1
|
Bronstone GJ, Harton M, Muldowney M, Reigle J, Funk AJ, O'Donovan SM, McCullumsmith RE, Bauer DE. The C. elegans glutamate transporters GLT-4 and GLT-5 regulate protein expression, behavior, and lifespan. Neurochem Int 2025; 186:105966. [PMID: 40147734 PMCID: PMC12053503 DOI: 10.1016/j.neuint.2025.105966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/10/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Glutamate transporters are important for regulating extracellular glutamate levels, impacting neural function and metabolic homeostasis. This study explores the behavioral, lifespan, and proteomic profiles in Caenorhabditis elegans strains with either glt-4 or glt-5 null mutations, highlighting contrasting phenotypes. Δglt-4 mutants displayed impaired mechanosensory and chemotactic responses, reduced lifespans, and decreased expression levels of ribosomal proteins and chaperonins involved in protein synthesis and folding. In contrast, Δglt-5 mutants displayed heightened chemorepulsion, extended lifespans, and upregulation of mitochondrial pyruvate carriers and cytoskeletal proteins. Proteomic profiling via mass spectrometry identified 53 differentially expressed proteins in Δglt-4 mutants and 45 in Δglt-5 mutants. Δglt-4 mutants showed disruptions in ribonucleoprotein complex organization and translational processes, including downregulation of glycogen phosphorylase and V-type ATPase subunits, while Δglt-5 mutants revealed altered metabolic protein expression, such as increased levels of mitochondrial pyruvate carriers and decreased levels of fibrillarin and ribosomal proteins. Gene ontology enrichment analysis highlighted differential regulation of protein biosynthesis and metabolic pathways between the strains. Overall, these findings underscore the distinct, tissue-specific roles of GLT-4 and GLT-5 in C. elegans, with broader implications for glutamate regulation and systemic physiology. The results also reinforce the utility of C. elegans as a model for studying glutamate transporters' impact on behavior, longevity, and proteostasis.
Collapse
Affiliation(s)
- Grace J Bronstone
- Department of Neuroscience, Wellesley College, Science Center, 106 Central Street, Wellesley, MA, 02481, USA.
| | - Moriah Harton
- Department of Neuroscience, Wellesley College, Science Center, 106 Central Street, Wellesley, MA, 02481, USA
| | - Maya Muldowney
- Department of Neuroscience, Wellesley College, Science Center, 106 Central Street, Wellesley, MA, 02481, USA
| | - James Reigle
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA; Department of Biomedical Informatics, University of Cincinnati College of Medicine, Medical Sciences Building 231 Albert Sabin Way, PO Box 670769, Cincinnati, OH, 45267, USA
| | - Adam J Funk
- Department of Neuroscience, University of Toledo College of Medicine, 179 Block Health Science Building Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Sinead M O'Donovan
- Department of Neuroscience, University of Toledo College of Medicine, 179 Block Health Science Building Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Robert E McCullumsmith
- Department of Neuroscience, University of Toledo College of Medicine, 179 Block Health Science Building Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614, USA; Neurosciences Institute, ProMedica, 2130 West Central Avenue, Toledo, OH, 43606, USA
| | - Deborah E Bauer
- Department of Neuroscience, Wellesley College, Science Center, 106 Central Street, Wellesley, MA, 02481, USA.
| |
Collapse
|
2
|
Qiu B, Boudker O. Structural basis of excitatory amino acid transporter 3 substrate recognition. Proc Natl Acad Sci U S A 2025; 122:e2501627122. [PMID: 40249774 PMCID: PMC12036983 DOI: 10.1073/pnas.2501627122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/28/2025] [Indexed: 04/20/2025] Open
Abstract
Excitatory amino acid transporters (EAATs) reside on cell surfaces and uptake substrates, including L-glutamate, L-aspartate, and D-aspartate, using ion gradients. Among five EAATs, EAAT3 is the only isoform that can efficiently transport L-cysteine, a substrate for glutathione synthesis. Recent studies suggest that EAAT3 also transports the oncometabolite R-2-hydroxyglutarate (R-2HG). Here, we examined the structural basis of substrate recognition by determining the cryogenic electron microscopy (cryo-EM) structures of EAAT3 bound to different substrates. We found that L-cysteine binds to EAAT3 in thiolate form, and EAAT3 recognizes different substrates by fine-tuning local conformations of the coordinating residues. However, using purified human EAAT3, we could not observe R-2HG binding or transport. Imaging of EAAT3 bound to L-cysteine revealed several conformational states, including an outward-facing state with a semi-open gate and a disrupted sodium-binding site. These structures demonstrate that the full gate closure, coupled with the binding of the last sodium ion, occurs after substrate binding. Furthermore, we observed that different substrates affect how the transporter distributes between a fully outward-facing conformation and intermediate occluded states on a path to the inward-facing conformation, suggesting that translocation rates are substrate-dependent.
Collapse
Affiliation(s)
- Biao Qiu
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, NY10021
- HHMI, Weill Cornell Medicine, New York, NY10021
| | - Olga Boudker
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, NY10021
- HHMI, Weill Cornell Medicine, New York, NY10021
| |
Collapse
|
3
|
Kataria A, Bohrnsen E, Schwarz B, Drecktrah D, Samuels DS, Carmody AB, Myers LM, Groshong AM. Dissection of amino acid acquisition pathways in Borrelia burgdorferi uncovers unique physiological responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643351. [PMID: 40161780 PMCID: PMC11952506 DOI: 10.1101/2025.03.14.643351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, is well known for its unique morphology, physiology, and enzootic lifecycle. Building on previous work that showed peptide transport is essential for viability, we endeavored to more clearly define the impact of peptide starvation on the spirochete and directly compare peptide starvation to targeted free amino acid starvation. Herein, we confirm the ability of a putative GltP, BB0401, to facilitate transport of glutamate and aspartate as well as demonstrate its requirement for cell growth and motility. Using conditional mutants for both peptide transport and BB0401, we characterize these systems throughout the enzootic cycle, both confirming their essential role during murine infection and revealing that they are, surprisingly, dispensable during prolonged colonization of the tick midgut. We broadly define the metabolic perturbations resulting from these amino acid starvation models and show that, even under the most severe amino acid stress, B. burgdorferi is unable to modulate its physiological response via the canonical (p)ppGpp-driven stringent response.
Collapse
Affiliation(s)
- Arti Kataria
- Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Eric Bohrnsen
- Proteins and Chemistry Section, Research Technologies Branch, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Benjamin Schwarz
- Proteins and Chemistry Section, Research Technologies Branch, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - D. Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Aaron B. Carmody
- Flow Cytometry Section, Research Technologies Branch, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Lara M. Myers
- Flow Cytometry Section, Research Technologies Branch, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Ashley M. Groshong
- Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
4
|
Thangapandian S, Fakharzadeh A, Moradi M, Tajkhorshid E. Conformational free energy landscape of a glutamate transporter and microscopic details of its transport mechanism. Proc Natl Acad Sci U S A 2025; 122:e2416381122. [PMID: 40042900 PMCID: PMC11912404 DOI: 10.1073/pnas.2416381122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/21/2025] [Indexed: 03/19/2025] Open
Abstract
Removing glutamate from the synaptic cleft is vital for proper function of the brain. Excitatory amino acid transporters mediate this process by uptaking the neurotransmitter from the synaptic cleft back to the cell after its release. The archaeal homolog, GltPh, an aspartate transporter from Pyrococcus horikoshii, presents the best structurally characterized model for this family of transporters. In order to transport, GltPh undergoes elevator-like conformational changes between inward-facing (IF) and outward-facing (OF) states. Here, we characterize, at an atomic level, the OF⇌IF transition of GltPh in different apo/bound states using a combination of ensemble-based enhanced sampling techniques, employing more than two thousand of coupled simulation replicas of membrane-embedded GltPh. The resulting free-energy profiles portray the transition of apo/bound states as a complex four-stage process, while sodium binding alone locks the structure in one of its states. Along the transition, the transport domain (TD) disengages from the scaffold domain (SD), allowing it to move as a piston sliding vertically with respect to the membrane during the elevator-like motion of TD. Lipid interactions with residues comprising the SD-TD interface directly influence the large-scale conformational changes and, consequently, the energetics of transport. Structural intermediates formed during the transition leak water molecules and may correlate to the uncoupled Cl- ion conductance observed experimentally in both prokaryotic and mammalian glutamate transporters. Mechanistic insights obtained from our study provide a structural framework for better development of therapeutic for neurological disorders.
Collapse
Affiliation(s)
- Sundar Thangapandian
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL61801
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Ashkan Fakharzadeh
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL61801
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR72701
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL61801
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL61801
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
5
|
Jiang Y, Wang Z, Scheuring S. A structural biology compatible file format for atomic force microscopy. Nat Commun 2025; 16:1671. [PMID: 39955301 PMCID: PMC11829953 DOI: 10.1038/s41467-025-56760-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/30/2025] [Indexed: 02/17/2025] Open
Abstract
Cryogenic electron microscopy (cryo-EM), X-ray crystallography, and nuclear magnetic resonance (NMR) contribute structural data that are interchangeable, cross-verifiable, and visualizable on common platforms, making them powerful tools for our understanding of protein structures. Unfortunately, atomic force microscopy (AFM) has so far failed to interface with these structural biology methods, despite the recent development of localization AFM (LAFM) that allows extracting high-resolution structural information from AFM data. Here, we build on LAFM and develop a pipeline that transforms AFM data into 3D-density files (.afm) that are readable by programs commonly used to visualize, analyze, and interpret structural data. We show that 3D-LAFM densities can serve as force fields to steer molecular dynamics flexible fitting (MDFF) to obtain structural models of previously unresolved states based on AFM observations in close-to-native environment. Besides, the .afm format enables direct 3D or 2D visualization and analysis of conventional AFM images. We anticipate that the file format will find wide usage and embed AFM in the repertoire of methods routinely used by the structural biology community, allowing AFM researchers to deposit data in repositories in a format that allows comparison and cross-verification with data from other techniques.
Collapse
Affiliation(s)
- Yining Jiang
- Biochemistry & Structural Biology, Cell & Developmental Biology, and Molecular Biology (BCMB) Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- Weill Cornell Medicine, Department of Anesthesiology, New York, NY, USA
| | - Zhaokun Wang
- Weill Cornell Medicine, Department of Anesthesiology, New York, NY, USA
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Simon Scheuring
- Weill Cornell Medicine, Department of Anesthesiology, New York, NY, USA.
- Weill Cornell Medicine, Department of Physiology and Biophysics, New York, NY, USA.
| |
Collapse
|
6
|
Müh F, Bothe A, Zouni A. Towards understanding the crystallization of photosystem II: influence of poly(ethylene glycol) of various molecular sizes on the micelle formation of alkyl maltosides. PHOTOSYNTHESIS RESEARCH 2024; 162:273-289. [PMID: 38488943 PMCID: PMC11615006 DOI: 10.1007/s11120-024-01079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/24/2024] [Indexed: 03/17/2024]
Abstract
The influence of poly(ethylene glycol) (PEG) polymers H-(O-CH2-CH2)p-OH with different average molecular sizes p on the micelle formation of n-alkyl-β-D-maltoside detergents with the number of carbon atoms in the alkyl chain ranging from 10 to 12 is investigated with the aim to learn more about the detergent behavior under conditions suitable for the crystallization of the photosynthetic pigment-protein complex photosystem II. PEG is shown to increase the critical micelle concentration (CMC) of all three detergents in the crystallization buffer in a way that the free energy of micelle formation increases linearly with the concentration of oxyethylene units (O-CH2-CH2) irrespective of the actual molecular weight of the polymer. The CMC shift is modeled by assuming for simplicity that it is dominated by the interaction between PEG and detergent monomers and is interpreted in terms of an increase of the transfer free energy of a methylene group of the alkyl chain by 0.2 kJ mol-1 per 1 mol L-1 increase of the concentration of oxyethylene units at 298 K. Implications of this effect for the solubilization and crystallization of protein-detergent complexes as well as detergent extraction from crystals are discussed.
