1
|
Tong X, Shen T, Li S, Wu L. Design, synthesis, and biological evaluation of novel CDK4/6 and BRD4 dual inhibitors for treatment of KRAS-mutant NSCLC. Eur J Med Chem 2025; 292:117685. [PMID: 40311163 DOI: 10.1016/j.ejmech.2025.117685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025]
Abstract
CDK4/6 is the candidate therapeutic target for KRAS-mutant NSCLC. However, its frequent primary and acquired resistance limits its potential clinical application. Recently it had been shown that BRD4 up-regulation induced conferred resistance of KRAS-mutant NSCLC cells to CDK4/6 inhibitor, and BRD4 inhibitor synergized with CDK4/6 inhibitor induced senescence in KRAS-mutant NSCLC tumors and cells, meanwhile, the combined therapy extended survival of the KRAS-mutant NSCLC mouse model. Thus, a series of CDK4/6 and BRD4 dual inhibitors were prepared to target KRAS-mutant NSCLC. Among these compounds, PJ2 exhibited potent antiproliferative effects against KRAS-mutant NSCLC cells NCI-H358 (IC50 = 0.34 ± 0.01 μM) and A549 (IC50 = 0.31 ± 0.04 μM), and had excellent inhibitory effects on CDK4, CDK6, BRD4(BD1) and BRD4(BD2), and IC50 values were 168.75 ± 46.32 nM, 292.45 ± 11.67 nM, 23.17 ± 3.61 nM and 3.12 ± 0.15 nM, respectively. Mechanism research indicated that PJ2 induced cell cycle arrest, senescence and apoptosis through ROS-mediated DNA damage. Furthermore, PJ2 could effectively suppress the migration and invasion of NCI-H358 cells. These results proved that developing potent CDK4/6 and BRD4 dual inhibitors was a promising strategy for the KRAS-mutant NSCLC therapy.
Collapse
Affiliation(s)
- Xiaojie Tong
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Tong Shen
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Song Li
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Liqiang Wu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
2
|
Biju T, Venkatesh C, Honnasiddappa DB, Sajjan M, Mahadeva NK, Dinesh BGH, Kumar BS, Ganjipete S, Ramar M, Kunjiappan S, Theivendren P, Madasamy S, Chidambaram K, Ammunje DN, Pavadai P. ATAD2 bromodomain in cancer therapy: current status and future perspectives. Int J Biol Macromol 2025; 311:143948. [PMID: 40334884 DOI: 10.1016/j.ijbiomac.2025.143948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/22/2025] [Accepted: 05/03/2025] [Indexed: 05/09/2025]
Abstract
ATPase family AAA domain-containing protein 2, or ATAD2, is a novel carcinogen, essential for cancer development, chromatin remodeling, and transcriptional control. It contains a bromodomain, which binds to acetylated histones to control gene expression. It also impacts pathways that regulate the cell cycle, DNA replication, and hormone signalling. ATAD2 is overexpressed in several malignancies, including colorectal, lung, ovarian, and breast cancers, and cancer metastasis. Investigations into the function of ATAD2 in oncogenesis and its interactions may offer fresh approaches to creating cancer treatment plans. Although preclinical research is very encouraging, many unresolved aspects regarding therapeutic development remain, including toxicity being explored concurrently. Investigations into the function of ATAD2 in oncogenesis may offer fresh approaches to developing chemotherapy strategies. Most of ATAD2's molecular mechanisms behind carcinogenesis and functions are discussed here. Additionally, we included progress, including potential monoclonal antibodies, RNA-based therapies, and small chemical inhibitors, in the review. Therefore, we guarantee this study will provide researchers with new opportunities and directions for cancer therapeutics.
Collapse
Affiliation(s)
- Tincy Biju
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India
| | - Chidananda Venkatesh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India
| | - Darshana Ballagere Honnasiddappa
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India
| | - Mallikarjun Sajjan
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India
| | - Nayan Kumar Mahadeva
- Department of Pharmacognosy, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India
| | - Basavana Gowda Hosur Dinesh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India
| | - Bandral Sunil Kumar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India
| | - Srinivas Ganjipete
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India
| | - Mohankumar Ramar
- Department of Pharmaceutical Sciences, UConn School of Pharmacy, Storrs CT-06269, USA
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamil Nadu, India
| | - Panneerselvam Theivendren
- Department of Pharmaceutical Chemistry & Analysis, School of Pharmaceutical Sciences, Vels Institute of Science, Technology & Advanced Studies, Pallavaram, Chennai, Tamil Nadu 600117, India
| | - Sundar Madasamy
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamil Nadu, India
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Damodar Nayak Ammunje
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India.
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India.
| |
Collapse
|
3
|
Ou X, Yang J, Yang L, Zeng H, Shao L. Histone acetylation regulated by histone deacetylases during spermatogenesis. Andrology 2025; 13:706-717. [PMID: 39132925 DOI: 10.1111/andr.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/03/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Physical, chemical, and biological factors in the environment constantly influence in vivo and in vitro biological processes, including diverse histone modifications involved in cancer and metabolism. However, the intricate mechanisms of acetylation regulation remain poorly elucidated. In mammalian spermatogenesis, acetylation plays a crucial role in repairing double-strand DNA breaks, regulating gene transcription, and modulating various signaling pathways. RESULTS This review summarizes the histone acetylation sites in the mouse testis and provides a comprehensive overview of how histone acetylation is involved in different stages of spermatogenesis under the regulation by histone deacetylases. The regulatory functions of various class histone deacetylases during spermatogenesis and the crossroad between histone acetylation and other histone modifications are highlighted. It is imperative to understand the mechanisms of histone acetylation regulated by histone deacetylases in spermatogenesis, which facilitates to prevent and treat infertility-related diseases.
Collapse
Affiliation(s)
- Xiangying Ou
- Department of Occupational Health and Toxicology, Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, P. R. China
| | - Juan Yang
- Department of Occupational Health and Toxicology, Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, P. R. China
| | - Linfeng Yang
- Department of Occupational Health and Toxicology, Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, P. R. China
| | - Huihong Zeng
- Department of Histology and Embryology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, P. R. China
| | - Lijian Shao
- Department of Occupational Health and Toxicology, Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, P. R. China
| |
Collapse
|
4
|
Chen Y, Zhou H, Yu J, Gao J, Xue S, Ding H, Lin H, Luo C. A patent review of BRD4 inhibitors (2020-present). Expert Opin Ther Pat 2025; 35:371-386. [PMID: 39918129 DOI: 10.1080/13543776.2025.2463150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/31/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION Bromodomain-containing protein 4 (BRD4) stands as a pivotal member within the Bromodomain and Extra-Terminal Domain (BET) family, contributing significantly to epigenetic control and gene expression. Given its association with various cancers, BRD4 emerges as a promising therapeutic target, suggesting a substantial role in the treatment of diverse pathological conditions. AREAS COVERED The present review is centered on patent applications concerning inhibitors targeting BRD4's bromodomain site, published from 2020 to present. A comprehensive evaluation was conducted on a total of 70 applications. The latest patented studies of BRD4 are summarized by using the keywords 'BRD4' in SciFinder, PubMed, and The lens Patents and databases in the year from 2020 to present. EXPERT OPINION Despite the substantial progress achieved in the clinical research of numerous BET bromodomain inhibitors, their development remains fraught with challenges. To mitigate the dose-limiting toxicity (DLT) and other clinical adverse effects associated with pan-BET inhibitors, current research efforts are increasingly focus on the development of selective BRD4-BD1 or -BD2 inhibitors. These selective inhibitors exhibit considerable potential as more efficacious candidate drugs, thereby paving the way for novel avenues in both fundamental and translational research within this domain.
