1
|
Steininger T, Öttl V, Franken LE, Frank C, Ohland P, Lopez Ferreiro M, Klostermann S, Fritsch J, Hirschauer E, Sandmeir A, Hilgenfeld LD, Semmelmann F, Dürr MS, Konkel F, Pechmann G, Linder S, Haindl M, Yazicioglu MN, Ringler P, Lauer ME, Phichith D, Seeber S, Fakhiri J. Improved Recombinant Adeno-Associated Viral Vector Production via Molecular Evolution of the Viral Rep Protein. Int J Mol Sci 2025; 26:1319. [PMID: 39941089 PMCID: PMC11818820 DOI: 10.3390/ijms26031319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
In the dynamic field of gene therapy, recombinant adeno-associated viruses (rAAVs) have become leading viral vectors due to their safety, long-term expression, and wide-ranging cell and tissue tropism. With numerous FDA approvals and commercial products underscoring their potential, there is a critical need for efficient production processes to achieve high vector titers and quality. A major challenge in rAAV production is the efficient packaging of the genome into the viral capsid, with empty or partially filled capsids often representing over 90% of the produced material. To tackle this issue, we engineered the replication and packaging proteins of an AAV (Rep) to boost their functionality and improve vector titers. We subjected a complex Rep library derived from the AAV serotypes 1-13 to directed evolution in an AAV producer cell line. After each round of selection, single clones were analyzed, showing enrichment of specific hybrid Rep domains. Comparative analysis of these selected clones revealed considerable differences in their ability to package AAV2-based viral genomes, with hybrid Rep proteins achieving up to a 2.5-fold increase in packaging efficiency compared to their parental counterparts. These results suggest that optimizing rep gene variants through directed evolution is an effective strategy to enhance rAAV production efficiency.
Collapse
Affiliation(s)
- Thomas Steininger
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany; (T.S.); (V.Ö.); (C.F.); (J.F.); (E.H.); (F.K.); (S.L.); (S.S.)
- Faculty of Bioengineering, University of Applied Sciences Weihenstephan-Triesdorf, Am Hofgarten 4, 85354 Freising, Germany
- Faculty 06, Munich University of Applied Sciences, Lothstraße 34, 80335 Munich, Germany
| | - Veronika Öttl
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany; (T.S.); (V.Ö.); (C.F.); (J.F.); (E.H.); (F.K.); (S.L.); (S.S.)
- Faculty of Medicine, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Linda E. Franken
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland; (L.E.F.); (P.O.); (M.L.F.); (P.R.); (M.E.L.); (D.P.)
| | - Cornelius Frank
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany; (T.S.); (V.Ö.); (C.F.); (J.F.); (E.H.); (F.K.); (S.L.); (S.S.)
- Gene Therapy Technical Research & Development, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany; (M.-S.D.); (G.P.); (M.H.)
| | - Philip Ohland
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland; (L.E.F.); (P.O.); (M.L.F.); (P.R.); (M.E.L.); (D.P.)
- Gene Therapy Technical Research & Development, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany; (M.-S.D.); (G.P.); (M.H.)
| | - Miriam Lopez Ferreiro
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland; (L.E.F.); (P.O.); (M.L.F.); (P.R.); (M.E.L.); (D.P.)
| | - Stefan Klostermann
- Roche Pharma Research and Early Development, Data and Analytics, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany;
| | - Johannes Fritsch
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany; (T.S.); (V.Ö.); (C.F.); (J.F.); (E.H.); (F.K.); (S.L.); (S.S.)
| | - Evelyn Hirschauer
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany; (T.S.); (V.Ö.); (C.F.); (J.F.); (E.H.); (F.K.); (S.L.); (S.S.)
| | - Anna Sandmeir
- Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany; (A.S.); (L.D.H.); (F.S.)
| | - Luisa D. Hilgenfeld
- Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany; (A.S.); (L.D.H.); (F.S.)
| | - Florian Semmelmann
- Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany; (A.S.); (L.D.H.); (F.S.)
| | - Marie-Sofie Dürr
- Gene Therapy Technical Research & Development, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany; (M.-S.D.); (G.P.); (M.H.)
| | - Fabian Konkel
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany; (T.S.); (V.Ö.); (C.F.); (J.F.); (E.H.); (F.K.); (S.L.); (S.S.)
| | - Gregor Pechmann
- Gene Therapy Technical Research & Development, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany; (M.-S.D.); (G.P.); (M.H.)
| | - Sabine Linder
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany; (T.S.); (V.Ö.); (C.F.); (J.F.); (E.H.); (F.K.); (S.L.); (S.S.)
| | - Markus Haindl
- Gene Therapy Technical Research & Development, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany; (M.-S.D.); (G.P.); (M.H.)
| | - Mustafa N. Yazicioglu
- Spark Therapeutics, Roche Holding AG, 3737 Market Street, Philadelphia, PA 19104, USA;
| | - Philippe Ringler
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland; (L.E.F.); (P.O.); (M.L.F.); (P.R.); (M.E.L.); (D.P.)
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Matthias E. Lauer
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland; (L.E.F.); (P.O.); (M.L.F.); (P.R.); (M.E.L.); (D.P.)
| | - Denis Phichith
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland; (L.E.F.); (P.O.); (M.L.F.); (P.R.); (M.E.L.); (D.P.)
| | - Stefan Seeber
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany; (T.S.); (V.Ö.); (C.F.); (J.F.); (E.H.); (F.K.); (S.L.); (S.S.)
| | - Julia Fakhiri
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany; (T.S.); (V.Ö.); (C.F.); (J.F.); (E.H.); (F.K.); (S.L.); (S.S.)