Collapse
Affiliation(s)
- Frank Müh
- Institut für Theoretische Physik, Johannes Kepler Universität Linz, Altenberger Strasse 69, 4040, Linz, Austria.
| | - Adrian Bothe
- Institut für Molekularbiologie und Biophysik, ETH Zürich, HPK, Otto-Stern-Weg 5, CH-8093, Zurich, Switzerland
| | - Athina Zouni
- Institut für Biologie, Humboldt Universität zu Berlin, Leonor-Michaelis-Haus, Philippstrasse 13, 10095, Berlin, Germany
| |
Collapse
|
7
|
Wang X, Rusinova R, Gregorio GG, Boudker O. Free fatty acids inhibit an ion-coupled membrane transporter by dissipating the ion gradient. J Biol Chem 2024; 300:107955. [PMID: 39491650 DOI: 10.1016/j.jbc.2024.107955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
Glutamate is the main excitatory transmitter in the mammalian central nervous system; glutamate transporters keep the synaptic glutamate concentrations at bay for normal brain function. Arachidonic acid (AA), docosahexaenoic acid, and other unsaturated fatty acids modulate glutamate transporters in cell- and tissue slices-based studies. Here, we investigated their effect and mechanism using a purified archaeal glutamate transporter homolog reconstituted into the lipid membranes. AA, docosahexaenoic acid, and related fatty acids irreversibly inhibited the sodium-dependent concentrative substrate uptake into lipid vesicles within the physiologically relevant concentration range. In contrast, AA did not inhibit amino acid exchange across the membrane. The length and unsaturation of the aliphatic tail affect inhibition, and the free carboxylic headgroup is necessary. The inhibition potency did not correlate with the fatty acid effects on the bilayer deformation energies. AA does not affect the conformational dynamics of the protein, suggesting it does not inhibit structural transitions necessary for transport. Single-transporter and membrane voltage assays showed that AA and related fatty acids mediate cation leak, dissipating the driving sodium gradient. Thus, such fatty acids can act as cation ionophores, suggesting a general modulatory mechanism of membrane channels and ion-coupled transporters.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York, USA.
| | - Radda Rusinova
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York, USA
| | - G Glenn Gregorio
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York, USA; Howard Hughes Medical Institute, Weill Cornell Medicine, New York, New York, USA
| | - Olga Boudker
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York, USA; Howard Hughes Medical Institute, Weill Cornell Medicine, New York, New York, USA.
| |
Collapse
|
8
|
Perrin F, Anderson LC, Mitchell SPC, Sinha P, Turchyna Y, Maesako M, Houser MCQ, Zhang C, Wagner SL, Tanzi RE, Berezovska O. PS1/gamma-secretase acts as rogue chaperone of glutamate transporter EAAT2/GLT-1 in Alzheimer's disease. Acta Neuropathol Commun 2024; 12:166. [PMID: 39434170 PMCID: PMC11492509 DOI: 10.1186/s40478-024-01876-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024] Open
Abstract
The recently discovered interaction between presenilin 1 (PS1), a subunit of γ-secretase involved in amyloid-β (Aβ) peptide production, and GLT-1, the major brain glutamate transporter (EAAT2 in the human), may link two pathological aspects of Alzheimer's disease: abnormal Aβ occurrence and neuronal network hyperactivity. In the current study, we employed a FRET-based fluorescence lifetime imaging microscopy (FLIM) to characterize the PS1/GLT-1 interaction in brain tissue from sporadic AD (sAD) patients. sAD brains showed significantly less PS1/GLT-1 interaction than those with frontotemporal lobar degeneration or non-demented controls. Familial AD (fAD) PS1 mutations, inducing a "closed" PS1 conformation similar to that in sAD brain, and gamma-secretase modulators (GSMs), inducing a "relaxed" conformation, respectively reduced and increased the interaction. Furthermore, PS1 influences GLT-1 cell surface expression and homomultimer formation, acting as a chaperone but not affecting GLT-1 stability. The diminished PS1/GLT-1 interaction suggests that these functions may not work properly in AD.
Collapse
Affiliation(s)
- Florian Perrin
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Lauren C Anderson
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Shane P C Mitchell
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Priyanka Sinha
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Yuliia Turchyna
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Masato Maesako
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Mei C Q Houser
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Can Zhang
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| | - Steven L Wagner
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
- VA San Diego Healthcare System, La Jolla, CA, 92161, USA
| | - Rudolph E Tanzi
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| | - Oksana Berezovska
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
9
|
Qiu B, Boudker O. Structural basis of the excitatory amino acid transporter 3 substrate recognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611541. [PMID: 39282329 PMCID: PMC11398500 DOI: 10.1101/2024.09.05.611541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Excitatory amino acid transporters (EAATs) reside on cell surfaces and uptake substrates, including L-glutamate, L-aspartate, and D-aspartate, using ion gradients. Among five EAATs, EAAT3 is the only isoform that can efficiently transport L-cysteine, a substrate for glutathione synthesis. Recent work suggests that EAAT3 also transports the oncometabolite R-2-hydroxyglutarate (R-2HG). Here, we examined the structural basis of substrate promiscuity by determining the cryo-EM structures of EAAT3 bound to different substrates. We found that L-cysteine binds to EAAT3 in thiolate form, and EAAT3 recognizes different substrates by fine-tuning local conformations of the coordinating residues. However, using purified human EAAT3, we could not observe R-2HG binding or transport. Imaging of EAAT3 bound to L-cysteine revealed several conformational states, including an outward-facing state with a semi-open gate and a disrupted sodium-binding site. These structures illustrate that the full gate closure, coupled with the binding of the last sodium ion, occurs after substrate binding. Furthermore, we observed that different substrates affect how the transporter distributes between a fully outward-facing conformation and intermediate occluded states on a path to the inward-facing conformation, suggesting that translocation rates are substrate-dependent.
Collapse
Affiliation(s)
- Biao Qiu
- Department of Physiology & Biophysics, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, USA
- Howard Hughes Medical Institute, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, USA
| | - Olga Boudker
- Department of Physiology & Biophysics, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, USA
- Howard Hughes Medical Institute, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, USA
| |
Collapse
|
10
|
Khare S, Villalba MI, Canul-Tec JC, Cajiao AB, Kumar A, Backovic M, Rey FA, Pardon E, Steyaert J, Perez C, Reyes N. Receptor-recognition and antiviral mechanisms of retrovirus-derived human proteins. Nat Struct Mol Biol 2024; 31:1368-1376. [PMID: 38671230 DOI: 10.1038/s41594-024-01295-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Human syncytin-1 and suppressyn are cellular proteins of retroviral origin involved in cell-cell fusion events to establish the maternal-fetal interface in the placenta. In cell culture, they restrict infections from members of the largest interference group of vertebrate retroviruses, and are regarded as host immunity factors expressed during development. At the core of the syncytin-1 and suppressyn functions are poorly understood mechanisms to recognize a common cellular receptor, the membrane transporter ASCT2. Here, we present cryo-electron microscopy structures of human ASCT2 in complexes with the receptor-binding domains of syncytin-1 and suppressyn. Despite their evolutionary divergence, the two placental proteins occupy similar positions in ASCT2, and are stabilized by the formation of a hybrid β-sheet or 'clamp' with the receptor. Structural predictions of the receptor-binding domains of extant retroviruses indicate overlapping binding interfaces and clamping sites with ASCT2, revealing a competition mechanism between the placental proteins and the retroviruses. Our work uncovers a common ASCT2 recognition mechanism by a large group of endogenous and disease-causing retroviruses, and provides high-resolution views on how placental human proteins exert morphological and immunological functions.
Collapse
Affiliation(s)
- Shashank Khare
- Fundamental Microbiology and Pathogenicity Unit, CNRS, Université de Bordeaux, IECB, Bordeaux, France
| | - Miryam I Villalba
- Fundamental Microbiology and Pathogenicity Unit, CNRS, Université de Bordeaux, IECB, Bordeaux, France
| | - Juan C Canul-Tec
- Fundamental Microbiology and Pathogenicity Unit, CNRS, Université de Bordeaux, IECB, Bordeaux, France
| | | | - Anand Kumar
- Fundamental Microbiology and Pathogenicity Unit, CNRS, Université de Bordeaux, IECB, Bordeaux, France
| | - Marija Backovic
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, Paris, France
| | - Felix A Rey
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, Paris, France
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Camilo Perez
- Biozentrum, University of Basel, Basel, Switzerland.
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.
| | - Nicolas Reyes
- Fundamental Microbiology and Pathogenicity Unit, CNRS, Université de Bordeaux, IECB, Bordeaux, France.
| |
Collapse
|
11
|
Borowska AM, Chiariello MG, Garaeva AA, Rheinberger J, Marrink SJ, Paulino C, Slotboom DJ. Structural basis of the obligatory exchange mode of human neutral amino acid transporter ASCT2. Nat Commun 2024; 15:6570. [PMID: 39095408 PMCID: PMC11297037 DOI: 10.1038/s41467-024-50888-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
ASCT2 is an obligate exchanger of neutral amino acids, contributing to cellular amino acid homeostasis. ASCT2 belongs to the same family (SLC1) as Excitatory Amino Acid Transporters (EAATs) that concentrate glutamate in the cytosol. The mechanism that makes ASCT2 an exchanger rather than a concentrator remains enigmatic. Here, we employ cryo-electron microscopy and molecular dynamics simulations to elucidate the structural basis of the exchange mechanism of ASCT2. We establish that ASCT2 binds three Na+ ions per transported substrate and visits a state that likely acts as checkpoint in preventing Na+ ion leakage, both features shared with EAATs. However, in contrast to EAATs, ASCT2 retains one Na+ ion even under Na+-depleted conditions. We demonstrate that ASCT2 cannot undergo the structural transition in TM7 that is essential for the concentrative transport cycle of EAATs. This structural rigidity and the high-affinity Na+ binding site effectively confine ASCT2 to an exchange mode.
Collapse
Affiliation(s)
- Anna M Borowska
- Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, University of Groningen, Groningen, the Netherlands
| | - Maria Gabriella Chiariello
- Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, Molecular Dynamics Group, University of Groningen, Groningen, the Netherlands
| | - Alisa A Garaeva
- Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, University of Groningen, Groningen, the Netherlands
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Jan Rheinberger
- Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, University of Groningen, Groningen, the Netherlands
- Biochemistry Center Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Siewert J Marrink
- Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, Molecular Dynamics Group, University of Groningen, Groningen, the Netherlands
| | - Cristina Paulino
- Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, University of Groningen, Groningen, the Netherlands.
- Biochemistry Center Heidelberg, Heidelberg University, Heidelberg, Germany.
| | - Dirk J Slotboom
- Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
12
|
Jiang Y, Miyagi A, Wang X, Qiu B, Boudker O, Scheuring S. HS-AFM single-molecule structural biology uncovers basis of transporter wanderlust kinetics. Nat Struct Mol Biol 2024; 31:1286-1295. [PMID: 38632360 PMCID: PMC11490224 DOI: 10.1038/s41594-024-01260-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 03/01/2024] [Indexed: 04/19/2024]
Abstract
The Pyrococcus horikoshii amino acid transporter GltPh revealed, like other channels and transporters, activity mode switching, previously termed wanderlust kinetics. Unfortunately, to date, the basis of these activity fluctuations is not understood, probably due to a lack of experimental tools that directly access the structural features of transporters related to their instantaneous activity. Here, we take advantage of high-speed atomic force microscopy, unique in providing simultaneous structural and temporal resolution, to uncover the basis of kinetic mode switching in proteins. We developed membrane extension membrane protein reconstitution that allows the analysis of isolated molecules. Together with localization atomic force microscopy, principal component analysis and hidden Markov modeling, we could associate structural states to a functional timeline, allowing six structures to be solved from a single molecule, and an inward-facing state, IFSopen-1, to be determined as a kinetic dead-end in the conformational landscape. The approaches presented on GltPh are generally applicable and open possibilities for time-resolved dynamic single-molecule structural biology.
Collapse
Affiliation(s)
- Yining Jiang
- Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology Program, Weill Cornell Graduate School of Biomedical Sciences, New York, NY, USA
- Weill Cornell Medicine, Department of Anesthesiology, New York, NY, USA
| | - Atsushi Miyagi
- Weill Cornell Medicine, Department of Anesthesiology, New York, NY, USA
| | - Xiaoyu Wang
- Weill Cornell Medicine, Department of Physiology and Biophysics, New York, NY, USA
| | - Biao Qiu
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Olga Boudker
- Weill Cornell Medicine, Department of Physiology and Biophysics, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Simon Scheuring
- Weill Cornell Medicine, Department of Anesthesiology, New York, NY, USA.