Collapse
Affiliation(s)
- Yanfang Chen
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Huanmin Zhou
- The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jiamin Yu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jing Gao
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Shengyu Xue
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hong Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hua Lin
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Cheng Luo
- The School of Pharmacy, Fujian Medical University, Fuzhou, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
5
|
Olp MD, Bursch KL, Wynia-Smith SL, Nuñez R, Goetz CJ, Jackson V, Smith BC. Multivalent nucleosome scaffolding by bromodomain and extraterminal domain tandem bromodomains. J Biol Chem 2025; 301:108289. [PMID: 39938804 PMCID: PMC11930079 DOI: 10.1016/j.jbc.2025.108289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/29/2025] [Accepted: 02/01/2025] [Indexed: 02/14/2025] Open
Abstract
Promoter-promoter and enhancer-promoter interactions are enriched in histone acetylation and central to chromatin organization in active genetic regions. Bromodomains are epigenetic "readers" that recognize and bind histone acetylation. Bromodomains often exist in tandem or with other reader domains. Cellular knockdown of the bromodomain and extraterminal domain (BET) protein family disrupts chromatin organization, but the mechanisms through which BET proteins preserve chromatin structure are largely unknown. We hypothesize that BET proteins maintain overall chromatin structure by employing their tandem bromodomains to multivalently scaffold acetylated nucleosomes in an intranucleosomal or internucleosomal manner. To test this hypothesis biophysically, we used small-angle X-ray scattering, electron paramagnetic resonance, and Rosetta protein modeling to show that a disordered linker separates BET tandem bromodomain acetylation binding sites by 15 to 157 Å. Most of these modeled distances are sufficient to span the length of a nucleosome (>57 Å). Focusing on the BET family member BRD4, we employed bioluminescence resonance energy transfer and isothermal titration calorimetry to show that BRD4 bromodomain binding of multiple acetylation sites on a histone tail does not increase BRD4-histone tail affinity, suggesting that BET bromodomain intranucleosome binding is not biologically relevant. Using sucrose gradients and amplified luminescent proximity homogeneous (AlphaScreen) assays, we provide the first direct biophysical evidence that BET bromodomains can scaffold multiple acetylated nucleosomes. Taken together, our results demonstrate that BET bromodomains are capable of multivalent internucleosome scaffolding in vitro. The knowledge gained provides implications for how BET bromodomain-mediated acetylated internucleosome scaffolding may maintain cellular chromatin interactions in active genetic regions.
Collapse
Affiliation(s)
- Michael D Olp
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Karina L Bursch
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Sarah L Wynia-Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Raymundo Nuñez
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christopher J Goetz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vaughn Jackson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
6
|
Wei K, Arlotto M, Overhulse JM, Dinh T, Zhou Y, Dupper NJ, Yang J, Kashemirov BA, Dawi H, Garnaud C, Bourgine G, Mietton F, Champleboux M, Larabi A, Hayat Y, Indorato R, Noirclerc‐Savoye M, Skoufias D, Cornet M, Rabut G, McKenna CE, Petosa C, Govin J. Humanized Candida and NanoBiT Assays Expedite Discovery of Bdf1 Bromodomain Inhibitors With Antifungal Potential. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404260. [PMID: 39821709 PMCID: PMC11904993 DOI: 10.1002/advs.202404260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/17/2024] [Indexed: 01/19/2025]
Abstract
The fungal Bromodomain and Extra-Terminal (BET) protein Bdf1 is a potential antifungal target against invasive fungal infections. However, the need to selectively inhibit both Bdf1 bromodomains (BDs) over human orthologs and the lack of molecular tools to assess on-target antifungal efficacy hamper efforts to develop Bdf1 BD inhibitors as antifungal therapeutics. This study reports a phenyltriazine compound that inhibits both Bdf1 BDs from the human fungal pathogen Candida glabrata with selectivity over the orthologous BDs from the human BET protein Brd4. On-target antifungal activity is established by devising two yeast-based inhibition assays: a growth assay using humanized Candida strains in which the Bdf1 BDs are replaced by their Brd4 counterparts, and a NanoBiT assay that evaluates the BD-mediated association of Bdf1 with chromatin. These assays additionally enable the discovery that BET inhibitor I-BET726 targets both Bdf1 BDs, inhibits the growth of a broad spectrum of Candida species, including antifungal-resistant clinical isolates, and displays efficacy in an invertebrate animal model of infection. These collective findings highlight the promising potential of Bdf1 BD inhibitors as an innovative class of antifungal therapeutics and the pivotal role of yeast-based assay development toward achieving this end.
Collapse
Affiliation(s)
- Kaiyao Wei
- Univ. Grenoble AlpesCEACNRSInstitut de Biologie Structurale (IBS)Grenoble38000France
- Univ. Grenoble AlpesInsermCNRSInstitute for Advanced Biosciences (IAB)Grenoble38000France
| | - Marie Arlotto
- Univ. Grenoble AlpesInsermCNRSInstitute for Advanced Biosciences (IAB)Grenoble38000France
| | - Justin M. Overhulse
- Department of ChemistryDana and David Dornsife College of LettersArts, and SciencesUniversity of Southern CaliforniaUniversity Park CampusLos AngelesCA90089USA
| | - Tuan‐Anh Dinh
- Univ. Grenoble AlpesCNRSGrenoble INPCHU Grenoble Alpes, Laboratoire TIMCGrenoble38000France
| | - Yingsheng Zhou
- Department of ChemistryDana and David Dornsife College of LettersArts, and SciencesUniversity of Southern CaliforniaUniversity Park CampusLos AngelesCA90089USA
| | - Nathan J. Dupper
- Department of ChemistryDana and David Dornsife College of LettersArts, and SciencesUniversity of Southern CaliforniaUniversity Park CampusLos AngelesCA90089USA
| | - Jiayi Yang
- Department of ChemistryDana and David Dornsife College of LettersArts, and SciencesUniversity of Southern CaliforniaUniversity Park CampusLos AngelesCA90089USA
| | - Boris A. Kashemirov
- Department of ChemistryDana and David Dornsife College of LettersArts, and SciencesUniversity of Southern CaliforniaUniversity Park CampusLos AngelesCA90089USA
| | - Hasan Dawi
- Univ. Grenoble AlpesCEACNRSInstitut de Biologie Structurale (IBS)Grenoble38000France
| | - Cécile Garnaud
- Univ. Grenoble AlpesCNRSGrenoble INPCHU Grenoble Alpes, Laboratoire TIMCGrenoble38000France
| | - Gaëlle Bourgine
- Univ. RennesCNRSINSERMInstitut de Génétique et Développement de Rennes (IGDR)UMR 6290, U1305Rennes35000France
| | - Flore Mietton
- Univ. Grenoble AlpesCEACNRSInstitut de Biologie Structurale (IBS)Grenoble38000France
| | - Morgane Champleboux
- Univ. Grenoble AlpesInsermCNRSInstitute for Advanced Biosciences (IAB)Grenoble38000France
| | - Amédé Larabi
- Univ. Grenoble AlpesCEACNRSInstitut de Biologie Structurale (IBS)Grenoble38000France
| | - Yordan Hayat
- Univ. Grenoble AlpesCEACNRSInstitut de Biologie Structurale (IBS)Grenoble38000France
| | - Rose‐Laure Indorato
- Univ. Grenoble AlpesCEACNRSInstitut de Biologie Structurale (IBS)Grenoble38000France
| | | | - Dimitrios Skoufias
- Univ. Grenoble AlpesCEACNRSInstitut de Biologie Structurale (IBS)Grenoble38000France
| | - Muriel Cornet
- Univ. Grenoble AlpesCNRSGrenoble INPCHU Grenoble Alpes, Laboratoire TIMCGrenoble38000France
| | - Gwenaël Rabut
- Univ. RennesCNRSINSERMInstitut de Génétique et Développement de Rennes (IGDR)UMR 6290, U1305Rennes35000France
| | - Charles E. McKenna
- Department of ChemistryDana and David Dornsife College of LettersArts, and SciencesUniversity of Southern CaliforniaUniversity Park CampusLos AngelesCA90089USA
| | - Carlo Petosa
- Univ. Grenoble AlpesCEACNRSInstitut de Biologie Structurale (IBS)Grenoble38000France
| | - Jérôme Govin
- Univ. Grenoble AlpesInsermCNRSInstitute for Advanced Biosciences (IAB)Grenoble38000France
| |
Collapse
|
7
|
Kablan T, Biyikli E, Bozdemir N, Uysal F. A narrative review of the histone acetylation and deacetylation during mammalian spermatogenesis. Biochimie 2025; 230:147-155. [PMID: 39566815 DOI: 10.1016/j.biochi.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 11/22/2024]
Abstract
Dynamic epigenetic control is essential for proper spermatogenesis. Spermatogenesis is a unique mechanism that includes recombination, meiosis, and the conversion of histones to protamines. Epigenetics refers to the ability to modify gene expression without affecting DNA strands directly and helps to regulate the dynamic gene expression throughout the differentiation process of spermatogonium stem cells. Histone alterations and DNA methylation control the epigenome. While histone modifications can result in either expression or repression depending on the type of modification, the type of histone protein, and its specific residue, histone acetylation is one of the changes that typically results in gene expression. Histone acetyltransferases (HATs) add an acetyl group to the amino-terminal of the core histone proteins, causing histone acetylation. On the other hand, histone deacetylases (HDACs) catalyze histone deacetylation, which is linked to the suppression of gene expression. This review highlights the significance of HATs and HDACs during mammalian spermatogenesis and focuses on what is known about changes in their expression.
