1
|
Episomes and Transposases-Utilities to Maintain Transgene Expression from Nonviral Vectors. Genes (Basel) 2022; 13:genes13101872. [PMID: 36292757 PMCID: PMC9601623 DOI: 10.3390/genes13101872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/04/2022] Open
Abstract
The efficient delivery and stable transgene expression are critical for applications in gene therapy. While carefully selected and engineered viral vectors allowed for remarkable clinical successes, they still bear significant safety risks. Thus, nonviral vectors are a sound alternative and avoid genotoxicity and adverse immunological reactions. Nonviral vector systems have been extensively studied and refined during the last decades. Emerging knowledge of the epigenetic regulation of replication and spatial chromatin organisation, as well as new technologies, such as Crispr/Cas, were employed to enhance the performance of different nonviral vector systems. Thus, nonviral vectors are in focus and hold some promising perspectives for future applications in gene therapy. This review addresses three prominent nonviral vector systems: the Sleeping Beauty transposase, S/MAR-based episomes, and viral plasmid replicon-based EBV vectors. Exemplarily, we review different utilities, modifications, and new concepts that were pursued to overcome limitations regarding stable transgene expression and mitotic stability. New insights into the nuclear localisation of nonviral vector molecules and the potential consequences thereof are highlighted. Finally, we discuss the remaining limitations and provide an outlook on possible future developments in nonviral vector technology.
Collapse
|
2
|
Wolff JH, Mikkelsen JG. Delivering genes with human immunodeficiency virus-derived vehicles: still state-of-the-art after 25 years. J Biomed Sci 2022; 29:79. [PMID: 36209077 PMCID: PMC9548131 DOI: 10.1186/s12929-022-00865-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
Viruses are naturally endowed with the capacity to transfer genetic material between cells. Following early skepticism, engineered viruses have been used to transfer genetic information into thousands of patients, and genetic therapies are currently attracting large investments. Despite challenges and severe adverse effects along the way, optimized technologies and improved manufacturing processes are driving gene therapy toward clinical translation. Fueled by the outbreak of AIDS in the 1980s and the accompanying focus on human immunodeficiency virus (HIV), lentiviral vectors derived from HIV have grown to become one of the most successful and widely used vector technologies. In 2022, this vector technology has been around for more than 25 years. Here, we celebrate the anniversary by portraying the vector system and its intriguing properties. We dive into the technology itself and recapitulate the use of lentiviral vectors for ex vivo gene transfer to hematopoietic stem cells and for production of CAR T-cells. Furthermore, we describe the adaptation of lentiviral vectors for in vivo gene delivery and cover the important contribution of lentiviral vectors to basic molecular research including their role as carriers of CRISPR genome editing technologies. Last, we dwell on the emerging capacity of lentiviral particles to package and transfer foreign proteins.
Collapse
Affiliation(s)
- Jonas Holst Wolff
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Jacob Giehm Mikkelsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark.
| |
Collapse
|
3
|
Yew CHT, Gurumoorthy N, Nordin F, Tye GJ, Wan Kamarul Zaman WS, Tan JJ, Ng MH. Integrase deficient lentiviral vector: prospects for safe clinical applications. PeerJ 2022; 10:e13704. [PMID: 35979475 PMCID: PMC9377332 DOI: 10.7717/peerj.13704] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/19/2022] [Indexed: 01/17/2023] Open
Abstract
HIV-1 derived lentiviral vector is an efficient transporter for delivering desired genetic materials into the targeted cells among many viral vectors. Genetic material transduced by lentiviral vector is integrated into the cell genome to introduce new functions, repair defective cell metabolism, and stimulate certain cell functions. Various measures have been administered in different generations of lentiviral vector systems to reduce the vector's replicating capabilities. Despite numerous demonstrations of an excellent safety profile of integrative lentiviral vectors, the precautionary approach has prompted the development of integrase-deficient versions of these vectors. The generation of integrase-deficient lentiviral vectors by abrogating integrase activity in lentiviral vector systems reduces the rate of transgenes integration into host genomes. With this feature, the integrase-deficient lentiviral vector is advantageous for therapeutic implementation and widens its clinical applications. This short review delineates the biology of HIV-1-erived lentiviral vector, generation of integrase-deficient lentiviral vector, recent studies involving integrase-deficient lentiviral vectors, limitations, and prospects for neoteric clinical use.
Collapse
Affiliation(s)
- Chee-Hong Takahiro Yew
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| | - Narmatha Gurumoorthy
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | | | - Jun Jie Tan
- Advanced Medical and Dental Institute, Universiti Sains Malaysia (USM), Bertam, Kepala Batas, Pulau Pinang, Malaysia
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Luis A. The Old and the New: Prospects for Non-Integrating Lentiviral Vector Technology. Viruses 2020; 12:v12101103. [PMID: 33003492 PMCID: PMC7600637 DOI: 10.3390/v12101103] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Lentiviral vectors have been developed and used in multiple gene and cell therapy applications. One of their main advantages over other vectors is the ability to integrate the genetic material into the genome of the host. However, this can also be a disadvantage as it may lead to insertional mutagenesis. To address this, non-integrating lentiviral vectors (NILVs) were developed. To generate NILVs, it is possible to introduce mutations in the viral enzyme integrase and/or mutations on the viral DNA recognised by integrase (the attachment sites). NILVs are able to stably express transgenes from episomal DNA in non-dividing cells or transiently if the target cells divide. It has been shown that these vectors are able to transduce multiple cell types and tissues. These characteristics make NILVs ideal vectors to use in vaccination and immunotherapies, among other applications. They also open future prospects for NILVs as tools for the delivery of CRISPR/Cas9 components, a recent revolutionary technology now widely used for gene editing and repair.
Collapse
Affiliation(s)
- Apolonia Luis
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK
| |
Collapse
|
5
|
Optimisation of Tet-On inducible systems for Sleeping Beauty-based chimeric antigen receptor (CAR) applications. Sci Rep 2020; 10:13125. [PMID: 32753634 PMCID: PMC7403325 DOI: 10.1038/s41598-020-70022-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/08/2020] [Indexed: 01/13/2023] Open
Abstract
Regulated expression of genetic elements that either encode polypeptides or various types of functional RNA is a fundamental goal for gene therapy. Inducible expression may be preferred over constitutive promoters to allow clinician-based control of gene expression. Existing Tet-On systems represent one of the tightest rheostats for control of gene expression in mammals. However, basal expression in absence of tetracycline compromises the widespread application of Tet-controlled systems in gene therapy. We demonstrate that the order of P2A-linked genes of interest was critical for maximal response and tightness of a chimeric antigen receptor (CAR)-based construct. The introduction of G72V mutation in the activation region of the TetR component of the rtTA further improved the fold response. Although the G72V mutation resulted in a removal of a cryptic splice site within rtTA, additional removal of this splice site led to only a modest improvement in the fold-response. Selective removal of key promoter elements (namely the BRE, TATA box, DPE and the four predicted Inr) confirmed the suitability of the minimal CMV promoter and its downstream sequences for supporting inducible expression. The results demonstrate marked improvement of the rtTA based Tet-On system in Sleeping Beauty for applications such as CAR T cell therapy.
Collapse
|
6
|
Alfranca A, Campanero MR, Redondo JM. New Methods for Disease Modeling Using Lentiviral Vectors. Trends Mol Med 2018; 24:825-837. [PMID: 30213701 DOI: 10.1016/j.molmed.2018.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/11/2022]
Abstract
Lentiviral vectors (LVs) transduce quiescent cells and provide stable integration to maintain transgene expression. Several approaches have been adopted to optimize LV safety profiles. Similarly, LV targeting has been tailored through strategies including the modification of envelope components, the use of specific regulatory elements, and the selection of appropriate administration routes. Models of aortic disease based on a single injection of pleiotropic LVs have been developed that efficiently transduce the three aorta layers in wild type mice. This approach allows the dissection of pathways involved in aortic aneurysm formation and the identification of targets for gene therapy in aortic diseases. LVs provide a fast, efficient, and affordable alternative to genetically modified mice to study disease mechanisms and develop therapeutic tools.
Collapse
Affiliation(s)
- Arantzazu Alfranca
- Department of Immunology, Hospital Universitario de La Princesa, Madrid, Spain; CIBERCV, Madrid, Spain.
| | - Miguel R Campanero
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain; CIBERCV, Madrid, Spain
| | - Juan Miguel Redondo
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; CIBERCV, Madrid, Spain.
| |
Collapse
|
7
|
Hodge R, Narayanavari SA, Izsvák Z, Ivics Z. Wide Awake and Ready to Move: 20 Years of Non-Viral Therapeutic Genome Engineering with the Sleeping Beauty Transposon System. Hum Gene Ther 2018; 28:842-855. [PMID: 28870121 DOI: 10.1089/hum.2017.130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gene therapies will only become a widespread tool in the clinical treatment of human diseases with the advent of gene transfer vectors that integrate genetic information stably, safely, effectively, and economically. Two decades after the discovery of the Sleeping Beauty (SB) transposon, it has been transformed into a vector system that is fulfilling these requirements. SB may well overcome some of the limitations associated with viral gene transfer vectors and transient non-viral gene delivery approaches that are being used in the majority of ongoing clinical trials. The SB system has achieved a high level of stable gene transfer and sustained transgene expression in multiple primary human somatic cell types, representing crucial steps that may permit its clinical use in the near future. This article reviews the most important aspects of SB as a tool for gene therapy, including aspects of its vectorization and genomic integration. As an illustration, the clinical development of the SB system toward gene therapy of age-related macular degeneration and cancer immunotherapy is highlighted.
