1
|
Yuan Y, Lin Q, Feng HY, Zhang Y, Lai X, Zhu MH, Wang J, Shi J, Huang Y, Zhang L, Lu Q, Yuan Z, Lovell JF, Chen HZ, Sun P, Fang C. A multistage drug delivery approach for colorectal primary tumors and lymph node metastases. Nat Commun 2025; 16:1439. [PMID: 39920155 PMCID: PMC11806101 DOI: 10.1038/s41467-025-56768-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
The presence of lymph node (LN) metastases guides cancer staging and worsens prognoses. Incomplete lymphadenectomy of metastatic LNs may end up with disease recurrence, while excessive resection can result in increased postoperative complications with even no survival benefit. Thus, effective non-invasive methods to treat metastatic LNs would be highly desirable. Here, we develop an enzyme-responsive formulation of small-sized doxorubicin-loaded mesoporous silica nanoparticles (DMSN, 40 nm) encapsulated in nanoliposomes (DMSN@Pla-Lipo, 160 nm). The liposomal membrane contains 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DPPG) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), two phospholipids sensitive to secreted phospholipase A2 in human colorectal tumors. In an orthotopic colorectal murine tumor model, phospholipase-induced membrane permeabilization triggers the liberation of DMSN from liposomes for enhanced tumor penetration, conferring an enhanced suppression for the primary tumor. Furthermore, through translocation into metastatic LNs via tumor lymphatics, metastatic tumor cells in LNs are eradicated. Metastases to other major organs are also suppressed, which can be ascribed to the inhibition of colorectal cancer metastasis-associated TGF-β, Wnt, and Hippo signaling pathways in metastatic LNs. The treatment confers an 80% 90-day survival rate in this aggressive tumor model. Taken together, this study demonstrates a deliberate treatment approach for management of both primary tumors and metastatic LNs through multistage drug delivery.
Collapse
Affiliation(s)
- Yihang Yuan
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Quanjun Lin
- Department of General Surgery, Tongren Hospital, SJTU-SM, Shanghai, 200336, China
| | - Hai-Yi Feng
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Yunpeng Zhang
- Department of General Surgery, Tongren Hospital, SJTU-SM, Shanghai, 200336, China
| | - Xing Lai
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Mao-Hua Zhu
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Jue Wang
- Department of General Surgery, Tongren Hospital, SJTU-SM, Shanghai, 200336, China
| | - Jiangpei Shi
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Yanhu Huang
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Lele Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Qin Lu
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Zeli Yuan
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Hong-Zhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Peng Sun
- Department of General Surgery, Tongren Hospital, SJTU-SM, Shanghai, 200336, China.
| | - Chao Fang
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China.
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China.
| |
Collapse
|
2
|
Guo L, Yang J, Wang H, Yi Y. Multistage Self-Assembled Nanomaterials for Cancer Immunotherapy. Molecules 2023; 28:7750. [PMID: 38067480 PMCID: PMC10707962 DOI: 10.3390/molecules28237750] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Advances in nanotechnology have brought innovations to cancer therapy. Nanoparticle-based anticancer drugs have achieved great success from bench to bedside. However, insufficient therapy efficacy due to various physiological barriers in the body remains a key challenge. To overcome these biological barriers and improve the therapeutic efficacy of cancers, multistage self-assembled nanomaterials with advantages of stimuli-responsiveness, programmable delivery, and immune modulations provide great opportunities. In this review, we describe the typical biological barriers for nanomedicines, discuss the recent achievements of multistage self-assembled nanomaterials for stimuli-responsive drug delivery, highlighting the programmable delivery nanomaterials, in situ transformable self-assembled nanomaterials, and immune-reprogramming nanomaterials. Ultimately, we perspective the future opportunities and challenges of multistage self-assembled nanomaterials for cancer immunotherapy.
Collapse
Affiliation(s)
- Lamei Guo
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China; (L.G.); (J.Y.)
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China;
| | - Jinjun Yang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China; (L.G.); (J.Y.)