Collapse
Affiliation(s)
- Tuba Kablan
- Ankara Medipol University School of Medicine, Department of Histology and Embryology, 06050, Altindag, Ankara, Turkey.
| | - Efe Biyikli
- Ankara Medipol University School of Medicine, Department of Histology and Embryology, 06050, Altindag, Ankara, Turkey.
| | - Nazlican Bozdemir
- Ankara Medipol University School of Medicine, Department of Histology and Embryology, 06050, Altindag, Ankara, Turkey.
| | - Fatma Uysal
- Ankara Medipol University School of Medicine, Department of Histology and Embryology, 06050, Altindag, Ankara, Turkey.
| |
Collapse
|
8
|
Zhou MM, Cole PA. Targeting lysine acetylation readers and writers. Nat Rev Drug Discov 2025; 24:112-133. [PMID: 39572658 PMCID: PMC11798720 DOI: 10.1038/s41573-024-01080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 02/06/2025]
Abstract
Lysine acetylation is a major post-translational modification in histones and other proteins that is catalysed by the 'writer' lysine acetyltransferases (KATs) and mediates interactions with bromodomains (BrDs) and other 'reader' proteins. KATs and BrDs play key roles in regulating gene expression, cell growth, chromatin structure, and epigenetics and are often dysregulated in disease states, including cancer. There have been accelerating efforts to identify potent and selective small molecules that can target individual KATs and BrDs with the goal of developing new therapeutics, and some of these agents are in clinical trials. Here, we summarize the different families of KATs and BrDs, discuss their functions and structures, and highlight key advances in the design and development of chemical agents that show promise in blocking the action of these chromatin proteins for disease treatment.
Collapse
Affiliation(s)
- Ming-Ming Zhou
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Lu X, Zhu M, Pei X, Ma J, Wang R, Wang Y, Chen S, Yan Y, Zhu Y. Super-enhancers in hepatocellular carcinoma: regulatory mechanism and therapeutic targets. Cancer Cell Int 2025; 25:7. [PMID: 39773719 PMCID: PMC11706108 DOI: 10.1186/s12935-024-03599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Super-enhancers (SEs) represent a distinct category of cis-regulatory elements notable for their robust transcriptional activation capabilities. In tumor cells, SEs intricately regulate the expression of oncogenes and pivotal cancer-associated signaling pathways, offering significant potential for cancer treatment. However, few studies have systematically discussed the crucial role of SEs in hepatocellular carcinoma (HCC), which is one of the most common liver cancers with late-stage diagnosis and limited treatment methods for advanced disease. Herein, we first summarize the identification methods and the intricate processes of formation and organization of super-enhancers. Subsequently, we delve into the roles and molecular mechanisms of SEs within the framework of HCC. Finally, we discuss the inhibitors targeting the key SE-components and their potential effects on the treatment of HCC. In conclusion, this review meticulously encapsulates the distinctive characteristics of SEs and underscores their pivotal roles in the context of hepatocellular carcinoma, presenting a novel perspective on the potential of super-enhancers as emerging therapeutic targets for HCC.
Collapse
Affiliation(s)
- Xuejin Lu
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Meizi Zhu
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Xingyue Pei
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Jinhu Ma
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Rui Wang
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Yi Wang
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Shuwen Chen
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Yan Yan
- Laboratory Animal Research Center, College of Basic Medical Science, Anhui Medical University, Hefei, China.
| | - Yaling Zhu
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China.
- Laboratory Animal Research Center, College of Basic Medical Science, Anhui Medical University, Hefei, China.
| |
Collapse
|
10
|
Keller MA, Nakamura M. Acetyltransferase in cardiovascular disease and aging. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:10.20517/jca.2024.21. [PMID: 39958699 PMCID: PMC11827898 DOI: 10.20517/jca.2024.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Acetyltransferases are enzymes that catalyze the transfer of an acetyl group to a substrate, a modification referred to as acetylation. Loss-of-function variants in genes encoding acetyltransferases can lead to congenital disorders, often characterized by intellectual disability and heart and muscle defects. Their activity is influenced by dietary nutrients that alter acetyl coenzyme A levels, a key cofactor. Cardiovascular diseases, including ischemic, hypertensive, and diabetic heart diseases - leading causes of mortality in the elderly - are largely attributed to prolonged lifespan and the growing prevalence of metabolic syndrome. Acetyltransferases thus serve as a crucial link between lifestyle modifications, cardiometabolic disease, and aging through both epigenomic and non-epigenomic mechanisms. In this review, we discuss the roles and relevance of acetyltransferases. While the sirtuin family of deacetylases has been extensively studied in longevity, particularly through fasting-mediated NAD+ metabolism, recent research has brought attention to the essential roles of acetyltransferases in health and aging-related pathways, including cell proliferation, DNA damage response, mitochondrial function, inflammation, and senescence. We begin with an overview of acetyltransferases, classifying them by domain structure, including canonical and non-canonical lysine acetyltransferases, N-terminal acetyltransferases, and sialic acid O-acetyltransferases. We then discuss recent advances in understanding acetyltransferase-related pathologies, particularly focusing on cardiovascular disease and aging, and explore their potential therapeutic applications for promoting health in older individuals.
Collapse
Affiliation(s)
- Mariko Aoyagi Keller
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Michinari Nakamura
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
11
|
Qian F, Zhao QQ, Zhou JX, Yuan DY, Liu ZZ, Su YN, Li L, Chen S, He XJ. The GTE4-EML chromatin reader complex concurrently recognizes histone acetylation and H3K4 trimethylation in Arabidopsis. THE PLANT CELL 2024; 37:koae330. [PMID: 39692581 PMCID: PMC11749113 DOI: 10.1093/plcell/koae330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/04/2024] [Accepted: 12/16/2024] [Indexed: 12/19/2024]
Abstract
Histone acetylation and H3K4 trimethylation (H3K4me3) are associated with active transcription. However, how they cooperate to regulate transcription in plants remains largely unclear. Our study revealed that GLOBAL TRANSCRIPTION FACTOR GROUP E 4 (GTE4) binds to acetylated histones and forms a complex with the functionally redundant H3K4me3-binding EMSY-like proteins EML1 or EML2 (EML1/2) in Arabidopsis thaliana. The eml1 eml2 (eml1/2) double mutant exhibits a similar morphological phenotype to gte4, and most of the differentially expressed genes in gte4 were coregulated in eml1/2. Through chromatin immunoprecipitation followed by deep sequencing, we found that GTE4 and EML2 co-occupy protein-coding genes enriched with both histone acetylation and H3K4me3, exerting a synergistic effect on the association of the GTE4-EML complex with chromatin. The association of GTE4 with chromatin requires both its bromodomain and EML-interacting domain. This study identified a complex and uncovered how it concurrently recognizes histone acetylation and H3K4me3 to facilitate gene transcription at the whole-genome level in Arabidopsis.