| |
Collapse
|
2
|
Chen Y, Hu S, Lee W, Walsh N, Iozza K, Huang N, Preston G, Drouin LM, Jia N, Deng J, Hebben M, Liao J. A Comprehensive Study of the Effects by Sequence Truncation within Inverted Terminal Repeats (ITRs) on the Productivity, Genome Packaging, and Potency of AAV Vectors. Microorganisms 2024; 12:310. [PMID: 38399714 PMCID: PMC10892565 DOI: 10.3390/microorganisms12020310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
One of the primary challenges in working with adeno-associated virus (AAV) lies in the inherent instability of its inverted terminal repeats (ITRs), which play vital roles in AAV replication, encapsidation, and genome integration. ITRs contain a high GC content and palindromic structure, which occasionally results in truncations and mutations during plasmid amplification in bacterial cells. However, there is no thorough study on how these alterations in ITRs impact the ultimate AAV vector characteristics. To close this gap, we designed ITRs with common variations, including a single B, C, or D region deletion at one end, and dual deletions at both ends of the vector genome. These engineered ITR-carrying plasmids were utilized to generate AAV vectors in HEK293 cells. The crude and purified AAV samples were collected and analyzed for yield, capsid DNA-filled percentage, potency, and ITR integrity. The results show that a single deletion had minor impact on AAV productivity, packaging efficiency, and in vivo potency. However, deletions on both ends, except A, showed significant negative effects on the above characteristics. Our work revealed the role of ITR regions, A, B, C, and D for AAV production and DNA replication, and proposes a new strategy for the quality control of ITR-bearing plasmids and final AAV products.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jing Liao
- Genomic Medicine, Alexion, AstraZeneca Rare Disease, 65 Hayden Avenue, Lexington, MA 02421, USA; (Y.C.); (S.H.); (W.L.); (N.W.); (K.I.); (N.H.); (G.P.); (L.M.D.); (N.J.); (J.D.); (M.H.)
| |
Collapse
|
3
|
Hadi M, Qutaiba B Allela O, Jabari M, Jasoor AM, Naderloo O, Yasamineh S, Gholizadeh O, Kalantari L. Recent advances in various adeno-associated viruses (AAVs) as gene therapy agents in hepatocellular carcinoma. Virol J 2024; 21:17. [PMID: 38216938 PMCID: PMC10785434 DOI: 10.1186/s12985-024-02286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024] Open
Abstract
Primary liver cancer, which is scientifically referred to as hepatocellular carcinoma (HCC), is a significant concern in the field of global health. It has been demonstrated that conventional chemotherapy, chemo-hormonal therapy, and conformal radiotherapy are ineffective against HCC. New therapeutic approaches are thus urgently required. Identifying single or multiple mutations in genes associated with invasion, metastasis, apoptosis, and growth regulation has resulted in a more comprehensive comprehension of the molecular genetic underpinnings of malignant transformation, tumor advancement, and host interaction. This enhanced comprehension has notably propelled the development of novel therapeutic agents. Therefore, gene therapy (GT) holds great promise for addressing the urgent need for innovative treatments in HCC. However, the complexity of HCC demands precise and effective therapeutic approaches. The adeno-associated virus (AAV) distinctive life cycle and ability to persistently infect dividing and nondividing cells have rendered it an alluring vector. Another appealing characteristic of the wild-type virus is its evident absence of pathogenicity. As a result, AAV, a vector that lacks an envelope and can be modified to transport DNA to specific cells, has garnered considerable interest in the scientific community, particularly in experimental therapeutic strategies that are still in the clinical stage. AAV vectors emerge as promising tools for HCC therapy due to their non-immunogenic nature, efficient cell entry, and prolonged gene expression. While AAV-mediated GT demonstrates promise across diverse diseases, the current absence of ongoing clinical trials targeting HCC underscores untapped potential in this context. Furthermore, gene transfer through hepatic AAV vectors is frequently facilitated by GT research, which has been propelled by several congenital anomalies affecting the liver. Notwithstanding the enthusiasm associated with this notion, recent discoveries that expose the integration of the AAV vector genome at double-strand breaks give rise to apprehensions regarding their enduring safety and effectiveness. This review explores the potential of AAV vectors as versatile tools for targeted GT in HCC. In summation, we encapsulate the multifaceted exploration of AAV vectors in HCC GT, underlining their transformative potential within the landscape of oncology and human health.
Collapse
Affiliation(s)
- Meead Hadi
- Department of Microbiology, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Mansoureh Jabari
- Medical Campus, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Asna Mahyazadeh Jasoor
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Omid Naderloo
- Department of Laboratory Sciences, Faculty of Medicine, Islamic Azad University of Gorgan Breanch, Gorgan, Iran
| | | | | | - Leila Kalantari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Ou J, Tang Y, Xu J, Tucci J, Borys MC, Khetan A. Recent advances in upstream process development for production of recombinant adeno-associated virus. Biotechnol Bioeng 2024; 121:53-70. [PMID: 37691172 DOI: 10.1002/bit.28545] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/17/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023]
Abstract
Recombinant adeno-associated virus (rAAV) is rapidly emerging as the preferred delivery vehicle for gene therapies, with promising advantages in safety and efficacy. Key challenges in systemic in-vivo rAAV gene therapy applications are the gap in production capabilities versus potential market demand and complex production process. This review summarizes current available information on rAAV upstream manufacturing processes and proposed optimizations for production. The advancements in rAAV production media were reviewed with proposals to speed up the cell culture process development. Furthermore, major methods for genetic element delivery to host cells were summarized with their advantages, limitations, and future directions for optimization. In addition, culture vessel selection criteria were listed based on production cell system, scale, and development stage. Process control at the production step was also outlined with an in-depth understanding of production kinetics and quality control.
Collapse
Affiliation(s)
- Jianfa Ou
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Yawen Tang
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Jianlin Xu
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Julian Tucci
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Michael C Borys
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Anurag Khetan
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| |
Collapse
|
5
|
Tejero M, Duzenli OF, Caine C, Kuoch H, Aslanidi G. Bioengineered Hybrid Rep 2/6 Gene Improves Encapsulation of a Single-Stranded Expression Cassette into AAV6 Vectors. Genes (Basel) 2023; 14:1866. [PMID: 37895215 PMCID: PMC10606878 DOI: 10.3390/genes14101866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The production of clinical-grade recombinant adeno-associated viral (AAV) vectors for gene therapy trials remains a major hurdle in the further advancement of the gene therapy field. During the past decades, AAV research has been predominantly focused on the development of new capsid modifications, vector-associated immunogenicity, and the scale-up vector production. However, limited studies have examined the possibility to manipulate non-structural components of AAV such as the Rep genes. Historically, naturally isolated, or recombinant library-derived AAV capsids have been produced using the AAV serotype 2 Rep gene to package ITR2-flanked vector genomes. In the current study, we mutated four variable amino acids in the conservative part of the binding domain in AAV serotype 6 Rep to generate a Rep2/6 hybrid gene. This newly generated Rep2/6 hybrid had improved packaging ability over wild-type Rep6. AAV vectors produced with Rep2/6 exhibited similar in vivo activity as standard AAV6 vectors. Furthermore, we show that this Rep2/6 hybrid also improves full/empty capsid ratios, suggesting that Rep bioengineering can be used to improve the ratio of fully encapsulated AAV vectors during upstream manufacturing processes.
