1
|
Dobrikov MI, Dobrikova EY, Nardone-White DT, McKay ZP, Brown MC, Gromeier M. Early enterovirus translation deficits extend viral RNA replication and elicit sustained MDA5-directed innate signaling. mBio 2023; 14:e0191523. [PMID: 37962360 PMCID: PMC10746184 DOI: 10.1128/mbio.01915-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/02/2023] [Indexed: 11/15/2023] Open
Abstract
IMPORTANCE Multiple pattern recognition receptors sense vRNAs and initiate downstream innate signaling: endosomal Toll-like receptors (TLRs) 3, 7, and 8 and cytoplasmic RIG-I-like receptors (RLRs) RIG-I, and MDA5. They engage distinct signaling scaffolds: mitochondrial antiviral signaling protein (RLR), MyD88, and TLR-adaptor interacting with SLC15A4 on the lysosome (TLR7 and TLR8) and toll/IL-1R domain-containing adaptor inducing IFN (TLR3). By virtue of their unusual vRNA structure and direct host cell entry path, the innate response to EVs uniquely is orchestrated by MDA5. We reported that PVSRIPO's profound attenuation and loss of cytopathogenicity triggers MDA5-directed polar TBK1-IRF3 signaling that generates priming of polyfunctional antitumor CD8+ T-cell responses and durable antitumor surveillance in vivo. Here we unraveled EV-host relations that control suppression of host type-I IFN responses and show that PVSRIPO's deficient immediate host eIF4G cleavage generates unopposed MDA5-directed downstream signaling cascades resulting in sustained type-I IFN release.
Collapse
Affiliation(s)
- Mikhail I. Dobrikov
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Elena Y. Dobrikova
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Dasean T. Nardone-White
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical School, Durham, North Carolina, USA
| | - Zachary P. McKay
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Michael C. Brown
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Matthias Gromeier
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical School, Durham, North Carolina, USA
| |
Collapse
|
2
|
Zhu X, Fan C, Xiong Z, Chen M, Li Z, Tao T, Liu X. Development and application of oncolytic viruses as the nemesis of tumor cells. Front Microbiol 2023; 14:1188526. [PMID: 37440883 PMCID: PMC10335770 DOI: 10.3389/fmicb.2023.1188526] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/18/2023] [Indexed: 07/15/2023] Open
Abstract
Viruses and tumors are two pathologies that negatively impact human health, but what occurs when a virus encounters a tumor? A global consensus among cancer patients suggests that surgical resection, chemotherapy, radiotherapy, and other methods are the primary means to combat cancer. However, with the innovation and development of biomedical technology, tumor biotherapy (immunotherapy, molecular targeted therapy, gene therapy, oncolytic virus therapy, etc.) has emerged as an alternative treatment for malignant tumors. Oncolytic viruses possess numerous anti-tumor properties, such as directly lysing tumor cells, activating anti-tumor immune responses, and improving the tumor microenvironment. Compared to traditional immunotherapy, oncolytic virus therapy offers advantages including high killing efficiency, precise targeting, and minimal side effects. Although oncolytic virus (OV) therapy was introduced as a novel approach to tumor treatment in the 19th century, its efficacy was suboptimal, limiting its widespread application. However, since the U.S. Food and Drug Administration (FDA) approved the first OV therapy drug, T-VEC, in 2015, interest in OV has grown significantly. In recent years, oncolytic virus therapy has shown increasingly promising application prospects and has become a major research focus in the field of cancer treatment. This article reviews the development, classification, and research progress of oncolytic viruses, as well as their mechanisms of action, therapeutic methods, and routes of administration.
Collapse
Affiliation(s)
- Xiao Zhu
- Zhejiang Provincial People's Hospital Affiliated to Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
- Department of Biological and Chemical Sciences, New York Institute of Technology—Manhattan Campus, New York, NY, United States
| | - Chenyang Fan
- Department of Clinical Medicine, Medicine and Technology, School of Zunyi Medical University, Zunyi, China
| | - Zhuolong Xiong
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Mingwei Chen
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital(Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Xiuqing Liu
- Department of Clinical Laboratory, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
3
|
Dobrikov MI, Dobrikova EY, McKay ZP, Kastan JP, Brown MC, Gromeier M. PKR Binds Enterovirus IRESs, Displaces Host Translation Factors, and Impairs Viral Translation to Enable Innate Antiviral Signaling. mBio 2022; 13:e0085422. [PMID: 35652592 PMCID: PMC9239082 DOI: 10.1128/mbio.00854-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/16/2022] [Indexed: 12/23/2022] Open
Abstract
For RNA virus families except Picornaviridae, viral RNA sensing includes Toll-like receptors and/or RIG-I. Picornavirus RNAs, whose 5' termini are shielded by a genome-linked protein, are predominately recognized by MDA5. This has important ramifications for adaptive immunity, as MDA5-specific patterns of type-I interferon (IFN) release are optimal for CD4+T cell TH1 polarization and CD8+T cell priming. We are exploiting this principle for cancer immunotherapy with recombinant poliovirus (PV), PVSRIPO, the type 1 (Sabin) PV vaccine containing a rhinovirus type 2 internal ribosomal entry site (IRES). Here we show that PVSRIPO-elicited MDA5 signaling is preceded by early sensing of the IRES by the double-stranded (ds)RNA-activated protein kinase (PKR). PKR binding to IRES stem-loop domains 5-6 led to dimerization and autoactivation, displaced host translation initiation factors, and suppressed viral protein synthesis. Early PKR-mediated antiviral responses tempered incipient viral translation and the activity of cytopathogenic viral proteinases, setting up accentuated MDA5 innate inflammation in response to PVSRIPO infection. IMPORTANCE Among the RIG-I-like pattern recognition receptors, MDA5 stands out because it senses long dsRNA duplexes independent of their 5' features (RIG-I recognizes viral [v]RNA 5'-ppp blunt ends). Uniquely among RNA viruses, the innate defense against picornaviruses is controlled by MDA5. We show that prior to engaging MDA5, recombinant PV RNA is sensed upon PKR binding to the viral IRES at a site that overlaps with the footprint for host translation factors mediating 40S subunit recruitment. Our study demonstrates that innate antiviral type-I IFN responses orchestrated by MDA5 involve separate innate modules that recognize distinct vRNA features and interfere with viral functions at multiple levels.
Collapse
Affiliation(s)
- Mikhail I. Dobrikov
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Elena Y. Dobrikova
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Zachary P. McKay
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Jonathan P. Kastan
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Michael C. Brown
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Matthias Gromeier
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| |
Collapse
|
4
|
Nandi SS, Gohil T, Sawant SA, Lambe UP, Ghosh S, Jana S. CD155: A Key Receptor Playing Diversified Roles. Curr Mol Med 2021; 22:594-607. [PMID: 34514998 DOI: 10.2174/1566524021666210910112906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 11/22/2022]
Abstract
Cluster of differentiation (CD155), formerly identified as poliovirus receptor (PVR) and later as immunoglobulin molecule involved in cell adhesion, proliferation, invasion and migration. It is a surface protein expressed mostly on normal and transformed malignant cells. The expression of the receptor varies based on the origin of tissue. The expression of the protein is determined by factors involved in sonic hedgehog pathway, Ras-MEK-ERK pathway and during stress conditions like DNA damage response. The protein uses alternate splicing mechanism, producing four isoforms - two being soluble (CD155β and CD155γ) and two being transmembrane protein (CD155α and CD155δ). Apart from being a viral receptor, researchers have identified CD155 having important roles in cancer research and cell signaling field. The receptor is recognized as biomarker for identifying cancerous tissue. The receptor interacts with molecules involved in cells defense mechanism. The immune-surveillance role of CD155 is being deciphered to understand the mechanistic approach it utilizes as onco-immunologic molecule. CD155 is a non-MHC-I ligand which helps in identifying non-self to NK cells via an inhibitory TIGIT ligand. The TIGIT-CD155 pathway is a novel MHC-I-independent education mechanism for cell tolerance and activation of NK cell. The receptor also has a role in metastasis of cancer and trans endothelial mechanism. In this review, authors discuss the virus-host interaction that occurs via single transmembrane receptor, the poliovirus infection pathway, which is being exploited as therapeutic pathway. The oncolytic virotherapy is now promising way for curing cancer.