Collapse
Affiliation(s)
- Russ Hodge
- 1 Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin, Germany
| | - Suneel A Narayanavari
- 1 Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin, Germany
| | - Zsuzsanna Izsvák
- 1 Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin, Germany
| | - Zoltán Ivics
- 2 Division of Medical Biotechnology, Paul Ehrlich Institute , Langen, Germany
| |
Collapse
|
8
|
Abstract
T-lymphocytes genetically engineered with the chimeric antigen receptor (CAR-T) have shown great therapeutic potential in cancer treatment. A variety of preclinical researches and clinical trials of CAR-T therapy have been carried out to lay the foundation for future clinical application. In these researches, several gene-transfer methods were used to deliver CARs or other genes into T-lymphocytes, equipping CAR-modified T cells with a property of recognizing and attacking antigen-expressing tumor cells in a major histocompatibility complex-independent manner. Here, we summarize the gene-transfer vectors commonly used in the generation of CAR-T cell, including retrovirus vectors, lentivirus vectors, the transposon/transposase system, the plasmid-based system, and the messenger RNA electroporation system. The following aspects were compared in parallel: efficiency of gene transfer, the integration methods in the modified T cells, foreground of scale-up production, and application and development in clinical trials. These aspects should be taken into account to generate the optimal CAR-gene vector that may be suitable for future clinical application.
Collapse
|
9
|
Preclinical and clinical advances in transposon-based gene therapy. Biosci Rep 2017; 37:BSR20160614. [PMID: 29089466 PMCID: PMC5715130 DOI: 10.1042/bsr20160614] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 02/08/2023] Open
Abstract
Transposons derived from Sleeping Beauty (SB), piggyBac (PB), or Tol2 typically require cotransfection of transposon DNA with a transposase either as an expression plasmid or mRNA. Consequently, this results in genomic integration of the potentially therapeutic gene into chromosomes of the desired target cells, and thus conferring stable expression. Non-viral transfection methods are typically preferred to deliver the transposon components into the target cells. However, these methods do not match the efficacy typically attained with viral vectors and are sometimes associated with cellular toxicity evoked by the DNA itself. In recent years, the overall transposition efficacy has gradually increased by codon optimization of the transposase, generation of hyperactive transposases, and/or introduction of specific mutations in the transposon terminal repeats. Their versatility enabled the stable genetic engineering in many different primary cell types, including stem/progenitor cells and differentiated cell types. This prompted numerous preclinical proof-of-concept studies in disease models that demonstrated the potential of DNA transposons for ex vivo and in vivo gene therapy. One of the merits of transposon systems relates to their ability to deliver relatively large therapeutic transgenes that cannot readily be accommodated in viral vectors such as full-length dystrophin cDNA. These emerging insights paved the way toward the first transposon-based phase I/II clinical trials to treat hematologic cancer and other diseases. Though encouraging results were obtained, controlled pivotal clinical trials are needed to corroborate the efficacy and safety of transposon-based therapies.
Collapse
|
10
|
Tipanee J, VandenDriessche T, Chuah MK. Transposons: Moving Forward from Preclinical Studies to Clinical Trials. Hum Gene Ther 2017; 28:1087-1104. [DOI: 10.1089/hum.2017.128] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Jaitip Tipanee
- Department of Gene Therapy and Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
| | - Thierry VandenDriessche
- Department of Gene Therapy and Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Marinee K. Chuah
- Department of Gene Therapy and Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Kebriaei P, Izsvák Z, Narayanavari SA, Singh H, Ivics Z. Gene Therapy with the Sleeping Beauty Transposon System. Trends Genet 2017; 33:852-870. [PMID: 28964527 DOI: 10.1016/j.tig.2017.08.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/24/2017] [Accepted: 08/31/2017] [Indexed: 11/16/2022]
Abstract
The widespread clinical implementation of gene therapy requires the ability to stably integrate genetic information through gene transfer vectors in a safe, effective, and economical manner. The latest generation of Sleeping Beauty (SB) transposon vectors fulfills these requirements, and may overcome limitations associated with viral gene transfer vectors and transient nonviral gene delivery approaches that are prevalent in ongoing clinical trials. The SB system enables high-level stable gene transfer and sustained transgene expression in multiple primary human somatic cell types, thereby representing a highly attractive gene transfer strategy for clinical use. Here, we review the most important aspects of using SB for gene therapy, including vectorization as well as genomic integration features. We also illustrate the path to successful clinical implementation by highlighting the application of chimeric antigen receptor (CAR)-modified T cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Partow Kebriaei
- Department of Stem Cell Transplant and Cellular Therapy, MD Anderson Cancer Center, Houston, TX, USA
| | - Zsuzsanna Izsvák
- Mobile DNA, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Suneel A Narayanavari
- Mobile DNA, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Harjeet Singh
- Department of Pediatrics, MD Anderson Cancer Center, Houston, TX, USA
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany.
| |
Collapse
|
12
|
Hudecek M, Izsvák Z, Johnen S, Renner M, Thumann G, Ivics Z. Going non-viral: the Sleeping Beauty transposon system breaks on through to the clinical side. Crit Rev Biochem Mol Biol 2017; 52:355-380. [PMID: 28402189 DOI: 10.1080/10409238.2017.1304354] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Molecular medicine has entered a high-tech age that provides curative treatments of complex genetic diseases through genetically engineered cellular medicinal products. Their clinical implementation requires the ability to stably integrate genetic information through gene transfer vectors in a safe, effective and economically viable manner. The latest generation of Sleeping Beauty (SB) transposon vectors fulfills these requirements, and may overcome limitations associated with viral gene transfer vectors and transient non-viral gene delivery approaches that are prevalent in ongoing pre-clinical and translational research. The SB system enables high-level stable gene transfer and sustained transgene expression in multiple primary human somatic cell types, thereby representing a highly attractive gene transfer strategy for clinical use. Here we review several recent refinements of the system, including the development of optimized transposons and hyperactive SB variants, the vectorization of transposase and transposon as mRNA and DNA minicircles (MCs) to enhance performance and facilitate vector production, as well as a detailed understanding of SB's genomic integration and biosafety features. This review also provides a perspective on the regulatory framework for clinical trials of gene delivery with SB, and illustrates the path to successful clinical implementation by using, as examples, gene therapy for age-related macular degeneration (AMD) and the engineering of chimeric antigen receptor (CAR)-modified T cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Michael Hudecek
- a Medizinische Klinik und Poliklinik II , Universitätsklinikum Würzburg , Würzburg , Germany
| | - Zsuzsanna Izsvák
- b Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| | - Sandra Johnen
- c Department of Ophthalmology , University Hospital RWTH Aachen , Aachen , Germany
| | - Matthias Renner
- d Division of Medical Biotechnology , Paul Ehrlich Institute , Langen, Germany
| | - Gabriele Thumann
- e Département des Neurosciences Cliniques Service d'Ophthalmologie , Hôpitaux Universitaires de Genève , Genève , Switzerland
| | - Zoltán Ivics
- d Division of Medical Biotechnology , Paul Ehrlich Institute , Langen, Germany
| |
Collapse
|
13
|
Narayanavari SA, Chilkunda SS, Ivics Z, Izsvák Z. Sleeping Beauty transposition: from biology to applications. Crit Rev Biochem Mol Biol 2016; 52:18-44. [PMID: 27696897 DOI: 10.1080/10409238.2016.1237935] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Sleeping Beauty (SB) is the first synthetic DNA transposon that was shown to be active in a wide variety of species. Here, we review studies from the last two decades addressing both basic biology and applications of this transposon. We discuss how host-transposon interaction modulates transposition at different steps of the transposition reaction. We also discuss how the transposon was translated for gene delivery and gene discovery purposes. We critically review the system in clinical, pre-clinical and non-clinical settings as a non-viral gene delivery tool in comparison with viral technologies. We also discuss emerging SB-based hybrid vectors aimed at combining the attractive safety features of the transposon with effective viral delivery. The success of the SB-based technology can be fundamentally attributed to being able to insert fairly randomly into genomic regions that allow stable long-term expression of the delivered transgene cassette. SB has emerged as an efficient and economical toolkit for safe and efficient gene delivery for medical applications.
Collapse
Affiliation(s)
- Suneel A Narayanavari
- a Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| | - Shreevathsa S Chilkunda
- a Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| | - Zoltán Ivics
- b Division of Medical Biotechnology , Paul Ehrlich Institute , Langen , Germany
| | - Zsuzsanna Izsvák
- a Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| |
Collapse
|
14
|
Cocchiarella F, Latella MC, Basile V, Miselli F, Galla M, Imbriano C, Recchia A. Transcriptionally regulated and nontoxic delivery of the hyperactive Sleeping Beauty Transposase. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16038. [PMID: 27574698 PMCID: PMC4985251 DOI: 10.1038/mtm.2016.38] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 12/17/2022]
Abstract
The Sleeping Beauty (SB) transposase and, in particular, its hyperactive variant SB100X raises increasing interest for gene therapy application, including genome modification and, more recently, induced pluripotent stem cells (iPS) reprogramming. The documented cytotoxicity of the transposase, when constitutively expressed by an integrating retroviral vector (iRV), has been circumvented by the transient delivery of SB100X using retroviral mRNA transfer. In this study, we developed an alternative, safe, and efficient transposase delivery system based on a tetracycline-ON regulated expression cassette and the rtTA2(S)-M2 transactivator gene transiently delivered by integration-defective lentiviral vectors (IDLVs). Compared with iRV-mediated delivery, expression of tetracycline-induced SB100X delivered by an IDLV results in more efficient integration of a GFP transposon and reduced toxicity. Tightly regulated expression and reactivation of the transposase was achieved in HeLa cells as wells as in human primary keratinocytes. Based on these properties, the regulated transposase-IDLV vectors may represent a valuable tool for genetic engineering and therapeutic gene transfer.