Collapse
Affiliation(s)
- Marcos Tejero
- Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55455, USA; (M.T.)
| | - Ozgun F. Duzenli
- Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55455, USA; (M.T.)
| | - Colin Caine
- Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55455, USA; (M.T.)
| | - Hisae Kuoch
- Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55455, USA; (M.T.)
| | - George Aslanidi
- Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55455, USA; (M.T.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Issa SS, Shaimardanova AA, Solovyeva VV, Rizvanov AA. Various AAV Serotypes and Their Applications in Gene Therapy: An Overview. Cells 2023; 12:785. [PMID: 36899921 PMCID: PMC10000783 DOI: 10.3390/cells12050785] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Despite scientific discoveries in the field of gene and cell therapy, some diseases still have no effective treatment. Advances in genetic engineering methods have enabled the development of effective gene therapy methods for various diseases based on adeno-associated viruses (AAVs). Today, many AAV-based gene therapy medications are being investigated in preclinical and clinical trials, and new ones are appearing on the market. In this article, we present a review of AAV discovery, properties, different serotypes, and tropism, and a following detailed explanation of their uses in gene therapy for disease of different organs and systems.
Collapse
Affiliation(s)
- Shaza S. Issa
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Alisa A. Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
7
|
Shitik EM, Shalik IK, Yudkin DV. AAV- based vector improvements unrelated to capsid protein modification. Front Med (Lausanne) 2023; 10:1106085. [PMID: 36817775 PMCID: PMC9935841 DOI: 10.3389/fmed.2023.1106085] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV) is the leading platform for delivering genetic constructs in vivo. To date, three AAV-based gene therapeutic agents have been approved by the FDA and are used in clinical practice. Despite the distinct advantages of gene therapy development, it is clear that AAV vectors need to be improved. Enhancements in viral vectors are mainly associated with capsid protein modifications. However, there are other structures that significantly affect the AAV life cycle and transduction. The Rep proteins, in combination with inverted terminal repeats (ITRs), determine viral genome replication, encapsidation, etc. Moreover, transgene cassette expression in recombinant variants is directly related to AAV production and transduction efficiency. This review discusses the ways to improve AAV vectors by modifying ITRs, a transgene cassette, and the Rep proteins.
Collapse
|
8
|
Pupo A, Fernández A, Low SH, François A, Suárez-Amarán L, Samulski RJ. AAV vectors: The Rubik's cube of human gene therapy. Mol Ther 2022; 30:3515-3541. [PMID: 36203359 PMCID: PMC9734031 DOI: 10.1016/j.ymthe.2022.09.015] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/12/2022] Open
Abstract
Defective genes account for ∼80% of the total of more than 7,000 diseases known to date. Gene therapy brings the promise of a one-time treatment option that will fix the errors in patient genetic coding. Recombinant viruses are highly efficient vehicles for in vivo gene delivery. Adeno-associated virus (AAV) vectors offer unique advantages, such as tissue tropism, specificity in transduction, eliciting of a relatively low immune responses, no incorporation into the host chromosome, and long-lasting delivered gene expression, making them the most popular viral gene delivery system in clinical trials, with three AAV-based gene therapy drugs already approved by the US Food and Drug Administration (FDA) or European Medicines Agency (EMA). Despite the success of AAV vectors, their usage in particular scenarios is still limited due to remaining challenges, such as poor transduction efficiency in certain tissues, low organ specificity, pre-existing humoral immunity to AAV capsids, and vector dose-dependent toxicity in patients. In the present review, we address the different approaches to improve AAV vectors for gene therapy with a focus on AAV capsid selection and engineering, strategies to overcome anti-AAV immune response, and vector genome design, ending with a glimpse at vector production methods and the current state of recombinant AAV (rAAV) at the clinical level.
Collapse
Affiliation(s)
- Amaury Pupo
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Audry Fernández
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Siew Hui Low
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Achille François
- Viralgen. Parque Tecnológico de Guipuzkoa, Edificio Kuatro, Paseo Mikeletegui, 83, 20009 San Sebastián, Spain
| | - Lester Suárez-Amarán
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Richard Jude Samulski
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA,Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Corresponding author: Richard Jude Samulski, R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, NC 27709, USA.
| |
Collapse
|
9
|
Belova L, Kochergin‐Nikitsky K, Erofeeva A, Lavrov A, Smirnikhina S. Approaches to purification and concentration of rAAV vectors for gene therapy. Bioessays 2022; 44:e2200019. [DOI: 10.1002/bies.202200019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/11/2022]
|
10
|
Kumar SR, Xie J, Hu S, Ko J, Huang Q, Brown HC, Srivastava A, Markusic DM, Doering CB, Spencer HT, Srivastava A, Gao G, Herzog RW. Coagulation factor IX gene transfer to non-human primates using engineered AAV3 capsid and hepatic optimized expression cassette. Mol Ther Methods Clin Dev 2021; 23:98-107. [PMID: 34631930 PMCID: PMC8476648 DOI: 10.1016/j.omtm.2021.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022]
Abstract
Hepatic gene transfer with adeno-associated viral (AAV) vectors shows much promise for the treatment of the X-linked bleeding disorder hemophilia B in multiple clinical trials. In an effort to further innovate this approach and to introduce alternative vector designs with potentially superior features into clinical development, we recently built a vector platform based on AAV serotype 3 because of its superior tropism for human hepatocytes. A vector genome with serotype-matched inverted terminal repeats expressing hyperactive human coagulation factor IX (FIX)-Padua was designed for clinical use that is optimized for translation using hepatocyte-specific codon-usage bias and is depleted of immune stimulatory CpG motifs. Here, this vector genome was packaged into AAV3 (T492V + S663V) capsid for hepatic gene transfer in non-human primates. FIX activity within or near the normal range was obtained at a low vector dose of 5 × 1011 vector genomes/kg. Pre-existing neutralizing antibodies, however, completely or partially blocked hepatic gene transfer at that dose. No CD8+ T cell response against capsid was observed. Antibodies against the human FIX transgene product formed at a 10-fold higher vector dose, albeit hepatic gene transfer was remarkably consistent, and sustained FIX activity in the normal range was nonetheless achieved in two of three animals for the 3-month duration of the study. These results support the use of this vector at low vector doses for gene therapy of hemophilia B in humans.