Collapse
Affiliation(s)
- Shyam Sundar Nandi
- National Institute of Virology, (Mumbai unit), (Formerly Enterovirus Research Centre). Haffkine Institute Compound, Indian Council of Medical Research, A. D. Marg, Parel. Mumbai-12. India
| | - Trupti Gohil
- National Institute of Virology, (Mumbai unit), (Formerly Enterovirus Research Centre). Haffkine Institute Compound, Indian Council of Medical Research, A. D. Marg, Parel. Mumbai-12. India
| | - Sonali Ankush Sawant
- National Institute of Virology, (Mumbai unit), (Formerly Enterovirus Research Centre). Haffkine Institute Compound, Indian Council of Medical Research, A. D. Marg, Parel. Mumbai-12. India
| | - Upendra Pradeep Lambe
- National Institute of Virology, (Mumbai unit), (Formerly Enterovirus Research Centre). Haffkine Institute Compound, Indian Council of Medical Research, A. D. Marg, Parel. Mumbai-12. India
| | - Sudip Ghosh
- Molecular Biology Division, ICMR-National Institute of Nutrition, Jamai-Osmania PO, Hyderabad. India
| | - Snehasis Jana
- Trivedi Science Research Laboratory Pvt Ltd., Thane-West, Maharashtra-400604. India
| |
Collapse
|
5
|
Abstract
Mechanisms to elicit antiviral immunity, a natural host response to viral pathogen challenge, are of eminent relevance to cancer immunotherapy. "Oncolytic" viruses, naturally existing or genetically engineered viral agents with cell type-specific propagation in malignant cells, were ostensibly conceived for their tumor cytotoxic properties. Yet, their true therapeutic value may rest in their ability to provoke antiviral signals that engage antitumor immune responses within the immunosuppressive tumor microenvironment. Coopting oncolytic viral agents to instigate antitumor immunity is not an easy feat. In the course of coevolution with their hosts, viruses have acquired sophisticated strategies to block inflammatory signals, intercept innate antiviral interferon responses, and prevent antiviral effector responses, e.g., by interfering with antigen presentation and T cell costimulation. The resulting struggle of host innate inflammatory and antiviral responses versus viral immune evasion and suppression determines the potential for antitumor immunity to occur. Moreover, paradigms of early host:virus interaction established in normal immunocompetent organisms may not hold in the profoundly immunosuppressive tumor microenvironment. In this review, we explain the mechanisms of recombinant nonpathogenic poliovirus, PVSRIPO, which is currently in phase I clinical trials against recurrent glioblastoma. We focus on an unusual host:virus relationship defined by the simple and cytotoxic replication strategy of poliovirus, which generates inflammatory perturbations conducive to tumor antigen-specific immune priming.
Collapse
Affiliation(s)
- Matthias Gromeier
- Department of Neurosurgery.,Department of Molecular Genetics and Microbiology
| | - Smita K Nair
- Department of Surgery.,Department of Pathology, Duke University School of Medicine, Durham, North Carolina 27710;
| |
Collapse
|
6
|
Lynes J, Sanchez V, Dominah G, Nwankwo A, Nduom E. Current Options and Future Directions in Immune Therapy for Glioblastoma. Front Oncol 2018; 8:578. [PMID: 30568917 PMCID: PMC6290347 DOI: 10.3389/fonc.2018.00578] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is in need of innovative treatment approaches. Immune therapy for cancer refers to the use of the body's immune system to target malignant cells in the body. Such immune therapeutics have recently been very successful in treating a diverse group of cancerous lesions. As a result, many new immune therapies have gained Food and Drug Administration approval for the treatment of cancer, and there has been an explosion in the study of immune therapeutics for cancer treatment over the past few years. However, the immune suppression of glioblastoma and the unique immune microenvironment of the brain make immune therapeutics more challenging to apply to the brain than to other systemic cancers. Here, we discuss the existing barriers to successful immune therapy for glioblastoma and the ongoing development of immune therapeutics. We will discuss the discovery and classification of immune suppressive factors in the glioblastoma microenvironment; the development of vaccine-based therapies; the use of convection-enhanced delivery to introduce tumoricidal viruses into the tumor microenvironment, leading to secondary immune responses; the emerging use of adoptive cell therapy in the treatment of glioblastoma; and future frontiers, such as the use of cerebral microdialysis for immune monitoring and the use of sequencing to develop patient-specific therapeutics. Armed with a better understanding of the challenges inherent in immune therapy for glioblastoma, we may soon see more successes in immune-based clinical trials for this deadly disease.
Collapse
Affiliation(s)
- John Lynes
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States.,MedStar Georgetown University Hospital, Washington, DC, United States
| | - Victoria Sanchez
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Gifty Dominah
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Anthony Nwankwo
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Edjah Nduom
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| |
Collapse
|
7
|
Holl EK, Brown MC, Boczkowski D, McNamara MA, George DJ, Bigner DD, Gromeier M, Nair SK. Recombinant oncolytic poliovirus, PVSRIPO, has potent cytotoxic and innate inflammatory effects, mediating therapy in human breast and prostate cancer xenograft models. Oncotarget 2018; 7:79828-79841. [PMID: 27806313 PMCID: PMC5346754 DOI: 10.18632/oncotarget.12975] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/13/2016] [Indexed: 12/31/2022] Open
Abstract
Intratumoral inoculation of viruses with tumor-selective cytotoxicity may induce cancer cell death and, thereby, shrink neoplastic lesions. It is unlikely, however, that viral tumor cell killing alone could produce meaningful, durable clinical responses, as clinically suitable ‘oncolytic’ viruses are severely attenuated and their spread and propagation are opposed by host immunity. Thus, a more propitious event in this context is the innate antiviral response to intratumoral virus administration, in particular for recruiting durable adaptive immune effector responses. It may represent a double-edged sword, as innate immune activation may eliminate infected tumor cells early, intercept viral spread and block any meaningful therapeutic response. The innate response to viral infection of tumors may be very different from that in non-malignant target tissues, owing to the unusual composition/tissue properties of tumor stroma. In this work, we report investigations of the innate immune response to the oncolytic poliovirus recombinant, PVSRIPO, in two mouse xenotransplantation models for breast and prostate cancer. Our observations indicate short-term virus persistence in infected tumors and virus recovery indicative of modest intratumoral propagation and persistence. Yet, a powerful innate inflammatory response coincided with chemokine induction and myeloid cell infiltration into tumors that was, interestingly, dominated by neutrophils. The combined effect of PVSRIPO tumor infection and the innate response it elicits was significant tumor regression in both models.
