ETH & Neuroscience Center Zurich (ZNZ), Zurich, Switzerland
| | - Andreas J. Forstner
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany ,grid.8385.60000 0001 2297 375XInstitute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany ,grid.10253.350000 0004 1936 9756Centre for Human Genetics, University of Marburg, Marburg, Germany
| |
Collapse
|
8
|
Anijs M, Devanna P, Vernes SC. ARHGEF39, a Gene Implicated in Developmental Language Disorder, Activates RHOA and Is Involved in Cell De-Adhesion and Neural Progenitor Cell Proliferation. Front Mol Neurosci 2022; 15:941494. [PMID: 35959104 PMCID: PMC9359124 DOI: 10.3389/fnmol.2022.941494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
ARHGEF39 was previously implicated in developmental language disorder (DLD) via a functional polymorphism that can disrupt post-transcriptional regulation by microRNAs. ARHGEF39 is part of the family of Rho guanine nucleotide exchange factors (RhoGEFs) that activate small Rho GTPases to regulate a wide variety of cellular processes. However, little is known about the function of ARHGEF39, or how its function might contribute to neurodevelopment or related disorders. Here, we explore the molecular function of ARHGEF39 and show that it activates the Rho GTPase RHOA and that high ARHGEF39 expression in cell cultures leads to an increase of detached cells. To explore its role in neurodevelopment, we analyse published single cell RNA-sequencing data and demonstrate that ARHGEF39 is a marker gene for proliferating neural progenitor cells and that it is co-expressed with genes involved in cell division. This suggests a role for ARHGEF39 in neurogenesis in the developing brain. The co-expression of ARHGEF39 with other RHOA-regulating genes supports RHOA as substrate of ARHGEF39 in neural cells, and the involvement of RHOA in neuropsychiatric disorders highlights a potential link between ARHGEF39 and neurodevelopment and disorder. Understanding the GTPase substrate, co-expression network, and processes downstream of ARHGEF39 provide new avenues for exploring the mechanisms by which altered expression levels of ARHGEF39 may contribute to neurodevelopment and associated disorders.
Collapse
|
9
|
Mountford HS, Braden R, Newbury DF, Morgan AT. The Genetic and Molecular Basis of Developmental Language Disorder: A Review. CHILDREN (BASEL, SWITZERLAND) 2022; 9:586. [PMID: 35626763 PMCID: PMC9139417 DOI: 10.3390/children9050586] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 01/05/2023]
Abstract
Language disorders are highly heritable and are influenced by complex interactions between genetic and environmental factors. Despite more than twenty years of research, we still lack critical understanding of the biological underpinnings of language. This review provides an overview of the genetic landscape of developmental language disorders (DLD), with an emphasis on the importance of defining the specific features (the phenotype) of DLD to inform gene discovery. We review the specific phenotype of DLD in the genetic literature, and the influence of historic variation in diagnostic inclusion criteria on researchers' ability to compare and replicate genotype-phenotype studies. This review provides an overview of the recently identified gene pathways in populations with DLD and explores current state-of-the-art approaches to genetic analysis based on the hypothesised architecture of DLD. We will show how recent global efforts to unify diagnostic criteria have vastly increased sample size and allow for large multi-cohort metanalyses, leading the identification of a growing number of contributory loci. We emphasise the important role of estimating the genetic architecture of DLD to decipher underlying genetic associations. Finally, we explore the potential for epigenetics and environmental interactions to further unravel the biological basis of language disorders.
Collapse
Affiliation(s)
- Hayley S. Mountford
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (H.S.M.); (D.F.N.)
| | - Ruth Braden
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne 3052, Australia;
| | - Dianne F. Newbury
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (H.S.M.); (D.F.N.)
| | - Angela T. Morgan
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne 3052, Australia;
| |
Collapse
|
10
|
Andres EM, Earnest KK, Zhong C, Rice ML, Raza MH. Family-Based Whole-Exome Analysis of Specific Language Impairment (SLI) Identifies Rare Variants in BUD13, a Component of the Retention and Splicing (RES) Complex. Brain Sci 2021; 12:47. [PMID: 35053791 PMCID: PMC8773923 DOI: 10.3390/brainsci12010047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/18/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Specific language impairment (SLI) is a common neurodevelopmental disorder (NDD) that displays high heritability estimates. Genetic studies have identified several loci, but the molecular basis of SLI remains unclear. With the aim to better understand the genetic architecture of SLI, we performed whole-exome sequencing (WES) in a single family (ID: 489; n = 11). We identified co-segregating rare variants in three new genes: BUD13, APLP2, and NDRG2. To determine the significance of these genes in SLI, we Sanger sequenced all coding regions of each gene in unrelated individuals with SLI (n = 175). We observed 13 additional rare variants in 18 unrelated individuals. Variants in BUD13 reached genome-wide significance (p-value < 0.01) upon comparison with similar variants in the 1000 Genomes Project, providing gene level evidence that BUD13 is involved in SLI. Additionally, five BUD13 variants showed cohesive variant level evidence of likely pathogenicity. Bud13 is a component of the retention and splicing (RES) complex. Additional supportive evidence from studies of an animal model (loss-of-function mutations in BUD13 caused a profound neural phenotype) and individuals with an NDD phenotype (carrying a CNV spanning BUD13), indicates BUD13 could be a target for investigation of the neural basis of language.
Collapse
Affiliation(s)
- Erin M. Andres
- Child Language Doctoral Program, University of Kansas, Lawrence, KS 66045, USA; (E.M.A.); (M.L.R.)
| | | | - Cuncong Zhong
- Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS 66045, USA;
| | - Mabel L. Rice
- Child Language Doctoral Program, University of Kansas, Lawrence, KS 66045, USA; (E.M.A.); (M.L.R.)
- Language Acquisition Studies Lab, University of Kansas, Lawrence, KS 66045, USA;
| | - Muhammad Hashim Raza
- Child Language Doctoral Program, University of Kansas, Lawrence, KS 66045, USA; (E.M.A.); (M.L.R.)
| |
Collapse
|
11
|
Zhou X, Kurywchak P, Wolf-Dennen K, Che SP, Sulakhe D, D’Souza M, Xie B, Maltsev N, Gilliam TC, Wu CC, McAndrews KM, LeBleu VS, McConkey DJ, Volpert OV, Pretzsch SM, Czerniak BA, Dinney CP, Kalluri R. Unique somatic variants in DNA from urine exosomes of individuals with bladder cancer. Mol Ther Methods Clin Dev 2021; 22:360-376. [PMID: 34514028 PMCID: PMC8408559 DOI: 10.1016/j.omtm.2021.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/21/2021] [Indexed: 01/03/2023]
Abstract
Bladder cancer (BC), a heterogeneous disease characterized by high recurrence rates, is diagnosed and monitored by cystoscopy. Accurate clinical staging based on biopsy remains a challenge, and additional, objective diagnostic tools are needed urgently. We used exosomal DNA (exoDNA) as an analyte to examine cancer-associated mutations and compared the diagnostic utility of exoDNA from urine and serum of individuals with BC. In contrast to urine exosomes from healthy individuals, urine exosomes from individuals with BC contained significant amounts of DNA. Whole-exome sequencing of DNA from matched urine and serum exosomes, bladder tumors, and normal tissue (peripheral blood mononuclear cells) identified exonic and 3' UTR variants in frequently mutated genes in BC, detectable in urine exoDNA and matched tumor samples. Further analyses identified somatic variants in driver genes, unique to urine exoDNA, possibly because of the inherent intra-tumoral heterogeneity of BC, which is not fully represented in random small biopsies. Multiple variants were also found in untranslated portions of the genome, such as microRNA (miRNA)-binding regions of the KRAS gene. Gene network analyses revealed that exoDNA is associated with cancer, inflammation, and immunity in BC exosomes. Our findings show utility of exoDNA as an objective, non-invasive strategy to identify novel biomarkers and targets for BC.