Collapse
Affiliation(s)
- Fabienne Cocchiarella
- Department of Life Sciences, Centre for Regenerative Medicine, University of Modena and Reggio Emilia , Modena, Italy
| | - Maria Carmela Latella
- Department of Life Sciences, Centre for Regenerative Medicine, University of Modena and Reggio Emilia , Modena, Italy
| | - Valentina Basile
- Department of Life Sciences, University of Modena and Reggio Emilia , Modena, Italy
| | - Francesca Miselli
- Department of Life Sciences, Centre for Regenerative Medicine, University of Modena and Reggio Emilia , Modena, Italy
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School , Hannover, Germany
| | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia , Modena, Italy
| | - Alessandra Recchia
- Department of Life Sciences, Centre for Regenerative Medicine, University of Modena and Reggio Emilia , Modena, Italy
| |
Collapse
|
15
|
Cai Y, Laustsen A, Zhou Y, Sun C, Anderson MV, Li S, Uldbjerg N, Luo Y, Jakobsen MR, Mikkelsen JG. Targeted, homology-driven gene insertion in stem cells by ZFN-loaded 'all-in-one' lentiviral vectors. eLife 2016; 5. [PMID: 27278774 PMCID: PMC4900802 DOI: 10.7554/elife.12213] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 05/14/2016] [Indexed: 01/16/2023] Open
Abstract
Biased integration remains a key challenge for gene therapy based on lentiviral vector technologies. Engineering of next-generation lentiviral vectors targeting safe genomic harbors for insertion is therefore of high relevance. In a previous paper (Cai et al., 2014a), we showed the use of integrase-defective lentiviral vectors (IDLVs) as carriers of complete gene repair kits consisting of zinc-finger nuclease (ZFN) proteins and repair sequences, allowing gene correction by homologous recombination (HR). Here, we follow this strategy to engineer ZFN-loaded IDLVs that insert transgenes by a homology-driven mechanism into safe loci. This insertion mechanism is driven by time-restricted exposure of treated cells to ZFNs. We show targeted gene integration in human stem cells, including CD34(+) hematopoietic progenitors and induced pluripotent stem cells (iPSCs). Notably, targeted insertions are identified in 89% of transduced iPSCs. Our findings demonstrate the applicability of nuclease-loaded 'all-in-one' IDLVs for site-directed gene insertion in stem cell-based gene therapies.
Collapse
Affiliation(s)
- Yujia Cai
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anders Laustsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Yan Zhou
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Chenglong Sun
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Mads Valdemar Anderson
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Technical University of Denmark, Lyngby, Denmark
| | - Shengting Li
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Beijing Genomics Institute, Shenzhen, China
| | - Niels Uldbjerg
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
16
|
Osborn MJ, Webber BR, Knipping F, Lonetree CL, Tennis N, DeFeo AP, McElroy AN, Starker CG, Lee C, Merkel S, Lund TC, Kelly-Spratt KS, Jensen MC, Voytas DF, von Kalle C, Schmidt M, Gabriel R, Hippen KL, Miller JS, Scharenberg AM, Tolar J, Blazar BR. Evaluation of TCR Gene Editing Achieved by TALENs, CRISPR/Cas9, and megaTAL Nucleases. Mol Ther 2015; 24:570-81. [PMID: 26502778 DOI: 10.1038/mt.2015.197] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/18/2015] [Indexed: 12/26/2022] Open
Abstract
Present adoptive immunotherapy strategies are based on the re-targeting of autologous T-cells to recognize tumor antigens. As T-cell properties may vary significantly between patients, this approach can result in significant variability in cell potency that may affect therapeutic outcome. More consistent results could be achieved by generating allogeneic cells from healthy donors. An impediment to such an approach is the endogenous T-cell receptors present on T-cells, which have the potential to direct dangerous off-tumor antihost reactivity. To address these limitations, we assessed the ability of three different TCR-α-targeted nucleases to disrupt T-cell receptor expression in primary human T-cells. We optimized the conditions for the delivery of each reagent and assessed off-target cleavage. The megaTAL and CRISPR/Cas9 reagents exhibited the highest disruption efficiency combined with low levels of toxicity and off-target cleavage, and we used them for a translatable manufacturing process to produce safe cellular substrates for next-generation immunotherapies.
Collapse
Affiliation(s)
- Mark J Osborn
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA.,Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Beau R Webber
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Friederike Knipping
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Translational Oncology, National Center for Tumor Diseases, Heidelberg, Germany
| | - Cara-lin Lonetree
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nicole Tennis
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anthony P DeFeo
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Amber N McElroy
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Colby G Starker
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA.,Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Catherine Lee
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sarah Merkel
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Troy C Lund
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Karen S Kelly-Spratt
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Michael C Jensen
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Daniel F Voytas
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christof von Kalle
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Translational Oncology, National Center for Tumor Diseases, Heidelberg, Germany
| | - Manfred Schmidt
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Translational Oncology, National Center for Tumor Diseases, Heidelberg, Germany
| | - Richard Gabriel
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Translational Oncology, National Center for Tumor Diseases, Heidelberg, Germany
| | - Keli L Hippen
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jeffrey S Miller
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew M Scharenberg
- Seattle Children's Research Institute, and University of Washington School of Medicine, Seattle, Washington, USA
| | - Jakub Tolar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
17
|
Skipper KA, Mikkelsen JG. Delivering the Goods for Genome Engineering and Editing. Hum Gene Ther 2015; 26:486-97. [DOI: 10.1089/hum.2015.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
18
|
Improved intracellular delivery of peptide- and lipid-nanoplexes by natural glycosides. J Control Release 2015; 206:75-90. [PMID: 25758332 DOI: 10.1016/j.jconrel.2015.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/29/2022]
Abstract
Targeted nanocarriers undergo endocytosis upon binding to their membrane receptors and are transported into cellular compartments such as late endosomes and lysosomes. In gene delivery the genetic material has to escape from the cellular compartments into the cytosol. The process of endosomal escape is one of the most critical steps for successful gene delivery. For this reason synthetic lipids with fusogenic properties such as 2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) are integrated into the nanocarriers. In this study we show that a natural, plant derived glycoside (SO1861) from Saponaria officinalis L. greatly improves the efficacy of lipid based as well as non-lipid based targeted nanoplexes consisting of a targeted K16 peptide with a nucleic acid binding domain and plasmid-DNA, minicircle-DNA or small interfering RNA (siRNA). By confocal live cell imaging and single cell analyses, we demonstrate that SO1861 augments the escape of the genetic cargo out of the intracellular compartments into the cytosol. Co-localisation experiments with fluorescence labelled dextran and transferrin indicate that SO1861 induces the release of the genetic cargo out of endosomes and lysosomes. However, the transduction efficacy of a lentivirus based gene delivery system was not augmented. In order to design receptor-targeted nanoplexes (LPD) with improved functional properties, SO1861 was integrated into the lipid matrix of the LPD. The SO1861 sensitized LPD (LPDS) were characterized by dynamic light scattering and transmission electron microscopy. Compared to their LPD counterparts the LPDS-nanoplexes showed a greatly improved gene delivery. As shown by differential scanning calorimetry SO1861 can be easily integrated into the lipid bilayer of glycerophospholipid model membranes. This underlines the great potential of SO1861 as a new transfection multiplier for non-viral gene delivery systems.
Collapse
|
19
|
Hybrid nonviral/viral vector systems for improved piggyBac DNA transposon in vivo delivery. Mol Ther 2015; 23:667-74. [PMID: 25557623 DOI: 10.1038/mt.2014.254] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 12/19/2014] [Indexed: 12/17/2022] Open
Abstract
The DNA transposon piggyBac is a potential therapeutic agent for multiple genetic diseases such as cystic fibrosis (CF). Recombinant piggyBac transposon and transposase are typically codelivered by plasmid transfection; however, plasmid delivery is inefficient in somatic cells in vivo and is a barrier to the therapeutic application of transposon-based vector systems. Here, we investigate the potential for hybrid piggyBac/viral vectors to transduce cells and support transposase-mediated genomic integration of the transposon. We tested both adenovirus (Ad) and adeno-associated virus (AAV) as transposon delivery vehicles. An Ad vector expressing hyperactive insect piggyBac transposase (iPB7) was codelivered. We show transposase-dependent transposition activity and mapped integrations in mammalian cells in vitro and in vivo from each viral vector platform. We also demonstrate efficient and persistent transgene expression following nasal delivery of piggyBac/viral vectors to mice. Furthermore, using piggyBac/Ad expressing Cystic Fibrosis transmembrane Conductance Regulator (CFTR), we show persistent correction of chloride current in well-differentiated primary cultures of human airway epithelial cells derived from CF patients. Combining the emerging technologies of DNA transposon-based vectors with well-studied adenoviral and AAV delivery provides new tools for in vivo gene transfer and presents an exciting opportunity to increase the delivery efficiency for therapeutic genes such as CFTR.