Collapse
Affiliation(s)
- Eda K Holl
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael C Brown
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - David Boczkowski
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Megan A McNamara
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Daniel J George
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Darell D Bigner
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Matthias Gromeier
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Smita K Nair
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
8
|
D'Abronzo LS, Bose S, Crapuchettes ME, Beggs RE, Vinall RL, Tepper CG, Siddiqui S, Mudryj M, Melgoza FU, Durbin-Johnson BP, deVere White RW, Ghosh PM. The androgen receptor is a negative regulator of eIF4E phosphorylation at S209: implications for the use of mTOR inhibitors in advanced prostate cancer. Oncogene 2017; 36:6359-6373. [PMID: 28745319 PMCID: PMC5690844 DOI: 10.1038/onc.2017.233] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 05/22/2017] [Accepted: 06/06/2017] [Indexed: 01/25/2023]
Abstract
The anti-androgen bicalutamide is widely used in the treatment of advanced prostate cancer (PCa) in many countries, but its effect on castration resistant PCa (CRPC) is limited. We previously showed that resistance to bicalutamide results from activation of mechanistic target of rapamycin (mTOR). Interestingly, clinical trials testing combinations of the mTOR inhibitor RAD001 with bicalutamide were effective in bicalutamide-naïve CRPC patients, but not in bicalutamide-pre-treated ones. Here we investigate causes for their difference in response. Evaluation of CRPC cell lines identified resistant vs sensitive in-vitro models, and revealed that increased eIF4E(S209) phosphorylation is associated with resistance to the combination. We confirmed using a human-derived tumor-xenograft mouse model that bicalutamide pre-treatment is associated with an increase in eIF4E(S209) phosphorylation. Thus, AR suppressed eIF4E phosphorylation, while the use of anti-androgens relieved this suppression, thereby triggering its increase. Additional investigation in human prostatectomy samples showed that increased eIF4E phosphorylation strongly correlated with the cell proliferation marker Ki67. SiRNA-mediated knock-down of eIF4E sensitized CRPC cells to RAD001+bicalutamide, while eIF4E overexpression induced resistance. Inhibition of eIF4E phosphorylation by treatment with CGP57380 (an inhibitor of MAPK interacting serine-threonine kinases Mnk1/2, the eIF4E upstream kinase) or inhibitors of ERK1/2, the upstream kinase regulating Mnk1/2, also sensitized CRPC cells to RAD001+bicalutamide. Examination of downstream targets of eIF4E-mediated translation, including survivin, demonstrated that eIF4E(S209) phosphorylation increased cap-independent translation whereas its inhibition restored cap-dependent translation which could be inhibited by mTOR inhibitors. Thus, our results demonstrate that while combinations of AR and mTOR inhibitors were effective in suppressing tumor growth by inhibiting both AR-induced transcription and mTOR-induced cap-dependent translation, pre-treatment with AR antagonists including bicalutamide increased eIF4E phosphorylation that induced resistance to combinations of AR and mTOR inhibitors by inducing cap-independent translation. We conclude that this resistance can be overcome by inhibiting eIF4E phosphorylation with Mnk1/2 or ERK1/2 inhibitors.
Collapse
Affiliation(s)
- L S D'Abronzo
- VA Northern California Health Care System, University of California at Davis, Sacramento, CA, USA.,Department of Urology, University of California Davis School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - S Bose
- Department of Urology, University of California Davis School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - M E Crapuchettes
- VA Northern California Health Care System, University of California at Davis, Sacramento, CA, USA
| | - R E Beggs
- VA Northern California Health Care System, University of California at Davis, Sacramento, CA, USA
| | - R L Vinall
- Department of Urology, University of California Davis School of Medicine, University of California at Davis, Sacramento, CA, USA.,California Northstate University College of Pharmacy, Elk Grove, CA, USA
| | - C G Tepper
- Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, CA, USA
| | - S Siddiqui
- VA Northern California Health Care System, University of California at Davis, Sacramento, CA, USA
| | - M Mudryj
- Department of Medical Microbiology and Immunology, University of California at Davis, Sacramento, CA, USA
| | - F U Melgoza
- VA Northern California Health Care System, University of California at Davis, Sacramento, CA, USA
| | - B P Durbin-Johnson
- Department of Public Health, Division of Biostatistics, University of California at Davis, Sacramento, CA, USA
| | - R W deVere White
- Department of Urology, University of California Davis School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - P M Ghosh
- VA Northern California Health Care System, University of California at Davis, Sacramento, CA, USA.,Department of Urology, University of California Davis School of Medicine, University of California at Davis, Sacramento, CA, USA.,Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, CA, USA
| |
Collapse
|
9
|
Steinberger J, Chu J, Maïga RI, Sleiman K, Pelletier J. Developing anti-neoplastic biotherapeutics against eIF4F. Cell Mol Life Sci 2017; 74:1681-1692. [PMID: 28004147 PMCID: PMC11107644 DOI: 10.1007/s00018-016-2430-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/16/2016] [Accepted: 12/01/2016] [Indexed: 02/08/2023]
Abstract
Biotherapeutics have revolutionized modern medicine by providing medicines that would not have been possible with small molecules. With respect to cancer therapies, this represents the current sector of the pharmaceutical industry having the largest therapeutic impact, as exemplified by the development of recombinant antibodies and cell-based therapies. In cancer, one of the most common regulatory alterations is the perturbation of translational control. Among these, changes in eukaryotic initiation factor 4F (eIF4F) are associated with tumor initiation, progression, and drug resistance in a number of settings. This, coupled with the fact that systemic suppression of eIF4F appears well tolerated, indicates that therapeutic agents targeting eIF4F hold much therapeutic potential. Here, we discuss opportunities offered by biologicals for this purpose.
Collapse
Affiliation(s)
- Jutta Steinberger
- Department of Biochemistry, McGill University, McIntyre Medical Sciences Building, Rm 810, 3655 Drummond St., Montreal, QC, H3G 1Y6, Canada
| | - Jennifer Chu
- Department of Biochemistry, McGill University, McIntyre Medical Sciences Building, Rm 810, 3655 Drummond St., Montreal, QC, H3G 1Y6, Canada
| | - Rayelle Itoua Maïga
- Department of Biochemistry, McGill University, McIntyre Medical Sciences Building, Rm 810, 3655 Drummond St., Montreal, QC, H3G 1Y6, Canada
| | - Katia Sleiman
- Department of Biochemistry, McGill University, McIntyre Medical Sciences Building, Rm 810, 3655 Drummond St., Montreal, QC, H3G 1Y6, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, McIntyre Medical Sciences Building, Rm 810, 3655 Drummond St., Montreal, QC, H3G 1Y6, Canada.
- The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, QC, H3G 1Y6, Canada.
- Department of Oncology, McGill University, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
10
|
Lukashev AN, Zamyatnin AA. Viral Vectors for Gene Therapy: Current State and Clinical Perspectives. BIOCHEMISTRY (MOSCOW) 2017; 81:700-8. [PMID: 27449616 DOI: 10.1134/s0006297916070063] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Gene therapy is the straightforward approach for the application of recent advances in molecular biology into clinical practice. One of the major obstacles in the development of gene therapy is the delivery of the effector to and into the target cell. Unfortunately, most methods commonly used in laboratory practice are poorly suited for clinical use. Viral vectors are one of the most promising methods for gene therapy delivery. Millions of years of evolution of viruses have resulted in the development of various molecular mechanisms for entry into cells, long-term survival within cells, and activation, inhibition, or modification of the host defense mechanisms at all levels. The relatively simple organization of viruses, small genome size, and evolutionary plasticity allow modifying them to create effective instruments for gene therapy approaches. This review summarizes the latest trends in the development of gene therapy, in particular, various aspects and prospects of the development of clinical products based on viral delivery systems.