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China;
| | - Yu Yi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China;
| |
Collapse
|
3
|
Gorachinov F, Mraiche F, Moustafa DA, Hishari O, Ismail Y, Joseph J, Crcarevska MS, Dodov MG, Geskovski N, Goracinova K. Nanotechnology - a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:240-261. [PMID: 36865093 PMCID: PMC9972888 DOI: 10.3762/bjnano.14.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Genomic and proteomic mutation analysis is the standard of care for selecting candidates for therapies with tyrosine kinase inhibitors against the human epidermal growth factor receptor (EGFR TKI therapies) and further monitoring cancer treatment efficacy and cancer development. Acquired resistance due to various genetic aberrations is an unavoidable problem during EGFR TKI therapy, leading to the rapid exhaustion of standard molecularly targeted therapeutic options against mutant variants. Attacking multiple molecular targets within one or several signaling pathways by co-delivery of multiple agents is a viable strategy for overcoming and preventing resistance to EGFR TKIs. However, because of the difference in pharmacokinetics among agents, combined therapies may not effectively reach their targets. The obstacles regarding the simultaneous co-delivery of therapeutic agents at the site of action can be overcome using nanomedicine as a platform and nanotools as delivery agents. Precision oncology research to identify targetable biomarkers and optimize tumor homing agents, hand in hand with designing multifunctional and multistage nanocarriers that respond to the inherent heterogeneity of the tumors, may resolve the challenges of inadequate tumor localization, improve intracellular internalization, and bring advantages over conventional nanocarriers.
Collapse
Affiliation(s)
- Filip Gorachinov
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, 1000 Skopje, North Macedonia
| | - Fatima Mraiche
- College of Pharmacy, QU Health, Qatar University, PO Box 2713, Doha, Qatar
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, T6G 2R3 Edmonton, Canada
| | | | - Ola Hishari
- College of Pharmacy, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Yomna Ismail
- College of Pharmacy, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Jensa Joseph
- College of Pharmacy, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Maja Simonoska Crcarevska
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, 1000 Skopje, North Macedonia
| | - Marija Glavas Dodov
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, 1000 Skopje, North Macedonia
| | - Nikola Geskovski
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, 1000 Skopje, North Macedonia
| | - Katerina Goracinova
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss. Cyril and Methodius in Skopje, 1000 Skopje, North Macedonia
| |
Collapse
|
4
|
Catarata R, Azim N, Bhattacharya S, Zhai L. Controlled drug release from polyelectrolyte-drug conjugate nanoparticles. J Mater Chem B 2021; 8:2887-2894. [PMID: 32191246 DOI: 10.1039/d0tb00012d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Encapsulating drugs in functional nanoparticles provides controlled and targeted release of drugs. In this study, a general approach for encapsulating hydrophobic drugs in polyelectrolyte nanoparticles was developed for a controlled drug release. Gemcitabine (GEM), an anticancer drug for pancreatic ductal adenocarcinoma (PDAC), was used as a model drug to produce poly(acrylic acid) (PAA)-GEM conjugate nanoparticles to achieve a controlled release of GEM in cells. The PAA-GEM conjugate nanoparticles were fabricated by coupling GEM onto PAA through the formation of amide bonds. The hydrophobic interactions of GEM molecules induced the formation of the nanoparticles with the GEM core and PAA shell. Fabrication conditions such as the PAA/GEM ratio and pH were optimized to achieve high structure stability and drug loading efficiency. The size and surface charge of the nanoparticles were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta potential measurement. The optimized PAA-GEM nanoparticles had a size around 12 nm, 30 nm and 60 nm in dry state, water, and phosphate buffered saline (PBS), respectively. The encapsulation efficiency was 29.29 ± 1.7%, and the loading capacity was 9.44 ± 0.46%. Less than 7% GEM was released from the PAA-GEM nanoparticles after 96 hour incubation in phosphate buffered saline. The cytotoxic efficacy of the PAA-GEM nanoparticles in cancer cells was investigated through viability studies of PANC-1, a human pancreatic cancer cell line. It was found that the PAA-GEM nanoparticles had more than a 48 hour delay of releasing GEM and had the same cytotoxic efficacy in PANC-1 cells as free GEM. The uptake of the PAA-GEM nanoparticles by PANC-1 cells was investigated using PAA-GEM labeled by rhodamine G6. Fluorescence and bright field overlay images indicated that the PAA-GEM nanoparticles were taken up by PANC-1 cells within 2 hours. It is believed that the PAA-GEM nanoparticles were decomposed in PANC-1 cells and GEM was released from the nanoparticles.