Collapse
Affiliation(s)
- Feng Qian
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qiang-Qiang Zhao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jin-Xing Zhou
- National Institute of Biological Sciences, Beijing 102206, China
| | - Dan-Yang Yuan
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhen-Zhen Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yin-Na Su
- National Institute of Biological Sciences, Beijing 102206, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
El-Gamal R, Zalata A, Mazroa SA, Comhaire F, Gamal A, Shaker OG, Hazem NM. Evaluation of circANKLE2 & circL3MBTL4 -RNAs Expression in Fertile and Infertile Men. Biochem Genet 2024:10.1007/s10528-024-10963-7. [PMID: 39580773 DOI: 10.1007/s10528-024-10963-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024]
Abstract
There are many factors that affect male fertility such as chronic health problems, psychological factors, and illnesses. Male infertility can be caused abnormal sperm function, low sperm production or even blockages that prevent the delivery of sperm. The aim of the work is to determine the expression pattern of the circularANKLE2 and circularL3MBTL4 RNA in spermatozoa from fertile and infertile males, as well as the relationship between these circRNA transcripts and sperm quality. The study involved two groups: a control group comprising 40 healthy, fertile men and an experimental group of 90 infertile males. Semen samples were collected and processed for analysis using computer-assisted semen analysis. Following RNA extraction from sperm samples, reverse transcription and real-time PCR were performed to assess the levels of circular ANKLE2 and circular L3MBTL4 RNA. There was a significant up-regulation of circularANKLE2 RNA expression (p < 0.05), and a significant down-regulation of circularL3MBTL4 RNA expression (p < 0.05) in asthenozoospermia, astheno-teratozoospermia, and oligo-astheno-teratozoospermia groups, as well as, in immature spermatozoa separated from normozoospermic samples. Moreover, the altered expression of both circular L3MBTL4 and circular ANKLE2 RNA showed significant correlations with the associated sperm parameters. In conclusion, the expression of circular ANKLE2 RNA and circular L3MBTL4 RNA may play a significant role in male fertility and could serve as potential biomarkers of sperm quality, warranting further investigation for their application in infertility diagnostics.
Collapse
Affiliation(s)
- Randa El-Gamal
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
- Faculty of Medicine, Medical Experimental Research Center, Mansoura University, Mansoura, 35516, Egypt
- Department of Medical Biochemistry, Faculty of Medicine, Horus University, New Damietta, Egypt
- Department of Medical Biochemistry, Faculty of Medicine, New Mansoura University, Mansoura, Egypt
| | - Adel Zalata
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Delta University for Science and Technology, New Mansoura, Egypt
| | - Shireen A Mazroa
- Histology and Cell Biology Department, Mansoura University, Mansoura, 35516, Egypt
- Histology Department, Faculty of Medicine, Delta University for Science and Technology, New Mansoura, Egypt
| | - Frank Comhaire
- Emeritus Professor of Andrology, Ghent University Hospital, Ghent, Belgium
| | - Ahmed Gamal
- Andrology, Sexology and STIs, Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Olfat G Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Noha M Hazem
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
- Faculty of Medicine, Medical Experimental Research Center, Mansoura University, Mansoura, 35516, Egypt
- Pathological Sciences Department- MBBS Program, Fakeeh College for Medical Sciences, 21461, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Wei Q, Gan C, Sun M, Xie Y, Liu H, Xue T, Deng C, Mo C, Ye T. BRD4: an effective target for organ fibrosis. Biomark Res 2024; 12:92. [PMID: 39215370 PMCID: PMC11365212 DOI: 10.1186/s40364-024-00641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Fibrosis is an excessive wound-healing response induced by repeated or chronic external stimuli to tissues, significantly impacting quality of life and primarily contributing to organ failure. Organ fibrosis is reported to cause 45% of all-cause mortality worldwide. Despite extensive efforts to develop new antifibrotic drugs, drug discovery has not kept pace with the clinical demand. Currently, only pirfenidone and nintedanib are approved by the FDA to treat pulmonary fibrotic illness, whereas there are currently no available antifibrotic drugs for hepatic, cardiac or renal fibrosis. The development of fibrosis is closely related to epigenetic alterations. The field of epigenetics primarily studies biological processes, including chromatin modifications, epigenetic readers, DNA transcription and RNA translation. The bromodomain and extra-terminal structural domain (BET) family, a class of epigenetic readers, specifically recognizes acetylated histone lysine residues and promotes the formation of transcriptional complexes. Bromodomain-containing protein 4 (BRD4) is one of the most well-researched proteins in the BET family. BRD4 is implicated in the expression of genes related to inflammation and pro-fibrosis during fibrosis. Inhibition of BRD4 has shown promising anti-fibrotic effects in preclinical studies; however, no BRD4 inhibitor has been approved for clinical use. This review introduces the structure and function of BET proteins, the research progress on BRD4 in organ fibrosis, and the inhibitors of BRD4 utilized in fibrosis. We emphasize the feasibility of targeting BRD4 as an anti-fibrotic strategy and discuss the therapeutic potential and challenges associated with BRD4 inhibitors in treating fibrotic diseases.
Collapse
Affiliation(s)
- Qun Wei
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cailing Gan
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Sun
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuting Xie
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongyao Liu
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Taixiong Xue
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Conghui Deng
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tinghong Ye
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Ningxia Medical University, Yin Chuan, 640100, China.
| |
Collapse
|
14
|
Viviano M, Cipriano A, Fabbrizi E, Feoli A, Castellano S, Sbardella G, Mai A, Milite C, Rotili D. Successes and challenges in the development of BD1-selective BET inhibitors: a patent review. Expert Opin Ther Pat 2024; 34:529-545. [PMID: 38465537 DOI: 10.1080/13543776.2024.2327300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/01/2024] [Indexed: 03/12/2024]
Abstract
INTRODUCTION Bromodomain and ExtraTerminal (BET) domain proteins are transcriptional cofactors that, recognizing acetylated lysines of histone and non-histone proteins, can modulate gene expression. The BET family consists of four members, each of which contains two bromodomains (BD1 and BD2) able to recognize the acetylated mark. Pan-BET inhibitors (BETi) have shown a promising anticancer potential in many clinical trials; however, their further development has been in part hampered by the side effects due to their lack of selectivity. Mounting evidence suggests that BD1 is primarily involved in cancer and that its selective inhibition can phenocopy the anticancer effects of pan-BETi with increased tolerability. Therefore, the development of BD1 selective inhibitors is highly pursed in both academia and industry. AREAS COVERED This review aims at giving an overview of the patent literature of BD1-selective BETi between 2014 and 2023. WIPO, USPTO, EPO, and SciFinder® databases were used for the search of patents. EXPERT OPINION The development of BD1-selective BETi, despite challenging, is highly desirable as it could have a great impact on the development of new safer anticancer therapeutics. Several strategies could be applied to discover potent and selective compounds with limited side effects.