Collapse
Affiliation(s)
- A N Lukashev
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, 142782, Russia.
| | | |
Collapse
|
11
|
Zamarin D, Pesonen S. Replication-Competent Viruses as Cancer Immunotherapeutics: Emerging Clinical Data. Hum Gene Ther 2016; 26:538-49. [PMID: 26176173 PMCID: PMC4968310 DOI: 10.1089/hum.2015.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Replication-competent (oncolytic) viruses (OV) as cancer immunotherapeutics have gained an increasing level of attention over the last few years while the clinical evidence of virus-mediated antitumor immune responses is still anecdotal. Multiple clinical studies are currently ongoing and more immunomonitoring results are expected within the next five years. All viruses can be recognized by the immune system and are therefore potential candidates for immune therapeutics. However, each virus activates innate immune system by using different combination of recognition receptors/pathways which leads to qualitatively different adaptive immune responses. This review summarizes immunological findings in cancer patients following treatment with replication-competent viruses.
Collapse
Affiliation(s)
- Dmitriy Zamarin
- 1 Memorial Sloan Kettering Cancer Center , New York, New York
| | | |
Collapse
|
12
|
Buijs PRA, Verhagen JHE, van Eijck CHJ, van den Hoogen BG. Oncolytic viruses: From bench to bedside with a focus on safety. Hum Vaccin Immunother 2016; 11:1573-84. [PMID: 25996182 DOI: 10.1080/21645515.2015.1037058] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Oncolytic viruses are a relatively new class of anti-cancer immunotherapy agents. Several viruses have undergone evaluation in clinical trials in the last decades, and the first agent is about to be approved to be used as a novel cancer therapy modality. In the current review, an overview is presented on recent (pre)clinical developments in the field of oncolytic viruses that have previously been or currently are being evaluated in clinical trials. Special attention is given to possible safety issues like toxicity, environmental shedding, mutation and reversion to wildtype virus.
Collapse
Key Words
- CAR, Coxsackie Adenovirus receptor
- CD, cytosine deaminase
- CEA, carcinoembryonic antigen
- CVA, Coxsackievirus type A
- DAF, decay accelerating factor
- DNA, DNA
- EEV, extracellular enveloped virus
- EGF, epidermal growth factor
- EGF-R, EGF receptor
- EMA, European Medicines Agency
- FDA, Food and Drug Administration
- GBM, glioblastoma multiforme
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- HA, hemagglutinin
- HAdV, Human (mast)adenovirus
- HER2, human epidermal growth factor receptor 2
- HSV, herpes simplex virus
- ICAM-1, intercellular adhesion molecule 1
- IFN, interferon
- IRES, internal ribosome entry site
- KRAS, Kirsten rat sarcoma viral oncogene homolog
- Kb, kilobase pairs
- MeV, Measles virus
- MuLV, Murine leukemia virus
- NDV, Newcastle disease virus
- NIS, sodium/iodide symporter
- NSCLC, non-small cell lung carcinoma
- OV, oncolytic virus
- PEG, polyethylene glycol
- PKR, protein kinase R
- PV, Polio virus
- RCR, replication competent retrovirus
- RCT, randomized controlled trial
- RGD, arginylglycylaspartic acid (Arg-Gly-Asp)
- RNA, ribonucleic acid
- Rb, retinoblastoma
- SVV, Seneca Valley virus
- TGFα, transforming growth factor α
- VGF, Vaccinia growth factor
- VSV, Vesicular stomatitis virus
- VV, Vaccinia virus
- cancer
- crHAdV, conditionally replicating HAdV
- dsDNA, double stranded DNA
- dsRNA, double stranded RNA
- environment
- hIFNβ, human IFN β
- immunotherapy
- mORV, Mammalian orthoreovirus
- mORV-T3D, mORV type 3 Dearing
- oHSV, oncolytic HSV
- oncolytic virotherapy
- oncolytic virus
- rdHAdV, replication-deficient HAdV
- review
- safety
- shedding
- ssRNA, single stranded RNA
- tk, thymidine kinase
Collapse
Affiliation(s)
- Pascal R A Buijs
- a Department of Surgery; Erasmus MC; University Medical Center ; Rotterdam , The Netherlands
| | | | | | | |
Collapse
|
13
|
Shi F, Len Y, Gong Y, Shi R, Yang X, Naren D, Yan T. Ribavirin Inhibits the Activity of mTOR/eIF4E, ERK/Mnk1/eIF4E Signaling Pathway and Synergizes with Tyrosine Kinase Inhibitor Imatinib to Impair Bcr-Abl Mediated Proliferation and Apoptosis in Ph+ Leukemia. PLoS One 2015; 10:e0136746. [PMID: 26317515 PMCID: PMC4552648 DOI: 10.1371/journal.pone.0136746] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/07/2015] [Indexed: 02/05/2023] Open
Abstract
The eukaryotic translation initiation factor 4E (eIF4E), which is the main composition factor of eIF4F translation initiation complex, influences the growth of tumor through modulating cap-dependent protein translation. Previous studies reported that ribavirin could suppress eIF4E-controlled translation and reduce the synthesis of onco-proteins. Here, we investigated the anti-leukemic effects of ribavirin alone or in combination with tyrosine kinase inhibitor imatinib in Philadelphia chromosome positive (Ph+) leukemia cell lines SUP-B15 (Ph+ acute lymphoblastic leukemia cell line, Ph+ ALL) and K562 (chronic myelogenous leukemia cell line, CML). Our results showed that ribavirin had anti-proliferation effect; it down-regulated the phosphorylation levels of Akt, mTOR, 4EBP1, and eIF4E proteins in the mTOR/eIF4E signaling pathway, and MEK, ERK, Mnk1 and eIF4E proteins in ERK/Mnk1/eIF4E signaling pathway; reduced the expression of Mcl-1 (a translation substrates of eIF4F translation initiation complex) at protein synthesis level not mRNA transcriptional level; and induced cell apoptosis in both SUP-B15 and K562. 7-Methyl-guanosine cap affinity assay further demonstrated that ribavirin remarkably increased the eIF4E binding to 4EBP1 and decreased the combination of eIF4E with eIF4G, consequently resulting in a major inhibition of eIF4F complex assembly. The combination of ribavirin with imatinib enhanced antileukemic effects mentioned above, indicating that two drugs have synergistic anti-leukemic effect. Consistent with the cell lines, similar results were observed in Ph+ acute lymphoblastic primary leukemic blasts; however, the anti-proliferative role of ribavirin in other types of acute primary leukemic blasts was not obvious, which indicated that the anti-leukemic effect of ribavirin was different in cell lineages.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Drug Synergism
- Eukaryotic Initiation Factor-4E/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Imatinib Mesylate/pharmacology
- Intracellular Signaling Peptides and Proteins/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- MAP Kinase Signaling System/drug effects
- Philadelphia Chromosome
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Protein Serine-Threonine Kinases/metabolism
- Ribavirin/pharmacology
- Signal Transduction/drug effects
- TOR Serine-Threonine Kinases/metabolism
Collapse
Affiliation(s)
- Fangfang Shi
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yamei Len
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuping Gong
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- * E-mail:
| | - Rui Shi
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xi Yang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Duolan Naren
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianyou Yan
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Brown MC, Gromeier M. Cytotoxic and immunogenic mechanisms of recombinant oncolytic poliovirus. Curr Opin Virol 2015; 13:81-5. [PMID: 26083317 DOI: 10.1016/j.coviro.2015.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 12/12/2022]
Abstract
An oncolytic virus (OV) based on poliovirus (PV), the highly attenuated polio/rhinovirus recombinant PVSRIPO, may deliver targeted inflammatory cancer cell killing; a principle that is showing promise in clinical trials for recurrent glioblastoma (GBM). The two decisive factors in PVSRIPO anti-tumor efficacy are selective cytotoxicity and its in situ immunogenic imprint. While our work is focused on what constitutes PVSRIPO cancer cytotoxicity, we are also studying how this engenders host immune responses that are vital to tumor regression. We hypothesize that PVSRIPO cytotoxicity and immunogenicity are inextricably linked in essential, complimentary roles that define the anti-neoplastic response. Herein we delineate mechanisms we unraveled to decipher the basis for PVSRIPO cytotoxicity and its immunotherapeutic potential.
