1
|
Peptide-Functionalized Dendrimer Nanocarriers for Targeted Microdystrophin Gene Delivery. Pharmaceutics 2021; 13:pharmaceutics13122159. [PMID: 34959441 PMCID: PMC8708248 DOI: 10.3390/pharmaceutics13122159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/07/2021] [Accepted: 12/12/2021] [Indexed: 12/13/2022] Open
Abstract
Gene therapy is a good alternative for determined congenital disorders; however, there are numerous limitations for gene delivery in vivo including targeted cellular uptake, intracellular trafficking, and transport through the nuclear membrane. Here, a modified G5 polyamidoamine (G5 PAMAM) dendrimer-DNA complex was developed, which will allow cell-specific targeting to skeletal muscle cells and transport the DNA through the intracellular machinery and the nuclear membrane. The G5 PAMAM nanocarrier was modified with a skeletal muscle-targeting peptide (SMTP), a DLC8-binding peptide (DBP) for intracellular transport, and a nuclear localization signaling peptide (NLS) for nuclear uptake, and polyplexed with plasmid DNA containing the GFP-tagged microdystrophin (µDys) gene. The delivery of µDys has been considered as a therapeutic modality for patients suffering from a debilitating Duchenne muscular dystrophy (DMD) disorder. The nanocarrier-peptide-DNA polyplexes were prepared with different charge ratios and characterized for stability, size, surface charge, and cytotoxicity. Using the optimized nanocarrier polyplexes, the transfection efficiency in vitro was determined by demonstrating the expression of the GFP and the µDys protein using fluorescence and Western blotting studies, respectively. Protein expression in vivo was determined by injecting an optimal nanocarrier polyplex formulation to Duchenne model mice, mdx4Cv. Ultimately, these nanocarrier polyplexes will allow targeted delivery of the microdystrophin gene to skeletal muscle cells and result in improved muscle function in Duchenne muscular dystrophy patients.
Collapse
|
2
|
Nelson CE, Robinson-Hamm JN, Gersbach CA. Genome engineering: a new approach to gene therapy for neuromuscular disorders. Nat Rev Neurol 2017; 13:647-661. [DOI: 10.1038/nrneurol.2017.126] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
3
|
Therapeutic gene editing: delivery and regulatory perspectives. Acta Pharmacol Sin 2017; 38:738-753. [PMID: 28392568 PMCID: PMC5520188 DOI: 10.1038/aps.2017.2] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/04/2017] [Indexed: 12/19/2022]
Abstract
Gene-editing technology is an emerging therapeutic modality for manipulating the eukaryotic genome by using target-sequence-specific engineered nucleases. Because of the exceptional advantages that gene-editing technology offers in facilitating the accurate correction of sequences in a genome, gene editing-based therapy is being aggressively developed as a next-generation therapeutic approach to treat a wide range of diseases. However, strategies for precise engineering and delivery of gene-editing nucleases, including zinc finger nucleases, transcription activator-like effector nuclease, and CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats-associated nuclease Cas9), present major obstacles to the development of gene-editing therapies, as with other gene-targeting therapeutics. Currently, viral and non-viral vectors are being studied for the delivery of these nucleases into cells in the form of DNA, mRNA, or proteins. Clinical trials are already ongoing, and in vivo studies are actively investigating the applicability of CRISPR/Cas9 techniques. However, the concept of correcting the genome poses major concerns from a regulatory perspective, especially in terms of safety. This review addresses current research trends and delivery strategies for gene editing-based therapeutics in non-clinical and clinical settings and considers the associated regulatory issues.
Collapse
|
4
|
Kim EJ, Kang KH, Ju JH. CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells. Korean J Intern Med 2017; 32:42-61. [PMID: 28049282 PMCID: PMC5214730 DOI: 10.3904/kjim.2016.198] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/10/2016] [Indexed: 12/13/2022] Open
Abstract
Recent advances in genome editing with programmable nucleases have opened up new avenues for multiple applications, from basic research to clinical therapy. The ease of use of the technology-and particularly clustered regularly interspaced short palindromic repeats (CRISPR)-will allow us to improve our understanding of genomic variation in disease processes via cellular and animal models. Here, we highlight the progress made in correcting gene mutations in monogenic hereditary disorders and discuss various CRISPR-associated applications, such as cancer research, synthetic biology, and gene therapy using induced pluripotent stem cells. The challenges, ethical issues, and future prospects of CRISPR-based systems for human research are also discussed.