Collapse
|
20
|
Turunen TAK, Laakkonen JP, Alasaarela L, Airenne KJ, Ylä-Herttuala S. Sleeping Beauty-baculovirus hybrid vectors for long-term gene expression in the eye. J Gene Med 2014; 16:40-53. [PMID: 24464652 DOI: 10.1002/jgm.2756] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 11/18/2013] [Accepted: 01/22/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND A baculovirus vector is capable of efficiently transducing many nondiving and diving cell types. However, the potential of baculovirus is restricted for many gene delivery applications as a result of the transient gene expression that it mediates. The plasmid-based Sleeping Beauty (SB) transposon system integrates transgenes into target cell genome efficiently with a genomic integration pattern that is generally considered safer than the integration of many other integrating vectors; yet efficient delivery of therapeutic genes into cells of target tissues in vivo is a major challenge for nonviral gene therapy. In the present study, SB was introduced into baculovirus to obtain novel hybrid vectors that would combine the best features of the two vector systems (i.e. effective gene delivery and efficient integration into the genome), thus circumventing the major limitations of these vectors. METHODS We constructed and optimized SB-baculovirus hybrid vectors that bear either SB100x transposase or SB transposon in the forward or reverse orientations with respect to the viral backbone The functionality of the novel hybrid vectors was investigated in cell cultures and in a proof-of-concept study in the mouse eye. RESULTS The hybrid vectors showed high and sustained transgene expression that remained stable and demonstrated no signs of decline during the 2 months follow-up in vitro. These results were verified in the mouse eye where persistent transgene expression was detected two months after intravitreal injection. CONCLUSIONS Our results confirm that (i) SB-baculovirus hybrid vectors mediate long-term gene expression in vitro and in vivo, and (ii) the hybrid vectors are potential new tools for the treatment of ocular diseases.
Collapse
Affiliation(s)
- Tytteli Anni Kaarina Turunen
- A. I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | |
Collapse
|
21
|
Nakanishi H, Higuchi Y, Yamashita F, Hashida M. Targeted gene integration using the combination of a sequence-specific DNA-binding protein and phiC31 integrase. J Biotechnol 2014; 186:139-47. [PMID: 25038544 DOI: 10.1016/j.jbiotec.2014.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/06/2014] [Accepted: 07/09/2014] [Indexed: 01/04/2023]
Abstract
PhiC31 integrase-based vectors can integrate therapeutic genes selectively into attP or pseudo-attP sites in genomes, but considerable numbers of pseudo-attP sites in human genomes exist inside endogenous gene-coding regions. To avoid endogenous gene disruptions, we aimed to enhance the integration site-specificity of the phiC31 integrase-based vector using a sequence-specific DNA-binding protein containing Gal4 and LexA DNA-binding motifs. The dual DNA-binding protein was designed to tether the UAS-containing donor vector to the target sequence, the LexA operator, and restrict integration to sites close to the LexA operator. To analyze the site-specificity in chromosomal integration, a human cell line having LexA operators on the genome was established, and the cell line was transfected with donor vectors expressing the DNA-binding protein and the phiC31 integrase expression vector (helper vector). Quantitative PCR indicated that integration around the LexA operator was 26-fold higher with the UAS-containing donor vector than with the control. Sequence analysis confirmed that the integration occurred around the LexA operator. The dual DNA-binding protein-based targeted integration strategy developed herein would allow safer and more reliable genetic manipulations for various applications, including gene and cell therapies.
Collapse
Affiliation(s)
- Hideyuki Nakanishi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; Japan Society for the Promotion of Science (JSPS), Sumitomo-Ichibancho FS Bldg., 8 Ichibancho, Chiyoda-ku, Tokyo 102-8472, Japan
| | - Yuriko Higuchi
- Institute for Innovative NanoBio Drug Discovery and Development, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; PRESTO, Japan Science and Technology Agency (JST), Kawaguchi Center Building 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuru Hashida
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, 69 Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
22
|
piggyBac-mediated phenotypic correction of factor VIII deficiency. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14042. [PMID: 26015980 PMCID: PMC4362371 DOI: 10.1038/mtm.2014.42] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 07/24/2014] [Indexed: 01/10/2023]
Abstract
Hemophilia A, caused by a deficiency in factor VIII (FVIII), is the most severe inherited bleeding disorder. Hemophilia A is an attractive gene therapy candidate because even small increases in FVIII levels will positively alter the phenotype. While several vectors are under investigation, gene addition from an integrated transgene offers the possibility of long term expression. We engineered the DNA transposon-based vector, piggyBac (PB), to carry a codon-optimized B-domain deleted human FVIII cDNA. Evaluation of gene transfer efficiency in FVIII null mice demonstrated that PB containing the FVIII cDNA, delivered via hydrodynamic injection to immunocompetent hemophilia mice, conferred persistent gene expression, attaining mean FVIII activity of approximately 60% with 3/19 developing inhibitors. In addition to efficacious expression, a goal of gene transfer-based therapies is to develop vectors with low toxicity. To assess endoplasmic reticulum stress in hepatocytes stably expressing the transgene, we evaluated levels of ER stress markers via qPCR and found no evidence of cell stress. To evaluate phenotypic correction, a tail clip assay performed at the end of the study revealed reduced blood loss. These data demonstrate that PB can be used to achieve sustained FVIII expression and long-term therapeutic benefit in a mouse model.
Collapse
|
23
|
Molyneux SD, Waterhouse PD, Shelton D, Shao YW, Watling CM, Tang QL, Harris IS, Dickson BC, Tharmapalan P, Sandve GK, Zhang X, Bailey SD, Berman H, Wunder JS, Izsvák Z, Lupien M, Mak TW, Khokha R. Human somatic cell mutagenesis creates genetically tractable sarcomas. Nat Genet 2014; 46:964-72. [DOI: 10.1038/ng.3065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 07/23/2014] [Indexed: 01/15/2023]
|
24
|
Chuah MK, VandenDriessche T. Optimizing delivery and expression of designer nucleases for genome engineering. Hum Gene Ther Methods 2014; 24:329-32. [PMID: 24328735 DOI: 10.1089/hgtb.2013.166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Genome engineering can be accomplished by designer nucleases. They are specifically designed to cleave double-stranded DNA at the desired target locus. This double-strand break subsequently engages the DNA repair pathway through nonhomologous end-joining (NHEJ), resulting in either gene disruption or gene repair. Alternatively, the presence of homologous donor DNA allows for targeted integration of this exogenous donor DNA in this target locus through homology-directed DNA repair. The key bottleneck in genome engineering relates to the delivery and expression of the designer nucleases. One of the most attractive vector platforms for genome engineering is based on integration-defective lentiviral vectors (IDLVs). The intrinsic episomal nature of IDLVs is well suited to ensure transient expression of designer nucleases and minimize potential risks associated with their sustained expression. Unfortunately, their expression is compromised because of epigenetic silencing that interferes with the transcriptional competence of IDLVs. In this issue, Pelascini and colleagues now showed that this bottleneck could be overcome by interfering with chromatin remodeling using histone deacetylase (HDAC) inhibitors. HDAC inhibition restored expression of designer nucleases from IDLVs and rescued their ability to achieve efficient targeted gene disruption by NHEJ comparable with that achieved with bona fide integrating lentiviral vectors. This study has implications for the ex vivo use of IDLVs for gene repair and gene targeting.
Collapse
Affiliation(s)
- Marinee K Chuah
- 1 Department of Gene Therapy & Regenerative Medicine, Faculty of Medicine & Pharmacy, Free University of Brussels , Brussels B-1090, Belgium
| | | |
Collapse
|
25
|
Grandchamp N, Altémir D, Philippe S, Ursulet S, Pilet H, Serre MC, Lenain A, Serguera C, Mallet J, Sarkis C. Hybrid lentivirus-phiC31-int-NLS vector allows site-specific recombination in murine and human cells but induces DNA damage. PLoS One 2014; 9:e99649. [PMID: 24956106 PMCID: PMC4067480 DOI: 10.1371/journal.pone.0099649] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 05/17/2014] [Indexed: 12/27/2022] Open
Abstract
Gene transfer allows transient or permanent genetic modifications of cells for experimental or therapeutic purposes. Gene delivery by HIV-derived lentiviral vector (LV) is highly effective but the risk of insertional mutagenesis is important and the random/uncontrollable integration of the DNA vector can deregulate the cell transcriptional activity. Non Integrative Lentiviral Vectors (NILVs) solve this issue in non-dividing cells, but they do not allow long term expression in dividing cells. In this context, obtaining stable expression while avoiding the problems inherent to unpredictable DNA vector integration requires the ability to control the integration site. One possibility is to use the integrase of phage phiC31 (phiC31-int) which catalyzes efficient site-specific recombination between the attP site in the phage genome and the chromosomal attB site of its Streptomyces host. Previous studies showed that phiC31-int is active in many eukaryotic cells, such as murine or human cells, and directs the integration of a DNA substrate into pseudo attP sites (pattP) which are homologous to the native attP site. In this study, we combined the efficiency of NILV for gene delivery and the specificity of phiC31-int for DNA substrate integration to engineer a hybrid tool for gene transfer with the aim of allowing long term expression in dividing and non-dividing cells preventing genotoxicity. We demonstrated the feasibility to target NILV integration in human and murine pattP sites with a dual NILV vectors system: one which delivers phiC31-int, the other which constitute the substrate containing an attB site in its DNA sequence. These promising results are however alleviated by the occurrence of significant DNA damages. Further improvements are thus required to prevent chromosomal rearrangements for a therapeutic use of the system. However, its use as a tool for experimental applications such as transgenesis is already applicable.