Collapse
Affiliation(s)
- Michael C Brown
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Box 3020, Research Drive, Durham, NC 27710, USA; Department of Neurosurgery, Duke University Medical Center, Box 3020, Research Drive, Durham, NC 27710, USA
| | - Matthias Gromeier
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Box 3020, Research Drive, Durham, NC 27710, USA; Department of Neurosurgery, Duke University Medical Center, Box 3020, Research Drive, Durham, NC 27710, USA.
| |
Collapse
|
15
|
Brown MC, Gromeier M. Oncolytic immunotherapy through tumor-specific translation and cytotoxicity of poliovirus. DISCOVERY MEDICINE 2015; 19:359-365. [PMID: 26105699 PMCID: PMC4780852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Achieving tumor-specific, robust, and durable effector cytotoxic immune responses is key to successful immunotherapy. This has been accomplished with adoptive cell transfer of ex vivo-expanded autologous tumor-infiltrating or engineered T cells, or with immune checkpoint inhibitors, enhancing inherent T cell reactivity. A natural ability to recruit effector responses makes tumor-targeting ('oncolytic') viruses attractive as immunotherapy vehicles. However, most viruses actively block inflammatory and immunogenic events; or, host innate immune responses may prevent immune initiating events in the first place. Moreover, the mechanisms of how virus infection can produce effector responses against host (tumor) neo-antigens are unclear. We are pioneering oncolytic immunotherapy based on poliovirus, which has no specific mechanism to interfere with host immune activation, exhibits lytic cytotoxicity in the presence of an antiviral interferon response and pre-existing immunity, and engages a powerful innate immune sensor implicated in recruiting cytotoxic T cell responses. Central to this approach is a unique confluence of factors that drive tumor-specific viral translation and cytotoxicity.
Collapse
Affiliation(s)
- Michael C Brown
- Department of Surgery Division of Neurosurgery and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Matthias Gromeier
- Department of Surgery Division of Neurosurgery and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
16
|
Leong SY, Ong BKT, Chu JJH. The role of Misshapen NCK-related kinase (MINK), a novel Ste20 family kinase, in the IRES-mediated protein translation of human enterovirus 71. PLoS Pathog 2015; 11:e1004686. [PMID: 25747578 PMCID: PMC4352056 DOI: 10.1371/journal.ppat.1004686] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 01/16/2015] [Indexed: 11/18/2022] Open
Abstract
Human Enterovirus 71 (EV71) commonly causes Hand, Foot and Mouth Disease in young children, and occasional occurrences of neurological complications can be fatal. In this study, a high-throughput cell-based screening on the serine/threonine kinase siRNA library was performed to identify potential antiviral agents against EV71 replication. Among the hits, Misshapen/NIKs-related kinase (MINK) was selected for detailed analysis due to its strong inhibitory profile and novelty. In the investigation of the stage at which MINK is involved in EV71 replication, virus RNA transfection in MINK siRNA-treated cells continued to cause virus inhibition despite bypassing the normal entry pathway, suggesting its involvement at the post-entry stage. We have also shown that viral RNA and protein expression level was significantly reduced upon MINK silencing, suggesting its involvement in viral protein synthesis which feeds into viral RNA replication process. Through proteomic analysis and infection inhibition assay, we found that the activation of MINK was triggered by early replication events, instead of the binding and entry of the virus. Proteomic analysis on the activation profile of p38 Mitogen-activated Protein Kinase (MAPK) indicated that the phosphorylation of p38 MAPK was stimulated by EV71 infection upon MINK activation. Luciferase reporter assay further revealed that the translation efficiency of the EV71 internal ribosomal entry site (IRES) was reduced after blocking the MINK/p38 MAPK pathway. Further investigation on the effect of MINK silencing on heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) localisation demonstrated that cytoplasmic relocalisation of hnRNP A1 upon EV71 infection may be facilitated via the MINK/p38 MAPK pathway which then positively regulates the translation of viral RNA transcripts. These novel findings hence suggest that MINK plays a functional role in the IRES-mediated translation of EV71 viral RNA and may provide a potential target for the development of specific antiviral strategies against EV71 infection.
Collapse
Affiliation(s)
- Shi Yun Leong
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bryan Kit Teck Ong
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
17
|
Oncogenic Ras inhibits IRF1 to promote viral oncolysis. Oncogene 2014; 34:3985-93. [PMID: 25347735 DOI: 10.1038/onc.2014.331] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 07/05/2014] [Accepted: 09/11/2014] [Indexed: 12/19/2022]
Abstract
Oncolytic viruses exploit common molecular changes in cancer cells, which are not present in normal cells, to target and kill cancer cells. Ras transformation and defects in type I interferon (IFN)-mediated antiviral responses are known to be the major mechanisms underlying viral oncolysis. Previously, we demonstrated that oncogenic RAS/Mitogen-activated protein kinase kinase (Ras/MEK) activation suppresses the transcription of many IFN-inducible genes in human cancer cells, suggesting that Ras transformation underlies type I IFN defects in cancer cells. Here, we investigated how Ras/MEK downregulates IFN-induced transcription. By conducting promoter deletion analysis of IFN-inducible genes, namely guanylate-binding protein 2 and IFN gamma inducible protein 47 (Ifi47), we identified the IFN regulatory factor 1 (IRF1) binding site as the promoter region responsible for the regulation of transcription by MEK. MEK inhibition promoted transcription of the IFN-inducible genes in wild type mouse embryonic fibroblasts (MEFs), but not in IRF1(-/-) MEFs, showing that IRF1 is involved in MEK-mediated downregulation of IFN-inducible genes. Furthermore, IRF1 protein expression was lower in RasV12 cells compared with vector control NIH3T3 cells, but was restored to equivalent levels by inhibition of MEK. Similarly, the restoration of IRF1 expression by MEK inhibition was observed in human cancer cells. IRF1 re-expression in human cancer cells caused cells to become resistant to infection by the oncolytic vesicular stomatitis virus strain. Together, this work demonstrates that Ras/MEK activation in cancer cells downregulates transcription of IFN-inducible genes by targeting IRF1 expression, resulting in increased susceptibility to viral oncolysis.