Collapse
Affiliation(s)
- Xunian Zhou
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Kurywchak
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kerri Wolf-Dennen
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sara P.Y. Che
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dinanath Sulakhe
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Mark D’Souza
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Bingqing Xie
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Natalia Maltsev
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - T. Conrad Gilliam
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Chia-Chin Wu
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathleen M. McAndrews
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Valerie S. LeBleu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - David J. McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, Baltimore, MD, USA
| | - Olga V. Volpert
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shanna M. Pretzsch
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bogdan A. Czerniak
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Colin P. Dinney
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- School of Bioengineering, Rice University, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
12
|
Martinelli A, Rice ML, Talcott JB, Diaz R, Smith S, Raza MH, Snowling MJ, Hulme C, Stein J, Hayiou-Thomas ME, Hawi Z, Kent L, Pitt SJ, Newbury DF, Paracchini S. A rare missense variant in the ATP2C2 gene is associated with language impairment and related measures. Hum Mol Genet 2021; 30:1160-1171. [PMID: 33864365 PMCID: PMC8188402 DOI: 10.1093/hmg/ddab111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/02/2023] Open
Abstract
At least 5% of children present unexpected difficulties in expressing and understanding spoken language. This condition is highly heritable and often co-occurs with other neurodevelopmental disorders such as dyslexia and ADHD. Through an exome sequencing analysis, we identified a rare missense variant (chr16:84405221, GRCh38.p12) in the ATP2C2 gene. ATP2C2 was implicated in language disorders by linkage and association studies, and exactly the same variant was reported previously in a different exome sequencing study for language impairment (LI). We followed up this finding by genotyping the mutation in cohorts selected for LI and comorbid disorders. We found that the variant had a higher frequency in LI cases (1.8%, N = 360) compared with cohorts selected for dyslexia (0.8%, N = 520) and ADHD (0.7%, N = 150), which presented frequencies comparable to reference databases (0.9%, N = 24 046 gnomAD controls). Additionally, we observed that carriers of the rare variant identified from a general population cohort (N = 42, ALSPAC cohort) presented, as a group, lower scores on a range of reading and language-related measures compared to controls (N = 1825; minimum P = 0.002 for non-word reading). ATP2C2 encodes for an ATPase (SPCA2) that transports calcium and manganese ions into the Golgi lumen. Our functional characterization suggested that the rare variant influences the ATPase activity of SPCA2. Thus, our results further support the role of ATP2C2 locus in language-related phenotypes and pinpoint the possible effects of a specific rare variant at molecular level.
Collapse
Affiliation(s)
| | - Mabel L Rice
- Child Language Doctoral Program, University of Kansas, Lawrence, KS, USA
| | - Joel B Talcott
- Aston Brain Centre, School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Rebeca Diaz
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Shelley Smith
- Department of Neurological Sciences, University of Nebraska Medical Center, Lincoln, NE, USA
| | | | - Margaret J Snowling
- Department of Experimental Psychology and St John's College, University of Oxford, Oxford, UK
| | - Charles Hulme
- Department of Education, University of Oxford, Oxford, UK
| | - John Stein
- Department of Physiology, University of Oxford, Oxford, UK
| | | | - Ziarih Hawi
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Lindsey Kent
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Samantha J Pitt
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Dianne F Newbury
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | | |
Collapse
|
13
|
Wright CF, Quaife NM, Ramos-Hernández L, Danecek P, Ferla MP, Samocha KE, Kaplanis J, Gardner EJ, Eberhardt RY, Chao KR, Karczewski KJ, Morales J, Gallone G, Balasubramanian M, Banka S, Gompertz L, Kerr B, Kirby A, Lynch SA, Morton JEV, Pinz H, Sansbury FH, Stewart H, Zuccarelli BD, Cook SA, Taylor JC, Juusola J, Retterer K, Firth HV, Hurles ME, Lara-Pezzi E, Barton PJR, Whiffin N. Non-coding region variants upstream of MEF2C cause severe developmental disorder through three distinct loss-of-function mechanisms. Am J Hum Genet 2021; 108:1083-1094. [PMID: 34022131 PMCID: PMC8206381 DOI: 10.1016/j.ajhg.2021.04.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/29/2021] [Indexed: 02/08/2023] Open
Abstract
Clinical genetic testing of protein-coding regions identifies a likely causative variant in only around half of developmental disorder (DD) cases. The contribution of regulatory variation in non-coding regions to rare disease, including DD, remains very poorly understood. We screened 9,858 probands from the Deciphering Developmental Disorders (DDD) study for de novo mutations in the 5' untranslated regions (5' UTRs) of genes within which variants have previously been shown to cause DD through a dominant haploinsufficient mechanism. We identified four single-nucleotide variants and two copy-number variants upstream of MEF2C in a total of ten individual probands. We developed multiple bespoke and orthogonal experimental approaches to demonstrate that these variants cause DD through three distinct loss-of-function mechanisms, disrupting transcription, translation, and/or protein function. These non-coding region variants represent 23% of likely diagnoses identified in MEF2C in the DDD cohort, but these would all be missed in standard clinical genetics approaches. Nonetheless, these variants are readily detectable in exome sequence data, with 30.7% of 5' UTR bases across all genes well covered in the DDD dataset. Our analyses show that non-coding variants upstream of genes within which coding variants are known to cause DD are an important cause of severe disease and demonstrate that analyzing 5' UTRs can increase diagnostic yield. We also show how non-coding variants can help inform both the disease-causing mechanism underlying protein-coding variants and dosage tolerance of the gene.