Collapse
Affiliation(s)
- Nicolas Grandchamp
- Unit of Biotechnology and Biotherapy, Centre de recherche de l'Institut du Cerveau et de la Moelle Epinière, Pierre-and-Marie-Curie University/Institut National de la Santé et de la Recherche Médicale, Paris, France
- NewVectys, Villebon-sur-Yvette, France
- Biosource, Paris, France
| | - Dorothée Altémir
- Unit of Biotechnology and Biotherapy, Centre de recherche de l'Institut du Cerveau et de la Moelle Epinière, Pierre-and-Marie-Curie University/Institut National de la Santé et de la Recherche Médicale, Paris, France
- NewVectys, Villebon-sur-Yvette, France
| | - Stéphanie Philippe
- Unit of Biotechnology and Biotherapy, Centre de recherche de l'Institut du Cerveau et de la Moelle Epinière, Pierre-and-Marie-Curie University/Institut National de la Santé et de la Recherche Médicale, Paris, France
- NewVectys, Villebon-sur-Yvette, France
- Biosource, Paris, France
| | - Suzanna Ursulet
- Unit of Biotechnology and Biotherapy, Centre de recherche de l'Institut du Cerveau et de la Moelle Epinière, Pierre-and-Marie-Curie University/Institut National de la Santé et de la Recherche Médicale, Paris, France
- NewVectys, Villebon-sur-Yvette, France
- Biosource, Paris, France
| | - Héloïse Pilet
- Unit of Biotechnology and Biotherapy, Centre de recherche de l'Institut du Cerveau et de la Moelle Epinière, Pierre-and-Marie-Curie University/Institut National de la Santé et de la Recherche Médicale, Paris, France
- NewVectys, Villebon-sur-Yvette, France
- Biosource, Paris, France
| | - Marie-Claude Serre
- Laboratoire de Virologie Moléculaire et Structurale, Gif-sur-Yvette, France
| | - Aude Lenain
- Commissariat à l'Energie Atomique, Laboratoire de Radiobiologie et Oncologie, Fontenay-aux-Roses, France
| | - Che Serguera
- Molecular Imaging Research Center - Modélisation des biothérapies, Fontenay-aux-Roses, France
| | - Jacques Mallet
- Unit of Biotechnology and Biotherapy, Centre de recherche de l'Institut du Cerveau et de la Moelle Epinière, Pierre-and-Marie-Curie University/Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Chamsy Sarkis
- Unit of Biotechnology and Biotherapy, Centre de recherche de l'Institut du Cerveau et de la Moelle Epinière, Pierre-and-Marie-Curie University/Institut National de la Santé et de la Recherche Médicale, Paris, France
- NewVectys, Villebon-sur-Yvette, France
- * E-mail:
| |
Collapse
|
26
|
Shaw A, Cornetta K. Design and Potential of Non-Integrating Lentiviral Vectors. Biomedicines 2014; 2:14-35. [PMID: 28548058 PMCID: PMC5423482 DOI: 10.3390/biomedicines2010014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 01/29/2023] Open
Abstract
Lentiviral vectors have demonstrated promising results in clinical trials that target cells of the hematopoietic system. For these applications, they are the vectors of choice since they provide stable integration into cells that will undergo extensive expansion in vivo. Unfortunately, integration can have unintended consequences including dysregulated cell growth. Therefore, lentiviral vectors that do not integrate are predicted to have a safer profile compared to integrating vectors and should be considered for applications where transient expression is required or for sustained episomal expression such as in quiescent cells. In this review, the system for generating lentiviral vectors will be described and used to illustrate how alterations in the viral integrase or vector Long Terminal Repeats have been used to generate vectors that lack the ability to integrate. In addition to their safety advantages, these non-integrating lentiviral vectors can be used when persistent expression would have adverse consequences. Vectors are currently in development for use in vaccinations, cancer therapy, site-directed gene insertions, gene disruption strategies, and cell reprogramming. Preclinical work will be described that illustrates the potential of this unique vector system in human gene therapy.
Collapse
Affiliation(s)
- Aaron Shaw
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Kenneth Cornetta
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
27
|
Skipper KA, Andersen PR, Sharma N, Mikkelsen JG. DNA transposon-based gene vehicles - scenes from an evolutionary drive. J Biomed Sci 2013; 20:92. [PMID: 24320156 PMCID: PMC3878927 DOI: 10.1186/1423-0127-20-92] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/27/2013] [Indexed: 12/12/2022] Open
Abstract
DNA transposons are primitive genetic elements which have colonized living organisms from plants to bacteria and mammals. Through evolution such parasitic elements have shaped their host genomes by replicating and relocating between chromosomal loci in processes catalyzed by the transposase proteins encoded by the elements themselves. DNA transposable elements are constantly adapting to life in the genome, and self-suppressive regulation as well as defensive host mechanisms may assist in buffering ‘cut-and-paste’ DNA mobilization until accumulating mutations will eventually restrict events of transposition. With the reconstructed Sleeping Beauty DNA transposon as a powerful engine, a growing list of transposable elements with activity in human cells have moved into biomedical experimentation and preclinical therapy as versatile vehicles for delivery and genomic insertion of transgenes. In this review, we aim to link the mechanisms that drive transposon evolution with the realities and potential challenges we are facing when adapting DNA transposons for gene transfer. We argue that DNA transposon-derived vectors may carry inherent, and potentially limiting, traits of their mother elements. By understanding in detail the evolutionary journey of transposons, from host colonization to element multiplication and inactivation, we may better exploit the potential of distinct transposable elements. Hence, parallel efforts to investigate and develop distinct, but potent, transposon-based vector systems will benefit the broad applications of gene transfer. Insight and clever optimization have shaped new DNA transposon vectors, which recently debuted in the first DNA transposon-based clinical trial. Learning from an evolutionary drive may help us create gene vehicles that are safer, more efficient, and less prone for suppression and inactivation.
Collapse
Affiliation(s)
| | | | | | - Jacob Giehm Mikkelsen
- Department of Biomedicine, Aarhus University, Wilh, Meyers Allé 4, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
28
|
Cai Y, Bak RO, Krogh LB, Staunstrup NH, Moldt B, Corydon TJ, Schrøder LD, Mikkelsen JG. DNA transposition by protein transduction of the piggyBac transposase from lentiviral Gag precursors. Nucleic Acids Res 2013; 42:e28. [PMID: 24270790 PMCID: PMC3936723 DOI: 10.1093/nar/gkt1163] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
DNA transposon-based vectors have emerged as gene vehicles with a wide biomedical and therapeutic potential. So far, genomic insertion of such vectors has relied on the co-delivery of genetic material encoding the gene-inserting transposase protein, raising concerns related to persistent expression, insertional mutagenesis and cytotoxicity. This report describes potent DNA transposition achieved by direct delivery of transposase protein. By adapting integrase-deficient lentiviral particles (LPs) as carriers of the hyperactive piggyBac transposase protein (hyPBase), we demonstrate rates of DNA transposition that are comparable with the efficiency of a conventional plasmid-based strategy. Embedded in the Gag polypeptide, hyPBase is robustly incorporated into LPs and liberated from the viral proteins by the viral protease during particle maturation. We demonstrate lentiviral co-delivery of the transposase protein and vector RNA carrying the transposon sequence, allowing robust DNA transposition in a variety of cell types. Importantly, this novel delivery method facilitates a balanced cellular uptake of hyPBase, as shown by confocal microscopy, and allows high-efficiency production of clones harboring a single transposon insertion. Our findings establish engineered LPs as a new tool for transposase delivery. We believe that protein transduction methods will increase applicability and safety of DNA transposon-based vector technologies.
Collapse
Affiliation(s)
- Yujia Cai
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark and Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhang W, Solanki M, Müther N, Ebel M, Wang J, Sun C, Izsvak Z, Ehrhardt A. Hybrid adeno-associated viral vectors utilizing transposase-mediated somatic integration for stable transgene expression in human cells. PLoS One 2013; 8:e76771. [PMID: 24116154 PMCID: PMC3792901 DOI: 10.1371/journal.pone.0076771] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/28/2013] [Indexed: 12/14/2022] Open
Abstract
Recombinant adeno-associated viral (AAV) vectors have been shown to be one of the most promising vectors for therapeutic gene delivery because they can induce efficient and long-term transduction in non-dividing cells with negligible side-effects. However, as AAV vectors mostly remain episomal, vector genomes and transgene expression are lost in dividing cells. Therefore, to stably transduce cells, we developed a novel AAV/transposase hybrid-vector. To facilitate SB-mediated transposition from the rAAV genome, we established a system in which one AAV vector contains the transposon with the gene of interest and the second vector delivers the hyperactive Sleeping Beauty (SB) transposase SB100X. Human cells were infected with the AAV-transposon vector and the transposase was provided in trans either by transient and stable plasmid transfection or by AAV vector transduction. We found that groups which received the hyperactive transposase SB100X showed significantly increased colony forming numbers indicating enhanced integration efficiencies. Furthermore, we found that transgene copy numbers in transduced cells were dose-dependent and that predominantly SB transposase-mediated transposition contributed to stabilization of the transgene. Based on a plasmid rescue strategy and a linear-amplification mediated PCR (LAM-PCR) protocol we analysed the SB100X-mediated integration profile after transposition from the AAV vector. A total of 1840 integration events were identified which revealed a close to random integration profile. In summary, we show for the first time that AAV vectors can serve as template for SB transposase mediated somatic integration. We developed the first prototype of this hybrid-vector system which with further improvements may be explored for treatment of diseases which originate from rapidly dividing cells.