Collapse
Affiliation(s)
- Eun Ji Kim
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Ki Ho Kang
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Ji Hyeon Ju
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
- Correspondence to Ji Hyeon Ju, M.D. Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea Tel: +82-2-2258-6893 Fax: +82-2-3476-2274 E-mail:
| |
Collapse
|
5
|
Abstract
Duchenne muscular dystrophy (DMD) is a recessive lethal inherited muscular dystrophy caused by mutations in the gene encoding dystrophin, a protein required for muscle fibre integrity. So far, many approaches have been tested from the traditional gene addition to newer advanced approaches based on manipulation of the cellular machinery either at the gene transcription, mRNA processing or translation levels. Unfortunately, despite all these efforts, no efficient treatments for DMD are currently available. In this review, we highlight the most advanced therapeutic strategies under investigation as potential DMD treatments.
Collapse
Affiliation(s)
- Hayder Abdul-Razak
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Alberto Malerba
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - George Dickson
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| |
Collapse
|
6
|
Abstract
The field of genome engineering has created new possibilities for gene therapy, including improved animal models of disease, engineered cell therapies, and in vivo gene repair. The most significant challenge for the clinical translation of genome engineering is the development of safe and effective delivery vehicles. A large body of work has applied genome engineering to genetic modification in vitro, and clinical trials have begun using cells modified by genome editing. Now, promising preclinical work is beginning to apply these tools in vivo. This article summarizes the development of genome engineering platforms, including meganucleases, zinc finger nucleases, TALENs, and CRISPR/Cas9, and their flexibility for precise genetic modifications. The prospects for the development of safe and effective viral and nonviral delivery vehicles for genome editing are reviewed, and promising advances in particular therapeutic applications are discussed.
Collapse
Affiliation(s)
- Christopher E Nelson
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708
- Center for Genomic & Computational Biology, Duke University, Durham, North Carolina 27708
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708
- Center for Genomic & Computational Biology, Duke University, Durham, North Carolina 27708
- Department of Orthopaedic Surgery, Duke University, Durham, North Carolina 27708;
| |
Collapse
|
7
|
Maeder ML, Gersbach CA. Genome-editing Technologies for Gene and Cell Therapy. Mol Ther 2016; 24:430-46. [PMID: 26755333 PMCID: PMC4786923 DOI: 10.1038/mt.2016.10] [Citation(s) in RCA: 447] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/07/2016] [Indexed: 12/11/2022] Open
Abstract
Gene therapy has historically been defined as the addition of new genes to human cells. However, the recent advent of genome-editing technologies has enabled a new paradigm in which the sequence of the human genome can be precisely manipulated to achieve a therapeutic effect. This includes the correction of mutations that cause disease, the addition of therapeutic genes to specific sites in the genome, and the removal of deleterious genes or genome sequences. This review presents the mechanisms of different genome-editing strategies and describes each of the common nuclease-based platforms, including zinc finger nucleases, transcription activator-like effector nucleases (TALENs), meganucleases, and the CRISPR/Cas9 system. We then summarize the progress made in applying genome editing to various areas of gene and cell therapy, including antiviral strategies, immunotherapies, and the treatment of monogenic hereditary disorders. The current challenges and future prospects for genome editing as a transformative technology for gene and cell therapy are also discussed.
Collapse
Affiliation(s)
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
8
|
Neuromuscular electrical stimulation promotes development in mice of mature human muscle from immortalized human myoblasts. Skelet Muscle 2016; 6:4. [PMID: 26925213 PMCID: PMC4769538 DOI: 10.1186/s13395-016-0078-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 01/06/2016] [Indexed: 12/25/2022] Open
Abstract
Background Studies of the pathogenic mechanisms underlying human myopathies and muscular dystrophies often require animal models, but models of some human diseases are not yet available. Methods to promote the engraftment and development of myogenic cells from individuals with such diseases in mice would accelerate such studies and also provide a useful tool for testing therapeutics. Here, we investigate the ability of immortalized human myogenic precursor cells (hMPCs) to form mature human myofibers following implantation into the hindlimbs of non-obese diabetic-Rag1nullIL2rγnull (NOD-Rag)-immunodeficient mice. Results We report that hindlimbs of NOD-Rag mice that are X-irradiated, treated with cardiotoxin, and then injected with immortalized control hMPCs or hMPCs from an individual with facioscapulohumeral muscular dystrophy (FSHD) develop mature human myofibers. Furthermore, intermittent neuromuscular electrical stimulation (iNMES) of the peroneal nerve of the engrafted limb enhances the development of mature fibers in the grafts formed by both immortal cell lines. With control cells, iNMES increases the number and size of the human myofibers that form and promotes closer fiber-to-fiber packing. The human myofibers in the graft are innervated, fully differentiated, and minimally contaminated with murine myonuclei. Conclusions Our results indicate that control and FSHD human myofibers can form in mice engrafted with hMPCs and that iNMES enhances engraftment and subsequent development of mature human muscle.