Collapse
Affiliation(s)
- Caroline F Wright
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter EX2 5DW, UK
| | - Nicholas M Quaife
- National Heart & Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK; Cardiovascular Research Centre, Royal Brompton & Harefield Hospitals NHS Trust, London SW3 6NP, UK
| | - Laura Ramos-Hernández
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Petr Danecek
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1RQ, UK
| | - Matteo P Ferla
- National Institute for Health Research Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Kaitlin E Samocha
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1RQ, UK
| | - Joanna Kaplanis
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1RQ, UK
| | - Eugene J Gardner
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1RQ, UK
| | - Ruth Y Eberhardt
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1RQ, UK
| | - Katherine R Chao
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Konrad J Karczewski
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Joannella Morales
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge CB10 1SD, UK
| | - Giuseppe Gallone
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1RQ, UK
| | - Meena Balasubramanian
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield S10 2TH, UK; Academic Unit of Child Health, Department of Oncology & Metabolism, University of Sheffield, Sheffield S10 2TH, UK
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Health Innovation Manchester, Manchester M13 9WL, UK; Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Lianne Gompertz
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Health Innovation Manchester, Manchester M13 9WL, UK
| | - Bronwyn Kerr
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Amelia Kirby
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Sally A Lynch
- UCD Academic Centre on Rare Diseases, School of Medicine and Medical Sciences, University College Dublin, and Clinical Genetics, Temple Street Children's University Hospital, Dublin D01 XD99, Ireland
| | - Jenny E V Morton
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Hospitals NHS Foundation Trust, Birmingham B4 6NH, UK
| | - Hailey Pinz
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Francis H Sansbury
- All Wales Medical Genomics Service, NHS Wales Cardiff and Vale University Health Board, Institute of Medical Genetics, University Hospital of Wales, Cardiff CF14 4AY, UK
| | - Helen Stewart
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK
| | - Britton D Zuccarelli
- Department of Neurology, University of Kansas School of Medicine-Salina Campus, Salina, KS 67401, USA
| | - Stuart A Cook
- National Heart & Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Jenny C Taylor
- National Institute for Health Research Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | | | | | - Helen V Firth
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1RQ, UK; East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Matthew E Hurles
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1RQ, UK
| | - Enrique Lara-Pezzi
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain; CIBER de enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain
| | - Paul J R Barton
- National Heart & Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK; Cardiovascular Research Centre, Royal Brompton & Harefield Hospitals NHS Trust, London SW3 6NP, UK
| | - Nicola Whiffin
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1RQ, UK; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
| |
Collapse
|
14
|
Martin LJ, Benson DW. Focused Strategies for Defining the Genetic Architecture of Congenital Heart Defects. Genes (Basel) 2021; 12:827. [PMID: 34071175 PMCID: PMC8228798 DOI: 10.3390/genes12060827] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
Congenital heart defects (CHD) are malformations present at birth that occur during heart development. Increasing evidence supports a genetic origin of CHD, but in the process important challenges have been identified. This review begins with information about CHD and the importance of detailed phenotyping of study subjects. To facilitate appropriate genetic study design, we review DNA structure, genetic variation in the human genome and tools to identify the genetic variation of interest. Analytic approaches powered for both common and rare variants are assessed. While the ideal outcome of genetic studies is to identify variants that have a causal role, a more realistic goal for genetic analytics is to identify variants in specific genes that influence the occurrence of a phenotype and which provide keys to open biologic doors that inform how the genetic variants modulate heart development. It has never been truer that good genetic studies start with good planning. Continued progress in unraveling the genetic underpinnings of CHD will require multidisciplinary collaboration between geneticists, quantitative scientists, clinicians, and developmental biologists.
Collapse
Affiliation(s)
- Lisa J. Martin
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - D. Woodrow Benson
- Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, WI 53226, USA;
| |
Collapse
|
15
|
The Polygenic Nature and Complex Genetic Architecture of Specific Learning Disorder. Brain Sci 2021; 11:brainsci11050631. [PMID: 34068951 PMCID: PMC8156942 DOI: 10.3390/brainsci11050631] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022] Open
Abstract
Specific Learning Disorder (SLD) is a multifactorial, neurodevelopmental disorder which may involve persistent difficulties in reading (dyslexia), written expression and/or mathematics. Dyslexia is characterized by difficulties with speed and accuracy of word reading, deficient decoding abilities, and poor spelling. Several studies from different, but complementary, scientific disciplines have investigated possible causal/risk factors for SLD. Biological, neurological, hereditary, cognitive, linguistic-phonological, developmental and environmental factors have been incriminated. Despite worldwide agreement that SLD is highly heritable, its exact biological basis remains elusive. We herein present: (a) an update of studies that have shaped our current knowledge on the disorder’s genetic architecture; (b) a discussion on whether this genetic architecture is ‘unique’ to SLD or, alternatively, whether there is an underlying common genetic background with other neurodevelopmental disorders; and, (c) a brief discussion on whether we are at a position of generating meaningful correlations between genetic findings and anatomical data from neuroimaging studies or specific molecular/cellular pathways. We conclude with open research questions that could drive future research directions.
Collapse
|
16
|
Simna SP, Han Z. Prospects Of Non-Coding Elements In Genomic Dna Based Gene Therapy. Curr Gene Ther 2021; 22:89-103. [PMID: 33874871 DOI: 10.2174/1566523221666210419090357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/22/2022]
Abstract
Gene therapy has made significant development since the commencement of the first clinical trials a few decades ago and has remained a dynamic area of research regardless of obstacles such as immune response and insertional mutagenesis. Progression in various technologies like next-generation sequencing (NGS) and nanotechnology has established the importance of non-coding segments of a genome, thereby taking gene therapy to the next level. In this review, we have summarized the importance of non-coding elements, highlighting the advantages of using full-length genomic DNA loci (gDNA) compared to complementary DNA (cDNA) or minigene, currently used in gene therapy. The focus of this review is to provide an overview of the advances and the future of potential use of gDNA loci in gene therapy, expanding the therapeutic repertoire in molecular medicine.
Collapse
Affiliation(s)
- S P Simna
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599. United States
| | - Zongchao Han
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599. United States
| |
Collapse
|
17
|
Yahia A, Stevanin G. The History of Gene Hunting in Hereditary Spinocerebellar Degeneration: Lessons From the Past and Future Perspectives. Front Genet 2021; 12:638730. [PMID: 33833777 PMCID: PMC8021710 DOI: 10.3389/fgene.2021.638730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/02/2021] [Indexed: 01/02/2023] Open
Abstract
Hereditary spinocerebellar degeneration (SCD) encompasses an expanding list of rare diseases with a broad clinical and genetic heterogeneity, complicating their diagnosis and management in daily clinical practice. Correct diagnosis is a pillar for precision medicine, a branch of medicine that promises to flourish with the progressive improvements in studying the human genome. Discovering the genes causing novel Mendelian phenotypes contributes to precision medicine by diagnosing subsets of patients with previously undiagnosed conditions, guiding the management of these patients and their families, and enabling the discovery of more causes of Mendelian diseases. This new knowledge provides insight into the biological processes involved in health and disease, including the more common complex disorders. This review discusses the evolution of the clinical and genetic approaches used to diagnose hereditary SCD and the potential of new tools for future discoveries.
Collapse
Affiliation(s)
- Ashraf Yahia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Department of Biochemistry, Faculty of Medicine, National University, Khartoum, Sudan
- Institut du Cerveau, INSERM U1127, CNRS UMR7225, Sorbonne Université, Paris, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| | - Giovanni Stevanin
- Institut du Cerveau, INSERM U1127, CNRS UMR7225, Sorbonne Université, Paris, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| |
Collapse
|
18
|
Shigemizu D, Akiyama S, Higaki S, Sugimoto T, Sakurai T, Boroevich KA, Sharma A, Tsunoda T, Ochiya T, Niida S, Ozaki K. Prognosis prediction model for conversion from mild cognitive impairment to Alzheimer's disease created by integrative analysis of multi-omics data. ALZHEIMERS RESEARCH & THERAPY 2020; 12:145. [PMID: 33172501 PMCID: PMC7656734 DOI: 10.1186/s13195-020-00716-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mild cognitive impairment (MCI) is a precursor to Alzheimer's disease (AD), but not all MCI patients develop AD. Biomarkers for early detection of individuals at high risk for MCI-to-AD conversion are urgently required. METHODS We used blood-based microRNA expression profiles and genomic data of 197 Japanese MCI patients to construct a prognosis prediction model based on a Cox proportional hazard model. We examined the biological significance of our findings with single nucleotide polymorphism-microRNA pairs (miR-eQTLs) by focusing on the target genes of the miRNAs. We investigated functional modules from the target genes with the occurrence of hub genes though a large-scale protein-protein interaction network analysis. We further examined the expression of the genes in 610 blood samples (271 ADs, 248 MCIs, and 91 cognitively normal elderly subjects [CNs]). RESULTS The final prediction model, composed of 24 miR-eQTLs and three clinical factors (age, sex, and APOE4 alleles), successfully classified MCI patients into low and high risk of MCI-to-AD conversion (log-rank test P = 3.44 × 10-4 and achieved a concordance index of 0.702 on an independent test set. Four important hub genes associated with AD pathogenesis (SHC1, FOXO1, GSK3B, and PTEN) were identified in a network-based meta-analysis of miR-eQTL target genes. RNA-seq data from 610 blood samples showed statistically significant differences in PTEN expression between MCI and AD and in SHC1 expression between CN and AD (PTEN, P = 0.023; SHC1, P = 0.049). CONCLUSIONS Our proposed model was demonstrated to be effective in MCI-to-AD conversion prediction. A network-based meta-analysis of miR-eQTL target genes identified important hub genes associated with AD pathogenesis. Accurate prediction of MCI-to-AD conversion would enable earlier intervention for MCI patients at high risk, potentially reducing conversion to AD.