- Weill Cornell Medicine, Department of Physiology and Biophysics, New York, NY, USA.
| |
Collapse
|
13
|
Modak A, Kilic Z, Chattrakun K, Terry DS, Kalathur RC, Blanchard SC. Single-Molecule Imaging of Integral Membrane Protein Dynamics and Function. Annu Rev Biophys 2024; 53:427-453. [PMID: 39013028 DOI: 10.1146/annurev-biophys-070323-024308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Integral membrane proteins (IMPs) play central roles in cellular physiology and represent the majority of known drug targets. Single-molecule fluorescence and fluorescence resonance energy transfer (FRET) methods have recently emerged as valuable tools for investigating structure-function relationships in IMPs. This review focuses on the practical foundations required for examining polytopic IMP function using single-molecule FRET (smFRET) and provides an overview of the technical and conceptual frameworks emerging from this area of investigation. In this context, we highlight the utility of smFRET methods to reveal transient conformational states critical to IMP function and the use of smFRET data to guide structural and drug mechanism-of-action investigations. We also identify frontiers where progress is likely to be paramount to advancing the field.
Collapse
Affiliation(s)
- Arnab Modak
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
| | - Zeliha Kilic
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
| | - Kanokporn Chattrakun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
| | - Daniel S Terry
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
| | - Ravi C Kalathur
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
14
|
Reddy KD, Rasool B, Akher FB, Kutlešić N, Pant S, Boudker O. Evolutionary analysis reveals the origin of sodium coupling in glutamate transporters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.03.569786. [PMID: 38106174 PMCID: PMC10723334 DOI: 10.1101/2023.12.03.569786] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Secondary active membrane transporters harness the energy of ion gradients to concentrate their substrates. Homologous transporters evolved to couple transport to different ions in response to changing environments and needs. The bases of such diversification, and thus principles of ion coupling, are unexplored. Employing phylogenetics and ancestral protein reconstruction, we investigated sodium-coupled transport in prokaryotic glutamate transporters, a mechanism ubiquitous across life domains and critical to neurotransmitter recycling in humans. We found that the evolutionary transition from sodium-dependent to independent substrate binding to the transporter preceded changes in the coupling mechanism. Structural and functional experiments suggest that the transition entailed allosteric mutations, making sodium binding dispensable without affecting ion-binding sites. Allosteric tuning of transporters' energy landscapes might be a widespread route of their functional diversification.
Collapse
Affiliation(s)
- Krishna D. Reddy
- Dept. of Physiology & Biophysics, Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA
| | - Burha Rasool
- Dept. of Physiology & Biophysics, Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA
| | - Farideh Badichi Akher
- Dept. of Physiology & Biophysics, Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA
| | - Nemanja Kutlešić
- Dept. of Physiology & Biophysics, Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA
| | - Swati Pant
- Dept. of Biochemistry, Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA
| | - Olga Boudker
- Dept. of Physiology & Biophysics, Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA
- Howard Hughes Medical Institute, Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA
| |
Collapse
|
15
|
Perrin F, Sinha P, Mitchell SPC, Sadek M, Maesako M, Berezovska O. Identification of PS1/gamma-secretase and glutamate transporter GLT-1 interaction sites. J Biol Chem 2024; 300:107172. [PMID: 38499151 PMCID: PMC11015137 DOI: 10.1016/j.jbc.2024.107172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/02/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Abstract
The recently discovered interaction between Presenilin 1 (PS1), a catalytic subunit of γ-secretase responsible for generating amyloid-β peptides, and GLT-1, a major glutamate transporter in the brain (EAAT2), provides a mechanistic link between these two key factors involved in Alzheimer's disease (AD) pathology. Modulating this interaction can be crucial to understand the consequence of such crosstalk in AD context and beyond. However, the interaction sites between these two proteins are unknown. Herein, we utilized an alanine scanning approach coupled with FRET-based fluorescence lifetime imaging microscopy to identify the interaction sites between PS1 and GLT-1 in their native environment within intact cells. We found that GLT-1 residues at position 276 to 279 (TM5) and PS1 residues at position 249 to 252 (TM6) are crucial for GLT-1-PS1 interaction. These results have been cross validated using AlphaFold Multimer prediction. To further investigate whether this interaction of endogenously expressed GLT-1 and PS1 can be prevented in primary neurons, we designed PS1/GLT-1 cell-permeable peptides (CPPs) targeting the PS1 or GLT-1 binding site. We used HIV TAT domain to allow for cell penetration which was assayed in neurons. First, we assessed the toxicity and penetration of CPPs by confocal microscopy. Next, to ensure the efficiency of CPPs, we monitored the modulation of GLT-1-PS1 interaction in intact neurons by fluorescence lifetime imaging microscopy. We saw significantly less interaction between PS1 and GLT-1 with both CPPs. Our study establishes a new tool to study the functional aspect of GLT-1-PS1 interaction and its relevance in normal physiology and AD models.
Collapse
Affiliation(s)
- Florian Perrin
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Priyanka Sinha
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Shane Patrick Clancy Mitchell
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Michael Sadek
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Masato Maesako
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Oksana Berezovska
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
| |
Collapse
|
16
|
Takahashi K, Sato K. The Conventional and Breakthrough Tool for the Study of L-Glutamate Transporters. MEMBRANES 2024; 14:77. [PMID: 38668105 PMCID: PMC11052088 DOI: 10.3390/membranes14040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/26/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
In our recent report, we clarified the direct interaction between the excitatory amino acid transporter (EAAT) 1/2 and polyunsaturated fatty acids (PUFAs) by applying electrophysiological and molecular biological techniques to Xenopus oocytes. Xenopus oocytes have a long history of use in the scientific field, but they are still attractive experimental systems for neuropharmacological studies. We will therefore summarize the pharmacological significance, advantages (especially in the study of EAAT2), and experimental techniques that can be applied to Xenopus oocytes; our new findings concerning L-glutamate (L-Glu) transporters and PUFAs; and the significant outcomes of our data. The data obtained from electrophysiological and molecular biological studies of Xenopus oocytes have provided us with further important questions, such as whether or not some PUFAs can modulate EAATs as allosteric modulators and to what extent docosahexaenoic acid (DHA) affects neurotransmission and thereby affects brain functions. Xenopus oocytes have great advantages in the studies about the interactions between molecules and functional proteins, especially in the case when the expression levels of the proteins are small in cell culture systems without transfections. These are also proper to study the mechanisms underlying the interactions. Based on the data collected in Xenopus oocyte experiments, we can proceed to the next step, i.e., the physiological roles of the compounds and their significances. In the case of EAAT2, the effects on the neurotransmission should be examined by electrophysiological approach using acute brain slices. For new drug development, pharmacokinetics pharmacodynamics (PKPD) data and blood brain barrier (BBB) penetration data are also necessary. In order not to miss the promising candidate compounds at the primary stages of drug development, we should reconsider using Xenopus oocytes in the early phase of drug development.
Collapse
Grants
- a Research Grant on Regulatory Harmonization and Evaluation of Pharmaceuticals, Medical Devices, Regenerative and Cellular Therapy Products, Gene Therapy Products, and Cosmetics from AMED, Japan Japan Agency for Medical Research and Development
- KAKENHI 18700373, 21700422, 17K08330 Ministry of Education, Culture, Sports, Science and Technology
- a Grant for the Program for Promotion of Fundamental Studies in Health Sciences of NIBIO National Institute of Biomedical Innovation, Health and Nutrition
- a grant for Research on Risks of Chemicals, a Labor Science Research Grant for Research on New Drug Development MHLW
- a Grant-in-Aid from Hoansha Foundation Hoansha Foundation
Collapse
Affiliation(s)
| | - Kaoru Sato
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Sciences, Kanagawa 210-9501, Japan;
| |
Collapse
|
17
|
Xia R, Peng HF, Zhang X, Zhang HS. Comprehensive review of amino acid transporters as therapeutic targets. Int J Biol Macromol 2024; 260:129646. [PMID: 38272411 DOI: 10.1016/j.ijbiomac.2024.129646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
The solute carrier (SLC) family, with more than 400 membrane-bound proteins, facilitates the transport of a wide array of substrates such as nutrients, ions, metabolites, and drugs across biological membranes. Amino acid transporters (AATs) are membrane transport proteins that mediate transfer of amino acids into and out of cells or cellular organelles. AATs participate in many important physiological functions including nutrient supply, metabolic transformation, energy homeostasis, redox regulation, and neurological regulation. Several AATs have been found to significantly impact the progression of human malignancies, and dysregulation of AATs results in metabolic reprogramming affecting tumor growth and progression. However, current clinical therapies that directly target AATs have not been developed. The purpose of this review is to highlight the structural and functional diversity of AATs, the molecular mechanisms in human diseases such as tumors, kidney diseases, and emerging therapeutic strategies for targeting AATs.
Collapse
Affiliation(s)
- Ran Xia
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Hai-Feng Peng
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Xing Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Hong-Sheng Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China.
| |
Collapse
|
18
|
Currie MJ, Davies JS, Scalise M, Gulati A, Wright JD, Newton-Vesty MC, Abeysekera GS, Subramanian R, Wahlgren WY, Friemann R, Allison JR, Mace PD, Griffin MDW, Demeler B, Wakatsuki S, Drew D, Indiveri C, Dobson RCJ, North RA. Structural and biophysical analysis of a Haemophilus influenzae tripartite ATP-independent periplasmic (TRAP) transporter. eLife 2024; 12:RP92307. [PMID: 38349818 PMCID: PMC10942642 DOI: 10.7554/elife.92307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Tripartite ATP-independent periplasmic (TRAP) transporters are secondary-active transporters that receive their substrates via a soluble-binding protein to move bioorganic acids across bacterial or archaeal cell membranes. Recent cryo-electron microscopy (cryo-EM) structures of TRAP transporters provide a broad framework to understand how they work, but the mechanistic details of transport are not yet defined. Here we report the cryo-EM structure of the Haemophilus influenzae N-acetylneuraminate TRAP transporter (HiSiaQM) at 2.99 Å resolution (extending to 2.2 Å at the core), revealing new features. The improved resolution (the previous HiSiaQM structure is 4.7 Å resolution) permits accurate assignment of two Na+ sites and the architecture of the substrate-binding site, consistent with mutagenic and functional data. Moreover, rather than a monomer, the HiSiaQM structure is a homodimer. We observe lipids at the dimer interface, as well as a lipid trapped within the fusion that links the SiaQ and SiaM subunits. We show that the affinity (KD) for the complex between the soluble HiSiaP protein and HiSiaQM is in the micromolar range and that a related SiaP can bind HiSiaQM. This work provides key data that enhances our understanding of the 'elevator-with-an-operator' mechanism of TRAP transporters.
Collapse
Affiliation(s)
- Michael J Currie
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Biological Sciences, University of CanterburyChristchurchNew Zealand
| | - James S Davies
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Biological Sciences, University of CanterburyChristchurchNew Zealand
- Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of CalabriaArcavacata di RendeItaly
| | - Ashutosh Gulati
- Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - Joshua D Wright
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Biological Sciences, University of CanterburyChristchurchNew Zealand
| | - Michael C Newton-Vesty
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Biological Sciences, University of CanterburyChristchurchNew Zealand
| | - Gayan S Abeysekera
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Biological Sciences, University of CanterburyChristchurchNew Zealand
| | - Ramaswamy Subramanian
- Biological Sciences and Biomedical Engineering, Bindley Bioscience Center, Purdue University West LafayetteWest LafayetteUnited States
| | - Weixiao Y Wahlgren
- Department of Chemistry and Molecular Biology, Biochemistry and Structural Biology, University of GothenburgGothenburgSweden
| | - Rosmarie Friemann
- Centre for Antibiotic Resistance Research (CARe) at University of GothenburgGothenburgSweden
| | - Jane R Allison
- Biomolecular Interaction Centre, Digital Life Institute, Maurice Wilkins Centre for Molecular Biodiscovery, and School of Biological Sciences, University of AucklandAucklandNew Zealand
| | - Peter D Mace
- Biochemistry Department, School of Biomedical Sciences, University of OtagoDunedinNew Zealand
| | - Michael DW Griffin
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio Molecular Science and Biotechnology Institute, Department of Biochemistry and Pharmacology, University of MelbourneMelbourneAustralia
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of MontanaMissoulaUnited States
- Department of Chemistry and Biochemistry, University of LethbridgeLethbridgeCanada
| | - Soichi Wakatsuki
- Biological Sciences Division, SLAC National Accelerator LaboratoryMenlo ParkUnited States
- Department of Structural Biology, Stanford University School of MedicineStanfordUnited States
| | - David Drew
- Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of CalabriaArcavacata di RendeItaly
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)BariItaly
| | - Renwick CJ Dobson
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Biological Sciences, University of CanterburyChristchurchNew Zealand
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio Molecular Science and Biotechnology Institute, Department of Biochemistry and Pharmacology, University of MelbourneMelbourneAustralia
| | - Rachel A North
- Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
- School of Medical Sciences, Faculty of Medicine and Health, University of SydneySydneyAustralia
| |
Collapse
|
19
|
Drew D, Boudker O. Ion and lipid orchestration of secondary active transport. Nature 2024; 626:963-974. [PMID: 38418916 DOI: 10.1038/s41586-024-07062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/12/2024] [Indexed: 03/02/2024]
Abstract
Transporting small molecules across cell membranes is an essential process in cell physiology. Many structurally diverse, secondary active transporters harness transmembrane electrochemical gradients of ions to power the uptake or efflux of nutrients, signalling molecules, drugs and other ions across cell membranes. Transporters reside in lipid bilayers on the interface between two aqueous compartments, where they are energized and regulated by symported, antiported and allosteric ions on both sides of the membrane and the membrane bilayer itself. Here we outline the mechanisms by which transporters couple ion and solute fluxes and discuss how structural and mechanistic variations enable them to meet specific physiological needs and adapt to environmental conditions. We then consider how general bilayer properties and specific lipid binding modulate transporter activity. Together, ion gradients and lipid properties ensure the effective transport, regulation and distribution of small molecules across cell membranes.