Collapse
Affiliation(s)
- Sandeep R.P. Kumar
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, USA
| | - Jun Xie
- Horae Gene Therapy Center, Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Shilang Hu
- Horae Gene Therapy Center, Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jihye Ko
- Horae Gene Therapy Center, Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Qifeng Huang
- Horae Gene Therapy Center, Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Alok Srivastava
- Department of Haematology, Christian Medical College and Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Vellore, Tamil Nadu, India
| | - David M. Markusic
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, USA
| | - Christopher B. Doering
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, USA
| | - H. Trent Spencer
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Arun Srivastava
- Division of Cellular and Molecular Therapy, Departments of Pediatrics and Molecular Genetics and Microbiology, Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Guangping Gao
- Horae Gene Therapy Center, Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
| | - Roland W. Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
11
|
Fakhiri J, Grimm D. Best of most possible worlds: Hybrid gene therapy vectors based on parvoviruses and heterologous viruses. Mol Ther 2021; 29:3359-3382. [PMID: 33831556 PMCID: PMC8636155 DOI: 10.1016/j.ymthe.2021.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/12/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Parvoviruses and especially the adeno-associated virus (AAV) species provide an exciting and versatile platform for the rational design or molecular evolution of human gene-therapy vectors, documented by literature from over half a century, hundreds of clinical trials, and the recent commercialization of multiple AAV gene therapeutics. For the last three decades, the power of these vectors has been further potentiated through various types of hybrid vectors created by intra- or inter-genus juxtaposition of viral DNA and protein cis elements or by synergistic complementation of parvoviral features with those of heterologous, prokaryotic, or eukaryotic viruses. Here, we provide an overview of the history and promise of this rapidly expanding field of hybrid parvoviral gene-therapy vectors, starting with early generations of chimeric particles composed of a recombinant AAV genome encapsidated in shells of synthetic AAVs or of adeno-, herpes-, baculo-, or protoparvoviruses. We then dedicate our attention to two newer, highly promising types of hybrid vectors created via (1) pseudotyping of AAV genomes with bocaviral serotypes and capsid mutants or (2) packaging of AAV DNA into, or tethering of entire vector particles to, bacteriophages. Finally, we conclude with an outlook summarizing critical requirements and improvements toward clinical translation of these original concepts.
Collapse
Affiliation(s)
- Julia Fakhiri
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany; BioQuant, University of Heidelberg, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany; BioQuant, University of Heidelberg, Heidelberg, Germany; German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
12
|
Mietzsch M, Eddington C, Jose A, Hsi J, Chipman P, Henley T, Choudhry M, McKenna R, Agbandje-McKenna M. Improved Genome Packaging Efficiency of Adeno-associated Virus Vectors Using Rep Hybrids. J Virol 2021; 95:e0077321. [PMID: 34287038 PMCID: PMC8428402 DOI: 10.1128/jvi.00773-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/03/2021] [Indexed: 01/11/2023] Open
Abstract
Recombinant adeno-associated viruses (rAAVs) are one of the most commonly used vectors for a variety of gene therapy applications. In the last 2 decades, research focused primarily on the characterization and isolation of new cap, genes resulting in hundreds of natural and engineered AAV capsid variants, while the rep gene, the other major AAV open reading frame, has been less studied. This is due to the fact that the rep gene from AAV serotype 2 (AAV2) enables the single-stranded DNA packaging of recombinant genomes into most AAV serotype and engineered capsids. However, a major by-product of all vector productions is empty AAV capsids, lacking the encapsidated vector genome, especially for non-AAV2 vectors. Despite the packaging process being considered the rate-limiting step for rAAV production, none of the rep genes from the other AAV serotypes have been characterized for their packaging efficiency. Thus, in this study AAV2 rep was replaced with the rep gene of a select number of AAV serotypes. However, this led to a lowering of capsid protein expression, relative to the standard AAV2-rep system. In further experiments the 3' end of the AAV2 rep gene was reintroduced to promote increased capsid expression and a series of chimeras between the different AAV Rep proteins were generated and characterized for their vector genome packaging ability. The utilization of these novel Rep hybrids increased the percentage of genome containing (full) capsids approximately 2- to -4-fold for all of the non-AAV2 serotypes tested. Thus, these Rep chimeras could revolutionize rAAV production. IMPORTANCE A major by-product of all adeno-associated virus (AAV) vector production systems are "empty" capsids, void of the desired therapeutic gene, and thus do not provide any curative benefit for the treatment of the targeted disease. In fact, empty capsids can potentially elicit additional immune responses in vivo gene therapies if not removed by additional purification steps. Thus, there is a need to increase the genome packaging efficiency and reduce the number of empty capsids from AAV biologics. The novel Rep hybrids from different AAV serotypes described in this study are capable of reducing the percentage of empty capsids in all tested AAV serotypes and improve overall yields of genome-containing AAV capsids at the same time. They can likely be integrated easily into existing AAV manufacturing protocols to optimize the production of the generated AAV gene therapy products.