Collapse
Affiliation(s)
- Daichi Shigemizu
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan. .,Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan. .,RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.
| | - Shintaro Akiyama
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Sayuri Higaki
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Taiki Sugimoto
- The Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Takashi Sakurai
- The Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan.,Department of Cognitive and Behavioral Science, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Keith A Boroevich
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Alok Sharma
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.,Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Australia.,University of the South Pacific, Suva, Fiji
| | - Tatsuhiko Tsunoda
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, Tokyo, Japan.,Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Shumpei Niida
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kouichi Ozaki
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan.,RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| |
Collapse
|
19
|
Interpreting the impact of noncoding structural variation in neurodevelopmental disorders. Genet Med 2020; 23:34-46. [PMID: 32973355 PMCID: PMC7790743 DOI: 10.1038/s41436-020-00974-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/03/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022] Open
Abstract
The emergence of novel sequencing technologies has greatly improved the identification of structural variation, revealing that a human genome harbors tens of thousands of structural variants (SVs). Since these SVs primarily impact noncoding DNA sequences, the next challenge is one of interpretation, not least to improve our understanding of human disease etiology. However, this task is severely complicated by the intricacy of the gene regulatory landscapes embedded within these noncoding regions, their incomplete annotation, as well as their dependence on the three-dimensional (3D) conformation of the genome. Also in the context of neurodevelopmental disorders (NDDs), reports of putatively causal, noncoding SVs are accumulating and understanding their impact on transcriptional regulation is presenting itself as the next step toward improved genetic diagnosis.
Collapse
|
20
|
Aristizabal MJ, Anreiter I, Halldorsdottir T, Odgers CL, McDade TW, Goldenberg A, Mostafavi S, Kobor MS, Binder EB, Sokolowski MB, O'Donnell KJ. Biological embedding of experience: A primer on epigenetics. Proc Natl Acad Sci U S A 2020; 117:23261-23269. [PMID: 31624126 PMCID: PMC7519272 DOI: 10.1073/pnas.1820838116] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Biological embedding occurs when life experience alters biological processes to affect later life health and well-being. Although extensive correlative data exist supporting the notion that epigenetic mechanisms such as DNA methylation underlie biological embedding, causal data are lacking. We describe specific epigenetic mechanisms and their potential roles in the biological embedding of experience. We also consider the nuanced relationships between the genome, the epigenome, and gene expression. Our ability to connect biological embedding to the epigenetic landscape in its complexity is challenging and complicated by the influence of multiple factors. These include cell type, age, the timing of experience, sex, and DNA sequence. Recent advances in molecular profiling and epigenome editing, combined with the use of comparative animal and human longitudinal studies, should enable this field to transition from correlative to causal analyses.
Collapse
Affiliation(s)
- Maria J Aristizabal
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, and BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V52 4H4, Canada
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada
| | - Ina Anreiter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada
| | - Thorhildur Halldorsdottir
- Centre of Public Health Sciences, Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Candice L Odgers
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada
- Department of Psychological Science, University of California, Irvine, CA 92697
- Sanford School of Public Policy, Duke University, Durham, NC 27708
| | - Thomas W McDade
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada
- Department of Anthropology, Northwestern University, Evanston, IL 60208
- Institute for Policy Research, Northwestern University, Evanston, IL 60208
| | - Anna Goldenberg
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada
- Department of Computer Science, Hospital for Sick Children, Vector Institute, University of Toronto, Toronto, ON, M5G OA4, Canada
| | - Sara Mostafavi
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada
- Department of Statistics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Michael S Kobor
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, and BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V52 4H4, Canada
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada
| | - Elisabeth B Binder
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329
| | - Marla B Sokolowski
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada;
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada
| | - Kieran J O'Donnell
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada;
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montreal, QC, H4H 1R3, Canada
| |
Collapse
|
21
|
Jebb D, Huang Z, Pippel M, Hughes GM, Lavrichenko K, Devanna P, Winkler S, Jermiin LS, Skirmuntt EC, Katzourakis A, Burkitt-Gray L, Ray DA, Sullivan KAM, Roscito JG, Kirilenko BM, Dávalos LM, Corthals AP, Power ML, Jones G, Ransome RD, Dechmann DKN, Locatelli AG, Puechmaille SJ, Fedrigo O, Jarvis ED, Hiller M, Vernes SC, Myers EW, Teeling EC. Six reference-quality genomes reveal evolution of bat adaptations. Nature 2020; 583:578-584. [PMID: 32699395 PMCID: PMC8075899 DOI: 10.1038/s41586-020-2486-3] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 06/09/2020] [Indexed: 11/08/2022]
Abstract
Bats possess extraordinary adaptations, including flight, echolocation, extreme longevity and unique immunity. High-quality genomes are crucial for understanding the molecular basis and evolution of these traits. Here we incorporated long-read sequencing and state-of-the-art scaffolding protocols1 to generate, to our knowledge, the first reference-quality genomes of six bat species (Rhinolophus ferrumequinum, Rousettus aegyptiacus, Phyllostomus discolor, Myotis myotis, Pipistrellus kuhlii and Molossus molossus). We integrated gene projections from our 'Tool to infer Orthologs from Genome Alignments' (TOGA) software with de novo and homology gene predictions as well as short- and long-read transcriptomics to generate highly complete gene annotations. To resolve the phylogenetic position of bats within Laurasiatheria, we applied several phylogenetic methods to comprehensive sets of orthologous protein-coding and noncoding regions of the genome, and identified a basal origin for bats within Scrotifera. Our genome-wide screens revealed positive selection on hearing-related genes in the ancestral branch of bats, which is indicative of laryngeal echolocation being an ancestral trait in this clade. We found selection and loss of immunity-related genes (including pro-inflammatory NF-κB regulators) and expansions of anti-viral APOBEC3 genes, which highlights molecular mechanisms that may contribute to the exceptional immunity of bats. Genomic integrations of diverse viruses provide a genomic record of historical tolerance to viral infection in bats. Finally, we found and experimentally validated bat-specific variation in microRNAs, which may regulate bat-specific gene-expression programs. Our reference-quality bat genomes provide the resources required to uncover and validate the genomic basis of adaptations of bats, and stimulate new avenues of research that are directly relevant to human health and disease1.