Collapse
Affiliation(s)
- David Drew
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- Howard Hughes Medical Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
20
|
Marin E, Kovalev K, Poelman T, Veenstra R, Borshchevskiy V, Guskov A. Custom Design of a Humidifier Chamber for InMeso Crystallization. CRYSTAL GROWTH & DESIGN 2024; 24:325-330. [PMID: 38188264 PMCID: PMC10767699 DOI: 10.1021/acs.cgd.3c01034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 01/09/2024]
Abstract
Membrane proteins are indispensable for every living organism, yet their structural organization remains underexplored. Despite the recent advancements in single-particle cryogenic electron microscopy and cryogenic electron tomography, which have significantly increased the structural coverage of membrane proteins across various kingdoms, certain scientific methods, such as time-resolved crystallography, still mostly rely on crystallization techniques, such as lipidic cubic phase (LCP) or in meso crystallization. In this study, we present an open-access blueprint for a humidity control chamber designed for LCP/in meso crystallization experiments using a Gryphon crystallization robot. Using this chamber, we have obtained crystals of a transmembrane aspartate transporter GltTk from Thermococcus kodakarensis in a lipidic environment using in meso crystallization. The data collected from these crystals allowed us to perform an analysis of lipids bound to the transporter. With this publication of our open-access design of a humidity chamber, we aim to improve the accessibility of in meso protein crystallization for the scientific community.
Collapse
Affiliation(s)
- Egor Marin
- Groningen
Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| | - Kirill Kovalev
- European
Molecular Biology Laboratory, EMBL Hamburg c/o DESY, 22607 Hamburg, Germany
| | | | - Rick Veenstra
- University
of Groningen, 9747AG Groningen, The Netherlands
| | | | - Albert Guskov
- Groningen
Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| |
Collapse
|
21
|
Reddi R, Chatterjee S, Matulef K, Gustafson A, Gao L, Valiyaveetil FI. A facile approach for incorporating tyrosine esters to probe ion-binding sites and backbone hydrogen bonds. J Biol Chem 2024; 300:105517. [PMID: 38042487 PMCID: PMC10790091 DOI: 10.1016/j.jbc.2023.105517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/06/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023] Open
Abstract
Amide-to-ester substitutions are used to study the role of the amide bonds of the protein backbone in protein structure, function, and folding. An amber suppressor tRNA/synthetase pair has been reported for incorporation of p-hydroxy-phenyl-L-lactic acid (HPLA), thereby introducing ester substitution at tyrosine residues. However, the application of this approach was limited due to the low yields of the modified proteins and the high cost of HPLA. Here we report the in vivo generation of HPLA from the significantly cheaper phenyl-L-lactic acid. We also construct an optimized plasmid with the HPLA suppressor tRNA/synthetase pair that provides higher yields of the modified proteins. The combination of the new plasmid and the in-situ generation of HPLA provides a facile and economical approach for introducing tyrosine ester substitutions. We demonstrate the utility of this approach by introducing tyrosine ester substitutions into the K+ channel KcsA and the integral membrane enzyme GlpG. We introduce the tyrosine ester in the selectivity filter of the M96V mutant of the KcsA to probe the role of the second ion binding site in the conformation of the selectivity filter and the process of inactivation. We use tyrosine ester substitutions in GlpG to perturb backbone H-bonds to investigate the contribution of these H-bonds to membrane protein stability. We anticipate that the approach developed in this study will facilitate further investigations using tyrosine ester substitutions.
Collapse
Affiliation(s)
- Ravikumar Reddi
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Multnomah County, Portland, Oregon, USA
| | - Satyaki Chatterjee
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Multnomah County, Portland, Oregon, USA
| | - Kimberly Matulef
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Multnomah County, Portland, Oregon, USA
| | - Andrew Gustafson
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Multnomah County, Portland, Oregon, USA
| | - Lujia Gao
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Multnomah County, Portland, Oregon, USA
| | - Francis I Valiyaveetil
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Multnomah County, Portland, Oregon, USA.
| |
Collapse
|
22
|
Zielewicz LJ, Wang J, Ndaru E, Maney B, Yu X, Albers T, Grewer C. Design and Characterization of Prodrug-like Inhibitors for Preventing Glutamate Efflux through Reverse Transport. ACS Chem Neurosci 2023; 14:4252-4263. [PMID: 37994790 DOI: 10.1021/acschemneuro.3c00651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023] Open
Abstract
Glutamate transporters are responsible for active transport of the major excitatory neurotransmitter glutamate across the cell membrane, regulating the extracellular glutamate concentration in the mammalian brain. Extracellular glutamate levels in the brain are usually in the submicromolar range but can increase by exocytosis, inhibition of cellular uptake, or through glutamate release by reverse transport, as well as other mechanisms, which can lead to neurodegeneration and neuronal cell death. Such conditions can be encountered upon energy deprivation during an ischemic stroke. Here, we developed acetoxymethyl (AM) ester prodrug-like derivatives of excitatory amino acid transporter (EAAT) inhibitors that permeate the cell membrane and are activated, most likely through hydrolysis by endogenous cellular esterases, to form the active EAAT inhibitor. Upon increase in external K+ concentration, the inhibitors block glutamate efflux by EAAT reverse transport. Using a novel high-affinity fluorescent prodrug-like inhibitor, dl-threo-9-anthracene-methoxy-aspartate (TAOA) AM ester, we demonstrate that the precursor rapidly accumulates inside cells. Electrophysiological methods and fluorescence assays utilizing the iGluSnFR external glutamate sensor were used to demonstrate the efficacy of AM ester-protected inhibitors in inhibiting K+-mediated glutamate release. Together, our results provide evidence for a novel method to potentially prevent glutamate release by reverse transport under pathophysiological conditions in a model cell system, as well as in human astrocytes, while leaving glutamate uptake under physiological conditions operational. This method could have wide-ranging applications in the prevention of glutamate-induced neuronal cell death.
Collapse
Affiliation(s)
- Laura J Zielewicz
- Department of Chemistry, Binghamton University, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Jiali Wang
- Department of Chemistry, Binghamton University, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Elias Ndaru
- Department of Chemistry, Binghamton University, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Brien Maney
- Department of Chemistry, Binghamton University, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Xiaozhen Yu
- Department of Chemistry, Binghamton University, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Thomas Albers
- Department of Chemistry, Binghamton University, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Christof Grewer
- Department of Chemistry, Binghamton University, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| |
Collapse
|
23
|
Ev LD, Poloni JDF, Damé-Teixeira N, Arthur RA, Corralo DJ, Henz SL, Do T, Maltz M, Parolo CCF. Hub genes and pathways related to caries-free dental biofilm: clinical metatranscriptomic study. Clin Oral Investig 2023; 27:7725-7735. [PMID: 37924358 DOI: 10.1007/s00784-023-05363-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
OBJECTIVE This study aimed to evaluate the microbial functional profile of biofilms related to caries-free (CF, n = 6) and caries-arrested (CI, n = 3) compared to caries-active (CA, n = 5) individuals. MATERIALS AND METHODS A metatranscriptomic was performed in supragingival biofilm from different clinical conditions related to caries or health. Total RNA was extracted and cDNAs were obtained and sequenced (Illumina HiSeq3000). Trimmed data (SortMeRNA) were submitted to the SqueezeMeta pipeline in the co-assembly mode for functional analysis and further differential gene expression analysis (DESeq2) and weighted gene co-expression network analysis (WCGNA) to explore and identify gene modules related to these clinical conditions. RESULTS A total of 5303 genes were found in the metatranscriptomic analysis. A co-expression network identified the most relevant modules strongly related to specific caries status. Correlation coefficients were calculated between the eigengene modules and the clinical conditions (CA, CI, and CF) discriminating multiple modules. CA and CI showed weak correlation coefficient strength across the modules, while the CF condition presented a very strong positive correlation coefficient (r = 0.9, p value = 4 × 10-9). Pearson's test was applied to further analyze the module membership and gene significance in CF conditions, and the most relevant were HSPA1s-K03283, Epr- K13277, and SLC1A-K05613. Gene Ontology (GO) shows important bioprocesses, such as two-component system, fructose and mannose metabolism, pentose and glucuronate interconversions, and flagellar assembly (p-adjust < 0.05). The ability to use different carbohydrates, integrate multiple signals, swarm, and bacteriocin production are significant metabolic advantages in the oral environment related to CF. CONCLUSIONS A distinct functional health profile could be found in CF, where co-occurring genes can act in different pathways at the same time. Genes HSPA1s, Epr, and SLC1A may be appointed as potential biomarkers for caries-free biofilms. CLINICAL RELEVANCE Potential biomarkers for caries-free biofilms could contribute to the knowledge of caries prevention and control.
Collapse
Affiliation(s)
- Laís Daniela Ev
- Department of Preventive and Social Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Joice de Faria Poloni
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, National Institute of Science and Technology - Forensic Science, Porto Alegre, Brazil
| | - Nailê Damé-Teixeira
- Department of Dentistry, Faculty of Health Sciences, University of Brasília, Brasília, DF, Brazil
| | - Rodrigo Alex Arthur
- Department of Preventive and Social Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniela Jorge Corralo
- Department of Dentistry, School of Dentistry, Passo Fundo University, Passo Fundo, RS, Brazil
| | - Sandra Liana Henz
- Department of Preventive and Social Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Thuy Do
- Division of Oral Biology, School of Dentistry, Faculty of Medicine & Health, University of Leeds, Leeds, UK
| | - Marisa Maltz
- Department of Preventive and Social Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
24
|
Suslova M, Kortzak D, Machtens JP, Kovermann P, Fahlke C. Apo state pore opening as functional basis of increased EAAT anion channel activity in episodic ataxia 6. Front Physiol 2023; 14:1147216. [PMID: 37538371 PMCID: PMC10394623 DOI: 10.3389/fphys.2023.1147216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/07/2023] [Indexed: 08/05/2023] Open
Abstract
SLC1A2 and SLC1A3 encode the glial glutamate transporters EAAT2 and EAAT1, which are not only the predominant glutamate uptake carriers in our brain, but also function as anion channels. Two homologous mutations, which predict substitutions of prolines in the center of the fifth transmembrane helix by arginine (P289R EAAT2, P290R EAAT1), have been identified in patients with epileptic encephalopathy (SLC1A2) or with episodic ataxia type 6 (SLC1A3). Both mutations have been shown to impair glutamate uptake and to increase anion conduction. The molecular processes that link the disease-causing mutations to two major alterations of glutamate transporter function remain insufficiently understood. The mutated proline is conserved in every EAAT. Since the pathogenic changes mainly affect the anion channel function, we here study the functional consequences of the homologous P312R mutation in the neuronal glutamate transporter EAAT4, a low capacity glutamate transporter with predominant anion channel function. To assess the impact of charge and structure of the inserted amino acid for the observed functional changes, we generated and functionally evaluated not only P312R, but also substitutions of P312 with all other amino acids. However, only exchange of proline by arginine, lysine, histidine and asparagine were functionally tolerated. We compared WT, P312R and P312N EAAT4 using a combination of cellular electrophysiology, fast substrate application and kinetic modelling. We found that WT and mutant EAAT4 anion currents can be described with a 11-state model of the transport cycle, in which several states are connected to branching anion channel states to account for the EAAT anion channel function. Substitutions of P312 modify various transitions describing substrate binding/unbinding, translocation or anion channel opening. Most importantly, P312R generates a new anion conducting state that is accessible in the outward facing apo state and that is the main determinant of the increased anion conduction of EAAT transporters carrying this mutation. Our work provides a quantitative description how a naturally occurring mutation changes glutamate uptake and anion currents in two genetic diseases.