Collapse
|
18
|
Induction of viral, 7-methyl-guanosine cap-independent translation and oncolysis by mitogen-activated protein kinase-interacting kinase-mediated effects on the serine/arginine-rich protein kinase. J Virol 2014; 88:13135-48. [PMID: 25187541 DOI: 10.1128/jvi.01883-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Protein synthesis, the most energy-consuming process in cells, responds to changing physiologic priorities, e.g., upon mitogen- or stress-induced adaptations signaled through the mitogen-activated protein kinases (MAPKs). The prevailing status of protein synthesis machinery is a viral pathogenesis factor, particularly for plus-strand RNA viruses, where immediate translation of incoming viral RNAs shapes host-virus interactions. In this study, we unraveled signaling pathways centered on the ERK1/2 and p38α MAPK-interacting kinases MNK1/2 and their role in controlling 7-methyl-guanosine (m(7)G) "cap"-independent translation at enterovirus type 1 internal ribosomal entry sites (IRESs). Activation of Raf-MEK-ERK1/2 signals induced viral IRES-mediated translation in a manner dependent on MNK1/2. This effect was not due to MNK's known functions as eukaryotic initiation factor (eIF) 4G binding partner or eIF4E(S209) kinase. Rather, MNK catalytic activity enabled viral IRES-mediated translation/host cell cytotoxicity through negative regulation of the Ser/Arg (SR)-rich protein kinase (SRPK). Our investigations suggest that SRPK activity is a major determinant of type 1 IRES competency, host cell cytotoxicity, and viral proliferation in infected cells. IMPORTANCE We are targeting unfettered enterovirus IRES activity in cancer with PVSRIPO, the type 1 live-attenuated poliovirus (PV) (Sabin) vaccine containing a human rhinovirus type 2 (HRV2) IRES. A phase I clinical trial of PVSRIPO with intratumoral inoculation in patients with recurrent glioblastoma (GBM) is showing early promise. Viral translation proficiency in infected GBM cells is a core requirement for the antineoplastic efficacy of PVSRIPO. Therefore, it is critically important to understand the mechanisms controlling viral cap-independent translation in infected host cells.
Collapse
|
19
|
Mitogen-activated protein kinase-interacting kinase regulates mTOR/AKT signaling and controls the serine/arginine-rich protein kinase-responsive type 1 internal ribosome entry site-mediated translation and viral oncolysis. J Virol 2014; 88:13149-60. [PMID: 25187540 DOI: 10.1128/jvi.01884-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Translation machinery is a major recipient of the principal mitogenic signaling networks involving Raf-ERK1/2 and phosphoinositol 3-kinase (PI3K)-mechanistic target of rapamycin (mTOR). Picornavirus internal ribosomal entry site (IRES)-mediated translation and cytopathogenic effects are susceptible to the status of such signaling cascades in host cells. We determined that tumor-specific cytotoxicity of the poliovirus/rhinovirus chimera PVSRIPO is facilitated by Raf-ERK1/2 signals to the mitogen-activated protein kinase (MAPK)-interacting kinase (MNK) and its effects on the partitioning/activity of the Ser/Arg (SR)-rich protein kinase (SRPK) (M. C. Brown, J. D. Bryant, E. Y. Dobrikova, M. Shveygert, S. S. Bradrick, V. Chandramohan, D. D. Bigner, and M, Gromeier, J. Virol. 22:13135-13148, 2014, doi:http://dx.doi.org/10.1128/JVI.01883-14). Here, we show that MNK regulates SRPK via mTOR and AKT. Our investigations revealed a MNK-controlled mechanism acting on mTORC2-AKT. The resulting suppression of AKT signaling attenuates SRPK activity to enhance picornavirus type 1 IRES translation and favor PVSRIPO tumor cell toxicity and killing. IMPORTANCE Oncolytic immunotherapy with PVSRIPO, the type 1 live-attenuated poliovirus (PV) (Sabin) vaccine containing a human rhinovirus type 2 (HRV2) IRES, is demonstrating early promise in clinical trials with intratumoral infusion in recurrent glioblastoma (GBM). Our investigations demonstrate that the core mechanistic principle of PVSRIPO, tumor-selective translation and cytotoxicity, relies on constitutive ERK1/2-MNK signals that counteract the deleterious effects of runaway AKT-SRPK activity in malignancy.
Collapse
|
20
|
Joshi S, Platanias LC. Mnk kinase pathway: Cellular functions and biological outcomes. World J Biol Chem 2014; 5:321-333. [PMID: 25225600 PMCID: PMC4160526 DOI: 10.4331/wjbc.v5.i3.321] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/10/2014] [Accepted: 06/03/2014] [Indexed: 02/05/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) interacting protein kinases 1 and 2 (Mnk1 and Mnk2) play important roles in controlling signals involved in mRNA translation. In addition to the MAPKs (p38 or Erk), multiple studies suggest that the Mnk kinases can be regulated by other known kinases such as Pak2 and/or other unidentified kinases by phosphorylation of residues distinct from the sites phosphorylated by the MAPKs. Several studies have established multiple Mnk protein targets, including PSF, heterogenous nuclear ribonucleoprotein A1, Sprouty 2 and have lead to the identification of distinct biological functions and substrate specificity for the Mnk kinases. In this review we discuss the pathways regulating the Mnk kinases, their known substrates as well as the functional consequences of engagement of pathways controlled by Mnk kinases. These kinases play an important role in mRNA translation via their regulation of eukaryotic initiation factor 4E (eIF4E) and their functions have important implications in tumor biology as well as the regulation of drug resistance to anti-oncogenic therapies. Other studies have identified a role for the Mnk kinases in cap-independent mRNA translation, suggesting that the Mnk kinases can exert important functional effects independently of the phosphorylation of eIF4E. The role of Mnk kinases in inflammation and inflammation-induced malignancies is also discussed.
Collapse
|
21
|
Brown MC, Dobrikova EY, Dobrikov MI, Walton RW, Gemberling SL, Nair SK, Desjardins A, Sampson JH, Friedman HS, Friedman AH, Tyler DS, Bigner DD, Gromeier M. Oncolytic polio virotherapy of cancer. Cancer 2014; 120:3277-86. [PMID: 24939611 DOI: 10.1002/cncr.28862] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/13/2014] [Indexed: 01/23/2023]
Abstract
Recently, the century-old idea of targeting cancer with viruses (oncolytic viruses) has come of age, and promise has been documented in early stage and several late-stage clinical trials in a variety of cancers. Although originally prized for their direct tumor cytotoxicity (oncolytic virotherapy), recently, the proinflammatory and immunogenic effects of viral tumor infection (oncolytic immunotherapy) have come into focus. Indeed, a capacity for eliciting broad, sustained antineoplastic effects stemming from combined direct viral cytotoxicity, innate antiviral activation, stromal proinflammatory stimulation, and recruitment of adaptive immune effector responses is the greatest asset of oncolytic viruses. However, it also is the source for enormous mechanistic complexity that must be considered for successful clinical translation. Because of fundamentally different relationships with their hosts (malignant or not), diverse replication strategies, and distinct modes of tumor cytotoxicity/killing, oncolytic viruses should not be referred to collectively. These agents must be evaluated based on their individual merits. In this review, the authors highlight key mechanistic principles of cancer treatment with the polio:rhinovirus chimera PVSRIPO and their implications for oncolytic immunotherapy in the clinic.