Collapse
Affiliation(s)
- David Jebb
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Zixia Huang
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Graham M Hughes
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Ksenia Lavrichenko
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Paolo Devanna
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Lars S Jermiin
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
- Earth Institute, University College Dublin, Dublin, Ireland
| | - Emilia C Skirmuntt
- Peter Medawar Building for Pathogen Research, Department of Zoology, University of Oxford, Oxford, UK
| | - Aris Katzourakis
- Peter Medawar Building for Pathogen Research, Department of Zoology, University of Oxford, Oxford, UK
| | - Lucy Burkitt-Gray
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - David A Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Kevin A M Sullivan
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Juliana G Roscito
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Bogdan M Kirilenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY, USA
| | | | - Megan L Power
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Gareth Jones
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Roger D Ransome
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Dina K N Dechmann
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Andrea G Locatelli
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Sébastien J Puechmaille
- ISEM, University of Montpellier, Montpellier, France
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Olivier Fedrigo
- Vertebrate Genomes Laboratory, The Rockefeller University, New York, NY, USA
| | - Erich D Jarvis
- Vertebrate Genomes Laboratory, The Rockefeller University, New York, NY, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
| | - Sonja C Vernes
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| | - Eugene W Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
- Faculty of Computer Science, Technical University Dresden, Dresden, Germany.
| | - Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
22
|
Bruel A, Vitobello A, Tran Mau‐Them F, Nambot S, Sorlin A, Denommé‐Pichon A, Delanne J, Moutton S, Callier P, Duffourd Y, Philippe C, Faivre L, Thauvin‐Robinet C. Next‐generation
sequencing approaches and challenges in the diagnosis of developmental anomalies and intellectual disability. Clin Genet 2020; 98:433-444. [DOI: 10.1111/cge.13764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Ange‐Line Bruel
- Inserm UMR1231 GAD Université Bourgogne‐Franche Comté Dijon France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares FHU‐TRANSLAD, CHU Dijon Bourgogne Dijon France
- Centre de Référence Maladies Rares Déficiences Intellectuelles de causes rares, Centre de Génétique, FHU‐TRANSLAD, CHU Dijon Bourgogne Dijon France
| | - Antonio Vitobello
- Inserm UMR1231 GAD Université Bourgogne‐Franche Comté Dijon France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares FHU‐TRANSLAD, CHU Dijon Bourgogne Dijon France
| | - Frédéric Tran Mau‐Them
- Inserm UMR1231 GAD Université Bourgogne‐Franche Comté Dijon France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares FHU‐TRANSLAD, CHU Dijon Bourgogne Dijon France
| | - Sophie Nambot
- Inserm UMR1231 GAD Université Bourgogne‐Franche Comté Dijon France
- Centre de Référence Maladies Rares Anomalies du Développement et syndromes malformatifs, Centre de Génétique, FHU‐TRANSLAD, CHU Dijon Bourgogne Dijon France
| | - Arthur Sorlin
- Inserm UMR1231 GAD Université Bourgogne‐Franche Comté Dijon France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares FHU‐TRANSLAD, CHU Dijon Bourgogne Dijon France
- Centre de Référence Maladies Rares Anomalies du Développement et syndromes malformatifs, Centre de Génétique, FHU‐TRANSLAD, CHU Dijon Bourgogne Dijon France
- Centre de Référence Maladies Rares Maladies dermatologiques en mosaïque Service de dermatologie, CHU Dijon Bourgogne Dijon France
| | - Anne‐Sophie Denommé‐Pichon
- Inserm UMR1231 GAD Université Bourgogne‐Franche Comté Dijon France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares FHU‐TRANSLAD, CHU Dijon Bourgogne Dijon France
- Centre de Référence Maladies Rares Anomalies du Développement et syndromes malformatifs, Centre de Génétique, FHU‐TRANSLAD, CHU Dijon Bourgogne Dijon France
| | - Julian Delanne
- Inserm UMR1231 GAD Université Bourgogne‐Franche Comté Dijon France
- Centre de Référence Maladies Rares Anomalies du Développement et syndromes malformatifs, Centre de Génétique, FHU‐TRANSLAD, CHU Dijon Bourgogne Dijon France
| | - Sébastien Moutton
- Inserm UMR1231 GAD Université Bourgogne‐Franche Comté Dijon France
- Centre de Référence Maladies Rares Anomalies du Développement et syndromes malformatifs, Centre de Génétique, FHU‐TRANSLAD, CHU Dijon Bourgogne Dijon France
| | - Patrick Callier
- Inserm UMR1231 GAD Université Bourgogne‐Franche Comté Dijon France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares FHU‐TRANSLAD, CHU Dijon Bourgogne Dijon France
| | - Yannis Duffourd
- Inserm UMR1231 GAD Université Bourgogne‐Franche Comté Dijon France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares FHU‐TRANSLAD, CHU Dijon Bourgogne Dijon France
| | - Christophe Philippe
- Inserm UMR1231 GAD Université Bourgogne‐Franche Comté Dijon France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares FHU‐TRANSLAD, CHU Dijon Bourgogne Dijon France
| | - Laurence Faivre
- Inserm UMR1231 GAD Université Bourgogne‐Franche Comté Dijon France
- Centre de Référence Maladies Rares Anomalies du Développement et syndromes malformatifs, Centre de Génétique, FHU‐TRANSLAD, CHU Dijon Bourgogne Dijon France
| | - Christel Thauvin‐Robinet
- Inserm UMR1231 GAD Université Bourgogne‐Franche Comté Dijon France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares FHU‐TRANSLAD, CHU Dijon Bourgogne Dijon France
- Centre de Référence Maladies Rares Déficiences Intellectuelles de causes rares, Centre de Génétique, FHU‐TRANSLAD, CHU Dijon Bourgogne Dijon France
- Centre de Référence Maladies Rares Anomalies du Développement et syndromes malformatifs, Centre de Génétique, FHU‐TRANSLAD, CHU Dijon Bourgogne Dijon France
| |
Collapse
|
23
|
Ross JP, Dion PA, Rouleau GA. Exome sequencing in genetic disease: recent advances and considerations. F1000Res 2020; 9:F1000 Faculty Rev-336. [PMID: 32431803 PMCID: PMC7205110 DOI: 10.12688/f1000research.19444.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/30/2020] [Indexed: 12/14/2022] Open
Abstract
Over the past decade, exome sequencing (ES) has allowed significant advancements to the field of disease research. By targeting the protein-coding regions of the genome, ES combines the depth of knowledge on protein-altering variants with high-throughput data generation and ease of analysis. New discoveries continue to be made using ES, and medical science has benefitted both theoretically and clinically from its continued use. In this review, we describe recent advances and successes of ES in disease research. Through selected examples of recent publications, we explore how ES continues to be a valuable tool to find variants that might explain disease etiology or provide insight into the biology underlying the disease. We then discuss shortcomings of ES in terms of variant discoveries made by other sequencing technologies that would be missed because of the scope and techniques of ES. We conclude with a brief outlook on the future of ES, suggesting that although newer and more thorough sequencing methods will soon supplant ES, its results will continue to be useful for disease research.