Collapse
|
25
|
Bhatnagar A, Parmar V, Barbieri N, Bearoff F, Elefant F, Kortagere S. Novel EAAT2 activators improve motor and cognitive impairment in a transgenic model of Huntington's disease. Front Behav Neurosci 2023; 17:1176777. [PMID: 37351153 PMCID: PMC10282606 DOI: 10.3389/fnbeh.2023.1176777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023] Open
Abstract
Introduction Glutamate excitotoxicity is causal in striatal neurodegeneration underlying motor dysfunction and cognitive deficits in Huntington's disease (HD). Excitatory amino acid transporter 2 (EAAT2), the predominant glutamate transporter accounting for >90% of glutamate transport, plays a key role in preventing excitotoxicity by clearing excess glutamate from the intrasynaptic cleft. Accordingly, EAAT2 has emerged as a promising therapeutic target for prevention of neuronal excitotoxicity underlying HD and other neurodegenerative diseases. Methods We have previously designed novel EAAT2 positive allosteric modulator GT951, GTS467, and GTS551, with low nanomolar efficacy in glutamate uptake and favorable pharmacokinetic properties. In this study, we test the neuroprotective abilities of these novel EAAT2 activators in vivo using the robust Drosophila HD transgenic model expressing human huntingtin gene with expanded repeats (Htt128Q). Results All three compounds significantly restored motor function impaired under HD pathology over a wide dose range. Additionally, treatment with all three compounds significantly improved HD-associated olfactory associative learning and short-term memory defects, while GT951 and GTS551 also improved middle-term memory in low-performing group. Similarly, treatment with GT951 and GTS551 partially protected against early mortality observed in our HD model. Further, treatment with all three EAAT2 activators induced epigenetic expression of EAAT2 Drosophila homolog and several cognition-associated genes. Conclusion Together, these results highlight the efficacy of GT951, GTS467 and GTS551 in treating motor and cognitive impairments under HD pathology and support their development for treatment of HD.
Collapse
Affiliation(s)
- Akanksha Bhatnagar
- Department of Biology, Papadakis Integrated Sciences Building, Drexel University, Philadelphia, PA, United States
| | - Visha Parmar
- Department of Biology, Papadakis Integrated Sciences Building, Drexel University, Philadelphia, PA, United States
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Nicholas Barbieri
- Department of Biology, Papadakis Integrated Sciences Building, Drexel University, Philadelphia, PA, United States
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Frank Bearoff
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Felice Elefant
- Department of Biology, Papadakis Integrated Sciences Building, Drexel University, Philadelphia, PA, United States
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
26
|
Perrin F, Sinha P, Mitchell S, Maesako M, Berezovska O. Identification of PS1/gamma-secretase and glutamate transporter GLT-1 interaction sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542955. [PMID: 37398024 PMCID: PMC10312500 DOI: 10.1101/2023.05.30.542955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The recently discovered interaction between Presenilin 1 (PS1), a catalytic subunit of γ-secretase responsible for generating amyloid-β (Aβ) peptides, and GLT-1, a major glutamate transporter in the brain (EAAT2) provides a mechanistic link between these two key factors involved in Alzheimer's disease (AD) pathology. Modulating this interaction can be crucial to understand the consequence of such crosstalk in AD context and beyond. However, the interaction sites between these two proteins are unknown. Herein, we utilized an alanine scanning approach coupled with FRET-based fluorescence lifetime imaging microscopy (FLIM) to identify the interaction sites between PS1 and GLT-1 in their native environment within intact cells. We found that GLT-1 residues at position 276 to 279 (TM5) and PS1 residues at position 249 to 252 (TM6) are crucial for GLT-1/PS1 interaction. These results have been cross validated using AlphaFold Multimer prediction. To further investigate whether this interaction of endogenously expressed GLT-1 and PS1 can be prevented in primary neurons, we designed PS1/GLT-1 cell-permeable peptides (CPPs) targeting the PS1 or GLT-1 binding site. We used HIV TAT domain to allow for cell penetration which was assayed in neurons. First, we assessed the toxicity and penetration of CPPs by confocal microscopy. Next, to ensure the efficiency of CPPs, we monitored the modulation of GLT-1/PS1 interaction in intact neurons by FLIM. We saw significantly less interaction between PS1 and GLT-1 with both CPPs. Our study establishes a new tool to study the functional aspect of GLT-1/PS1 interaction and its relevance in normal physiology and AD models.
Collapse
|
27
|
Huang Y, Reddy KD, Bracken C, Qiu B, Zhan W, Eliezer D, Boudker O. Environmentally Ultrasensitive Fluorine Probe to Resolve Protein Conformational Ensembles by 19F NMR and Cryo-EM. J Am Chem Soc 2023; 145:8583-8592. [PMID: 37023263 PMCID: PMC10119980 DOI: 10.1021/jacs.3c01003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Indexed: 04/08/2023]
Abstract
Limited chemical shift dispersion represents a significant barrier to studying multistate equilibria of large membrane proteins by 19F NMR. We describe a novel monofluoroethyl 19F probe that dramatically increases the chemical shift dispersion. The improved conformational sensitivity and line shape enable the detection of previously unresolved states in one-dimensional (1D) 19F NMR spectra of a 134 kDa membrane transporter. Changes in the populations of these states in response to ligand binding, mutations, and temperature correlate with population changes of distinct conformations in structural ensembles determined by single-particle cryo-electron microscopy (cryo-EM). Thus, 19F NMR can guide sample preparation to discover and visualize novel conformational states and facilitate image analysis and three-dimensional (3D) classification.
Collapse
Affiliation(s)
- Yun Huang
- Department
of Physiology & Biophysics, Weill Cornell
Medicine, 1300 York Avenue, New York, New York 10021, United States
- Howard
Hughes Medical Institute, Chevy
Chase, Maryland 20815, United States
| | - Krishna D. Reddy
- Department
of Physiology & Biophysics, Weill Cornell
Medicine, 1300 York Avenue, New York, New York 10021, United States
- Howard
Hughes Medical Institute, Chevy
Chase, Maryland 20815, United States
| | - Clay Bracken
- Department
of Biochemistry, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10021, United States
| | - Biao Qiu
- Department
of Physiology & Biophysics, Weill Cornell
Medicine, 1300 York Avenue, New York, New York 10021, United States
| | - Wenhu Zhan
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 1300 York Avenue, New York, New York 10021, United States
| | - David Eliezer
- Department
of Biochemistry, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10021, United States
| | - Olga Boudker
- Department
of Physiology & Biophysics, Weill Cornell
Medicine, 1300 York Avenue, New York, New York 10021, United States
- Howard
Hughes Medical Institute, Chevy
Chase, Maryland 20815, United States
| |
Collapse
|
28
|
Dutta S, Hornung S, Taha HB, Bitan G. Biomarkers for parkinsonian disorders in CNS-originating EVs: promise and challenges. Acta Neuropathol 2023; 145:515-540. [PMID: 37012443 PMCID: PMC10071251 DOI: 10.1007/s00401-023-02557-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 04/05/2023]
Abstract
Extracellular vesicles (EVs), including exosomes, microvesicles, and oncosomes, are nano-sized particles enclosed by a lipid bilayer. EVs are released by virtually all eukaryotic cells and have been shown to contribute to intercellular communication by transporting proteins, lipids, and nucleic acids. In the context of neurodegenerative diseases, EVs may carry toxic, misfolded forms of amyloidogenic proteins and facilitate their spread to recipient cells in the central nervous system (CNS). CNS-originating EVs can cross the blood-brain barrier into the bloodstream and may be found in other body fluids, including saliva, tears, and urine. EVs originating in the CNS represent an attractive source of biomarkers for neurodegenerative diseases, because they contain cell- and cell state-specific biological materials. In recent years, multiple papers have reported the use of this strategy for identification and quantitation of biomarkers for neurodegenerative diseases, including Parkinson's disease and atypical parkinsonian disorders. However, certain technical issues have yet to be standardized, such as the best surface markers for isolation of cell type-specific EVs and validating the cellular origin of the EVs. Here, we review recent research using CNS-originating EVs for biomarker studies, primarily in parkinsonian disorders, highlight technical challenges, and propose strategies for overcoming them.
Collapse
Affiliation(s)
- Suman Dutta
- International Institute of Innovation and Technology, New Town, Kolkata, India
| | - Simon Hornung
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Hash Brown Taha
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California Los Angeles, 635 Charles E. Young Drive South/Gordon 451, Los Angeles, CA, 90095, USA
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California Los Angeles, 635 Charles E. Young Drive South/Gordon 451, Los Angeles, CA, 90095, USA.
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
29
|
Colucci E, Anshari ZR, Patiño-Ruiz MF, Nemchinova M, Whittaker J, Slotboom DJ, Guskov A. Mutation in glutamate transporter homologue GltTk provides insights into pathologic mechanism of episodic ataxia 6. Nat Commun 2023; 14:1799. [PMID: 37002226 PMCID: PMC10066184 DOI: 10.1038/s41467-023-37503-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Episodic ataxias (EAs) are rare neurological conditions affecting the nervous system and typically leading to motor impairment. EA6 is linked to the mutation of a highly conserved proline into an arginine in the glutamate transporter EAAT1. In vitro studies showed that this mutation leads to a reduction in the substrates transport and an increase in the anion conductance. It was hypothesised that the structural basis of these opposed functional effects might be the straightening of transmembrane helix 5, which is kinked in the wild-type protein. In this study, we present the functional and structural implications of the mutation P208R in the archaeal homologue of glutamate transporters GltTk. We show that also in GltTk the P208R mutation leads to reduced aspartate transport activity and increased anion conductance, however a cryo-EM structure reveals that the kink is preserved. The arginine side chain of the mutant points towards the lipidic environment, where it may engage in interactions with the phospholipids, thereby potentially interfering with the transport cycle and contributing to stabilisation of an anion conducting state.
Collapse
Affiliation(s)
- Emanuela Colucci
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG, Groningen, the Netherlands
| | - Zaid R Anshari
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG, Groningen, the Netherlands
| | - Miyer F Patiño-Ruiz
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG, Groningen, the Netherlands
| | - Mariia Nemchinova
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG, Groningen, the Netherlands
| | - Jacob Whittaker
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG, Groningen, the Netherlands
| | - Dirk J Slotboom
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG, Groningen, the Netherlands.
| | - Albert Guskov
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG, Groningen, the Netherlands.
| |
Collapse
|
30
|
Dong Y, Wang J, Garibsingh RA, Hutchinson K, Shi Y, Eisenberg G, Yu X, Schlessinger A, Grewer C. Conserved allosteric inhibition mechanism in SLC1 transporters. eLife 2023; 12:e83464. [PMID: 36856089 PMCID: PMC10017108 DOI: 10.7554/elife.83464] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/27/2023] [Indexed: 03/02/2023] Open
Abstract
Excitatory amino acid transporter 1 (EAAT1) is a glutamate transporter belonging to the SLC1 family of solute carriers. It plays a key role in the regulation of the extracellular glutamate concentration in the mammalian brain. The structure of EAAT1 was determined in complex with UCPH-101, apotent, non-competitive inhibitor of EAAT1. Alanine serine cysteine transporter 2 (ASCT2) is a neutral amino acid transporter, which regulates pools of amino acids such as glutamine between intracellular and extracellular compartments . ASCT2 also belongs to the SLC1 family and shares 58% sequence similarity with EAAT1. However, allosteric modulation of ASCT2 via non-competitive inhibitors is unknown. Here, we explore the UCPH-101 inhibitory mechanisms of EAAT1 and ASCT2 by using rapid kinetic experiments. Our results show that UCPH-101 slows substrate translocation rather than substrate or Na+ binding, confirming a non-competitive inhibitory mechanism, but only partially inhibits wild-type ASCT2. Guided by computational modeling using ligand docking and molecular dynamics simulations, we selected two residues involved in UCPH-101/EAAT1 interaction, which were mutated in ASCT2 (F136Y, I237M, F136Y/I237M) in the corresponding positions. We show that in the F136Y/I237M double-mutant transporter, 100% of the inhibitory effect of UCPH-101 could be restored, and the apparent affinity was increased (Ki = 4.3 μM), much closer to the EAAT1 value of 0.6 μM. Finally, we identify a novel non-competitive ASCT2 inhibitor, through virtual screening and experimental testing against the allosteric site, further supporting its localization. Together, these data indicate that the mechanism of allosteric modulation is conserved between EAAT1 and ASCT2. Due to the difference in binding site residues between ASCT2 and EAAT1, these results raise the possibility that more potent, and potentially selective ASCT2 allosteric inhibitors can be designed .