Collapse
Affiliation(s)
- Wenli Zhang
- Max von Pettenkofer-Institute, Department of Virology, Ludwig-Maximilians-University Munich, Munich, Germany
- Institute of Virology and Microbiology, Center for Biomedical Education and Research, Department of Human Medicine, Faculty of Health, University Witten/Herdecke, Witten, Germany
| | - Manish Solanki
- Institute of Virology and Microbiology, Center for Biomedical Education and Research, Department of Human Medicine, Faculty of Health, University Witten/Herdecke, Witten, Germany
| | - Nadine Müther
- Max von Pettenkofer-Institute, Department of Virology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Melanie Ebel
- Institute of Virology and Microbiology, Center for Biomedical Education and Research, Department of Human Medicine, Faculty of Health, University Witten/Herdecke, Witten, Germany
| | - Jichang Wang
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Chuanbo Sun
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Anja Ehrhardt
- Max von Pettenkofer-Institute, Department of Virology, Ludwig-Maximilians-University Munich, Munich, Germany
- Institute of Virology and Microbiology, Center for Biomedical Education and Research, Department of Human Medicine, Faculty of Health, University Witten/Herdecke, Witten, Germany
- * E-mail:
| |
Collapse
|
30
|
Zhang W, Muck-Hausl M, Wang J, Sun C, Gebbing M, Miskey C, Ivics Z, Izsvak Z, Ehrhardt A. Integration profile and safety of an adenovirus hybrid-vector utilizing hyperactive sleeping beauty transposase for somatic integration. PLoS One 2013; 8:e75344. [PMID: 24124483 PMCID: PMC3790794 DOI: 10.1371/journal.pone.0075344] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/11/2013] [Indexed: 12/18/2022] Open
Abstract
We recently developed adenovirus/transposase hybrid-vectors utilizing the previously described hyperactive Sleeping Beauty (SB) transposase HSB5 for somatic integration and we could show stabilized transgene expression in mice and a canine model for hemophilia B. However, the safety profile of these hybrid-vectors with respect to vector dose and genotoxicity remains to be investigated. Herein, we evaluated this hybrid-vector system in C57Bl/6 mice with escalating vector dose settings. We found that in all mice which received the hyperactive SB transposase, transgene expression levels were stabilized in a dose-dependent manner and that the highest vector dose was accompanied by fatalities in mice. To analyze potential genotoxic side-effects due to somatic integration into host chromosomes, we performed a genome-wide integration site analysis using linker-mediated PCR (LM-PCR) and linear amplification-mediated PCR (LAM-PCR). Analysis of genomic DNA samples obtained from HSB5 treated female and male mice revealed a total of 1327 unique transposition events. Overall the chromosomal distribution pattern was close-to-random and we observed a random integration profile with respect to integration into gene and non-gene areas. Notably, when using the LM-PCR protocol, 27 extra-chromosomal integration events were identified, most likely caused by transposon excision and subsequent transposition into the delivered adenoviral vector genome. In total, this study provides a careful evaluation of the safety profile of adenovirus/Sleeping Beauty transposase hybrid-vectors. The obtained information will be useful when designing future preclinical studies utilizing hybrid-vectors in small and large animal models.
Collapse
Affiliation(s)
- Wenli Zhang
- Max von Pettenkofer-Institute, Department of Virology, Ludwig-Maximilians-University Munich, Munich, Germany
- Northwest Agriculture and Forestry University, Yangling, China
| | - Martin Muck-Hausl
- Max von Pettenkofer-Institute, Department of Virology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jichang Wang
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Chuanbo Sun
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Csaba Miskey
- Paul-Ehrlich-Institute, Division of Medical Biotechnology, Langen, Germany
| | - Zoltan Ivics
- Paul-Ehrlich-Institute, Division of Medical Biotechnology, Langen, Germany
| | | | - Anja Ehrhardt
- Max von Pettenkofer-Institute, Department of Virology, Ludwig-Maximilians-University Munich, Munich, Germany
- Institute for Virology and Microbiology, Center for Biomedical Education and Research, Department of Human Medicine, Faculty of Health, University Witten/Herdecke, Witten, Germany
- * E-mail:
| |
Collapse
|
31
|
Field AC, Vink C, Gabriel R, Al-Subki R, Schmidt M, Goulden N, Stauss H, Thrasher A, Morris E, Qasim W. Comparison of lentiviral and sleeping beauty mediated αβ T cell receptor gene transfer. PLoS One 2013; 8:e68201. [PMID: 23840834 PMCID: PMC3695921 DOI: 10.1371/journal.pone.0068201] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/27/2013] [Indexed: 12/13/2022] Open
Abstract
Transfer of tumour antigen-specific receptors to T cells requires efficient delivery and integration of transgenes, and currently most clinical studies are using gamma retroviral or lentiviral systems. Whilst important proof-of-principle data has been generated for both chimeric antigen receptors and αβ T cell receptors, the current platforms are costly, time-consuming and relatively inflexible. Alternative, more cost-effective, Sleeping Beauty transposon-based plasmid systems could offer a pathway to accelerated clinical testing of a more diverse repertoire of recombinant high affinity T cell receptors. Nucleofection of hyperactive SB100X transposase-mediated stable transposition of an optimised murine-human chimeric T cell receptor specific for Wilm’s tumour antigen from a Sleeping Beauty transposon plasmid. Whilst transfer efficiency was lower than that mediated by lentiviral transduction, cells could be readily enriched and expanded, and mediated effective target cells lysis in vitro and in vivo. Integration sites of transposed TCR genes in primary T cells were almost randomly distributed, contrasting the predilection of lentiviral vectors for transcriptionally active sites. The results support exploitation of the Sleeping Beauty plasmid based system as a flexible and adaptable platform for accelerated, early-phase assessment of T cell receptor gene therapies.
Collapse
Affiliation(s)
- Anne-Christine Field
- Molecular immunology Unit, Institute of Child Health, University College London, London, United Kingdom
| | - Conrad Vink
- Molecular immunology Unit, Institute of Child Health, University College London, London, United Kingdom
| | - Richard Gabriel
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Roua Al-Subki
- Molecular immunology Unit, Institute of Child Health, University College London, London, United Kingdom
| | - Manfred Schmidt
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Nicholas Goulden
- Molecular immunology Unit, Institute of Child Health, University College London, London, United Kingdom
| | - Hans Stauss
- Institute of Immunity & Transplantation, Royal Free Campus University College London, London, United Kingdom
| | - Adrian Thrasher
- Molecular immunology Unit, Institute of Child Health, University College London, London, United Kingdom
| | - Emma Morris
- Institute of Immunity & Transplantation, Royal Free Campus University College London, London, United Kingdom
| | - Waseem Qasim
- Molecular immunology Unit, Institute of Child Health, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
32
|
Huang S, Kamihira M. Development of hybrid viral vectors for gene therapy. Biotechnol Adv 2013; 31:208-23. [DOI: 10.1016/j.biotechadv.2012.10.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 09/26/2012] [Accepted: 10/04/2012] [Indexed: 01/23/2023]
|
33
|
|
34
|
Understanding lentiviral vector chromatin targeting: working to reduce insertional mutagenic potential for gene therapy. Gene Ther 2012; 20:581-8. [PMID: 23171920 DOI: 10.1038/gt.2012.88] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Replication-deficient retroviruses have been successfully utilized as vectors, offering an efficient, stable method of therapeutic gene delivery. Many examples exist proving this mode of integrative gene transfer is both effective and safe in cultured systems and clinical trials. Along with their success, severe side effects have occurred with early retroviral vectors causing a shift in the approach to vector design before further clinical testing. Several alternative delivery methods are available but lentiviral vectors (LV) are among the most favorable as they are already well understood. LV offer safer integration site selection profiles and a lower degree of genotoxicity, compared with γ-retroviral vectors. Following their introduction, development of the self-inactivating vector configuration was a huge step to this mode of therapy but did not confer full protection against insertional mutagenesis. As a result integration, modeling must be improved to eventually avoid this possibility. The cellular factor LEDGF/p75 seems to play an essential role in the process of LV site selection and its interactions with chromatin are being quickly resolved. LEDGF/p75 is at the center of one example directed integration effort where recombinant products bias the integration event, a step toward fully directed integration into pre-determined benign loci. A more accurate picture of the details of LEDGF/p75 in the natural integration process is emerging, including new binding specificities, chromatin interaction kinetics and additional cellular factors. Together with next-generation sequencing technology and bio-informatics to analyze integration patterns, these advancements will lead to highly focused directed integration, accelerating wide-spread acceptance of LV for gene therapy.
Collapse
|
35
|
Di Matteo M, Belay E, Chuah MK, Vandendriessche T. Recent developments in transposon-mediated gene therapy. Expert Opin Biol Ther 2012; 12:841-58. [PMID: 22679910 DOI: 10.1517/14712598.2012.684875] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The continuous improvement of gene transfer technologies has broad implications for stem cell biology, gene discovery, and gene therapy. Although viral vectors are efficient gene delivery vehicles, their safety, immunogenicity and manufacturing challenges hamper clinical progress. In contrast, non-viral gene delivery systems are less immunogenic and easier to manufacture. AREAS COVERED In this review, we explore the emerging potential of transposons in gene and cell therapy. The safety, efficiency, and biology of novel hyperactive Sleeping Beauty (SB) and piggyBac (PB) transposon systems will be highlighted for ex vivo gene therapy in clinically relevant adult stem/progenitor cells, particularly hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs), myoblasts, and induced pluripotent stem (iPS) cells. Moreover, efforts toward in vivo transposon-based gene therapy will be discussed. EXPERT OPINION The latest generation SB and PB transposons currently represent some of the most attractive systems for stable non-viral genetic modification of primary cells, particularly adult stem cells. This paves the way toward the use of transposons as a non-viral gene therapy approach to correct hereditary disorders including those that affect the hematopoietic system. The development of targeted integration into "safe harbor" genetic loci may further improve their safety profile.