Collapse
Affiliation(s)
- Jay P. Ross
- Department of Human Genetics, McGill University, 3640 University, Montréal, QC, H3A 0C7, Canada
- Montreal Neurological Institute and Hospital, McGill University, 3801 University, Montréal, QC, H3A 2B4, Canada
| | - Patrick A. Dion
- Montreal Neurological Institute and Hospital, McGill University, 3801 University, Montréal, QC, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, 3801 University, Montréal, QC, H3A 2B4, Canada
| | - Guy A. Rouleau
- Department of Human Genetics, McGill University, 3640 University, Montréal, QC, H3A 0C7, Canada
- Montreal Neurological Institute and Hospital, McGill University, 3801 University, Montréal, QC, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, 3801 University, Montréal, QC, H3A 2B4, Canada
| |
Collapse
|
24
|
Abstract
Epigenetic mechanisms govern the transcription of the genome. Research with model systems reveals that environmental conditions can directly influence epigenetic mechanisms that are associated with interindividual differences in gene expression in brain and neural function. In this review, we provide a brief overview of epigenetic mechanisms and research with relevant rodent models. We emphasize more recent translational research programs in epigenetics as well as the challenges inherent in the integration of epigenetics into developmental and clinical psychology. Our objectives are to present an update with respect to the translational relevance of epigenetics for the study of psychopathology and to consider the state of current research with respect to its potential importance for clinical research and practice in mental health.
Collapse
Affiliation(s)
- Kieran J O'Donnell
- Department of Psychiatry and Sackler Program for Epigenetics and Psychobiology, McGill University, Montreal, Quebec H4H 1R3, Canada; .,Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Quebec H3H 1R4, Canada.,Child and Brain Development Program, CIFAR, Toronto, Ontario M5G 1M1, Canada
| | - Michael J Meaney
- Department of Psychiatry and Sackler Program for Epigenetics and Psychobiology, McGill University, Montreal, Quebec H4H 1R3, Canada; .,Child and Brain Development Program, CIFAR, Toronto, Ontario M5G 1M1, Canada.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), 117609 Singapore.,Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore
| |
Collapse
|
25
|
Rakhlin N, Landi N, Lee M, Magnuson JS, Naumova OY, Ovchinnikova IV, Grigorenko EL. Cohesion of Cortical Language Networks During Word Processing Is Predicted by a Common Polymorphism in the
SETBP1
Gene. New Dir Child Adolesc Dev 2020; 2020:131-155. [DOI: 10.1002/cad.20331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | | | | | | | - Elena L. Grigorenko
- Haskins Laboratories
- Yale University
- University of Houston
- Saint-Petersburg State University
- Moscow State University for Psychology and Education
| |
Collapse
|
26
|
Abstract
Background micro RNA (miRNA) are important regulators of gene expression and may influence phenotypes and disease traits. The connection between genetics and miRNA expression can be determined through expression quantitative loci (eQTL) analysis, which has been extensively used in a variety of tissues, and in both human and model organisms. miRNA play an important role in brain-related diseases, but eQTL studies of miRNA in brain tissue are limited. We aim to catalog miRNA eQTL in brain tissue using miRNA expression measured on a recombinant inbred mouse panel. Because samples were collected without any intervention or treatment (naïve), the panel allows characterization of genetic influences on miRNAs’ expression levels. We used brain RNA expression levels of 881 miRNA and 1416 genomic locations to identify miRNA eQTL. To address multiple testing, we employed permutation p-values and subsequent zero permutation p-value correction. We also investigated the underlying biology of miRNA regulation using additional analyses, including hotspot analysis to search for regions controlling multiple miRNAs, and Bayesian network analysis to identify scenarios where a miRNA mediates the association between genotype and mRNA expression. We used addiction related phenotypes to illustrate the utility of our results. Results Thirty-eight miRNA eQTL were identified after appropriate multiple testing corrections. Ten of these miRNAs had target genes enriched for brain-related pathways and mapped to four miRNA eQTL hotspots. Bayesian network analysis revealed four biological networks relating genetic variation, miRNA expression and gene expression. Conclusions Our extensive evaluation of miRNA eQTL provides valuable insight into the role of miRNA regulation in brain tissue. Our miRNA eQTL analysis and extended statistical exploration identifies miRNA candidates in brain for future study.
Collapse
|
27
|
Williams SM, An JY, Edson J, Watts M, Murigneux V, Whitehouse AJO, Jackson CJ, Bellgrove MA, Cristino AS, Claudianos C. An integrative analysis of non-coding regulatory DNA variations associated with autism spectrum disorder. Mol Psychiatry 2019; 24:1707-1719. [PMID: 29703944 DOI: 10.1038/s41380-018-0049-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/16/2018] [Accepted: 02/19/2018] [Indexed: 01/09/2023]
Abstract
A number of genetic studies have identified rare protein-coding DNA variations associated with autism spectrum disorder (ASD), a neurodevelopmental disorder with significant genetic etiology and heterogeneity. In contrast, the contributions of functional, regulatory genetic variations that occur in the extensive non-protein-coding regions of the genome remain poorly understood. Here we developed a genome-wide analysis to identify the rare single nucleotide variants (SNVs) that occur in non-coding regions and determined the regulatory function and evolutionary conservation of these variants. Using publicly available datasets and computational predictions, we identified SNVs within putative regulatory regions in promoters, transcription factor binding sites, and microRNA genes and their target sites. Overall, we found that the regulatory variants in ASD cases were enriched in ASD-risk genes and genes involved in fetal neurodevelopment. As with previously reported coding mutations, we found an enrichment of the regulatory variants associated with dysregulation of neurodevelopmental and synaptic signaling pathways. Among these were several rare inherited SNVs found in the mature sequence of microRNAs predicted to affect the regulation of ASD-risk genes. We show a paternally inherited miR-873-5p variant with altered binding affinity for several risk-genes including NRXN2 and CNTNAP2 putatively overlay maternally inherited loss-of-function coding variations in NRXN1 and CNTNAP2 to likely increase the genetic liability in an idiopathic ASD case. Our analysis pipeline provides a new resource for identifying loss-of-function regulatory DNA variations that may contribute to the genetic etiology of complex disorders.
Collapse
Affiliation(s)
- Sarah M Williams
- University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia.,Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Joon Yong An
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Department of Psychiatry, University of California San Francisco, San Francisco, USA.,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, USA
| | - Janette Edson
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Michelle Watts
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Valentine Murigneux
- University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Andrew J O Whitehouse
- Telethon Kids Institute, University of Western Australia, Perth, Australia.,Cooperative Research Centre for Living with Autism, Brisbane, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Mark A Bellgrove
- Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Melbourne, Australia
| | - Alexandre S Cristino
- University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia.
| | - Charles Claudianos
- Queensland Brain Institute, University of Queensland, Brisbane, Australia. .,Centre for Mental Health Research CMHR, Australian National University, Canberra, Australia.