Collapse
Affiliation(s)
- Ruginn Catarata
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA.
| | - Nilab Azim
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA. and Department of Chemistry, University of Central Florida, Orlando, Florida 32816, USA
| | - Santanu Bhattacharya
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Jacksonville, Florida 32224, USA.
| | - Lei Zhai
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA. and Department of Chemistry, University of Central Florida, Orlando, Florida 32816, USA and Department of Material Science and Engineering, University of Central Florida, Orlando, Florida 32816, USA
| |
Collapse
|
5
|
Cevenini A, Celia C, Orrù S, Sarnataro D, Raia M, Mollo V, Locatelli M, Imperlini E, Peluso N, Peltrini R, De Rosa E, Parodi A, Del Vecchio L, Di Marzio L, Fresta M, Netti PA, Shen H, Liu X, Tasciotti E, Salvatore F. Liposome-Embedding Silicon Microparticle for Oxaliplatin Delivery in Tumor Chemotherapy. Pharmaceutics 2020; 12:pharmaceutics12060559. [PMID: 32560359 PMCID: PMC7355455 DOI: 10.3390/pharmaceutics12060559] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 12/16/2022] Open
Abstract
Mesoporous silicon microparticles (MSMPs) can incorporate drug-carrying nanoparticles (NPs) into their pores. An NP-loaded MSMP is a multistage vector (MSV) that forms a Matryoshka-like structure that protects the therapeutic cargo from degradation and prevents its dilution in the circulation during delivery to tumor cells. We developed an MSV constituted by 1 µm discoidal MSMPs embedded with PEGylated liposomes containing oxaliplatin (oxa) which is a therapeutic agent for colorectal cancer (CRC). To obtain extra-small liposomes able to fit the 60 nm pores of MSMP, we tested several liposomal formulations, and identified two optimal compositions, with a prevalence of the rigid lipid 1,2-distearoyl-sn-glycero-3-phosphocholine and of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]. To improve the MSV assembly, we optimized the liposome-loading inside the MSMP and achieved a five-fold increase of the payload using an innovative lyophilization approach. This procedure also increased the load and limited dimensional changes of the liposomes released from the MSV in vitro. Lastly, we found that the cytotoxic efficacy of oxa-loaded liposomes and-oxa-liposome-MSV in CRC cell culture was similar to that of free oxa. This study increases knowledge about extra-small liposomes and their loading into porous materials and provides useful hints about alternative strategies for designing drug-encapsulating NPs.
Collapse
Affiliation(s)
- Armando Cevenini
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (A.C.); (D.S.); (N.P.); (R.P.); (L.D.V.)
- CEINGE-Biotecnologie Avanzate S.c.a r.l., 80145 Napoli, Italy; (S.O.); (M.R.)
| | - Christian Celia
- Department of Pharmacy, University of Chieti—Pescara “G. d’Annuzio”, 66100 Chieti, Italy; (C.C.); (M.L.); (L.D.M.)
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (E.D.R.); (H.S.); (X.L.)
| | - Stefania Orrù
- CEINGE-Biotecnologie Avanzate S.c.a r.l., 80145 Napoli, Italy; (S.O.); (M.R.)
- Dipartimento di Scienze Motorie e del Benessere, Università “Parthenope”, 80133 Napoli, Italy
- IRCCS SDN, 80143 Napoli, Italy; (E.I.); (A.P.)
| | - Daniela Sarnataro
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (A.C.); (D.S.); (N.P.); (R.P.); (L.D.V.)
| | - Maddalena Raia
- CEINGE-Biotecnologie Avanzate S.c.a r.l., 80145 Napoli, Italy; (S.O.); (M.R.)
| | - Valentina Mollo
- Italian Institute of Technology@CRIB Center for Advanced Biomaterials for Health Care, 80125 Napoli, Italy; (V.M.); (P.A.N.)
| | - Marcello Locatelli
- Department of Pharmacy, University of Chieti—Pescara “G. d’Annuzio”, 66100 Chieti, Italy; (C.C.); (M.L.); (L.D.M.)
| | | | - Nicoletta Peluso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (A.C.); (D.S.); (N.P.); (R.P.); (L.D.V.)