Collapse
Affiliation(s)
- Yang Dong
- Department of Chemistry, Binghamton UniversityBinghamtonUnited States
| | - Jiali Wang
- Department of Chemistry, Binghamton UniversityBinghamtonUnited States
| | - Rachel-Ann Garibsingh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Keino Hutchinson
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Yueyue Shi
- Department of Chemistry, Binghamton UniversityBinghamtonUnited States
| | - Gilad Eisenberg
- Department of Chemistry, Binghamton UniversityBinghamtonUnited States
| | - Xiaozhen Yu
- Department of Chemistry, Binghamton UniversityBinghamtonUnited States
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Christof Grewer
- Department of Chemistry, Binghamton UniversityBinghamtonUnited States
| |
Collapse
|
31
|
Fontana IC, Souza DG, Souza DO, Gee A, Zimmer ER, Bongarzone S. A Medicinal Chemistry Perspective on Excitatory Amino Acid Transporter 2 Dysfunction in Neurodegenerative Diseases. J Med Chem 2023; 66:2330-2346. [PMID: 36787643 PMCID: PMC9969404 DOI: 10.1021/acs.jmedchem.2c01572] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The excitatory amino acid transporter 2 (EAAT2) plays a key role in the clearance and recycling of glutamate - the major excitatory neurotransmitter in the mammalian brain. EAAT2 loss/dysfunction triggers a cascade of neurodegenerative events, comprising glutamatergic excitotoxicity and neuronal death. Nevertheless, our current knowledge regarding EAAT2 in neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD), is restricted to post-mortem analysis of brain tissue and experimental models. Thus, detecting EAAT2 in the living human brain might be crucial to improve diagnosis/therapy for ALS and AD. This perspective article describes the role of EAAT2 in physio/pathological processes and provides a structure-activity relationship of EAAT2-binders, bringing two perspectives: therapy (activators) and diagnosis (molecular imaging tools).
Collapse
Affiliation(s)
- Igor C Fontana
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom.,Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, Brazil.,Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Blickagången 16 - Neo floor seventh, 141 83 Stockholm, Sweden
| | - Débora G Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, Brazil.,Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6681 Porto Alegre, Brazil
| | - Diogo O Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, Brazil
| | - Antony Gee
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Eduardo R Zimmer
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, Brazil.,Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Av. Sarmento Leite 500, sala, 90035-003 Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Biochemistry (PPGBioq), and Pharmacology and Therapeutics (PPGFT), Universidade Federal do Rio Grande do Sul, Av. Sarmento Leite 500, sala, 305 Porto Alegre, Brazil.,Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6681 Porto Alegre, Brazil.,McGill University Research Centre for Studies in Aging, McGill University, Montreal, Quebec H4H 1R3, Canada
| | - Salvatore Bongarzone
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| |
Collapse
|
32
|
Leucine 434 is essential for docosahexaenoic acid-induced augmentation of L-glutamate transporter current. J Biol Chem 2022; 299:102793. [PMID: 36509140 PMCID: PMC9823230 DOI: 10.1016/j.jbc.2022.102793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
Astrocytic excitatory amino acid transporter 2 (EAAT2) plays a major role in removing the excitatory neurotransmitter L-glutamate (L-Glu) from synaptic clefts in the forebrain to prevent excitotoxicity. Polyunsaturated fatty acids such as docosahexaenoic acid (DHA, 22:6 n-3) enhance synaptic transmission, and their target molecules include EAATs. Here, we aimed to investigate the effect of DHA on EAAT2 and identify the key amino acid for DHA/EAAT2 interaction by electrophysiological recording of L-Glu-induced current in Xenopus oocytes transfected with EAATs, their chimeras, and single mutants. DHA transiently increased the amplitude of EAAT2 but tended to decrease that of excitatory amino acid transporter subtype 1 (EAAT1), another astrocytic EAAT. Single mutation of leucine (Leu) 434 to alanine (Ala) completely suppressed the augmentation by DHA, while mutation of EAAT1 Ala 435 (corresponding to EAAT2 Leu434) to Leu changed the effect from suppression to augmentation. Other polyunsaturated fatty acids (docosapentaenoic acid, eicosapentaenoic acid, arachidonic acid, and α-linolenic acid) similarly augmented the EAAT2 current and suppressed the EAAT1 current. Finally, our docking analysis suggested the most stable docking site is the lipid crevice of EAAT2, in close proximity to the L-Glu and sodium binding sites, suggesting that the DHA/Leu434 interaction might affect the elevator-like slide and/or the shapes of the other binding sites. Collectively, our results highlight a key molecular detail in the DHA-induced regulation of synaptic transmission involving EAATs.
Collapse
|
33
|
Kato T, Kusakizako T, Jin C, Zhou X, Ohgaki R, Quan L, Xu M, Okuda S, Kobayashi K, Yamashita K, Nishizawa T, Kanai Y, Nureki O. Structural insights into inhibitory mechanism of human excitatory amino acid transporter EAAT2. Nat Commun 2022; 13:4714. [PMID: 35953475 PMCID: PMC9372063 DOI: 10.1038/s41467-022-32442-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
Glutamate is a pivotal excitatory neurotransmitter in mammalian brains, but excessive glutamate causes numerous neural disorders. Almost all extracellular glutamate is retrieved by the glial transporter, Excitatory Amino Acid Transporter 2 (EAAT2), belonging to the SLC1A family. However, in some cancers, EAAT2 expression is enhanced and causes resistance to therapies by metabolic disturbance. Despite its crucial roles, the detailed structural information about EAAT2 has not been available. Here, we report cryo-EM structures of human EAAT2 in substrate-free and selective inhibitor WAY213613-bound states at 3.2 Å and 2.8 Å, respectively. EAAT2 forms a trimer, with each protomer consisting of transport and scaffold domains. Along with a glutamate-binding site, the transport domain possesses a cavity that could be disrupted during the transport cycle. WAY213613 occupies both the glutamate-binding site and cavity of EAAT2 to interfere with its alternating access, where the sensitivity is defined by the inner environment of the cavity. We provide the characterization of the molecular features of EAAT2 and its selective inhibition mechanism that may facilitate structure-based drug design for EAAT2. EAAT2 is an amino acid transporter implicated in glutamate homeostasis in brain and therapy resistance of cancer cells. Here, the authors report cryo-EM structures and reveal inhibitory mechanisms via selective inhibitor WAY213613.
Collapse
Affiliation(s)
- Takafumi Kato
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Department of Biochemistry, The University of Oxford, Oxford, UK
| | - Tsukasa Kusakizako
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Chunhuan Jin
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Xinyu Zhou
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ryuichi Ohgaki
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiative (OTRI), Osaka University, Osaka, Japan
| | - LiLi Quan
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Minhui Xu
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Suguru Okuda
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kan Kobayashi
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Peptidream Inc, Kawasaki, Japan
| | - Keitaro Yamashita
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Tomohiro Nishizawa
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan. .,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiative (OTRI), Osaka University, Osaka, Japan.
| | - Osamu Nureki
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
34
|
Khera R, Mehdipour AR, Bolla JR, Kahnt J, Welsch S, Ermler U, Muenke C, Robinson CV, Hummer G, Xie H, Michel H. Cryo-EM structures of pentameric autoinducer-2 exporter from Escherichia coli reveal its transport mechanism. EMBO J 2022; 41:e109990. [PMID: 35698912 PMCID: PMC9475539 DOI: 10.15252/embj.2021109990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/16/2022] Open
Abstract
Bacteria utilize small extracellular molecules to communicate in order to collectively coordinate their behaviors in response to the population density. Autoinducer-2 (AI-2), a universal molecule for both intra- and inter-species communication, is involved in the regulation of biofilm formation, virulence, motility, chemotaxis, and antibiotic resistance. While many studies have been devoted to understanding the biosynthesis and sensing of AI-2, very little information is available on its export. The protein TqsA from Escherichia coli, which belongs to the AI-2 exporter superfamily, has been shown to export AI-2. Here, we report the cryogenic electron microscopic structures of two AI-2 exporters (TqsA and YdiK) from E. coli at 3.35 Å and 2.80 Å resolutions, respectively. Our structures suggest that the AI-2 exporter exists as a homo-pentameric complex. In silico molecular docking and native mass spectrometry experiments were employed to demonstrate the interaction between AI-2 and TqsA, and the results highlight the functional importance of two helical hairpins in substrate binding. We propose that each monomer works as an independent functional unit utilizing an elevator-type transport mechanism.
Collapse
Affiliation(s)
- Radhika Khera
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Ahmad R Mehdipour
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.,Centre for molecular modelling, Ghent University, Zwijnaarde, Belgium
| | - Jani R Bolla
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK.,The Kavli Institute for Nanoscience Discovery, Oxford, UK.,Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Joerg Kahnt
- Core Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Sonja Welsch
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Ulrich Ermler
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Cornelia Muenke
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK.,The Kavli Institute for Nanoscience Discovery, Oxford, UK
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.,Institute of Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Hao Xie
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Hartmut Michel
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| |
Collapse
|
35
|
Chen I, Wu Q, Font J, Ryan RM. The twisting elevator mechanism of glutamate transporters reveals the structural basis for the dual transport-channel functions. Curr Opin Struct Biol 2022; 75:102405. [PMID: 35709614 DOI: 10.1016/j.sbi.2022.102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022]
Abstract
Glutamate transporters facilitate the removal of this excitatory neurotransmitter from the synapse. Increasing evidence indicates that this process is linked to intrinsic chloride channel activity that is thermodynamically uncoupled from substrate transport. A recent cryo-EM structure of GltPh - an archaeal homolog of the glutamate transporters - in an open channel state has shed light on the structural basis for channel opening formed at the interface of two domains within the transporter which is gated by two clusters of hydrophobic residues. These transporters cycle through several conformational states during the transport process, including the chloride conducting state, which appears to be stabilised by protein-membrane interactions and membrane deformation. Several point mutations that perturb the chloride conductance can have detrimental effects and are linked to the pathogenesis of the neurological disorder, episodic ataxia type 6.
Collapse
Affiliation(s)
- Ichia Chen
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Qianyi Wu
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Josep Font
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Renae M Ryan
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW, Australia.
| |
Collapse
|
36
|
Zhang Z, Chen H, Geng Z, Yu Z, Li H, Dong Y, Zhang H, Huang Z, Jiang J, Zhao Y. Structural basis of ligand binding modes of human EAAT2. Nat Commun 2022; 13:3329. [PMID: 35680945 PMCID: PMC9184463 DOI: 10.1038/s41467-022-31031-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/31/2022] [Indexed: 01/07/2023] Open
Abstract
In the central nervous system (CNS), excitatory amino acid transporters (EAATs) mediate the uptake of excitatory neurotransmitter glutamate and maintain its low concentrations in the synaptic cleft for avoiding neuronal cytotoxicity. Dysfunction of EAATs can lead to many psychiatric diseases. Here we report cryo-EM structures of human EAAT2 in an inward-facing conformation, in the presence of substrate glutamate or selective inhibitor WAY-213613. The glutamate is coordinated by extensive hydrogen bonds and further stabilized by HP2. The inhibitor WAY-213613 occupies a similar binding pocket to that of the substrate glutamate. Upon association with the WAY-213613, the HP2 undergoes a substantial conformational change, and in turn stabilizes the inhibitor binding by forming hydrophobic interactions. Electrophysiological experiments elucidate that the unique S441 plays pivotal roles in the binding of hEAAT2 with glutamate or WAY-213613, and the I464-L467-V468 cluster acts as a key structural determinant for the selective inhibition of this transporter by WAY-213613.
Collapse
Affiliation(s)
- Zhenglai Zhang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huiwen Chen
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ze Geng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China.,IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Zhuoya Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanli Dong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongwei Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China. .,IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| | - Juquan Jiang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China.
| | - Yan Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
37
|
Silva T, Silva AN, Serafim Y, Silva Júnior V, Lima E. Behavioral and structural changes in the hippocampus of wistar epileptic rats are minimized by acupuncture associated or not with phenobarbital. ARQ BRAS MED VET ZOO 2022. [DOI: 10.1590/1678-4162-12391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT The aim of this study was to analyze the behavior and histopathological changes in the hippocampus of epileptic Wistar rats treated with acupuncture associated or not with phenobarbital. The experiment used 44 male rats with 90 days of birth, induced to status epileptics with pilocarpine hydrochloride in a single dose of 350mg/kg, separated into treatment groups and submitted for 5 minutes to the elevated plus-maze test. Group 1 received 0.2mL of saline solution orally; Group 2 treated with acupuncture at the yintang, baihui, shishencong, jizhong, naohu, thianzu points; Group 3 received orally phenobarbital, daily dose of 20mg/kg; Group 4 treated with an association of acupuncture and oral phenobarbital; Group 5 random needling. The results obtained showed that Groups 2 (acupuncture) and 4 (acupuncture and phenobarbital) presented decreased anxiety, epileptic seizures, and neuronal death in the CA1, CA3 areas of the hippocampus when compared to animals in groups 1, 3 and 5. It is concluded that the association of phenobarbital and acupuncture points used in the experiment allowed for the control of epileptic seizures, reduction of anxiety and reduction of lesions in the subareas of the hippocampus.