| |
Collapse
|
28
|
Martin LJ, Benson DW. Identifying Genetic Modifiers in the Age of Exome: Current Considerations. J Pediatr 2019; 213:8-10. [PMID: 31303336 DOI: 10.1016/j.jpeds.2019.06.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 06/18/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Lisa J Martin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio
| | - D Woodrow Benson
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
29
|
Truong DT, Adams AK, Paniagua S, Frijters JC, Boada R, Hill DE, Lovett MW, Mahone EM, Willcutt EG, Wolf M, Defries JC, Gialluisi A, Francks C, Fisher SE, Olson RK, Pennington BF, Smith SD, Bosson-Heenan J, Gruen JR. Multivariate genome-wide association study of rapid automatised naming and rapid alternating stimulus in Hispanic American and African-American youth. J Med Genet 2019; 56:557-566. [PMID: 30995994 PMCID: PMC6678051 DOI: 10.1136/jmedgenet-2018-105874] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND Rapid automatised naming (RAN) and rapid alternating stimulus (RAS) are reliable predictors of reading disability. The underlying biology of reading disability is poorly understood. However, the high correlation among RAN, RAS and reading could be attributable to shared genetic factors that contribute to common biological mechanisms. OBJECTIVE To identify shared genetic factors that contribute to RAN and RAS performance using a multivariate approach. METHODS We conducted a multivariate genome-wide association analysis of RAN Objects, RAN Letters and RAS Letters/Numbers in a sample of 1331 Hispanic American and African-American youth. Follow-up neuroimaging genetic analysis of cortical regions associated with reading ability in an independent sample and epigenetic examination of extant data predicting tissue-specific functionality in the brain were also conducted. RESULTS Genome-wide significant effects were observed at rs1555839 (p=4.03×10-8) and replicated in an independent sample of 318 children of European ancestry. Epigenetic analysis and chromatin state models of the implicated 70 kb region of 10q23.31 support active transcription of the gene RNLS in the brain, which encodes a catecholamine metabolising protein. Chromatin contact maps of adult hippocampal tissue indicate a potential enhancer-promoter interaction regulating RNLS expression. Neuroimaging genetic analysis in an independent, multiethnic sample (n=690) showed that rs1555839 is associated with structural variation in the right inferior parietal lobule. CONCLUSION This study provides support for a novel trait locus at chromosome 10q23.31 and proposes a potential gene-brain-behaviour relationship for targeted future functional analysis to understand underlying biological mechanisms for reading disability.
Collapse
Affiliation(s)
| | | | - Steven Paniagua
- Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jan C Frijters
- Department of Child and Youth Studies, Brock University, St Catharines, Ontario, Canada
| | - Richard Boada
- Department of Pediatrics-Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Dina E Hill
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, New Mexico, USA
| | - Maureen W Lovett
- Neurosciences & Mental Health Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - E Mark Mahone
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Erik G Willcutt
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, USA
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado, USA
| | - Maryanne Wolf
- Eliot-Pearson Department of Child Study and Human Development, Tufts University, Medford, Massachusetts, USA
| | - John C Defries
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, USA
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado, USA
| | - Alessandro Gialluisi
- Language and Genetics, Max-Planck-Institut fur Psycholinguistik, Nijmegen, The Netherlands
| | - Clyde Francks
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Simon E Fisher
- Language and Genetics, Max-Planck-Institut fur Psycholinguistik, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Richard K Olson
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, USA
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado, USA
| | | | - Shelley D Smith
- Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Joan Bosson-Heenan
- Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jeffrey R Gruen
- Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
- Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- Investigative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
30
|
Guo L, Wang J. rSNPBase 3.0: an updated database of SNP-related regulatory elements, element-gene pairs and SNP-based gene regulatory networks. Nucleic Acids Res 2019; 46:D1111-D1116. [PMID: 29140525 PMCID: PMC5753256 DOI: 10.1093/nar/gkx1101] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/23/2017] [Indexed: 12/14/2022] Open
Abstract
Here, we present the updated rSNPBase 3.0 database (http://rsnp3.psych.ac.cn), which provides human SNP-related regulatory elements, element-gene pairs and SNP-based regulatory networks. This database is the updated version of the SNP regulatory annotation database rSNPBase and rVarBase. In comparison to the last two versions, there are both structural and data adjustments in rSNPBase 3.0: (i) The most significant new feature is the expansion of analysis scope from SNP-related regulatory elements to include regulatory element–target gene pairs (E–G pairs), therefore it can provide SNP-based gene regulatory networks. (ii) Web function was modified according to data content and a new network search module is provided in the rSNPBase 3.0 in addition to the previous regulatory SNP (rSNP) search module. The two search modules support data query for detailed information (related-elements, element-gene pairs, and other extended annotations) on specific SNPs and SNP-related graphic networks constructed by interacting transcription factors (TFs), miRNAs and genes. (3) The type of regulatory elements was modified and enriched. To our best knowledge, the updated rSNPBase 3.0 is the first data tool supports SNP functional analysis from a regulatory network prospective, it will provide both a comprehensive understanding and concrete guidance for SNP-related regulatory studies.
Collapse
Affiliation(s)
- Liyuan Guo
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Cardoso AR, Lopes-Marques M, Silva RM, Serrano C, Amorim A, Prata MJ, Azevedo L. Essential genetic findings in neurodevelopmental disorders. Hum Genomics 2019; 13:31. [PMID: 31288856 PMCID: PMC6617629 DOI: 10.1186/s40246-019-0216-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) represent a growing medical challenge in modern societies. Ever-increasing sophisticated diagnostic tools have been continuously revealing a remarkably complex architecture that embraces genetic mutations of distinct types (chromosomal rearrangements, copy number variants, small indels, and nucleotide substitutions) with distinct frequencies in the population (common, rare, de novo). Such a network of interacting players creates difficulties in establishing rigorous genotype-phenotype correlations. Furthermore, individual lifestyles may also contribute to the severity of the symptoms fueling a large spectrum of gene-environment interactions that have a key role on the relationships between genotypes and phenotypes.Herein, a review of the genetic discoveries related to NDDs is presented with the aim to provide useful general information for the medical community.
Collapse
Affiliation(s)
- Ana R Cardoso
- i3S - Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Mónica Lopes-Marques
- i3S - Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Raquel M Silva
- Department of Medical Sciences and iBiMED, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.,Present Address: Center for Interdisciplinary Research in Health (CIIS), Institute of Health Sciences (ICS), Universidade Católica Portuguesa, 3504-505, Viseu, Portugal
| | - Catarina Serrano
- i3S - Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - António Amorim
- i3S - Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Maria J Prata
- i3S - Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Luísa Azevedo
- i3S - Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal. .,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal. .,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.
| |
Collapse
|
32
|
Mountford HS, Villanueva P, Fernández MA, Barbieri ZD, Cazier JB, Newbury DF. Candidate gene variant effects on language disorders in Robinson Crusoe Island. Ann Hum Biol 2019; 46:109-119. [DOI: 10.1080/03014460.2019.1622776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Hayley S. Mountford
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Pía Villanueva
- Department of Speech Language and Hearing Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
- Institute of Biomedical Sciences, Human Genetics Division, Faculty of Medicine, University of Chile, Santiago, Chile
| | - María Angélica Fernández
- Department of Speech Language and Hearing Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Zulema De Barbieri
- Department of Speech Language and Hearing Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | - Dianne F. Newbury
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| |
Collapse
|
33
|
Han MR, Han KM, Kim A, Kang W, Kang Y, Kang J, Won E, Tae WS, Cho Y, Ham BJ. Whole-exome sequencing identifies variants associated with structural MRI markers in patients with bipolar disorders. J Affect Disord 2019; 249:159-168. [PMID: 30772743 DOI: 10.1016/j.jad.2019.02.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/29/2019] [Accepted: 02/10/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is one of the most heritable psychiatric disorders. A growing number of whole-exome sequencing (WES) studies for BD has been performed, however, no research has examined the association between single nucleotide variants (SNVs) from WES and structural magnetic resonance imaging (MRI) data. METHODS We sequenced whole-exomes in 53 patients with BD and 82 healthy control participants at an initial discovery stage and investigated the impacts of SNVs in risk genes from WES analysis on the cortical gray-matter thickness and integrity of white matter tracts and in the following stage. Cortical thickness and white matter integrity were investigated using the FreeSurfer and TRACULA (Tracts Constrained by UnderLying Anatomy). RESULTS We identified 122 BD-related genes including KMT2C, AHNAK, CDH23, DCHS1, FRAS1, MACF1 and RYR3 and observed 27 recurrent copy number alteration regions including gain on 8p23.1 and loss on 15q11.1 - q11.2. Among them, single nucleotide polymorphism (SNP) rs4639425 in KMT2C gene, which regulates histone H3 lysine 4 (H3K4) methylation involved in chromatin remodeling, was associated with widespread alterations of white matter integrity including the cingulum, uncinate fasciculus, cortico-spinal tract, and superior longitudinal fasciculus. LIMITATION The small sample size of patients with BD in the genome data may cause our study to be underpowered when searching for putative rare mutations. CONCLUSION This study first combined a WES approach and neuroimaging findings in psychiatric disorders. We postulate the rs4639425 may be associated with BD-related microstructural changes of white matter tracts.