Collapse
Affiliation(s)
- Mario Mietzsch
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Courtnee Eddington
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Ariana Jose
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jane Hsi
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Paul Chipman
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Tom Henley
- Intima Bioscience, New York, New York, USA
| | | | - Robert McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
13
|
Maestro S, Weber ND, Zabaleta N, Aldabe R, Gonzalez-Aseguinolaza G. Novel vectors and approaches for gene therapy in liver diseases. JHEP Rep 2021; 3:100300. [PMID: 34159305 PMCID: PMC8203845 DOI: 10.1016/j.jhepr.2021.100300] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/23/2021] [Accepted: 04/18/2021] [Indexed: 12/13/2022] Open
Abstract
Gene therapy is becoming an increasingly valuable tool to treat many genetic diseases with no or limited treatment options. This is the case for hundreds of monogenic metabolic disorders of hepatic origin, for which liver transplantation remains the only cure. Furthermore, the liver contains 10-15% of the body's total blood volume, making it ideal for use as a factory to secrete proteins into the circulation. In recent decades, an expanding toolbox has become available for liver-directed gene delivery. Although viral vectors have long been the preferred approach to target hepatocytes, an increasing number of non-viral vectors are emerging as highly efficient vehicles for the delivery of genetic material. Herein, we review advances in gene delivery vectors targeting the liver and more specifically hepatocytes, covering strategies based on gene addition and gene editing, as well as the exciting results obtained with the use of RNA as a therapeutic molecule. Moreover, we will briefly summarise some of the limitations of current liver-directed gene therapy approaches and potential ways of overcoming them.
Collapse
Key Words
- AAT, α1-antitrypsin
- AAV, adeno-associated virus
- AHP, acute hepatic porphyrias
- AIP, acute intermittent porphyria
- ALAS1, aminolevulic synthase 1
- APCs, antigen-presenting cells
- ASGCT, American Society of Gene and Cell Therapy
- ASGPR, asialoglycoprotein receptor
- ASOs, antisense oligonucleotides
- Ad, adenovirus
- CBS, cystathionine β-synthase
- CN, Crigel-Najjar
- CRISPR, clustered regularly interspaced short palindromic repeats
- CRISPR/Cas9, CRISPR associated protein 9
- DSBs, double-strand breaks
- ERT, enzyme replacement therapy
- FH, familial hypercholesterolemia
- FSP27, fat-specific protein 27
- GO, glycolate oxidase
- GSD1a, glycogen storage disorder 1a
- GT, gene therapy
- GUSB, β-glucuronidase
- GalNAc, N-acetyl-D-galactosamine
- HDAd, helper-dependent adenovirus
- HDR, homology-directed repair
- HT, hereditary tyrosinemia
- HemA/B, haemophilia A/B
- IDS, iduronate 2-sulfatase
- IDUA, α-L-iduronidase
- IMLD, inherited metabolic liver diseases
- ITR, inverted terminal repetition
- LDH, lactate dehydrogenase
- LDLR, low-density lipoprotein receptor
- LNP, Lipid nanoparticles
- LTR, long terminal repeat
- LV, lentivirus
- MMA, methylmalonic acidemia
- MPR, metabolic pathway reprograming
- MPS type I, MPSI
- MPS type VII, MPSVII
- MPS, mucopolysaccharidosis
- NASH, non-alcoholic steatohepatitis
- NHEJ, non-homologous end joining
- NHPs, non-human primates
- Non-viral vectors
- OLT, orthotopic liver transplantation
- OTC, ornithine transcarbamylase
- PA, propionic acidemia
- PB, piggyBac
- PCSK9, proprotein convertase subtilisin/kexin type 9
- PEG, polyethylene glycol
- PEI, polyethyleneimine
- PFIC3, progressive familial cholestasis type 3
- PH1, Primary hyperoxaluria type 1
- PKU, phenylketonuria
- RV, retrovirus
- S/MAR, scaffold matrix attachment regions
- SB, Sleeping Beauty
- SRT, substrate reduction therapy
- STK25, serine/threonine protein kinase 25
- TALEN, transcription activator-like effector nucleases
- TTR, transthyretin
- UCD, urea cycle disorders
- VLDLR, very-low-density lipoprotein receptor
- WD, Wilson’s disease
- ZFN, zinc finger nucleases
- apoB/E, apolipoprotein B/E
- dCas9, dead Cas9
- efficacy
- gene addition
- gene editing
- gene silencing
- hepatocytes
- immune response
- lncRNA, long non-coding RNA
- miRNAs, microRNAs
- siRNA, small-interfering RNA
- toxicity
- viral vectors
Collapse
Affiliation(s)
- Sheila Maestro
- Gene Therapy Area, Foundation for Applied Medical Research, University of Navarra, IdisNA, Pamplona, Spain
| | | | - Nerea Zabaleta
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA
| | - Rafael Aldabe
- Gene Therapy Area, Foundation for Applied Medical Research, University of Navarra, IdisNA, Pamplona, Spain
- Corresponding authors. Address: CIMA, Universidad de Navarra. Av. Pio XII 55 31008 Pamplona. Spain
| | - Gloria Gonzalez-Aseguinolaza
- Gene Therapy Area, Foundation for Applied Medical Research, University of Navarra, IdisNA, Pamplona, Spain
- Vivet Therapeutics, Pamplona, Spain
- Corresponding authors. Address: CIMA, Universidad de Navarra. Av. Pio XII 55 31008 Pamplona. Spain
| |
Collapse
|
14
|
Earley LF, Conatser LM, Lue VM, Dobbins AL, Li C, Hirsch ML, Samulski RJ. Adeno-Associated Virus Serotype-Specific Inverted Terminal Repeat Sequence Role in Vector Transgene Expression. Hum Gene Ther 2021; 31:151-162. [PMID: 31914802 DOI: 10.1089/hum.2019.274] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Adeno-associated viral vectors have been successfully used in laboratory and clinical settings for efficient gene delivery. In these vectors, 96% of the adeno-associated virus (AAV) genome is replaced with a gene cassette of interest, leaving only the 145 bp inverted terminal repeat (ITR) sequences. These cis-elements, primarily from AAV serotype 2, are required for genome rescue, replication, packaging, and vector persistence. Previous work from our lab and others have demonstrated that the AAV ITR2 sequence has inherent transcriptional activity, which may confound intended transgene expression in therapeutic applications. Currently, AAV capsids are extensively study for vector contribution; however, a comprehensive analysis of ITR promoter activity of various AAV serotypes has not been described to date. Here, the transcriptional activity of AAV ITRs from different serotypes (1-4, 6, and 7) was compared in numerous cell lines and a mouse model. Under the conditions used here, all ITRs tested were capable of promoting transgene expression both in vitro and in vivo. However, we observed three classes of AAV ITR expression in vitro. Class I ITRs (AAV2 and 3) generated the highest level, whereas class II (AAV 4) had intermediate levels, and class III (AAV1 and 6) had the lowest levels. These expression levels were consistent across multiple cell lines. Only ITR7 demonstrated cell-type dependent transcriptional activity. In vivo, all classes had promoter activity. Next-generation sequencing revealed multiple transcriptional start sites that originated from the ITR sequence, with most arising from within the Rep binding element. The collective results demonstrate that the serotype ITR sequence may have multiple levels of influence on transgene expression cassettes independent of promoter selection.