Collapse
|
9
|
|
10
|
Chen X, Gonçalves MAFV. Engineered Viruses as Genome Editing Devices. Mol Ther 2015; 24:447-57. [PMID: 26336974 PMCID: PMC4786910 DOI: 10.1038/mt.2015.164] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/26/2015] [Indexed: 12/23/2022] Open
Abstract
Genome editing based on sequence-specific designer nucleases, also known as programmable nucleases, seeks to modify in a targeted and precise manner the genetic information content of living cells. Delivering into cells designer nucleases alone or together with donor DNA templates, which serve as surrogate homologous recombination (HR) substrates, can result in gene knockouts or gene knock-ins, respectively. As engineered replication-defective viruses, viral vectors are having an increasingly important role as delivery vehicles for donor DNA templates and designer nucleases, namely, zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated Cas9 (CRISPR−Cas9) nucleases, also known as RNA-guided nucleases (RGNs). We review this dual role played by engineered viral particles on genome editing while focusing on their main scaffolds, consisting of lentiviruses, adeno-associated viruses, and adenoviruses. In addition, the coverage of the growing body of research on the repurposing of viral vectors as delivery systems for genome editing tools is complemented with information regarding their main characteristics, pros, and cons. Finally, this information is framed by a concise description of the chief principles, tools, and applications of the genome editing field as a whole.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Leiden University Medical Center, Department of Molecular Cell Biology, Leiden, The Netherlands
| | - Manuel A F V Gonçalves
- Leiden University Medical Center, Department of Molecular Cell Biology, Leiden, The Netherlands
| |
Collapse
|
11
|
Maggio I, Gonçalves MAFV. Genome editing at the crossroads of delivery, specificity, and fidelity. Trends Biotechnol 2015; 33:280-91. [PMID: 25819765 DOI: 10.1016/j.tibtech.2015.02.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 12/26/2022]
Abstract
Genome editing (GE) entails the modification of specific genomic sequences in living cells for the purpose of determining, changing, or expanding their function(s). Typically, GE occurs after delivering sequence-specific designer nucleases (e.g., ZFNs, TALENs, and CRISPR/Cas9) and donor DNA constructs into target cells. These designer nucleases can generate gene knockouts or gene knock-ins when applied alone or in combination with donor DNA templates, respectively. We review progress in this field, with an emphasis on designer nuclease and donor template delivery into mammalian target cell populations. We also discuss the impact that incremental improvements to these tools are having on the specificity and fidelity attainable with state-of-the-art DNA-editing procedures. Finally, we identify areas that warrant further investigation.
Collapse
Affiliation(s)
- Ignazio Maggio
- Leiden University Medical Center, Department of Molecular Cell Biology, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Manuel A F V Gonçalves
- Leiden University Medical Center, Department of Molecular Cell Biology, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.
| |
Collapse
|
12
|
Ousterout DG, Kabadi AM, Thakore PI, Majoros WH, Reddy TE, Gersbach CA. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun 2015; 6:6244. [PMID: 25692716 PMCID: PMC4335351 DOI: 10.1038/ncomms7244] [Citation(s) in RCA: 328] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 01/08/2015] [Indexed: 12/16/2022] Open
Abstract
The CRISPR/Cas9 genome-editing platform is a promising technology to correct the genetic basis of hereditary diseases. The versatility, efficiency and multiplexing capabilities of the CRISPR/Cas9 system enable a variety of otherwise challenging gene correction strategies. Here, we use the CRISPR/Cas9 system to restore the expression of the dystrophin gene in cells carrying dystrophin mutations that cause Duchenne muscular dystrophy (DMD). We design single or multiplexed sgRNAs to restore the dystrophin reading frame by targeting the mutational hotspot at exons 45-55 and introducing shifts within exons or deleting one or more exons. Following gene editing in DMD patient myoblasts, dystrophin expression is restored in vitro. Human dystrophin is also detected in vivo after transplantation of genetically corrected patient cells into immunodeficient mice. Importantly, the unique multiplex gene-editing capabilities of the CRISPR/Cas9 system facilitate the generation of a single large deletion that can correct up to 62% of DMD mutations.