Collapse
Affiliation(s)
- Mi-Ryung Han
- Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Wooyoung Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Youbin Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - June Kang
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Eunsoo Won
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Yunjung Cho
- Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea; Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea.
| |
Collapse
|
34
|
Andres EM, Hafeez H, Yousaf A, Riazuddin S, Rice ML, Basra MAR, Raza MH. A genome-wide analysis in consanguineous families reveals new chromosomal loci in specific language impairment (SLI). Eur J Hum Genet 2019; 27:1274-1285. [PMID: 30976110 DOI: 10.1038/s41431-019-0398-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 03/19/2019] [Accepted: 03/26/2019] [Indexed: 12/31/2022] Open
Abstract
Language is a uniquely human ability, and failure to attain this ability can have a life-long impact on the affected individuals. This is particularly true for individuals with specific language impairment (SLI), which is defined as an impairment in normal language development in the absence of any other developmental disability. Although SLI displays high heritability, family-based linkage studies have been hampered by an unclear mode of Mendelian segregation, variable disease penetrance, and heterogeneity of diagnostic criteria. We performed genome-wide parametric linkage analysis and homozygosity mapping in 14 consanguineous families from Pakistan segregating SLI. Linkage analysis revealed a multipoint LOD score of 4.18 at chromosome 2q in family PKSLI05 under a recessive mode of inheritance. A second linkage score of 3.85 was observed in family PKSLI12 at a non-overlapping locus on chromosome 2q. Two other suggestive linkage loci were found in family PKSLI05 on 14q and 22q with LOD scores of 2.37 and 2.23, respectively, that were also identified in homozygosity mapping. Reduction to homozygosity was observed on chromosomes 2q, 5p, 8q, 14q, 17q, and 22q. Each homozygosity region occurred in multiple PKSLI families. We report new SLI loci on chromosomes 2 and 8 and confirm suggestive SLI linkage loci on chromosomes 5, 14, 17, and 22 reported previously in the population of Robinson Crusoe Island. These findings indicate that linkage and homozygosity mapping in consanguineous families can improve genetic analyses in SLI and suggest the involvement of additional genes in the causation of this disorder.
Collapse
Affiliation(s)
- Erin M Andres
- Child Language Doctoral Program (CLDP), University of Kansas, Lawrence, KS, USA
| | - Huma Hafeez
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Adnan Yousaf
- Child Language Doctoral Program (CLDP), University of Kansas, Lawrence, KS, USA.,Department of Biotechnology, International Islamic University, Islamabad, Pakistan
| | | | - Mabel L Rice
- Child Language Doctoral Program (CLDP), University of Kansas, Lawrence, KS, USA
| | | | - Muhammad Hashim Raza
- Child Language Doctoral Program (CLDP), University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
35
|
Poot M. The Right Gene, Expressed at the Wrong Time, or at the Wrong Place. Mol Syndromol 2019; 9:225-227. [PMID: 30733655 PMCID: PMC6362855 DOI: 10.1159/000492608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2018] [Indexed: 11/19/2022] Open
Affiliation(s)
- Martin Poot
- *Martin Poot, Department of Human Genetics, University of W¨rzburg, Biozentrum, Am Hubland, DE-97074 W¨rzburg (Germany), E-Mail
| |
Collapse
|
36
|
Khan A, Liu Q, Wang K. iMEGES: integrated mental-disorder GEnome score by deep neural network for prioritizing the susceptibility genes for mental disorders in personal genomes. BMC Bioinformatics 2018; 19:501. [PMID: 30591030 PMCID: PMC6309067 DOI: 10.1186/s12859-018-2469-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND A range of rare and common genetic variants have been discovered to be potentially associated with mental diseases, but many more have not been uncovered. Powerful integrative methods are needed to systematically prioritize both variants and genes that confer susceptibility to mental diseases in personal genomes of individual patients and to facilitate the development of personalized treatment or therapeutic approaches. METHODS Leveraging deep neural network on the TensorFlow framework, we developed a computational tool, integrated Mental-disorder GEnome Score (iMEGES), for analyzing whole genome/exome sequencing data on personal genomes. iMEGES takes as input genetic mutations and phenotypic information from a patient with mental disorders, and outputs the rank of whole genome susceptibility variants and the prioritized disease-specific genes for mental disorders by integrating contributions from coding and non-coding variants, structural variants (SVs), known brain expression quantitative trait loci (eQTLs), and epigenetic information from PsychENCODE. RESULTS iMEGES was evaluated on multiple datasets of mental disorders, and it achieved improved performance than competing approaches when large training dataset is available. CONCLUSION iMEGES can be used in population studies to help the prioritization of novel genes or variants that might be associated with the susceptibility to mental disorders, and also on individual patients to help the identification of genes or variants related to mental diseases.
Collapse
Affiliation(s)
- Atlas Khan
- Division of Nephrology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032 USA
| | - Qian Liu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| |
Collapse
|
37
|
Devanna P, van de Vorst M, Pfundt R, Gilissen C, Vernes SC. Genome-wide investigation of an ID cohort reveals de novo 3'UTR variants affecting gene expression. Hum Genet 2018; 137:717-721. [PMID: 30097719 PMCID: PMC6153495 DOI: 10.1007/s00439-018-1925-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/06/2018] [Indexed: 11/28/2022]
Abstract
Intellectual disability (ID) is a severe neurodevelopmental disorder with genetically heterogeneous causes. Large-scale sequencing has led to the identification of many gene-disrupting mutations; however, a substantial proportion of cases lack a molecular diagnosis. As such, there remains much to uncover for a complete understanding of the genetic underpinnings of ID. Genetic variants present in non-coding regions of the genome have been highlighted as potential contributors to neurodevelopmental disorders given their role in regulating gene expression. Nevertheless the functional characterization of non-coding variants remains challenging. We describe the identification and characterization of de novo non-coding variation in 3'UTR regulatory regions within an ID cohort of 50 patients. This cohort was previously screened for structural and coding pathogenic variants via CNV, whole exome and whole genome analysis. We identified 44 high-confidence single nucleotide non-coding variants within the 3'UTR regions of these 50 genomes. Four of these variants were located within predicted miRNA binding sites and were thus hypothesised to have regulatory consequences. Functional testing showed that two of the variants interfered with miRNA-mediated regulation of their target genes, AMD1 and FAIM. Both these variants were found in the same individual and their functional consequences may point to a potential role for such variants in intellectual disability.
Collapse
Affiliation(s)
- Paolo Devanna
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD, Nijmegen, The Netherlands
| | - Maartje van de Vorst
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sonja C Vernes
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Montessorilaan 3, 6525 HR, Nijmegen, The Netherlands.
| |
Collapse
|
38
|
Deriziotis P, Fisher SE. Speech and Language: Translating the Genome. Trends Genet 2017; 33:642-656. [DOI: 10.1016/j.tig.2017.07.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 01/30/2023]
|