Collapse
Affiliation(s)
- Michael C Brown
- Department of Surgery, Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina; Division of Neurosurgery Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina; Department of Molecular Genetics and Microbiology, Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kim S, Ishida H, Yamane D, Yi M, Swinney DC, Foung S, Lemon SM. Contrasting roles of mitogen-activated protein kinases in cellular entry and replication of hepatitis C virus: MKNK1 facilitates cell entry. J Virol 2013; 87:4214-24. [PMID: 23365451 PMCID: PMC3624358 DOI: 10.1128/jvi.00954-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 01/24/2013] [Indexed: 12/12/2022] Open
Abstract
The human kinome comprises over 800 individual kinases. These contribute in multiple ways to regulation of cellular metabolism and may have direct and indirect effects on virus replication. Kinases are tempting therapeutic targets for drug development, but achieving sufficient specificity is often a challenge for chemical inhibitors. While using inhibitors to assess whether c-Jun N-terminal (JNK) kinases regulate hepatitis C virus (HCV) replication, we encountered unexpected off-target effects that led us to discover a role for a mitogen-activated protein kinase (MAPK)-related kinase, MAPK interacting serine/threonine kinase 1 (MKNK1), in viral entry. Two JNK inhibitors, AS601245 and SP600125, as well as RNA interference (RNAi)-mediated knockdown of JNK1 and JNK2, enhanced replication of HCV replicon RNAs as well as infectious genome-length RNA transfected into Huh-7 cells. JNK knockdown also enhanced replication following infection with cell-free virus, suggesting that JNK actively restricts HCV replication. Despite this, AS601245 and SP600125 both inhibited viral entry. Screening of a panel of inhibitors targeting kinases that may be modulated by off-target effects of AS601245 and SP600125 led us to identify MKNK1 as a host factor involved in HCV entry. Chemical inhibition or siRNA knockdown of MKNK1 significantly impaired entry of genotype 1a HCV and HCV-pseudotyped lentiviral particles (HCVpp) in Huh-7 cells but had only minimal impact on viral RNA replication or cell proliferation and viability. We propose a model by which MKNK1 acts to facilitate viral entry downstream of the epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinase (ERK), both of which have been implicated in the entry process.
Collapse
Affiliation(s)
- Seungtaek Kim
- Division of Infectious Diseases, Department of Medicine, and the Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hisashi Ishida
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Daisuke Yamane
- Division of Infectious Diseases, Department of Medicine, and the Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - MinKyung Yi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - David C. Swinney
- Biochemical Pharmacology, Virology DBA, Roche Palo Alto, Palo Alto, California, USA
| | - Steven Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Stanley M. Lemon
- Division of Infectious Diseases, Department of Medicine, and the Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
23
|
Walsh D, Mathews MB, Mohr I. Tinkering with translation: protein synthesis in virus-infected cells. Cold Spring Harb Perspect Biol 2013; 5:a012351. [PMID: 23209131 DOI: 10.1101/cshperspect.a012351] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Viruses are obligate intracellular parasites, and their replication requires host cell functions. Although the size, composition, complexity, and functions encoded by their genomes are remarkably diverse, all viruses rely absolutely on the protein synthesis machinery of their host cells. Lacking their own translational apparatus, they must recruit cellular ribosomes in order to translate viral mRNAs and produce the protein products required for their replication. In addition, there are other constraints on viral protein production. Crucially, host innate defenses and stress responses capable of inactivating the translation machinery must be effectively neutralized. Furthermore, the limited coding capacity of the viral genome needs to be used optimally. These demands have resulted in complex interactions between virus and host that exploit ostensibly virus-specific mechanisms and, at the same time, illuminate the functioning of the cellular protein synthesis apparatus.
Collapse
Affiliation(s)
- Derek Walsh
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| | | | | |
Collapse
|
24
|
Christian SL, Zu D, Licursi M, Komatsu Y, Pongnopparat T, Codner DA, Hirasawa K. Suppression of IFN-induced transcription underlies IFN defects generated by activated Ras/MEK in human cancer cells. PLoS One 2012; 7:e44267. [PMID: 22970192 PMCID: PMC3436881 DOI: 10.1371/journal.pone.0044267] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/31/2012] [Indexed: 12/24/2022] Open
Abstract
Certain oncolytic viruses exploit activated Ras signaling in order to replicate in cancer cells. Constitutive activation of the Ras/MEK pathway is known to suppress the effectiveness of the interferon (IFN) antiviral response, which may contribute to Ras-dependent viral oncolysis. Here, we identified 10 human cancer cell lines (out of 16) with increased sensitivity to the anti-viral effects of IFN-α after treatment with the MEK inhibitor U0126, suggesting that the Ras/MEK pathway underlies their reduced sensitivity to IFN. To determine how Ras/MEK suppresses the IFN response in these cells, we used DNA microarrays to compare IFN-induced transcription in IFN-sensitive SKOV3 cells, moderately resistant HT1080 cells, and HT1080 cells treated with U0126. We found that 267 genes were induced by IFN in SKOV3 cells, while only 98 genes were induced in HT1080 cells at the same time point. Furthermore, the expression of a distinct subset of IFN inducible genes, that included RIGI, GBP2, IFIT2, BTN3A3, MAP2, MMP7 and STAT2, was restored or increased in HT1080 cells when the cells were co-treated with U0126 and IFN. Bioinformatic analysis of the biological processes represented by these genes revealed increased representation of genes involved in the anti-viral response, regulation of apoptosis, cell differentiation and metabolism. Furthermore, introduction of constitutively active Ras into IFN sensitive SKOV3 cells reduced their IFN sensitivity and ability to activate IFN-induced transcription. This work demonstrates for the first time that activated Ras/MEK in human cancer cells induces downregulation of a specific subset of IFN-inducible genes.
Collapse
Affiliation(s)
- Sherri L. Christian
- Division of Biomedical Science, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
- * E-mail: (SLC); (KH)
| | - Dong Zu
- Division of Biomedical Science, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Maria Licursi
- Division of Biomedical Science, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Yumiko Komatsu
- Division of Biomedical Science, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Theerawat Pongnopparat
- Division of Biomedical Science, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Dianne A. Codner
- Division of Biomedical Science, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Kensuke Hirasawa
- Division of Biomedical Science, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
- * E-mail: (SLC); (KH)
| |
Collapse
|
25
|
Attenuation of neurovirulence, biodistribution, and shedding of a poliovirus:rhinovirus chimera after intrathalamic inoculation in Macaca fascicularis. J Virol 2011; 86:2750-9. [PMID: 22171271 DOI: 10.1128/jvi.06427-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A dependence of poliovirus on an unorthodox translation initiation mode can be targeted selectively to drive viral protein synthesis and cytotoxicity in malignant cells. Transformed cells are naturally susceptible to poliovirus, due to widespread ectopic upregulation of the poliovirus receptor, Necl-5, in ectodermal/neuroectodermal cancers. Viral tumor cell killing and the host immunologic response it engenders produce potent, lasting antineoplastic effects in animal tumor models. Clinical application of this principle depends on unequivocal demonstration of safety in primate models for paralytic poliomyelitis. We conducted extensive dose-range-finding, toxicity, biodistribution, shedding, and neutralizing antibody studies of the prototype oncolytic poliovirus recombinant, PVS-RIPO, after intrathalamic inoculation in Macaca fascicularis. These studies suggest that intracerebral PVS-RIPO inoculation does not lead to viral propagation in the central nervous system (CNS), does not cause histopathological CNS lesions or neurological symptoms that can be attributed to the virus, is not associated with extraneural virus dissemination or replication and does not induce shedding of virus with stool. Intrathalamic PVS-RIPO inoculation induced neutralizing antibody responses against poliovirus serotype 1 in all animals studied.