Collapse
Affiliation(s)
- Monica Viviano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, SA, Italy
| | - Alessandra Cipriano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, SA, Italy
| | - Emanuele Fabbrizi
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, Italy
| | - Alessandra Feoli
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, SA, Italy
| | - Sabrina Castellano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, SA, Italy
| | - Gianluca Sbardella
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, SA, Italy
| | - Antonello Mai
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, Italy
| | - Ciro Milite
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, SA, Italy
| | - Dante Rotili
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
15
|
Bao K, Ma Y, Li Y, Shen X, Zhao J, Tian S, Zhang C, Liang C, Zhao Z, Yang Y, Zhang K, Yang N, Meng FL, Hao J, Yang J, Liu T, Yao Z, Ai D, Shi L. A di-acetyl-decorated chromatin signature couples liquid condensation to suppress DNA end synapsis. Mol Cell 2024; 84:1206-1223.e15. [PMID: 38423014 DOI: 10.1016/j.molcel.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/27/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
Appropriate DNA end synapsis, regulated by core components of the synaptic complex including KU70-KU80, LIG4, XRCC4, and XLF, is central to non-homologous end joining (NHEJ) repair of chromatinized DNA double-strand breaks (DSBs). However, it remains enigmatic whether chromatin modifications can influence the formation of NHEJ synaptic complex at DNA ends, and if so, how this is achieved. Here, we report that the mitotic deacetylase complex (MiDAC) serves as a key regulator of DNA end synapsis during NHEJ repair in mammalian cells. Mechanistically, MiDAC removes combinatorial acetyl marks on histone H2A (H2AK5acK9ac) around DSB-proximal chromatin, suppressing hyperaccumulation of bromodomain-containing protein BRD4 that would otherwise undergo liquid-liquid phase separation with KU80 and prevent the proper installation of LIG4-XRCC4-XLF onto DSB ends. This study provides mechanistic insight into the control of NHEJ synaptic complex assembly by a specific chromatin signature and highlights the critical role of H2A hypoacetylation in restraining unscheduled compartmentalization of DNA repair machinery.
Collapse
Affiliation(s)
- Kaiwen Bao
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yanhui Ma
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yuan Li
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xilin Shen
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Jiao Zhao
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Shanshan Tian
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Chunyong Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Can Liang
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Ziyan Zhao
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Ying Yang
- Core Facilities Center, Capital Medical University, Beijing, China
| | - Kai Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Na Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Fei-Long Meng
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Jihui Hao
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Jie Yang
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Tao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhi Yao
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Ding Ai
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.
| | - Lei Shi
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
16
|
Zong Y, Weiss N, Wang K, Pagano AE, Heissel S, Perveen S, Huang J. Development of Complementary Photo-arginine/lysine to Promote Discovery of Arg/Lys hPTMs Interactomes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307526. [PMID: 38298064 PMCID: PMC11005723 DOI: 10.1002/advs.202307526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/03/2023] [Indexed: 02/02/2024]
Abstract
Arginine and lysine, frequently appearing as a pair on histones, have been proven to carry diverse modifications and execute various epigenetic regulatory functions. However, the most context-specific and transient effectors of these marks, while significant, have evaded study as detection methods have thus far not reached a standard to capture these ephemeral events. Herein, a pair of complementary photo-arginine/δ-photo-lysine (R-dz/K-dz) probes is developed and involve these into histone peptide, nucleosome, and chromatin substrates to capture and explore the interactomes of Arg and Lys hPTMs. By means of these developed tools, this study identifies that H3R2me2a can recruit MutS protein homolog 6 (MSH6), otherwise repelDouble PHD fingers 2 (DPF2), Retinoblastoma binding protein 4/7 (RBBP4/7). And it is disclosed that H3R2me2a inhibits the chromatin remodeling activity of the cBAF complex by blocking the interaction between DPF2 (one component of cBAF) and the nucleosome. In addition, the novel pairs of H4K5 PTMs and respective readers are highlighted, namely H4K5me-Lethal(3)malignant brain tumor-like protein 2 (L3MBTL2), H4K5me2-L3MBTL2, and H4K5acK8ac-YEATS domain-containing protein 4 (YEATS4). These powerful tools pave the way for future investigation of related epigenetic mechanisms including but not limited to hPTMs.
Collapse
Affiliation(s)
- Yu Zong
- Chemical Biology ProgramMemorial Sloan Kettering Cancer CenterNew York10065USA
| | - Nicole Weiss
- Program of PharmacologyWeill Cornell Medical College of Cornell UniversityNew York10065USA
| | - Ke Wang
- Chemical Biology ProgramMemorial Sloan Kettering Cancer CenterNew York10065USA
| | | | - Søren Heissel
- Proteomics Resource CenterRockefeller UniversityNew York10065USA
| | - Sumera Perveen
- Structural Genomics ConsortiumUniversity of TorontoTorontoM5S3H2Canada
| | - Jian Huang
- Department of Molecular BiologyPrinceton UniversityPrinceton08544USA
| |
Collapse
|
17
|
Iyer-Bierhoff A, Wieczorek M, Peter SM, Ward D, Bens M, Vettorazzi S, Guehrs KH, Tuckermann JP, Heinzel T. Acetylation-induced proteasomal degradation of the activated glucocorticoid receptor limits hormonal signaling. iScience 2024; 27:108943. [PMID: 38333702 PMCID: PMC10850750 DOI: 10.1016/j.isci.2024.108943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/30/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Glucocorticoid (GC) signaling is essential for mounting a stress response, however, chronic stress or prolonged GC therapy downregulates the GC receptor (GR), leading to GC resistance. Regulatory mechanisms that refine this equilibrium are not well understood. Here, we identify seven lysine acetylation sites in the amino terminal domain of GR, with lysine 154 (Lys154) in the AF-1 region being the dominant acetyl-acceptor. GR-Lys154 acetylation is mediated by p300/CBP in the nucleus in an agonist-dependent manner and correlates with transcriptional activity. Deacetylation by NAD+-dependent SIRT1 facilitates dynamic regulation of this mark. Notably, agonist-binding to both wild-type GR and an acetylation-deficient mutant elicits similar short-term target gene expression. In contrast, upon extended treatment, the polyubiquitination of the acetylation-deficient GR mutant is impaired resulting in higher protein stability, increased chromatin association and prolonged transactivation. Taken together, reversible acetylation fine-tunes duration of the GC response by regulating proteasomal degradation of activated GR.
Collapse
Affiliation(s)
- Aishwarya Iyer-Bierhoff
- Institute of Biochemistry and Biophysics, Centre for Molecular Biomedicine (CMB), Friedrich Schiller University, Hans-Knoell-Strasse 2, 07745 Jena, Germany
| | - Martin Wieczorek
- Institute of Biochemistry and Biophysics, Centre for Molecular Biomedicine (CMB), Friedrich Schiller University, Hans-Knoell-Strasse 2, 07745 Jena, Germany
| | - Sina Marielle Peter
- Institute of Biochemistry and Biophysics, Centre for Molecular Biomedicine (CMB), Friedrich Schiller University, Hans-Knoell-Strasse 2, 07745 Jena, Germany
| | - Dima Ward
- Institute of Biochemistry and Biophysics, Centre for Molecular Biomedicine (CMB), Friedrich Schiller University, Hans-Knoell-Strasse 2, 07745 Jena, Germany
| | - Martin Bens
- Core Facility Next Generation Sequencing, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Karl-Heinz Guehrs
- Core Facility Proteomics, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| | - Jan P. Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Thorsten Heinzel
- Institute of Biochemistry and Biophysics, Centre for Molecular Biomedicine (CMB), Friedrich Schiller University, Hans-Knoell-Strasse 2, 07745 Jena, Germany
| |
Collapse
|
18
|
Pascual‐Reguant L, Serra‐Camprubí Q, Datta D, Cianferoni D, Kourtis S, Gañez‐Zapater A, Cannatá C, Espinar L, Querol J, García‐López L, Musa‐Afaneh S, Guirola M, Gkanogiannis A, Miró Canturri A, Guzman M, Rodríguez O, Herencia‐Ropero A, Arribas J, Serra V, Serrano L, Tian TV, Peiró S, Sdelci S. Interactions between BRD4S, LOXL2, and MED1 drive cell cycle transcription in triple-negative breast cancer. EMBO Mol Med 2023; 15:e18459. [PMID: 37937685 PMCID: PMC10701626 DOI: 10.15252/emmm.202318459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/09/2023] Open
Abstract
Triple-negative breast cancer (TNBC) often develops resistance to single-agent treatment, which can be circumvented using targeted combinatorial approaches. Here, we demonstrate that the simultaneous inhibition of LOXL2 and BRD4 synergistically limits TNBC proliferation in vitro and in vivo. Mechanistically, LOXL2 interacts in the nucleus with the short isoform of BRD4 (BRD4S), MED1, and the cell cycle transcriptional regulator B-MyB. These interactions sustain the formation of BRD4 and MED1 nuclear transcriptional foci and control cell cycle progression at the gene expression level. The pharmacological co-inhibition of LOXL2 and BRD4 reduces BRD4 nuclear foci, BRD4-MED1 colocalization, and the transcription of cell cycle genes, thus suppressing TNBC cell proliferation. Targeting the interaction between BRD4S and LOXL2 could be a starting point for the development of new anticancer strategies for the treatment of TNBC.