Collapse
Affiliation(s)
- Mario Di Matteo
- Free University of Brussels, Division of Gene Therapy & Regenerative Medicine, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | | | | | | |
Collapse
|
36
|
Gabriel R, Schmidt M, von Kalle C. Integration of retroviral vectors. Curr Opin Immunol 2012; 24:592-7. [DOI: 10.1016/j.coi.2012.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/23/2012] [Indexed: 11/26/2022]
|
37
|
Chan E, Schaller T, Eddaoudi A, Zhan H, Tan CP, Jacobsen M, Thrasher AJ, Towers GJ, Qasim W. Lentiviral gene therapy against human immunodeficiency virus type 1, using a novel human TRIM21-cyclophilin A restriction factor. Hum Gene Ther 2012; 23:1176-85. [PMID: 22909012 DOI: 10.1089/hum.2012.083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
TRIM5α (tripartite motif-containing protein-5, isoform α)-cyclophilin A fusion proteins are anti-human immunodeficiency virus (HIV) restriction factors that have evolved in certain nonhuman primates over millions of years and protect against HIV and related viruses. Restriction by TRIM5αCypA is potent and highly resistant to viral escape by mutation and, in combination with a suitable gene delivery platform, offers the possibility of novel therapeutic approaches against HIV. Here we report that lentiviral vector delivery of human mimics of TRIM5α-cyclophilin A (TRIM5CypA) fusion proteins afforded robust and durable protection against HIV-1, but resulted in downregulation of host cell antiviral responses mediated by endogenous TRIM5α. We found that substitution of TRIM5α RING, B-box, and coiled-coil domains with similar domains from a related TRIM protein, TRIM21, produced a novel and equally potent inhibitor of HIV-1. Both TRIM5CypA and TRIM21CypA inhibited transduction by HIV-1-derived viral vectors and prevented propagation of replication-competent HIV-1 in human cell lines and in primary human T cells. Restriction factor-modified T cells exhibited preferential survival in the presence of wild-type HIV. Restriction was dependent on proteasomal degradation and was reversed in the presence of the cyclophilin inhibitor cyclosporin. Importantly, TRIM21CypA did not disturb endogenous TRIM5α-mediated restriction of gammaretroviral infection. Furthermore, endogenous TRIM21 antiviral activity was assessed by measuring inhibition of adenovirus-antibody complexes and was found to be preserved in all TRIMCypA-modified groups. We conclude that lentivirus-mediated expression of the novel chimeric restriction factor TRIM21CypA provides highly potent protection against HIV-1 without loss of normal innate immune TRIM activity.
Collapse
Affiliation(s)
- Emma Chan
- Wolfson Centre for Gene Therapy, Institute of Child Health, University College London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ivics Z, Izsvák Z. Nonviral gene delivery with the sleeping beauty transposon system. Hum Gene Ther 2012; 22:1043-51. [PMID: 21867398 DOI: 10.1089/hum.2011.143] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Effective gene therapy requires robust delivery of therapeutic genes into relevant target cells, long-term gene expression, and minimal risks of secondary effects. Nonviral gene transfer approaches typically result in only short-lived transgene expression in primary cells, because of the lack of nuclear maintenance of the vector over several rounds of cell division. The development of efficient and safe nonviral vectors armed with an integrating feature would thus greatly facilitate clinical gene therapy studies. The latest generation transposon technology based on the Sleeping Beauty (SB) transposon may potentially overcome some of these limitations. SB was shown to provide efficient stable gene transfer and sustained transgene expression in primary cell types, including human hematopoietic progenitors, mesenchymal stem cells, muscle stem/progenitor cells (myoblasts), induced pluripotent stem cells, and T cells. These cells are relevant targets for stem cell biology, regenerative medicine, and gene- and cell-based therapies of complex genetic diseases. Moreover, the first-in-human clinical trial has been launched to use redirected T cells engineered with SB for gene therapy of B cell lymphoma. We discuss aspects of cellular delivery of the SB transposon system, transgene expression provided by integrated transposon vectors, target site selection of the transposon vectors, and potential risks associated with random genomic insertion.
Collapse
Affiliation(s)
- Zoltán Ivics
- Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany.
| | | |
Collapse
|
39
|
Restoration of dystrophin expression using the Sleeping Beauty transposon. PLOS CURRENTS 2011; 3:RRN1296. [PMID: 22318674 PMCID: PMC3269885 DOI: 10.1371/currents.rrn1296] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/29/2011] [Indexed: 11/25/2022]
Abstract
The Sleeping beauty (SB) system is a non-viral DNA based vector that has been used to stably integrate therapeutic genes into disease models. Here we report the SB system is capable of stably integrating the ΔR4-R23/CTΔ micro-dystrophin gene into a conditionally immortal dystrophin deficient muscle cell-line, H2K SF1, a murine cell model for Duchenne muscular dystrophy. Genetically corrected H2K SF1 cells retained their myogenic properties in vitro. Moreover, upon transplantation ΔR4-R23/CTΔ micro-dystrophin expression was detected within mdx nu/nu mice. Our data suggests the SB system is an effective way of stably integrating therapeutic genes into myogenic cells.
Collapse
|
40
|
Swierczek M, Izsvák Z, Ivics Z. The Sleeping Beauty transposon system for clinical applications. Expert Opin Biol Ther 2011; 12:139-53. [PMID: 22176302 DOI: 10.1517/14712598.2012.642358] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Extensive efforts have been made to establish efficient and safe gene delivery protocols that could meet demanding expectations of a successful gene therapy. The Sleeping Beauty (SB) transposon system combines simplicity and inexpensive manufacture offered by plasmid-based vector formulation with integrative features exhibited by some viral vectors. Activated after over ten million years of silent genomic existence, the SB transposable element entered the 21st century as a potent technology for a broad range of applications in genome engineering, including gene therapy. Beneficially for gene therapy purposes, the SB system has been demonstrated to enable persistent expression of therapeutic genes followed by restoration of homeostasis in a variety of disease models. Importantly, this non-viral gene delivery vehicle is postulated to constitute a relatively safe vector system, because it lacks a preference for inserting into transcription units and their upstream regulatory regions, thereby minimizing genotoxic risks that might be associated with vector integration. Further evolution and wide, comprehensive preclinical testing of the SB transposon system in the context of several disease models is expected to further refine this valuable technology matched by enhanced biosafety towards disease treatment.
Collapse
Affiliation(s)
- Marta Swierczek
- Paul Ehrlich Institute, Paul Ehrlich Strasse 51-59, D-63225 Langen, Germany
| | | | | |
Collapse
|
41
|
Development of the hybrid Sleeping Beauty-baculovirus vector for sustained gene expression and cancer therapy. Gene Ther 2011; 19:844-51. [DOI: 10.1038/gt.2011.129] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
42
|
A new extensively characterised conditionally immortal muscle cell-line for investigating therapeutic strategies in muscular dystrophies. PLoS One 2011; 6:e24826. [PMID: 21935475 PMCID: PMC3173493 DOI: 10.1371/journal.pone.0024826] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 08/18/2011] [Indexed: 01/13/2023] Open
Abstract
A new conditionally immortal satellite cell-derived cell-line, H2K 2B4, was generated from the H2Kb-tsA58 immortomouse. Under permissive conditions H2K 2B4 cells terminally differentiate in vitro to form uniform myotubes with a myogenic protein profile comparable with freshly isolated satellite cells. Following engraftment into immunodeficient dystrophin-deficient mice, H2K 2B4 cells regenerated host muscle with donor derived myofibres that persisted for at least 24 weeks, without forming tumours. These cells were readily transfectable using both retrovirus and the non-viral transfection methods and importantly upon transplantation, were able to reconstitute the satellite cell niche with functional donor derived satellite cells. Finally using the Class II DNA transposon, Sleeping Beauty, we successfully integrated a reporter plasmid into the genome of H2K 2B4 cells without hindering the myogenic differentiation. Overall, these data suggest that H2K 2B4 cells represent a readily transfectable stable cell-line in which to investigate future stem cell based therapies for muscle disease.
Collapse
|
43
|
Comparison of piggyBac transposition efficiency between linear and circular donor vectors in mammalian cells. J Biotechnol 2011; 154:205-8. [DOI: 10.1016/j.jbiotec.2011.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 05/06/2011] [Accepted: 05/19/2011] [Indexed: 11/19/2022]
|
44
|
Bak RO, Mikkelsen JG. Mobilization of DNA transposable elements from lentiviral vectors. Mob Genet Elements 2011; 1:139-144. [PMID: 22016863 DOI: 10.4161/mge.1.2.17062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/17/2011] [Accepted: 06/18/2011] [Indexed: 01/08/2023] Open
Abstract
With the Sleeping Beauty (SB) DNA transposon, a reconstructed Tc1/mariner element, as the driving force, DNA transposable elements have emerged as new gene delivery vectors with therapeutic potential. The bipartite transposon vector system consists of a transposon vector carrying the transgene and a source of the transposase that catalyzes transposon mobilization. The components of the system are typically residing on separate plasmids that are transfected into cells or tissues of interest. We have recently shown that SB vector technology can be successfully combined with lentiviral delivery. Hence, SB transposons are efficiently mobilized from HIV-based integrase-defective lentiviral vectors by the hyperactive SB100X transposase, leading to the genomic insertion of lentivirally delivered DNA in a reaction controlled by a nonviral integration machinery. This new technology combines the better of two vector worlds and leads to integration profiles that are significantly altered and potentially safer relative to conventional lentiviral vectors. In this short commentary, we discuss our recent findings and the road ahead for hybrid lentivirus-transposon vectors.