Collapse
Affiliation(s)
- Lauriel F Earley
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina
| | - Laura M Conatser
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Ophthalmology, University of North Carolina, Chapel Hill, North Carolina
| | - Victoria M Lue
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Ophthalmology, University of North Carolina, Chapel Hill, North Carolina
| | - Amanda L Dobbins
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina
| | - Chengwen Li
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina.,Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina.,Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina
| | - Matthew L Hirsch
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Ophthalmology, University of North Carolina, Chapel Hill, North Carolina
| | - R Jude Samulski
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
15
|
Brown HC, Doering CB, Herzog RW, Ling C, Markusic DM, Spencer HT, Srivastava A, Srivastava A. Development of a Clinical Candidate AAV3 Vector for Gene Therapy of Hemophilia B. Hum Gene Ther 2020; 31:1114-1123. [PMID: 32657150 DOI: 10.1089/hum.2020.099] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although recombinant adeno-associated virus serotype 8 (AAV8) and serotype 5 (AAV5) vectors have shown efficacy in Phase 1 clinical trials for gene therapy of hemophilia B, it has become increasingly clear that these serotypes are not optimal for transducing primary human hepatocytes. We have previously reported that among the 10 most commonly used AAV serotypes, AAV serotype 3 (AAV3) vectors are the most efficient in transducing primary human hepatocytes in vitro as well as in "humanized" mice in vivo, and suggested that AAV3 vectors expressing human coagulation factor IX (hFIX) may be a more efficient alternative for clinical gene therapy of hemophilia B. In the present study, we extended these findings to develop an AAV3 vector incorporating a compact yet powerful liver-directed promoter as well as optimized hFIX cDNA sequence inserted between two AAV3 inverted terminal repeats. When packaged into an AAV3 capsid, this vector yields therapeutic levels of hFIX in hemophilia B and in "humanized" mice in vivo. Together, these studies have resulted in an AAV3 vector predicted to achieve clinical efficacy at reduced vector doses, without the need for immune-suppression, for clinical gene therapy of hemophilia B.
Collapse
Affiliation(s)
| | - Christopher B Doering
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Roland W Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Chen Ling
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - David M Markusic
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - H Trent Spencer
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Alok Srivastava
- Department of Haematology, Christian Medical College and Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Vellore, Tamil Nadu, India
| | - Arun Srivastava
- Division of Cellular and Molecular Therapy, Departments of Pediatrics and Molecular Genetics and Microbiology, Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
16
|
Chimeric Capsid Proteins Impact Transduction Efficiency of Haploid Adeno-Associated Virus Vectors. Viruses 2019; 11:v11121138. [PMID: 31835440 PMCID: PMC6950324 DOI: 10.3390/v11121138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/27/2019] [Accepted: 12/06/2019] [Indexed: 02/02/2023] Open
Abstract
Our previous studies have demonstrated that haploid AAV vectors made from capsids of two different serotypes induced high transduction and prevented serotype-specific antibody binding. In this study, we explored the transduction efficiency of several haploid viruses, which were made from the VP1/VP2 of one serotype and VP3 of another compatible serotype. After systemic injection of 2 × 1010 vg of AAV vectors into mice, the haploid AAV vectors, composed of VP1/VP2 from serotypes 8 or 9, and VP3 from AAV2, displayed a two to seven-fold increase in liver transduction compared with those of parental AAV2 vectors. Furthermore, a chimeric AAV2/8 VP1/VP2 with N-terminus of VP1/VP2 from AAV2 and C-terminus (VP3 domain) from AAV8 was constructed, and produced the haploid vector 28m-2VP3 with AAV2 VP3. The haploid 28m-2VP3 vector showed a five-fold higher transduction than that of the vectors composed solely of AAV2 VPs. Remarkably, the 28m-2VP3 vectors also induced a significant increase in transgene expression compared to the vectors composed of AAV8 VP1/VP2 with AAV2 VP3. The results suggest that the difference in the VP1/VP2 N-terminal region between AAV2 and AAV8 may allow better "communication" between the VP1/VP2 N-terminus of AAV2 with its cognate VP3. Similarly, the haploid vectors, VP1/VP2 from serotypes 8 or 9 and VP3 from AAV3, achieved higher transductions in multiple tissue types beyond typical tropism compared with those of AAV3 vectors. Consistently, higher vector genome copy numbers were detected in these tissues, indicating that an incorporation of non-cognate VP1/VP2 might influence the cellular tropism of the haploid vectors. However, there was no significant difference or even decreased transductions when compared with those of parental AAV8 or AAV9 vectors. In summary, these studies provide insight into current development strategies of AAV vectors that can increase AAV transduction across multiple tissues.