Collapse
Affiliation(s)
- Laura Pascual‐Reguant
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | | | - Debayan Datta
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Damiano Cianferoni
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Savvas Kourtis
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Antoni Gañez‐Zapater
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Chiara Cannatá
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Lorena Espinar
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Jessica Querol
- Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Laura García‐López
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Sara Musa‐Afaneh
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Maria Guirola
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Anestis Gkanogiannis
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Andrea Miró Canturri
- Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
| | - Marta Guzman
- Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Olga Rodríguez
- Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | | | - Joaquin Arribas
- Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- Centro de Investigación Biomédica en Red de CáncerMonforte de LemosMadridSpain
- Department of Biochemistry and Molecular BiologyUniversitat Autónoma de BarcelonaBellaterraSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Violeta Serra
- Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Tian V Tian
- Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Sandra Peiró
- Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Sara Sdelci
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| |
Collapse
|
19
|
Song Y, Liu H, Xian Q, Gui C, Xu M, Zhou Y. Mechanistic insights into UHRF1‑mediated DNA methylation by structure‑based functional clarification of UHRF1 domains (Review). Oncol Lett 2023; 26:542. [PMID: 38020304 PMCID: PMC10660443 DOI: 10.3892/ol.2023.14129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Epigenetic modification is crucial for transmitting genetic information, while abnormalities in DNA methylation modification are primarily associated with cancer and neurological diseases. As a multifunctional epigenetic modifier, ubiquitin like with PHD and ring finger domains 1 (UHRF1) mainly affects cell energy metabolism and cell cycle control. It also inhibits the transcription of tumor suppressor genes through DNA and/or histone methylation modifications, promoting the occurrence and development of cancer. Therefore, comprehensively understanding the molecular mechanism of the epigenetic modification of UHRF1 in tumors will help identify targets for inhibiting the expression and function of UHRF1. Notably, each domain of UHRF1 functions as a whole and differently. Thus, the abnormality of any domain can lead to a change in phenotype or disease. However, the specific regulatory mechanism and proteins of each domain have not been fully elucidated. The present review aimed to contribute to the study of the regulatory mechanism of UHRF1 to a greater extent in different cancers and provide ideas for drug research by clarifying the function of UHRF1 domains.
Collapse
Affiliation(s)
- Yiying Song
- Department of Clinical Laboratory Diagnosis, Jinan Central Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Haiting Liu
- Department of Critical Care Medicine, Jinan Zhangqiu Hospital of Traditional Chinese Medicine, Jinan, Shandong 250200, P.R. China
| | - Qingqing Xian
- Department of Clinical Laboratory Diagnosis, Jinan Central Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Chengzhi Gui
- Department of Clinical Laboratory Diagnosis, Shandong First Medical University, Jinan, Shandong 250012, P.R. China
| | - Mingjie Xu
- Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Yunying Zhou
- Department of Clinical Laboratory Diagnosis, Jinan Central Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Clinical Laboratory Diagnosis, Shandong First Medical University, Jinan, Shandong 250012, P.R. China
- Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
20
|
Low JKK, Patel K, Jones N, Solomon P, Norman A, Maxwell JWC, Pachl P, Matthews JM, Payne RJ, Passioura T, Suga H, Walport LJ, Mackay JP. mRNA display reveals a class of high-affinity bromodomain-binding motifs that are not found in the human proteome. J Biol Chem 2023; 299:105482. [PMID: 37992806 PMCID: PMC10758951 DOI: 10.1016/j.jbc.2023.105482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/01/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023] Open
Abstract
Bromodomains (BDs) regulate gene expression by recognizing protein motifs containing acetyllysine. Although originally characterized as histone-binding proteins, it has since become clear that these domains interact with other acetylated proteins, perhaps most prominently transcription factors. The likely transient nature and low stoichiometry of such modifications, however, has made it challenging to fully define the interactome of any given BD. To begin to address this knowledge gap in an unbiased manner, we carried out mRNA display screens against a BD-the N-terminal BD of BRD3-using peptide libraries that contained either one or two acetyllysine residues. We discovered peptides with very strong consensus sequences and with affinities that are significantly higher than typical BD-peptide interactions. X-ray crystal structures also revealed modes of binding that have not been seen with natural ligands. Intriguingly, however, our sequences are not found in the human proteome, perhaps suggesting that strong binders to BDs might have been selected against during evolution.
Collapse
Affiliation(s)
- Jason K K Low
- School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia
| | - Karishma Patel
- School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia
| | - Natasha Jones
- School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia
| | - Paul Solomon
- School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia
| | - Alexander Norman
- School of Chemistry, University of Sydney, New South Wales, Australia
| | | | - Petr Pachl
- School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia
| | - Jacqueline M Matthews
- School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia
| | - Richard J Payne
- School of Chemistry, University of Sydney, New South Wales, Australia
| | - Toby Passioura
- School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia; Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Louise J Walport
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan; Protein-Protein Interaction Laboratory, The Francis Crick Institute, London, United Kingdom; Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom.
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia.
| |
Collapse
|
21
|
Zhang L, Zhu K, Xu J, Chen X, Sheng C, Zhang D, Yang Y, Sun L, Zhao H, Wang X, Tao B, Zhou L, Liu J. Acetyltransferases CBP/p300 Control Transcriptional Switch of β-Catenin and Stat1 Promoting Osteoblast Differentiation. J Bone Miner Res 2023; 38:1885-1899. [PMID: 37850815 DOI: 10.1002/jbmr.4925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/02/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
CREB-binding protein (CBP) (CREBBP) and p300 (EP300) are multifunctional histone acetyltransferases (HATs) with extensive homology. Germline mutations of CBP or p300 cause skeletal abnormalities in humans and mice. However, the precise roles of CBP/p300 in bone homeostasis remain elusive. Here, we report that conditional knockout of CBP or p300 in osteoblasts results in reduced bone mass and strength due to suppressed bone formation. The HAT activity is further confirmed to be responsible for CBP/p300-mediated osteogenesis using A-485, a selective inhibitor of CBP/p300 HAT. Mechanistically, CBP/p300 HAT governs osteogenic gene expression in part through transcriptional activation of β-catenin and inhibition of Stat1. Furthermore, acetylation of histone H3K27 and the transcription factor Foxo1 are demonstrated to be involved in CBP/p300 HAT-regulated β-catenin and Stat1 transcription, respectively. Taken together, these data identify acetyltransferases CBP/p300 as critical regulators that promote osteoblast differentiation and reveal an epigenetic mechanism responsible for maintaining bone homeostasis. © 2023 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kecheng Zhu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingzun Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojing Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunxiang Sheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Deng Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuying Yang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lihao Sun
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyan Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bei Tao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Libin Zhou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianmin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Yu X, He T, Tong Z, Liao L, Huang S, Fakhouri WD, Edwards DP, Xu J. Molecular mechanisms of TWIST1-regulated transcription in EMT and cancer metastasis. EMBO Rep 2023; 24:e56902. [PMID: 37680145 PMCID: PMC10626429 DOI: 10.15252/embr.202356902] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
TWIST1 induces epithelial-to-mesenchymal transition (EMT) to drive cancer metastasis. It is yet unclear what determines TWIST1 functions to activate or repress transcription. We found that the TWIST1 N-terminus antagonizes TWIST1-regulated gene expression, cancer growth and metastasis. TWIST1 interacts with both the NuRD complex and the NuA4/TIP60 complex (TIP60-Com) via its N-terminus. Non-acetylated TWIST1-K73/76 selectively interacts with and recruits NuRD to repress epithelial target gene transcription. Diacetylated TWIST1-acK73/76 binds BRD8, a component of TIP60-Com that also binds histone H4-acK5/8, to recruit TIP60-Com to activate mesenchymal target genes and MYC. Knockdown of BRD8 abolishes TWIST1 and TIP60-Com interaction and TIP60-Com recruitment to TWIST1-activated genes, resulting in decreasing TWIST1-activated target gene expression and cancer metastasis. Both TWIST1/NuRD and TWIST1/TIP60-Com complexes are required for TWIST1 to promote EMT, proliferation, and metastasis at full capacity. Therefore, the diacetylation status of TWIST1-K73/76 dictates whether TWIST1 interacts either with NuRD to repress epithelial genes, or with TIP60-Com to activate mesenchymal genes and MYC. Since BRD8 is essential for TWIST1-acK73/76 and TIP60-Com interaction, targeting BRD8 could be a means to inhibit TWIST1-activated gene expression.