Collapse
|
26
|
Goetz C, Dobrikova E, Shveygert M, Dobrikov M, Gromeier M. Oncolytic poliovirus against malignant glioma. Future Virol 2011; 6:1045-1058. [PMID: 21984883 DOI: 10.2217/fvl.11.76] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In cancerous cells, physiologically tight regulation of protein synthesis is lost, contributing to uncontrolled growth and proliferation. We describe a novel experimental cancer therapy approach based on genetically recombinant poliovirus that targets an intriguing aberration of translation control in malignancy. This strategy is based on the confluence of several factors enabling specific and efficacious cancer cell targeting. Poliovirus naturally targets the vast majority of ectodermal/neuroectodermal cancers expressing its cellular receptor. Evidence from glioblastoma patients suggests that the poliovirus receptor is ectopically upregulated on tumor cells and may be associated with stem cell-like cancer cell populations and proliferating tumor vasculature. We exploit poliovirus' reliance on an unorthodox mechanism of protein synthesis initiation to selectively drive viral translation, propagation and cytotoxicity in glioblastoma. PVSRIPO, a prototype nonpathogenic poliovirus recombinant, is scheduled to enter clinical investigation against glioblastoma.
Collapse
Affiliation(s)
- Christian Goetz
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
27
|
A host-specific, temperature-sensitive translation defect determines the attenuation phenotype of a human rhinovirus/poliovirus chimera, PV1(RIPO). J Virol 2011; 85:7225-35. [PMID: 21561914 DOI: 10.1128/jvi.01804-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By using a rhinosvirus/poliovirus type 1 chimera, PV1(RIPO), with the cognate internal ribosome entry site (IRES) of human rhinovirus type 2 (HRV2), we set out to shed light on the mechanism by which this variant expresses its attenuated phenotype in poliovirus-sensitive, CD155 transgenic (tg) mice and cynomolgus monkeys. Here we report that replication of PV1(RIPO) is restricted not only in human cells of neuronal origin, as was reported previously, but also in cells of murine origin at physiological temperature. This block in replication was enhanced at 39.5°C but, remarkably, it was absent at 33°C. PV1(RIPO) variants that overcame the replication block were derived by serial passage under restrictive conditions in either mouse cells or human neuronal cells. All adapting mutations mapped to the 5'-nontranslated region of PV1(RIPO). Variants selected in mouse cells, but not in human neuronal cells, exhibited increased mouse neurovirulence in vivo. The observed strong mouse-specific defect of PV1(RIPO) at nonpermissive temperature correlated with the translational activity of the HRV2 IRES in this chimeric virus. These unexpected results must be kept in mind when poliovirus variants are tested in CD155 tg mice for their neurovirulent potential, particularly in assays of live attenuated oral poliovirus vaccine lots. Virulence may be masked by adverse species-specific conditions in mouse cells that may not allow accurate prediction of neurovirulence in the human host. Thus, novel poliovirus variants in line for possible development of human vaccines must be tested in nonhuman primates.
Collapse
|
28
|
Abstract
Respiratory tract (RT) infections by members of the enterovirus (EV) genus of the Picornaviridae family are the most frequent cause for the common cold and a major factor in the exacerbation of chronic pulmonary diseases. The lack of a practical small-animal model for these infections has obstructed insight into pathogenic mechanisms of the common cold and their role in chronic RT illness and has hampered preclinical evaluation of antiviral strategies. Despite significant efforts, it has been difficult to devise rodent models that exhibit viral replication in the RT. This is due mainly to well-known intracellular host restrictions of EVs with RT tropism in rodent cells. We report the evolution of variants of the common-cold-causing coxsackievirus A21, an EV with tropism for the human intercellular adhesion molecule 1 (hICAM-1), through serial passage in the lungs of mice transgenic for the hICAM-1 gene. This process was accompanied by multiple changes in the viral genome, suggesting exquisite adaptation of hICAM-1-tropic enteroviruses to the specific growth conditions within the RT. In vivo mouse RT-adapted, variant coxsackievirus A21 exhibited replication competence in the lungs of hICAM-1 transgenic mice, providing a basis for unraveling EV-host interactions in the mouse RT.
Collapse
|
29
|
Rhoades RE, Tabor-Godwin JM, Tsueng G, Feuer R. Enterovirus infections of the central nervous system. Virology 2011; 411:288-305. [PMID: 21251690 PMCID: PMC3060663 DOI: 10.1016/j.virol.2010.12.014] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 12/15/2022]
Abstract
Enteroviruses (EV) frequently infect the central nervous system (CNS) and induce neurological diseases. Although the CNS is composed of many different cell types, the spectrum of tropism for each EV is considerable. These viruses have the ability to completely shut down host translational machinery and are considered highly cytolytic, thereby causing cytopathic effects. Hence, CNS dysfunction following EV infection of neuronal or glial cells might be expected. Perhaps unexpectedly given their cytolytic nature, EVs may establish a persistent infection within the CNS, and the lasting effects on the host might be significant with unanticipated consequences. This review will describe the clinical aspects of EV-mediated disease, mechanisms of disease, determinants of tropism, immune activation within the CNS, and potential treatment regimes.
Collapse
Affiliation(s)
- Ross E. Rhoades
- Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA
| | - Jenna M. Tabor-Godwin
- Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA
| | - Ginger Tsueng
- Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA
| | - Ralph Feuer
- Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA
| |
Collapse
|
30
|
Joshi S, Sharma B, Kaur S, Majchrzak B, Ueda T, Fukunaga R, Verma AK, Fish EN, Platanias LC. Essential role for Mnk kinases in type II interferon (IFNgamma) signaling and its suppressive effects on normal hematopoiesis. J Biol Chem 2011; 286:6017-26. [PMID: 21149447 PMCID: PMC3057839 DOI: 10.1074/jbc.m110.197921] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 12/10/2010] [Indexed: 12/22/2022] Open
Abstract
IFNγ exhibits potent antitumor effects and plays important roles in the innate immunity against cancer. However, the mechanisms accounting for the antiproliferative effects of IFNγ still remain to be elucidated. We examined the role of Mnk1 (MAPK-interacting protein kinase 1) in IFNγ signaling. Our data demonstrate that IFNγ treatment of sensitive cells results in engagement of Mnk1, activation of its kinase domain, and downstream phosphorylation of the cap-binding protein eIF4E on Ser-209. Such engagement of Mnk1 plays an important role in IFNγ-induced IRF-1 (IFN regulatory factor 1) gene mRNA translation/protein expression and is essential for generation of antiproliferative responses. In studies aimed to determine the role of Mnk1 in the induction of the suppressive effects of IFNs on primitive hematopoietic progenitors, we found that siRNA-mediated Mnk1/2 knockdown results in partial reversal of the suppressive effects of IFNγ on human CD34+-derived myeloid (CFU-GM) and erythroid (BFU-E) progenitors. These findings establish a key role for the Mnk/eIF4E pathway in the regulatory effects of IFNγ on normal hematopoiesis and identify Mnk kinases as important elements in the control of IFNγ-inducible ISG mRNA translation.
Collapse
Affiliation(s)
- Sonali Joshi
- From the Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60611
| | - Bhumika Sharma
- From the Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60611
| | - Surinder Kaur
- From the Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60611
| | - Beata Majchrzak
- the Division of Cell and Molecular Biology, Toronto Research Institute, University Health Network and Department of Immunology, University of Toronto, Toronto, Ontario M5G2M1, Canada
| | - Takeshi Ueda
- the Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 737-8553 Japan
| | - Rikiro Fukunaga
- the Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan, and
| | - Amit K. Verma
- the Division of Hematology-Oncology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Eleanor N. Fish
- the Division of Cell and Molecular Biology, Toronto Research Institute, University Health Network and Department of Immunology, University of Toronto, Toronto, Ontario M5G2M1, Canada
| | - Leonidas C. Platanias
- From the Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60611
| |
Collapse
|