Collapse
|
17
|
Wilmott P, Lisowski L, Alexander IE, Logan GJ. A User's Guide to the Inverted Terminal Repeats of Adeno-Associated Virus. Hum Gene Ther Methods 2019; 30:206-213. [DOI: 10.1089/hgtb.2019.276] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Patrick Wilmott
- Translational Vectorology Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Leszek Lisowski
- Translational Vectorology Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
- Military Institute of Hygiene and Epidemiology, The Biological Threats Identification and Countermeasure Centre, Puławy, Poland
- Vector and Genome Engineering Facility; Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Ian E. Alexander
- Discipline of Child and Adolescent Health, University of Sydney, Westmead, Australia
- Gene Therapy Research Unit, Children's Medical Research Institute and Sydney Children's Hospitals Network, University of Sydney, Westmead, Australia
| | - Grant J. Logan
- Gene Therapy Research Unit, Children's Medical Research Institute and Sydney Children's Hospitals Network, University of Sydney, Westmead, Australia
| |
Collapse
|
18
|
Domenger C, Grimm D. Next-generation AAV vectors—do not judge a virus (only) by its cover. Hum Mol Genet 2019; 28:R3-R14. [DOI: 10.1093/hmg/ddz148] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 05/30/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022] Open
Abstract
AbstractRecombinant adeno-associated viruses (AAV) are under intensive investigation in numerous clinical trials after they have emerged as a highly promising vector for human gene therapy. Best exemplifying their power and potential is the authorization of three gene therapy products based on wild-type AAV serotypes, comprising Glybera (AAV1), Luxturna (AAV2) and, most recently, Zolgensma (AAV9). Nonetheless, it has also become evident that the current AAV vector generation will require improvements in transduction potency, antibody evasion and cell/tissue specificity to allow the use of lower and safer vector doses. To this end, others and we devoted substantial previous research to the implementation and application of key technologies for engineering of next-generation viral capsids in a high-throughput ‘top-down’ or (semi-)rational ‘bottom-up’ approach. Here, we describe a set of recent complementary strategies to enhance features of AAV vectors that act on the level of the recombinant cargo. As examples that illustrate the innovative and synergistic concepts that have been reported lately, we highlight (i) novel synthetic enhancers/promoters that provide an unprecedented degree of AAV tissue specificity, (ii) pioneering genetic circuit designs that harness biological (microRNAs) or physical (light) triggers as regulators of AAV gene expression and (iii) new insights into the role of AAV DNA structures on vector genome stability, integrity and functionality. Combined with ongoing capsid engineering and selection efforts, these and other state-of-the-art innovations and investigations promise to accelerate the arrival of the next generation of AAV vectors and to solidify the unique role of this exciting virus in human gene therapy.
Collapse
Affiliation(s)
- Claire Domenger
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, BioQuant Center, Im Neuenheimer Feld, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, BioQuant Center, Im Neuenheimer Feld, Heidelberg, Germany
- German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), Heidelberg, Germany
| |
Collapse
|
19
|
Cytostatic and Antiproliferative Activities of F5 Fraction of Crinum amabile Leaf Chloroform Extract Showed Its Potential as Cancer Chemotherapeutic Agent. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7521504. [PMID: 31097973 PMCID: PMC6487101 DOI: 10.1155/2019/7521504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/09/2019] [Accepted: 03/18/2019] [Indexed: 11/17/2022]
Abstract
Medicinal plants have been considered as promising sources of drugs in treating various cancers. Crinum amabile (C. amabile), a plant species from the Amaryllidaceae family, is claimed to be a potential source for cancer chemotherapeutic compounds. Here, we aimed to investigate the potential of C. amabile as an anticancer agent. Dried leaves of C. amabile were serially extracted and our findings showed that chloroform extract (CE) was shown to exhibit cytotoxic effect against all cancer cell lines used. This active extract was further fractionated in which F5 fraction was shown to possess the highest cytotoxicity among all fractions. F5 fraction was then tested in-depth through Annexin V/FITC apoptosis and DNA fragmentation assays to determine its apoptotic effect on MCF-7 cells. Results revealed that F5 fraction only showed induction of cell apoptosis starting at 72-hour treatment while DNA fragmentation was not detected at any of the concentrations and treatment periods tested. Meanwhile, cell proliferation assay revealed that F5 fraction was able to inhibit normal cell proliferation as well as VEGF-induced cell proliferation of normal endothelial cell (HUVECs). In conclusion, F5 fraction from C. amabile leaf CE was able to exhibit cytostatic effect through antiproliferation activity rather than induction of cell apoptosis and therefore has the potential to be further investigated as an anticancer agent.
Collapse
|
20
|
Extraction of Amana edulis Induces Liver Cancer Apoptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3927075. [PMID: 30069223 PMCID: PMC6057330 DOI: 10.1155/2018/3927075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/30/2018] [Indexed: 02/06/2023]
Abstract
HCC is one of the fastest-rising causes of cancer-related death. Novel therapeutic approaches for treatment are warranted. The goal of this study is to find effective components from Chinese herbal medicines, which is an important alternative source of anticancer medicine. To this end, six different herbs were selected from various traditional literatures. Soxhlet extractor was used to distill the strong polar and weak polar components of each herb. The inhibitive effect of each component was determined using liver cancer cells BEL7404. From total of 12 extractions, it was found that the combined crude lysate of Amana edulis from water and ethanol system had the best efficacy. At the concentration of 0.1 mg/mL, this component has the highest inhibition rate up to 70%. To investigate the underlying molecular reasons, we observed that the component can significantly induce the liver cancer cells apoptosis and retard the cell reproduction at G2/M stage. Verification experiments showed that this component also has apparent inhibitive effects on other liver cancer cells, such as HepG2 and Huh7. On the other hand, it has less effectiveness on another cell line HepaRG, which retains many characteristics of primary human hepatocytes. The results suggested that there might be highly efficient antihepatoma ingredient in the water and ethanol extraction of Amana edulis. The pure substances remain to be isolated and further research on their targets is required.