Collapse
Affiliation(s)
- Rasmus O Bak
- Department of Biomedicine; University of Aarhus; Aarhus C, Denmark
| | | |
Collapse
|
45
|
Galla M, Schambach A, Falk CS, Maetzig T, Kuehle J, Lange K, Zychlinski D, Heinz N, Brugman MH, Göhring G, Izsvák Z, Ivics Z, Baum C. Avoiding cytotoxicity of transposases by dose-controlled mRNA delivery. Nucleic Acids Res 2011; 39:7147-60. [PMID: 21609958 PMCID: PMC3167617 DOI: 10.1093/nar/gkr384] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The Sleeping Beauty (SB) transposase and its newly developed hyperactive variant, SB100X, are of increasing interest for genome modification in experimental models and gene therapy. The potential cytotoxicity of transposases requires careful assessment, considering that residual integration events of transposase expression vectors delivered by physicochemical transfection or episomal retroviral vectors may lead to permanent transposase expression and resulting uncontrollable transposition. Comparing retrovirus-based approaches for delivery of mRNA, episomal DNA or integrating DNA, we found that conventional SB transposase, SB100X and a newly developed codon-optimized SB100Xo may trigger premitotic arrest and apoptosis. Cell stress induced by continued SB overexpression was self-limiting due to the induction of cell death, which occurred even in the absence of a co-transfected transposable element. The cytotoxic effects of SB transposase were strictly dose dependent and heralded by induction of p53 and c-Jun. Inactivating mutations in SB's catalytic domain could not abrogate cytotoxicity, suggesting a mechanism independent of DNA cleavage activity. An improved approach of retrovirus particle-mediated mRNA transfer allowed transient and dose-controlled expression of SB100X, supported efficient transposition and prevented cytotoxicity. Transposase-mediated gene transfer can thus be tuned to maintain high efficiency in the absence of overt cell damage.
Collapse
Affiliation(s)
- Melanie Galla
- Department of Experimental Hematology, Institute of Transplantation Immunology, Institute of Cell and Molecular Pathology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Szebényi K, Erdei Z, Péntek A, Sebe A, Orbán TI, Sarkadi B, Apáti Á. Human pluripotent stem cells in pharmacological and toxicological screening: new perspectives for personalized medicine. Per Med 2011; 8:347-364. [DOI: 10.2217/pme.11.19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human stem cells provide an important novel tool for generating in vitro pharmacological and toxicological test systems. In the development of new targeted therapies, as well as in critical safety issues, including hepato-, neuro- and cardio-toxicity, animal-based tests are mostly unsatisfactory, whereas the use of in vitro model systems is limited by the unavailability of relevant human tissues. Human embryonic stem cell lines may fill this gap and offer an advantage over primary cultures as well as tissue-derived (adult) stem cells. Human embryonic stem cells represent an unlimited source for the production of differentiated somatic progenies and allow various stable genetic manipulations. As a new opening in personalized medicine test systems, the generation of induced pluripotent stem cell lines and their derivatives can provide patient- and disease-specific cellular assays for drug development and safety assessments. This article reviews promising human stem cell applications in pharmacological and toxicological screenings, focusing on the implications for personalized medicine.
Collapse
Affiliation(s)
- Kornélia Szebényi
- Membrane Research Group, Hungarian Academy of Sciences & National Blood Center, 1113 Budapest, Diószegi u. 64, Hungary
| | - Zsuzsa Erdei
- Membrane Research Group, Hungarian Academy of Sciences & National Blood Center, 1113 Budapest, Diószegi u. 64, Hungary
| | - Adrienn Péntek
- Membrane Research Group, Hungarian Academy of Sciences & National Blood Center, 1113 Budapest, Diószegi u. 64, Hungary
| | - Attila Sebe
- Membrane Research Group, Hungarian Academy of Sciences & National Blood Center, 1113 Budapest, Diószegi u. 64, Hungary
- Department of Biochemistry & Molecular Biology, Medical & Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Tamás I Orbán
- Membrane Research Group, Hungarian Academy of Sciences & National Blood Center, 1113 Budapest, Diószegi u. 64, Hungary
| | - Balázs Sarkadi
- Membrane Research Group, Hungarian Academy of Sciences & National Blood Center, 1113 Budapest, Diószegi u. 64, Hungary
| | | |
Collapse
|
47
|
Aronovich EL, McIvor RS, Hackett PB. The Sleeping Beauty transposon system: a non-viral vector for gene therapy. Hum Mol Genet 2011; 20:R14-20. [PMID: 21459777 PMCID: PMC3095056 DOI: 10.1093/hmg/ddr140] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 03/28/2011] [Indexed: 12/22/2022] Open
Abstract
Over the past decade, the Sleeping Beauty (SB) transposon system has been developed as the leading non-viral vector for gene therapy. This vector combines the advantages of viruses and naked DNA. Here we review progress over the last 2 years in vector design, methods of delivery and safety that have supported its use in the clinic. Currently, the SB vector has been validated for ex vivo gene delivery to stem cells, including T-cells for the treatment of lymphoma. Progress in delivery of SB transposons to liver for treatment of various systemic diseases, such as hemophilia and mucopolysaccharidoses types I and VII, has encountered some problems, but even here progress is being made.
Collapse
Affiliation(s)
- Elena L Aronovich
- Department of Genetics, Cell Biology and Development, The Center for Genome Engineering, Institute of Human Genetics, University of Minnesota, 6-160 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
48
|
Moldt B, Miskey C, Staunstrup NH, Gogol-Döring A, Bak RO, Sharma N, Mátés L, Izsvák Z, Chen W, Ivics Z, Mikkelsen JG. Comparative genomic integration profiling of Sleeping Beauty transposons mobilized with high efficacy from integrase-defective lentiviral vectors in primary human cells. Mol Ther 2011; 19:1499-510. [PMID: 21468003 DOI: 10.1038/mt.2011.47] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It has been previously shown that integrase-defective HIV-1-based gene vectors can serve, with moderate efficiency, as substrate for DNA transposition by a transiently expressed Sleeping Beauty (SB) transposase. Here, we describe the enhanced gene transfer properties of a HIV-1/SB hybrid vector that allows efficient DNA transposition, facilitated by the hyperactive SB100X transposase, from vector DNA intermediates in primary human cells. Potent transposase-dependent integration of genetic cargo carried by the hybrid HIV-1/SB vector (up to 160-fold above background) is reported in human cell lines as well as in primary human fibroblasts and keratinocytes. The efficiency of transgene integration in context of the newly developed hybrid vector is comparable with that of conventional lentiviral vectors (LVs). Integration profiles of integrating HIV-1-derived vectors and SB transposons mobilized from LVs are investigated by deep sequencing of a large number of integration sites. A significant bias of lentiviral integrations in genes is reported, confirming that biological properties of the viral integration machinery facilitate preferred insertion into actively transcribed genomic regions. In sharp contrast, lentiviral insertions catalyzed by the SB100X transposase are far more random with respect to genes. Based on these properties, HIV-1/SB vectors may become valuable tools for genetic engineering and therapeutic gene transfer.
Collapse
Affiliation(s)
- Brian Moldt
- Department of Human Genetics, University of Aarhus, Aarhus, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
The hyperactive Sleeping Beauty transposase SB100X improves the genetic modification of T cells to express a chimeric antigen receptor. Gene Ther 2011; 18:849-56. [PMID: 21451576 DOI: 10.1038/gt.2011.40] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sleeping Beauty (SB3) transposon and transposase constitute a DNA plasmid system used for therapeutic human cell genetic engineering. Here we report a comparison of SB100X, a newly developed hyperactive SB transposase, to a previous generation SB11 transposase to achieve stable expression of a CD19-specific chimeric antigen receptor (CAR3) in primary human T cells. The electro-transfer of SB100X expressed from a DNA plasmid or as an introduced mRNA species had superior transposase activity in T cells based on the measurement of excision circles released after transposition and emergence of CAR expression on T cells selectively propagated upon CD19+ artificial antigen-presenting cells. Given that T cells modified with SB100X and SB11 integrate on average one copy of the CAR transposon in each T-cell genome, the improved transposition mediated by SB100X apparently leads to an augmented founder effect of electroporated T cells with durable integration of CAR. In aggregate, SB100X improves SB transposition in primary human T cells and can be titrated with an SB transposon plasmid to improve the generation of CD19-specific CAR+ T cells.
Collapse
|
50
|
Sinn PL, Anthony RM, McCray PB. Genetic therapies for cystic fibrosis lung disease. Hum Mol Genet 2011; 20:R79-86. [PMID: 21422098 DOI: 10.1093/hmg/ddr104] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The aim of gene therapy for cystic fibrosis (CF) lung disease is to efficiently and safely express the CF transmembrane conductance regulator (CFTR) in the appropriate pulmonary cell types. Although CF patients experience multi-organ disease, the chronic bacterial lung infections and associated inflammation are the primary cause of shortened life expectancy. Gene transfer-based therapeutic approaches are feasible, in part, because the airway epithelium is directly accessible by aerosol delivery or instillation. Improvements in standard delivery vectors and the development of novel vectors, as well as emerging technologies and new animal models, are propelling exciting new research forward. Here, we review recent developments that are advancing this field of investigation.
Collapse
Affiliation(s)
- Patrick L Sinn
- Program in Gene Therapy, Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|