Collapse
Affiliation(s)
- T.C.C. Silva
- Universidade Federal Rural de Pernambuco, Brazil
| | | | | | | | - E.R. Lima
- Universidade Federal Rural de Pernambuco, Brazil
| |
Collapse
|
38
|
Sauer DB, Marden JJ, Sudar JC, Song J, Mulligan C, Wang DN. Structural basis of ion - substrate coupling in the Na +-dependent dicarboxylate transporter VcINDY. Nat Commun 2022; 13:2644. [PMID: 35551191 PMCID: PMC9098524 DOI: 10.1038/s41467-022-30406-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/28/2022] [Indexed: 11/21/2022] Open
Abstract
The Na+-dependent dicarboxylate transporter from Vibrio cholerae (VcINDY) is a prototype for the divalent anion sodium symporter (DASS) family. While the utilization of an electrochemical Na+ gradient to power substrate transport is well established for VcINDY, the structural basis of this coupling between sodium and substrate binding is not currently understood. Here, using a combination of cryo-EM structure determination, succinate binding and site-directed cysteine alkylation assays, we demonstrate that the VcINDY protein couples sodium- and substrate-binding via a previously unseen cooperative mechanism by conformational selection. In the absence of sodium, substrate binding is abolished, with the succinate binding regions exhibiting increased flexibility, including HPinb, TM10b and the substrate clamshell motifs. Upon sodium binding, these regions become structurally ordered and create a proper binding site for the substrate. Taken together, these results provide strong evidence that VcINDY's conformational selection mechanism is a result of the sodium-dependent formation of the substrate binding site.
Collapse
Affiliation(s)
- David B Sauer
- Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, 10016, USA
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jennifer J Marden
- Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | - Joseph C Sudar
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | - Jinmei Song
- Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | | | - Da-Neng Wang
- Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA.
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
39
|
Riederer EA, Moënne-Loccoz P, Valiyaveetil FI. Distinct roles of the Na + binding sites in the allosteric coupling mechanism of the glutamate transporter homolog, Glt Ph. Proc Natl Acad Sci U S A 2022; 119:e2121653119. [PMID: 35507872 PMCID: PMC9171649 DOI: 10.1073/pnas.2121653119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/18/2022] [Indexed: 11/18/2022] Open
Abstract
Glutamate transporters carry out the concentrative uptake of glutamate by harnessing the ionic gradients present across cellular membranes. A central step in the transport mechanism is the coupled binding of Na+ and substrate. The sodium coupled Asp transporter, GltPh is an archaeal homolog of glutamate transporters that has been extensively used to probe the transport mechanism. Previous studies have shown that hairpin-2 (HP2) functions as the extracellular gate for the aspartate binding site and plays a key role in the coupled binding of sodium and aspartate to GltPh. The binding sites for three Na+ ions (Na1-3) have been identified in GltPh, but the specific roles of the individual Na+ sites in the binding process have not been elucidated. In this study, we developed assays to probe Na+ binding to the Na1 and Na3 sites and to monitor the conformational switch in the NMDGT motif. We used these assays along with a fluorescence assay to monitor HP2 movement and EPR spectroscopy to show that Na+ binding to the Na3 site is required for the NMDGT conformational switch while Na+ binding to the Na1 site is responsible for the partial opening of HP2. Complete opening of HP2 requires the conformational switch of the NMDGT motif and therefore Na+ binding to both the Na1 and the Na3 sites. Based on our studies, we also propose an alternate pathway for the coupled binding of Na+ and Asp.
Collapse
Affiliation(s)
- Erika A. Riederer
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239
| | - Francis I. Valiyaveetil
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
40
|
Reddy KD, Ciftci D, Scopelliti AJ, Boudker O. The archaeal glutamate transporter homologue GltPh shows heterogeneous substrate binding. J Gen Physiol 2022; 154:e202213131. [PMID: 35452090 PMCID: PMC9044058 DOI: 10.1085/jgp.202213131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/10/2022] [Indexed: 12/31/2022] Open
Abstract
Integral membrane glutamate transporters couple the concentrative substrate transport to ion gradients. There is a wealth of structural and mechanistic information about this protein family. Recent studies of an archaeal homologue, GltPh, revealed transport rate heterogeneity, which is inconsistent with simple kinetic models; however, its structural and mechanistic determinants remain undefined. Here, we demonstrate that in a mutant GltPh, which exclusively populates the outward-facing state, at least two substates coexist in slow equilibrium, binding the substrate with different apparent affinities. Wild type GltPh shows similar binding properties, and modulation of the substate equilibrium correlates with transport rates. The low-affinity substate of the mutant is transient following substrate binding. Consistently, cryo-EM on samples frozen within seconds after substrate addition reveals the presence of structural classes with perturbed helical packing of the extracellular half of the transport domain in regions adjacent to the binding site. By contrast, an equilibrated structure does not show such classes. The structure at 2.2-Å resolution details a pattern of waters in the intracellular half of the domain and resolves classes with subtle differences in the substrate-binding site. We hypothesize that the rigid cytoplasmic half of the domain mediates substrate and ion recognition and coupling, whereas the extracellular labile half sets the affinity and dynamic properties.
Collapse
Affiliation(s)
- Krishna D. Reddy
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
| | - Didar Ciftci
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
- Tri-Institutional Training Program in Chemical Biology, New York, NY
| | | | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
- Howard Hughes Medical Institute, Weill Cornell Medicine, New York, NY
| |
Collapse
|
41
|
Pant S, Wu Q, Ryan R, Tajkhorshid E. Microscopic Characterization of the Chloride Permeation Pathway in the Human Excitatory Amino Acid Transporter 1 (EAAT1). ACS Chem Neurosci 2022; 13:776-785. [PMID: 35192345 PMCID: PMC9725111 DOI: 10.1021/acschemneuro.1c00769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) are glutamate transporters that belong to the solute carrier 1A (SLC1A) family. They couple glutamate transport to the cotransport of three sodium (Na+) ions and one proton (H+) and the counter-transport of one potassium (K+) ion. In addition to this coupled transport, binding of cotransported species to EAATs activates a thermodynamically uncoupled chloride (Cl-) conductance. Structures of SLC1A family members have revealed that these transporters use a twisting elevator mechanism of transport, where a mobile transport domain carries substrate and coupled ions across the membrane, while a static scaffold domain anchors the transporter in the membrane. We recently demonstrated that the uncoupled Cl- conductance is activated by the formation of an aqueous pore at the domain interface during the transport cycle in archaeal GltPh. However, a pathway for the uncoupled Cl- conductance has not been reported for the EAATs, and it is unclear if such a pathway is conserved. Here, we employ all-atom molecular dynamics (MD) simulations combined with enhanced sampling, free-energy calculations, and experimental mutagenesis to approximate large-scale conformational changes during the transport process and identified a Cl--conducting conformation in human EAAT1 (hEAAT1). Sampling the large-scale structural transitions in hEAAT1 allowed us to capture an intermediate conformation formed during the transport cycle with a continuous aqueous pore at the domain interface. The free-energy calculations performed for the conduction of Cl- and Na+ ions through the captured conformation highlight the presence of two hydrophobic gates that control low-barrier movement of Cl- through the aqueous pathway. Overall, our findings provide insights into the mechanism by which a human neurotransmitter transporter supports functional duality of active transport and passive Cl- permeation and confirm the commonality of this mechanism in different members of the SLC1A family.
Collapse
Affiliation(s)
- Shashank Pant
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Qianyi Wu
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Renae Ryan
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
42
|
Ku YS, Cheng SS, Ng MS, Chung G, Lam HM. The Tiny Companion Matters: The Important Role of Protons in Active Transports in Plants. Int J Mol Sci 2022; 23:ijms23052824. [PMID: 35269965 PMCID: PMC8911182 DOI: 10.3390/ijms23052824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/07/2022] Open
Abstract
In plants, the translocation of molecules, such as ions, metabolites, and hormones, between different subcellular compartments or different cells is achieved by transmembrane transporters, which play important roles in growth, development, and adaptation to the environment. To facilitate transport in a specific direction, active transporters that can translocate their substrates against the concentration gradient are needed. Examples of major active transporters in plants include ATP-binding cassette (ABC) transporters, multidrug and toxic compound extrusion (MATE) transporters, monosaccharide transporters (MSTs), sucrose transporters (SUTs), and amino acid transporters. Transport via ABC transporters is driven by ATP. The electrochemical gradient across the membrane energizes these secondary transporters. The pH in each cell and subcellular compartment is tightly regulated and yet highly dynamic, especially when under stress. Here, the effects of cellular and subcellular pH on the activities of ABC transporters, MATE transporters, MSTs, SUTs, and amino acid transporters will be discussed to enhance our understanding of their mechanics. The relation of the altered transporter activities to various biological processes of plants will also be addressed. Although most molecular transport research has focused on the substrate, the role of protons, the tiny counterparts of the substrate, should also not be ignored.
Collapse
Affiliation(s)
- Yee-Shan Ku
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.-S.C.); (M.-S.N.)
- Correspondence: (Y.-S.K.); (H.-M.L.); Tel.: +852-3943-8132 (Y.-S.K.); +852-3943-6336 (H.-M.L.)
| | - Sau-Shan Cheng
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.-S.C.); (M.-S.N.)
| | - Ming-Sin Ng
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.-S.C.); (M.-S.N.)
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Korea;
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.-S.C.); (M.-S.N.)
- Correspondence: (Y.-S.K.); (H.-M.L.); Tel.: +852-3943-8132 (Y.-S.K.); +852-3943-6336 (H.-M.L.)
| |
Collapse
|
43
|
Cysteine Donor-Based Brain-Targeting Prodrug: Opportunities and Challenges. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4834117. [PMID: 35251474 PMCID: PMC8894025 DOI: 10.1155/2022/4834117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/11/2022] [Indexed: 12/20/2022]
Abstract
Overcoming blood-brain barrier (BBB) to improve brain bioavailability of therapeutic drug remains an ongoing concern. Prodrug is one of the most reliable approaches for delivering agents with low-level BBB permeability into the brain. The well-known antioxidant capacities of cysteine (Cys) and its vital role in glutathione (GSH) synthesis indicate that Cys-based prodrug could potentiate therapeutic drugs against oxidative stress-related neurodegenerative disorders. Moreover, prodrug with Cys moiety could be recognized by the excitatory amino acid transporter 3 (EAAT3) that is highly expressed at the BBB and transports drug into the brain. In this review, we summarized the strategies of crossing BBB, properties of EAAT3 and its natural substrates, Cys and its donors, and Cys donor-based brain-targeting prodrugs by referring to recent investigations. Moreover, the challenges that we are faced with and future research orientations were also addressed and proposed. It is hoped that present review will provide evidence for the pursuit of novel Cys donor-based brain-targeting prodrug.
Collapse
|
44
|
Rǎdulescu AR, Todd GC, Williams CL, Bennink BA, Lemus AA, Chesbro HE, Bourgeois JR, Kopec AM, Zuloaga DG, Scimemi A. Estimating the glutamate transporter surface density in distinct sub-cellular compartments of mouse hippocampal astrocytes. PLoS Comput Biol 2022; 18:e1009845. [PMID: 35120128 PMCID: PMC8849624 DOI: 10.1371/journal.pcbi.1009845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 02/16/2022] [Accepted: 01/18/2022] [Indexed: 11/19/2022] Open
Abstract
Glutamate transporters preserve the spatial specificity of synaptic transmission by limiting glutamate diffusion away from the synaptic cleft, and prevent excitotoxicity by keeping the extracellular concentration of glutamate at low nanomolar levels. Glutamate transporters are abundantly expressed in astrocytes, and previous estimates have been obtained about their surface expression in astrocytes of the rat hippocampus and cerebellum. Analogous estimates for the mouse hippocampus are currently not available. In this work, we derive the surface density of astrocytic glutamate transporters in mice of different ages via quantitative dot blot. We find that the surface density of glial glutamate transporters is similar in 7-8 week old mice and rats. In mice, the levels of glutamate transporters increase until about 6 months of age and then begin to decline slowly. Our data, obtained from a combination of experimental and modeling approaches, point to the existence of stark differences in the density of expression of glutamate transporters across different sub-cellular compartments, indicating that the extent to which astrocytes limit extrasynaptic glutamate diffusion depends not only on their level of synaptic coverage, but also on the identity of the astrocyte compartment in contact with the synapse. Together, these findings provide information on how heterogeneity in the spatial distribution of glutamate transporters in the plasma membrane of hippocampal astrocytes my alter glutamate receptor activation out of the synaptic cleft.