Collapse
Affiliation(s)
- David G. Ousterout
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America, 27708
| | - Ami M. Kabadi
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America, 27708
| | - Pratiksha I. Thakore
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America, 27708
| | - William H. Majoros
- Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina, United States of America, 27708
| | - Timothy E. Reddy
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America, 27708
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina, United States of America, 27710
| | - Charles A. Gersbach
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America, 27708
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America, 27708
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, United States of America, 27710
| |
Collapse
|
13
|
Correction of dystrophin expression in cells from Duchenne muscular dystrophy patients through genomic excision of exon 51 by zinc finger nucleases. Mol Ther 2014; 23:523-32. [PMID: 25492562 PMCID: PMC4351462 DOI: 10.1038/mt.2014.234] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 11/28/2014] [Indexed: 01/22/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by genetic mutations that result in the absence of dystrophin protein expression. Oligonucleotide-induced exon skipping can restore the dystrophin reading frame and protein production. However, this requires continuous drug administration and may not generate complete skipping of the targeted exon. In this study, we apply genome editing with zinc finger nucleases (ZFNs) to permanently remove essential splicing sequences in exon 51 of the dystrophin gene and thereby exclude exon 51 from the resulting dystrophin transcript. This approach can restore the dystrophin reading frame in ~13% of DMD patient mutations. Transfection of two ZFNs targeted to sites flanking the exon 51 splice acceptor into DMD patient myoblasts led to deletion of this genomic sequence. A clonal population was isolated with this deletion and following differentiation we confirmed loss of exon 51 from the dystrophin mRNA transcript and restoration of dystrophin protein expression. Furthermore, transplantation of corrected cells into immunodeficient mice resulted in human dystrophin expression localized to the sarcolemmal membrane. Finally, we quantified ZFN toxicity in human cells and mutagenesis at predicted off-target sites. This study demonstrates a powerful method to restore the dystrophin reading frame and protein expression by permanently deleting exons.
Collapse
|
14
|
Holkers M, Maggio I, Henriques SFD, Janssen JM, Cathomen T, Gonçalves MAFV. Adenoviral vector DNA for accurate genome editing with engineered nucleases. Nat Methods 2014; 11:1051-7. [PMID: 25152084 DOI: 10.1038/nmeth.3075] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/17/2014] [Indexed: 02/08/2023]
Abstract
Engineered sequence-specific nucleases and donor DNA templates can be customized to edit mammalian genomes via the homologous recombination (HR) pathway. Here we report that the nature of the donor DNA greatly affects the specificity and accuracy of the editing process following site-specific genomic cleavage by transcription activator-like effector nucleases (TALENs) and clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 nucleases. By applying these designer nucleases together with donor DNA delivered as protein-capped adenoviral vector (AdV), free-ended integrase-defective lentiviral vector or nonviral vector templates, we found that the vast majority of AdV-modified human cells underwent scarless homology-directed genome editing. In contrast, a significant proportion of cells exposed to free-ended or to covalently closed HR substrates were subjected to random and illegitimate recombination events. These findings are particularly relevant for genome engineering approaches aiming at high-fidelity genetic modification of human cells.
Collapse
Affiliation(s)
- Maarten Holkers
- 1] Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands. [2]
| | - Ignazio Maggio
- 1] Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands. [2]
| | - Sara F D Henriques
- 1] Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands. [2] Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Josephine M Janssen
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Toni Cathomen
- 1] Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany. [2] Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Manuel A F V Gonçalves
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
15
|
Bertoni C. Emerging gene editing strategies for Duchenne muscular dystrophy targeting stem cells. Front Physiol 2014; 5:148. [PMID: 24795643 PMCID: PMC4001063 DOI: 10.3389/fphys.2014.00148] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 03/28/2014] [Indexed: 01/06/2023] Open
Abstract
The progressive loss of muscle mass characteristic of many muscular dystrophies impairs the efficacy of most of the gene and molecular therapies currently being pursued for the treatment of those disorders. It is becoming increasingly evident that a therapeutic application, to be effective, needs to target not only mature myofibers, but also muscle progenitors cells or muscle stem cells able to form new muscle tissue and to restore myofibers lost as the result of the diseases or during normal homeostasis so as to guarantee effective and lost lasting effects. Correction of the genetic defect using oligodeoxynucleotides (ODNs) or engineered nucleases holds great potential for the treatment of many of the musculoskeletal disorders. The encouraging results obtained by studying in vitro systems and model organisms have set the groundwork for what is likely to become an emerging field in the area of molecular and regenerative medicine. Furthermore, the ability to isolate and expand from patients various types of muscle progenitor cells capable of committing to the myogenic lineage provides the opportunity to establish cell lines that can be used for transplantation following ex vivo manipulation and expansion. The purpose of this article is to provide a perspective on approaches aimed at correcting the genetic defect using gene editing strategies and currently under development for the treatment of Duchenne muscular dystrophy (DMD), the most sever of the neuromuscular disorders. Emphasis will be placed on describing the potential of using the patient own stem cell as source of transplantation and the challenges that gene editing technologies face in the field of regenerative biology.
Collapse
Affiliation(s)
- Carmen Bertoni
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles CA, USA
| |
Collapse
|