- CEINGE-Biotecnologie Avanzate S.c.a r.l., 80145 Napoli, Italy; (S.O.); (M.R.)
| | - Rosa Peltrini
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (A.C.); (D.S.); (N.P.); (R.P.); (L.D.V.)
- CEINGE-Biotecnologie Avanzate S.c.a r.l., 80145 Napoli, Italy; (S.O.); (M.R.)
- Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Enrica De Rosa
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (E.D.R.); (H.S.); (X.L.)
| | - Alessandro Parodi
- IRCCS SDN, 80143 Napoli, Italy; (E.I.); (A.P.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Luigi Del Vecchio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (A.C.); (D.S.); (N.P.); (R.P.); (L.D.V.)
- CEINGE-Biotecnologie Avanzate S.c.a r.l., 80145 Napoli, Italy; (S.O.); (M.R.)
| | - Luisa Di Marzio
- Department of Pharmacy, University of Chieti—Pescara “G. d’Annuzio”, 66100 Chieti, Italy; (C.C.); (M.L.); (L.D.M.)
| | - Massimo Fresta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, I-88100 Catanzaro, Italy;
| | - Paolo Antonio Netti
- Italian Institute of Technology@CRIB Center for Advanced Biomaterials for Health Care, 80125 Napoli, Italy; (V.M.); (P.A.N.)
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (E.D.R.); (H.S.); (X.L.)
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Xuewu Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (E.D.R.); (H.S.); (X.L.)
| | - Ennio Tasciotti
- CEINGE-Biotecnologie Avanzate S.c.a r.l., 80145 Napoli, Italy; (S.O.); (M.R.)
- Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI), Houston, TX 77030, USA
- Houston Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
- Correspondence: (E.T.); (F.S.)
| | - Francesco Salvatore
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (A.C.); (D.S.); (N.P.); (R.P.); (L.D.V.)
- CEINGE-Biotecnologie Avanzate S.c.a r.l., 80145 Napoli, Italy; (S.O.); (M.R.)
- Correspondence: (E.T.); (F.S.)
| |
Collapse
|
6
|
Luo GF, Chen WH, Zhang XZ. 100th Anniversary of Macromolecular Science Viewpoint: Poly( N-isopropylacrylamide)-Based Thermally Responsive Micelles. ACS Macro Lett 2020; 9:872-881. [PMID: 35648534 DOI: 10.1021/acsmacrolett.0c00342] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Poly(N-isopropylacrylamide) (PNIPAAm)-based thermally responsive micelles are of great importance as smart materials for a number of applications such as drug delivery and biosensing, owing to their tunable lower critical solution temperature (LCST). Their design and synthesis in the nanoscale size range have been widely studied, and research interest in their structural and physic-chemical properties is continually growing. In this Viewpoint, representative research on the construction of PNIPAAm-based thermally responsive micelles as well as their applications are highlighted and discussed, which would serve as a good start for newcomers in this field and a positive guide for future research.