Collapse
Affiliation(s)
- Xiaobin Yu
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTXUSA
| | - Tao He
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTXUSA
- Present address:
Institute for Cancer MedicineSouthwest Medical UniversitySichuanChina
| | - Zhangwei Tong
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTXUSA
| | - Lan Liao
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTXUSA
- Dan L. Duncan Comprehensive Cancer CenterBaylor College of MedicineHoustonTXUSA
| | - Shixia Huang
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTXUSA
- Dan L. Duncan Comprehensive Cancer CenterBaylor College of MedicineHoustonTXUSA
| | - Walid D Fakhouri
- Department of Diagnostic and Biomedical Sciences, Center for Craniofacial Research, School of DentistryUniversity of Texas Health Science Center at HoustonHoustonTXUSA
| | - Dean P Edwards
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTXUSA
- Dan L. Duncan Comprehensive Cancer CenterBaylor College of MedicineHoustonTXUSA
| | - Jianming Xu
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTXUSA
- Dan L. Duncan Comprehensive Cancer CenterBaylor College of MedicineHoustonTXUSA
| |
Collapse
|
23
|
Wahi A, Manchanda N, Jain P, Jadhav HR. Targeting the epigenetic reader "BET" as a therapeutic strategy for cancer. Bioorg Chem 2023; 140:106833. [PMID: 37683545 DOI: 10.1016/j.bioorg.2023.106833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Bromodomain and extraterminal (BET) proteins have the ability to bind to acetylated lysine residues present in both histones and non-histone proteins. This binding is facilitated by the presence of tandem bromodomains. The regulatory role of BET proteins extends to chromatin dynamics, cellular processes, and disease progression. The BET family comprises of BRD 2, 3, 4 and BRDT. The BET proteins are a class of epigenetic readers that regulate the transcriptional activity of a multitude of genes that are involved in the pathogenesis of cancer. Thus, targeting BET proteins has been identified as a potentially efficacious approach for the treatment of cancer. BET inhibitors (BETis) are known to interfere with the binding of BET proteins to acetylated lysine residues of chromatin, thereby leading to the suppression of transcription of several genes, including oncogenic transcription factors. Here in this review, we focus on role of Bromodomain and extra C-terminal (BET) proteins in cancer progression. Furthermore, numerous small-molecule inhibitors with pan-BET activity have been documented, with certain compounds currently undergoing clinical assessment. However, it is apparent that the clinical effectiveness of the present BET inhibitors is restricted, prompting the exploration of novel technologies to enhance their clinical outcomes and mitigate undesired adverse effects. Thus, strategies like development of selective BET-BD1, & BD2 inhibitors, dual and acting BET are also presented in this review and attempts to cover the chemistry needed for proper establishment of designed molecules into BRD have been made. Moreover, the review attempts to summarize the details of research till date and proposes a space for future development of BET inhibitor with diminished side effects. It can be concluded that discovery of isoform selective BET inhibitors can be a way forward in order to develop BET inhibitors with negligible side effects.
Collapse
Affiliation(s)
- Abhishek Wahi
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, Delhi, New Delhi 110017, India
| | - Namish Manchanda
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, Delhi, New Delhi 110017, India
| | - Priti Jain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, Delhi, New Delhi 110017, India.
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-Pilani Campus, Vidya Vihar Pilani, Rajasthan 333031, India
| |
Collapse
|
24
|
Das ND, Chang JC, Hon CC, Kelly ST, Ito S, Lizio M, Kaczkowski B, Watanabe H, Katsushima K, Natsume A, Koseki H, Kondo Y, Minoda A, Umehara T. Defining super-enhancers by highly ranked histone H4 multi-acetylation levels identifies transcription factors associated with glioblastoma stem-like properties. BMC Genomics 2023; 24:574. [PMID: 37759202 PMCID: PMC10523799 DOI: 10.1186/s12864-023-09659-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Super-enhancers (SEs), which activate genes involved in cell-type specificity, have mainly been defined as genomic regions with top-ranked enrichment(s) of histone H3 with acetylated K27 (H3K27ac) and/or transcription coactivator(s) including a bromodomain and extra-terminal domain (BET) family protein, BRD4. However, BRD4 preferentially binds to multi-acetylated histone H4, typically with acetylated K5 and K8 (H4K5acK8ac), leading us to hypothesize that SEs should be defined by high H4K5acK8ac enrichment at least as well as by that of H3K27ac. RESULTS Here, we conducted genome-wide profiling of H4K5acK8ac and H3K27ac, BRD4 binding, and the transcriptome by using a BET inhibitor, JQ1, in three human glial cell lines. When SEs were defined as having the top ranks for H4K5acK8ac or H3K27ac signal, 43% of H4K5acK8ac-ranked SEs were distinct from H3K27ac-ranked SEs in a glioblastoma stem-like cell (GSC) line. CRISPR-Cas9-mediated deletion of the H4K5acK8ac-preferred SEs associated with MYCN and NFIC decreased the stem-like properties in GSCs. CONCLUSIONS Collectively, our data highlights H4K5acK8ac's utility for identifying genes regulating cell-type specificity.
Collapse
Affiliation(s)
- Nando D Das
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Jen-Chien Chang
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Chung-Chau Hon
- Laboratory for Genome Information Analysis, RIKEN IMS, Yokohama, Japan
| | - S Thomas Kelly
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Shinsuke Ito
- Laboratory of Developmental Genetics, RIKEN IMS, Yokohama, Japan
| | - Marina Lizio
- Laboratory for Genome Information Analysis, RIKEN IMS, Yokohama, Japan
| | - Bogumil Kaczkowski
- Laboratory for Applied Regulatory Genomics Network Analysis, RIKEN IMS, Yokohama, Japan
| | - Hisami Watanabe
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Keisuke Katsushima
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Natsume
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Haruhiko Koseki
- Laboratory of Developmental Genetics, RIKEN IMS, Yokohama, Japan
- Immune Regulation, Advanced Research Departments, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yutaka Kondo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Aki Minoda
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Cell Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, Netherlands
| | - Takashi Umehara
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan.