Collapse
|
21
|
Wang Y, Yang Y, Sun JC, Kong QJ, Wang HB, Shi JG. Effect of the adenovirus‑mediated Wip1 gene on lumbar intervertebral disc degeneration in a rabbit model. Mol Med Rep 2017; 16:9487-9493. [PMID: 29039507 PMCID: PMC5780007 DOI: 10.3892/mmr.2017.7774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 06/01/2017] [Indexed: 12/23/2022] Open
Abstract
The present study aimed to investigate the effect of the adenovirus-mediated wild-type p53-induced protein phosphatase 1 (Wip1) gene on lumbar disc degeneration (LDD) in a rabbit model. Adult New Zealand white rabbits were used as experimental subjects. The rabbits were divided into LDD groups (groups A-C of rabbit models of LDD) and control groups (groups D-F of normal rabbits). The animals in groups A and D were injected with the Wip1 gene vector, those in groups B and E were injected with an empty vector, and those in groups C and F were injected with phosphate-buffered saline. Type II collagen was detected using a streptavidin-biotin complex immunohistochemistry method. Postoperative X-ray imaging showed a significant increase in the recovery of rabbits from group A, compared with those from groups B and C. The nucleus pulposus proteoglycan content of the intervertebral discs (L2-3, L3-4 and L4-5) of group A remained higher, compared with the content in groups B and C, and the values in groups B and C differed from those of groups E and F. At 3, 6 and 9 weeks post-injection, the content of type II collagen of intervertebral discs (L2-3, L3-4 and L4-5) in group A differed from groups B and C, and the values in groups A-C remained lower, compared with those in groups D-F. The Wip1 gene exhibited a therapeutic effect in the treatment of LDD.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai 200003, P.R. China
| | - Yong Yang
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai 200003, P.R. China
| | - Jing-Chuan Sun
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai 200003, P.R. China
| | - Qin-Jie Kong
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai 200003, P.R. China
| | - Hai-Bo Wang
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai 200003, P.R. China
| | - Jian-Gang Shi
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai 200003, P.R. China
| |
Collapse
|
22
|
Markusic DM, Nichols TC, Merricks EP, Palaschak B, Zolotukhin I, Marsic D, Zolotukhin S, Srivastava A, Herzog RW. Evaluation of engineered AAV capsids for hepatic factor IX gene transfer in murine and canine models. J Transl Med 2017; 15:94. [PMID: 28460646 PMCID: PMC5412045 DOI: 10.1186/s12967-017-1200-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/25/2017] [Indexed: 01/21/2023] Open
Abstract
Background Adeno-associated virus (AAV) gene therapy vectors have shown the best outcomes in human clinical studies for the treatment of genetic diseases such as hemophilia. However, these pivotal investigations have also identified several challenges. For example, high vector doses are often used for hepatic gene transfer, and cytotoxic T lymphocyte responses against viral capsid may occur. Therefore, achieving therapy at reduced vector doses and other strategies to reduce capsid antigen presentation are desirable. Methods We tested several engineered AAV capsids for factor IX (FIX) expression for the treatment of hemophilia B by hepatic gene transfer. These capsids lack potential phosphorylation or ubiquitination sites, or had been generated through molecular evolution. Results AAV2 capsids lacking either a single lysine residue or 3 tyrosine residues directed substantially higher coagulation FIX expression in mice compared to wild-type sequence or other mutations. In hemophilia B dogs, however, expression from the tyrosine-mutant vector was merely comparable to historical data on AAV2. Evolved AAV2-LiC capsid was highly efficient in hemophilia B mice but lacked efficacy in a hemophilia B dog. Conclusions Several alternative strategies for capsid modification improve the in vivo performance of AAV vectors in hepatic gene transfer for correction of hemophilia. However, capsid optimization solely in mouse liver may not predict efficacy in other species and thus is of limited translational utility. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1200-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David M Markusic
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA.
| | - Timothy C Nichols
- Department of Pathology and Laboratory Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Elizabeth P Merricks
- Department of Pathology and Laboratory Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Brett Palaschak
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA
| | - Irene Zolotukhin
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA
| | - Damien Marsic
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA
| | - Sergei Zolotukhin
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA
| | - Arun Srivastava
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA
| | - Roland W Herzog
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
23
|
Schnödt M, Büning H. Improving the Quality of Adeno-Associated Viral Vector Preparations: The Challenge of Product-Related Impurities. Hum Gene Ther Methods 2017; 28:101-108. [PMID: 28322595 DOI: 10.1089/hgtb.2016.188] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Adeno-associated viral (AAV) vectors have emerged as one of the most popular gene transfer systems in both research and clinical gene therapy. As AAV vectors are derived from a stealth, nonpathogenic virus and lack active integrase activity, these vectors are frequently applied for in vivo gene therapy of liver, muscle, and other postmitotic tissues. Although long-term transgene expression from AAV vector episomes is reported from these tissues, the episomal nature of AAV-once regarded as disadvantage-has become an attractive feature for gene-editing approaches targeting proliferating cells. In response to the high demand, AAV vector production is receiving special attention. Besides particle yields and biological activity, the most important concern is improving vector purity. The most difficult task in this regard is removal of defective particles, that is, capsids that are either empty or contain DNA other than the full-length vector genomes. Herein, we characterize and discuss these so-called product-related impurities, methods for their detection, as well as strategies to avoid or reduce their formation.
Collapse
Affiliation(s)
- Maria Schnödt
- 1 Center for Molecular Medicine Cologne, University of Cologne , Cologne, Germany .,2 German Center for Infection Research , Bonn-Cologne and Hannover-Braunschweig (partner sites), Germany .,3 Department I of Internal Medicine, University Hospital Cologne , Cologne, Germany
| | - Hildegard Büning
- 1 Center for Molecular Medicine Cologne, University of Cologne , Cologne, Germany .,2 German Center for Infection Research , Bonn-Cologne and Hannover-Braunschweig (partner sites), Germany .,3 Department I of Internal Medicine, University Hospital Cologne , Cologne, Germany .,4 Institute of Experimental Hematology, Hannover Medical School , Hannover, Germany
| |
Collapse
|
24
|
Robert MA, Chahal PS, Audy A, Kamen A, Gilbert R, Gaillet B. Manufacturing of recombinant adeno-associated viruses using mammalian expression platforms. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600193] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/08/2016] [Accepted: 12/19/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Marc-André Robert
- Département de génie chimique; Université Laval; Québec QC Canada
- National Research Council Canada; Montréal QC Canada
| | | | - Alexandre Audy
- Département de génie chimique; Université Laval; Québec QC Canada
- National Research Council Canada; Montréal QC Canada
| | - Amine Kamen
- Department of Bioengineering; McGill University; Montréal QC Canada
| | | | - Bruno Gaillet
- Département de génie chimique; Université Laval; Québec QC Canada
| |
Collapse
|