Collapse
Affiliation(s)
- Guo-Feng Luo
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|
7
|
Yao Y, Saw PE, Nie Y, Wong PP, Jiang L, Ye X, Chen J, Ding T, Xu L, Yao H, Hu H, Xu X. Multifunctional sharp pH-responsive nanoparticles for targeted drug delivery and effective breast cancer therapy. J Mater Chem B 2019; 7:576-585. [PMID: 32254791 DOI: 10.1039/c8tb02600a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The intrinsic limits of conventional cancer therapies prompt the development of a new technology for a more effective and safer cancer treatment. The bioresponsive delivery technique has recently emerged as an innovative strategy to overcome multiple barriers in the systemic delivery of nanoparticle (NP)-based therapeutics. However, some issues especially the tumor penetration-retention balance have not been completely solved, which may induce the suboptimal therapeutic effect. Herein, we developed a new multifunctional sharp pH-responsive NP platform for targeted drug delivery and effective cancer therapy. This NP platform is made of the sharp pH-responsive poly(2-(diisopropylamino)ethylmethacrylate) (PDPA) polymer as the inner core, amphiphilic lipid-poly(ethylene glycol) (lipid-PEG) as the outer shell, and the internalizing RGD (iRGD) peptide encoded on the surface. After anticancer drug loading and then systemic administration, the resulting NP platform shows the following features in one nanostructure: (i) the PEG shell to prolong blood circulation; (ii) the iRGD peptide to enhance tumor targeting and penetration; (iii) a larger particle size (∼80 nm) than that of free drug to ensure long tumor retention; (iv) the sharp endosomal pH response of the PDPA polymer to induce fast intracellular drug release and thus efficient inhibition of tumor growth. Together with facile polymer synthesis and robust NP formulation to enable easy scale-up, the multifunctional NP platform reported herein shows great potential as a new generation nanomedicine for effective cancer treatment.
Collapse
Affiliation(s)
- Yandan Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Li J, Liang H, Liu J, Wang Z. Poly (amidoamine) (PAMAM) dendrimer mediated delivery of drug and pDNA/siRNA for cancer therapy. Int J Pharm 2018; 546:215-225. [PMID: 29787895 DOI: 10.1016/j.ijpharm.2018.05.045] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 12/18/2022]
Abstract
Poly (amidoamine) (PAMAM) dendrimers are well-defined, highly branched macromolecules with numerous active amine groups on the surface. Because of their unique properties, PAMAM dendrimers have steadily grown in popularity in drug delivery, gene therapy, medical imaging and diagnostic application. This review focuses on the recent developments on the application in PAMAM dendrimers as effective carriers for drug and gene (pDNA, siRNA) delivery in cancer therapy, including: a) PAMAM for anticancer drug delivery; b) PAMAM and gene therapy; c) PAMAM used in overcoming tumor multidrug resistance; d) PAMAM used for hybrid nanoparticles; and e) PAMAM linked or loaded in other nanoparticles.
Collapse
Affiliation(s)
- Jun Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China.
| | - Huamin Liang
- Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230088, Anhui, China
| | - Jing Liu
- Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing 100084, China
| | - Ziyuan Wang
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
9
|
Xu X, Saw PE, Tao W, Li Y, Ji X, Yu M, Mahmoudi M, Rasmussen J, Ayyash D, Zhou Y, Farokhzad OC, Shi J. Tumor Microenvironment-Responsive Multistaged Nanoplatform for Systemic RNAi and Cancer Therapy. NANO LETTERS 2017; 17:4427-4435. [PMID: 28636389 PMCID: PMC5615408 DOI: 10.1021/acs.nanolett.7b01571] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
While RNA interference (RNAi) therapy has demonstrated significant potential for cancer treatment, the effective and safe systemic delivery of RNAi agents such as small interfering RNA (siRNA) into tumor cells in vivo remains challenging. We herein reported a unique multistaged siRNA delivery nanoparticle (NP) platform, which is comprised of (i) a polyethylene glycol (PEG) surface shell, (ii) a sharp tumor microenvironment (TME) pH-responsive polymer that forms the NP core, and (iii) charge-mediated complexes of siRNA and tumor cell-targeting- and penetrating-peptide-amphiphile (TCPA) that are encapsulated in the NP core. When the rationally designed, long circulating polymeric NPs accumulate in tumor tissues after intravenous administration, the targeted siRNA-TCPA complexes can be rapidly released via TME pH-mediated NP disassembly for subsequent specific targeting of tumor cells and cytosolic transport, thus achieving efficient gene silencing. In vivo results further demonstrate that the multistaged NP delivery of siRNA against bromodomain 4 (BRD4), a recently discovered target protein that regulates the development and progression of prostate cancer (PCa), can significantly inhibit PCa tumor growth.