Collapse
Affiliation(s)
- Anca R. Rǎdulescu
- Department of Mathematics, State University of New York at New Paltz, New Paltz, New York, United States of America
| | - Gabrielle C. Todd
- Department of Biology, State University of New York at Albany, Albany, New York, United States of America
| | - Cassandra L. Williams
- Department of Mathematics, State University of New York at New Paltz, New Paltz, New York, United States of America
| | - Benjamin A. Bennink
- Department of Biology, State University of New York at Albany, Albany, New York, United States of America
| | - Alex A. Lemus
- Department of Biology, State University of New York at Albany, Albany, New York, United States of America
| | - Haley E. Chesbro
- Department of Biology, State University of New York at Albany, Albany, New York, United States of America
| | - Justin R. Bourgeois
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, United States of America
| | - Ashley M. Kopec
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, United States of America
| | - Damian G. Zuloaga
- Department of Psychology, State University of New York at Albany, Albany, New York, United States of America
| | - Annalisa Scimemi
- Department of Biology, State University of New York at Albany, Albany, New York, United States of America
| |
Collapse
|
45
|
Kovermann P, Engels M, Müller F, Fahlke C. Cellular Physiology and Pathophysiology of EAAT Anion Channels. Front Cell Neurosci 2022; 15:815279. [PMID: 35087380 PMCID: PMC8787812 DOI: 10.3389/fncel.2021.815279] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) optimize the temporal resolution and energy demand of mammalian excitatory synapses by quickly removing glutamate from the synaptic cleft into surrounding neuronal and glial cells and ensuring low resting glutamate concentrations. In addition to secondary active glutamate transport, EAATs also function as anion channels. The channel function of these transporters is conserved in all homologs ranging from archaebacteria to mammals; however, its physiological roles are insufficiently understood. There are five human EAATs, which differ in their glutamate transport rates. Until recently the high-capacity transporters EAAT1, EAAT2, and EAAT3 were believed to conduct only negligible anion currents, with no obvious function in cell physiology. In contrast, the low-capacity glutamate transporters EAAT4 and EAAT5 are thought to regulate neuronal signaling as glutamate-gated channels. In recent years, new experimental approaches and novel animal models, together with the discovery of a human genetic disease caused by gain-of-function mutations in EAAT anion channels have enabled identification of the first physiological and pathophysiological roles of EAAT anion channels.
Collapse
|
46
|
Canul‐Tec JC, Kumar A, Dhenin J, Assal R, Legrand P, Rey M, Chamot‐Rooke J, Reyes N. The ion-coupling mechanism of human excitatory amino acid transporters. EMBO J 2022; 41:e108341. [PMID: 34747040 PMCID: PMC8724772 DOI: 10.15252/embj.2021108341] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/07/2023] Open
Abstract
Excitatory amino acid transporters (EAATs) maintain glutamate gradients in the brain essential for neurotransmission and to prevent neuronal death. They use ionic gradients as energy source and co-transport transmitter into the cytoplasm with Na+ and H+ , while counter-transporting K+ to re-initiate the transport cycle. However, the molecular mechanisms underlying ion-coupled transport remain incompletely understood. Here, we present 3D X-ray crystallographic and cryo-EM structures, as well as thermodynamic analysis of human EAAT1 in different ion bound conformations, including elusive counter-transport ion bound states. Binding energies of Na+ and H+ , and unexpectedly Ca2+ , are coupled to neurotransmitter binding. Ca2+ competes for a conserved Na+ site, suggesting a regulatory role for Ca2+ in glutamate transport at the synapse, while H+ binds to a conserved glutamate residue stabilizing substrate occlusion. The counter-transported ion binding site overlaps with that of glutamate, revealing the K+ -based mechanism to exclude the transmitter during the transport cycle and to prevent its neurotoxic release on the extracellular side.
Collapse
Affiliation(s)
- Juan C Canul‐Tec
- Membrane Protein Mechanisms UnitInstitut PasteurParisFrance
- Membrane Protein Mechanisms GroupEuropean Institute of Chemistry and BiologyUniversity of BordeauxPessacFrance
- CNRS UMR 5234 Fundamental Microbiology and PathogenicityBordeauxFrance
| | - Anand Kumar
- Membrane Protein Mechanisms UnitInstitut PasteurParisFrance
- Membrane Protein Mechanisms GroupEuropean Institute of Chemistry and BiologyUniversity of BordeauxPessacFrance
- CNRS UMR 5234 Fundamental Microbiology and PathogenicityBordeauxFrance
| | - Jonathan Dhenin
- Mass Spectrometry for Biology Unit, CNRS USR 2000Institut PasteurParisFrance
| | - Reda Assal
- Membrane Protein Mechanisms UnitInstitut PasteurParisFrance
| | - Pierre Legrand
- Synchrotron SOLEILL'Orme des MerisiersGif‐sur‐YvetteFrance
| | - Martial Rey
- Mass Spectrometry for Biology Unit, CNRS USR 2000Institut PasteurParisFrance
| | - Julia Chamot‐Rooke
- Mass Spectrometry for Biology Unit, CNRS USR 2000Institut PasteurParisFrance
| | - Nicolas Reyes
- Membrane Protein Mechanisms UnitInstitut PasteurParisFrance
- Membrane Protein Mechanisms GroupEuropean Institute of Chemistry and BiologyUniversity of BordeauxPessacFrance
- CNRS UMR 5234 Fundamental Microbiology and PathogenicityBordeauxFrance
| |
Collapse
|
47
|
Danbolt NC, López-Corcuera B, Zhou Y. Reconstitution of GABA, Glycine and Glutamate Transporters. Neurochem Res 2022; 47:85-110. [PMID: 33905037 PMCID: PMC8763731 DOI: 10.1007/s11064-021-03331-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 10/25/2022]
Abstract
In contrast to water soluble enzymes which can be purified and studied while in solution, studies of solute carrier (transporter) proteins require both that the protein of interest is situated in a phospholipid membrane and that this membrane forms a closed compartment. An additional challenge to the study of transporter proteins has been that the transport depends on the transmembrane electrochemical gradients. Baruch I. Kanner understood this early on and first developed techniques for studying plasma membrane vesicles. This advanced the field in that the experimenter could control the electrochemical gradients. Kanner, however, did not stop there, but started to solubilize the membranes so that the transporter proteins were taken out of their natural environment. In order to study them, Kanner then had to find a way to reconstitute them (reinsert them into phospholipid membranes). The scope of the present review is both to describe the reconstitution method in full detail as that has never been done, and also to reveal the scientific impact that this method has had. Kanner's later work is not reviewed here although that also deserves a review because it too has had a huge impact.
Collapse
Affiliation(s)
- Niels Christian Danbolt
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway.
| | - Beatriz López-Corcuera
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
- IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Yun Zhou
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
| |
Collapse
|
48
|
Scarsbrook HL, Urban R, Streather BR, Moores A, Mulligan C. Topological analysis of a bacterial DedA protein associated with alkaline tolerance and antimicrobial resistance. MICROBIOLOGY (READING, ENGLAND) 2021; 167. [PMID: 34914576 DOI: 10.1099/mic.0.001125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Maintaining membrane integrity is of paramount importance to the survival of bacteria as the membrane is the site of multiple crucial cellular processes including energy generation, nutrient uptake and antimicrobial efflux. The DedA family of integral membrane proteins are widespread in bacteria and are associated with maintaining the integrity of the membrane. In addition, DedA proteins have been linked to resistance to multiple classes of antimicrobials in various microorganisms. Therefore, the DedA family are attractive targets for the development of new antibiotics. Despite DedA family members playing a key physiological role in many bacteria, their structure, function and physiological role remain unclear. To help illuminate the structure of the bacterial DedA proteins, we performed substituted cysteine accessibility method (SCAM) analysis on the most comprehensively characterized bacterial DedA protein, YqjA from Escherichia coli. By probing the accessibility of 15 cysteine residues across the length of YqjA using thiol reactive reagents, we mapped the topology of the protein. Using these data, we experimentally validated a structural model of YqjA generated using evolutionary covariance, which consists of an α-helical bundle with two re-entrant hairpin loops reminiscent of several secondary active transporters. In addition, our cysteine accessibility data suggest that YqjA forms an oligomer wherein the protomers are arranged in a parallel fashion. This experimentally verified model of YqjA lays the foundation for future work in understanding the function and mechanism of this interesting and important family.
Collapse
Affiliation(s)
- Hollie L Scarsbrook
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, Kent, CT2 7NH, UK
| | - Roman Urban
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, Kent, CT2 7NH, UK
| | - Bree R Streather
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, Kent, CT2 7NH, UK
| | - Alexandra Moores
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, Kent, CT2 7NH, UK
| | | |
Collapse
|
49
|
Ciftci D, Martens C, Ghani VG, Blanchard SC, Politis A, Huysmans GHM, Boudker O. Linking function to global and local dynamics in an elevator-type transporter. Proc Natl Acad Sci U S A 2021; 118:e2025520118. [PMID: 34873050 PMCID: PMC8670510 DOI: 10.1073/pnas.2025520118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 11/24/2022] Open
Abstract
Transporters cycle through large structural changes to translocate molecules across biological membranes. The temporal relationships between these changes and function, and the molecular properties setting their rates, determine transport efficiency-yet remain mostly unknown. Using single-molecule fluorescence microscopy, we compare the timing of conformational transitions and substrate uptake in the elevator-type transporter GltPh We show that the elevator-like movements of the substrate-loaded transport domain across membranes and substrate release are kinetically heterogeneous, with rates varying by orders of magnitude between individual molecules. Mutations increasing the frequency of elevator transitions and reducing substrate affinity diminish transport rate heterogeneities and boost transport efficiency. Hydrogen deuterium exchange coupled to mass spectrometry reveals destabilization of secondary structure around the substrate-binding site, suggesting that increased local dynamics leads to faster rates of global conformational changes and confers gain-of-function properties that set transport rates.
Collapse
Affiliation(s)
- Didar Ciftci
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065
- Tri-Institutional Training Program in Chemical Biology, New York, NY 10065
| | - Chloe Martens
- Department of Chemistry, King's College London, London SE1 1DB, United Kingdom
| | - Vishnu G Ghani
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Argyris Politis
- Department of Chemistry, King's College London, London SE1 1DB, United Kingdom
| | - Gerard H M Huysmans
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065;
| | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065;
- Tri-Institutional Training Program in Chemical Biology, New York, NY 10065
- Howard Hughes Medical Institute, Weill Cornell Medicine, New York, NY 10065
| |
Collapse
|
50
|
Shome S, Sankar K, Jernigan RL. Simulated Drug Efflux for the AbgT Family of Membrane Transporters. J Chem Inf Model 2021; 61:5673-5681. [PMID: 34714659 DOI: 10.1021/acs.jcim.1c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Drug extrusion through molecular efflux pumps is an important mechanism for the survival of many pathogenic bacteria by removing drugs, providing multidrug resistance (MDR). Understanding molecular mechanisms for drug extrusion in multidrug efflux pumps is important for the development of new antiresistance drugs. The AbgT family of transporters involved in the folic acid biosynthesis pathway represents one such important efflux pump system. In addition to the transport of the folic acid precursor p-amino benzoic acid (PABA), members of this family are involved in the efflux of several sulfa drugs, conferring drug resistance to the bacteria. With the availability of structures for two members of this family (YdaH and MtrF), we investigate molecular pathways for transport of PABA and a sulfa drug (sulfamethazine) particularly for the YdaH transporter using steered molecular dynamics. Our analyses reveal the probable ligand migration pathways through the transporter, which also identifies key residues along the transport pathway. In addition, simulations using both PABA and sulfamethazine show how the protein is able to transport ligands of different shapes and sizes out of the pathogen. Our observations confirm previously reported functional residues for transport along the pathways by which YdaH transporters achieve antibiotic resistance to shuttle drugs out of the cells.
Collapse
Affiliation(s)
- Sayane Shome
- Bioinformatics and Computational Biology Program Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Kannan Sankar
- Bioinformatics and Computational Biology Program Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Robert L Jernigan
- Bioinformatics and Computational Biology Program Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|