Collapse
Affiliation(s)
- Xiaoding Xu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Phei Er Saw
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yujing Li
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaoyuan Ji
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mikyung Yu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Morteza Mahmoudi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan Rasmussen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dana Ayyash
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yuxiao Zhou
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Omid C. Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Li MH, Zong H, Leroueil PR, Choi SK, Baker JR. Ligand Characteristics Important to Avidity Interactions of Multivalent Nanoparticles. Bioconjug Chem 2017; 28:1649-1657. [PMID: 28398751 DOI: 10.1021/acs.bioconjchem.7b00098] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multivalent interactions involve the engagement of multiple ligand-receptor pairs and are important in synthetic biology as design paradigms for targeted nanoparticles (NPs). However, little is known about the specific ligand parameters important to multivalent interactions. We employed a series of oligonucleotides as ligands conjugated to dendrimers as nanoparticles, and used complementary oligonucleotides on a functionalized SPR surface to measure binding. We compared the effect of ligand affinity to ligand number on the avidity characteristics of functionalized NPs. Changing the ligand affinity, either by changing the temperature of the system or by substitution noncomplementary base pairs into the oligonucleotides, had little effect on multivalent interaction; the overall avidity, number of ligands required for avidity per particle, and the number of particles showing avidity did not significantly change. We then made NP conjugates with the same oligonucleotide using an efficient copper-free click chemistry that resulted in essentially all of the NPs in the population exceeding the threshold ligand value. The particles exceeding the threshold ligand number again demonstrated high avidity interactions. This work validates the concept of a threshold ligand valence and suggests that the number of ligands per nanoparticle is the defining factor in achieving high avidity interactions.
Collapse
Affiliation(s)
- Ming-Hsin Li
- Department of Biomedical Engineering, ‡Michigan Nanotechnology Institute for Medicine and Biological Sciences, and §Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Hong Zong
- Department of Biomedical Engineering, ‡Michigan Nanotechnology Institute for Medicine and Biological Sciences, and §Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Pascale R Leroueil
- Department of Biomedical Engineering, ‡Michigan Nanotechnology Institute for Medicine and Biological Sciences, and §Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Seok Ki Choi
- Department of Biomedical Engineering, ‡Michigan Nanotechnology Institute for Medicine and Biological Sciences, and §Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - James R Baker
- Department of Biomedical Engineering, ‡Michigan Nanotechnology Institute for Medicine and Biological Sciences, and §Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
11
|
Luo X, Li B, Zhang X, Zhao W, Bratasz A, Deng B, McComb DW, Dong Y. Dual-functional lipid-like nanoparticles for delivery of mRNA and MRI contrast agents. NANOSCALE 2017; 9:1575-1579. [PMID: 28067926 PMCID: PMC5316423 DOI: 10.1039/c6nr08496f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Multi-functional nanomaterials possess unique properties, facilitating both therapeutic and diagnostic applications among others. Herein, we developed dual-functional lipid-like nanoparticles for simultaneous delivery of mRNA and magnetic resonance imaging (MRI) contrast agents in order to express functional proteins and provide real-time visualization. TT3-Gd18 LLNs were identified as a lead formulation, which was able to encapsulate 91% of mRNA and 74% of Gd. This formulation showed a comparable or a slightly higher delivery efficiency of mRNA compared to the initial TT3 LLNs. Moreover, a strong MRI signal was observed in the cell pellets treated with TT3-Gd18 LLNs. More importantly, TT3-Gd18 LLNs demonstrated an efficient delivery of mRNA and Gd contrast agents in vivo.
Collapse
Affiliation(s)
- X Luo
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA.
| | - B Li
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA.
| | - X Zhang
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA.
| | - W Zhao
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA.
| | - A Bratasz
- Small Animal Imaging Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - B Deng
- Center for Electron Microscopy and Analysis, Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - D W McComb
- Center for Electron Microscopy and Analysis, Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Y Dong
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
12
|
King MR, Mohamed ZJ. Dual nanoparticle drug delivery: the future of anticancer therapies? Nanomedicine (Lond) 2016; 12:95-98. [PMID: 27885896 DOI: 10.2217/nnm-2016-0378] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Michael R King
- Meinig School of Biomedical Engineering, Cornell University, 205 Weill Hall Ithaca, NY 14853, USA
| | - Zeinab J Mohamed
- Meinig School of Biomedical Engineering, Cornell University, 205 Weill Hall Ithaca, NY 14853, USA
| |
Collapse
|