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
| |
Collapse
|
25
|
Liu Y, Liu H, Ye M, Jiang M, Chen X, Song G, Ji H, Wang ZW, Zhu X. Methylation of BRD4 by PRMT1 regulates BRD4 phosphorylation and promotes ovarian cancer invasion. Cell Death Dis 2023; 14:624. [PMID: 37737256 PMCID: PMC10517134 DOI: 10.1038/s41419-023-06149-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
Bromodomain-containing protein 4 (BRD4), the major component of bromodomain and extra-terminal domain (BET) protein family, has important functions in early embryonic development and cancer development. However, the posttranslational modification of BRD4 is not well understood. Multiple approaches were used to explore the mechanism of PRMT1-mediated BRD4 methylation and to determine the biological functions of BRD4 and PRMT1 in ovarian cancer. Here we report that BRD4 is asymmetrically methylated at R179/181/183 by PRMT1, which is antagonized by the Jumonji-family demethylase, JMJD6. PRMT1 is overexpressed in ovarian cancer tissue and is a potential marker for poor prognosis in ovarian cancer patients. Silencing of PRMT1 inhibited ovarian cancer proliferation, migration, and invasion in vivo and in vitro. PRMT1-mediated BRD4 methylation was found to promote BRD4 phosphorylation. Compared to BRD4 wild-type (WT) cells, BRD4 R179/181/183K mutant-expressing cells showed reduced ovarian cancer metastasis. BRD4 arginine methylation is also associated with TGF-β signaling. Our results indicate that arginine methylation of BRD4 by PRMT1 is involved in ovarian cancer tumorigenesis. Targeting PRMT1-mediated arginine methylation may provide a novel diagnostic target and an effective therapeutic strategy for ovarian cancer treatment.
Collapse
Affiliation(s)
- Yi Liu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, 325027, Wenzhou, China
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hejing Liu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Miaomiao Ye
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Mengying Jiang
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Xin Chen
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Gendi Song
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Huihui Ji
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, 325027, Wenzhou, China
| | - Zhi-Wei Wang
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, 325027, Wenzhou, China.
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Xueqiong Zhu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, 325027, Wenzhou, China.
| |
Collapse
|
26
|
Kikuchi M, Morita S, Wakamori M, Sato S, Uchikubo-Kamo T, Suzuki T, Dohmae N, Shirouzu M, Umehara T. Epigenetic mechanisms to propagate histone acetylation by p300/CBP. Nat Commun 2023; 14:4103. [PMID: 37460559 DOI: 10.1038/s41467-023-39735-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
Histone acetylation is important for the activation of gene transcription but little is known about its direct read/write mechanisms. Here, we report cryogenic electron microscopy structures in which a p300/CREB-binding protein (CBP) multidomain monomer recognizes histone H4 N-terminal tail (NT) acetylation (ac) in a nucleosome and acetylates non-H4 histone NTs within the same nucleosome. p300/CBP not only recognized H4NTac via the bromodomain pocket responsible for reading, but also interacted with the DNA minor grooves via the outside of that pocket. This directed the catalytic center of p300/CBP to one of the non-H4 histone NTs. The primary target that p300 writes by reading H4NTac was H2BNT, and H2BNTac promoted H2A-H2B dissociation from the nucleosome. We propose a model in which p300/CBP replicates histone N-terminal tail acetylation within the H3-H4 tetramer to inherit epigenetic storage, and transcribes it from the H3-H4 tetramer to the H2B-H2A dimers to activate context-dependent gene transcription through local nucleosome destabilization.
Collapse
Affiliation(s)
- Masaki Kikuchi
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Satoshi Morita
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Masatoshi Wakamori
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Shin Sato
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Tomomi Uchikubo-Kamo
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Takashi Umehara
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan.
| |
Collapse
|
27
|
Yang X, Gao Y, Cao F, Wang S. Molecular Dynamics Simulations Combined with Markov Model to Explore the Effect of Allosteric Inhibitor Binding on Bromodomain-Containing Protein 4. Int J Mol Sci 2023; 24:10831. [PMID: 37446009 DOI: 10.3390/ijms241310831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Bromodomain-Containing Protein 4 (BRD4) can play an important role in gene transcriptional regulation of tumor development and survival by participating in histone modification epigenetic mechanism. Although it has been reported that novel allosteric inhibitors such as ZL0590 have a high affinity with target protein BRD4 and good efficacy, their inhibitory mechanism has not been studied further. The aim of this study was to reveal the inhibition mechanism of allosteric inhibitor ZL0590 on Free-BRD4 and BRD4 binding MS436 (orthosteric inhibitor) by molecular dynamics simulation combined with a Markov model. Our results showed that BRD4-ZL0590 led to α-helices formation of 100-105 compared with Free-BRD4; the combination of MS436 caused residues 30-40 and 95-105 to form α-helices, while the combination of allosteric inhibitors untangled the α-helices formed by the MS436. The results of Markov flux analysis showed that the binding process of inhibitors mainly involved changes in the degree of α-helices at ZA loop. The binding of ZL0590 reduced the distance between ZA loop and BC loop, blocked the conformation at the active site, and inhibited the binding of MS436. After the allosteric inhibitor binding, the MS436 that could normally penetrate into the interior of the pocket was floating on the edge of the active pocket and did not continue to penetrate into the active pocket as expected. In summary, we provide a theoretical basis for the inhibition mechanism of ZL0590 against BRD4, which can be used as a reference for improving the development of drug targets for cancer therapy.
Collapse
Affiliation(s)
- Xiaotang Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yilin Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Fuyan Cao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Song Wang
- The Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2 Liutiao Road, Changchun 130012, China
| |
Collapse
|
28
|
Yang X, Xu L, Yang L. Recent advances in EZH2-based dual inhibitors in the treatment of cancers. Eur J Med Chem 2023; 256:115461. [PMID: 37156182 DOI: 10.1016/j.ejmech.2023.115461] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
The enhancer of zeste homolog 2 (EZH2) protein is the catalytic subunit of one of the histone methyltransferases. EZH2 catalyzes the trimethylation of lysine 27 of histone H3 (H3K27me3) and further alters downstream target levels. EZH2 is upregulated in cancer tissues, wherein its levels correlate strongly with cancer genesis, progression, metastasis, and invasion. Consequently, it has emerged as a novel anticancer therapeutic target. Nonetheless, developing EZH2 inhibitors (EZH2i) has encountered numerous difficulties, such as pre-clinical drug resistance and poor therapeutic effect. The EZH2i synergistically suppresses cancers when used in combination with additional antitumor drugs, such as PARP inhibitors, HDAC inhibitors, BRD4 inhibitors, EZH1 inhibitors, and EHMT2 inhibitors. Typically, the use of dual inhibitors of two different targets mediated by one individual molecule has been recognized as the preferred approach for overcoming the limitations of EZH2 monotherapy. The present review discusses the theoretical basis for designing EZH2-based dual-target inhibitors, and also describes some in vitro and in vivo analysis results.
Collapse
Affiliation(s)
- Xiaojuan Yang
- School of Pharmacy, Xinxiang University, Xinxiang, 453003, China.
| | - Lu Xu
- School of Pharmacy, Xinxiang University, Xinxiang, 453003, China
| | - Li Yang
- School of Pharmacy, Xinxiang University, Xinxiang, 453003, China
| |
Collapse
|
29
|
Malla AB, Rainsford SR, Smith ZD, Lesch BJ. DOT1L promotes spermatid differentiation by regulating expression of genes required for histone-to-protamine replacement. Development 2023; 150:dev201497. [PMID: 37082969 PMCID: PMC10259660 DOI: 10.1242/dev.201497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/20/2023] [Indexed: 04/22/2023]
Abstract
Unique chromatin remodeling factors orchestrate dramatic changes in nuclear morphology during differentiation of the mature sperm head. A crucial step in this process is histone-to-protamine exchange, which must be executed correctly to avoid sperm DNA damage, embryonic lethality and male sterility. Here, we define an essential role for the histone methyltransferase DOT1L in the histone-to-protamine transition. We show that DOT1L is abundantly expressed in mouse meiotic and postmeiotic germ cells, and that methylation of histone H3 lysine 79 (H3K79), the modification catalyzed by DOT1L, is enriched in developing spermatids in the initial stages of histone replacement. Elongating spermatids lacking DOT1L fail to fully replace histones and exhibit aberrant protamine recruitment, resulting in deformed sperm heads and male sterility. Loss of DOT1L results in transcriptional dysregulation coinciding with the onset of histone replacement and affecting genes required for histone-to-protamine exchange. DOT1L also deposits H3K79me2 and promotes accumulation of elongating RNA Polymerase II at the testis-specific bromodomain gene Brdt. Together, our results indicate that DOT1L is an important mediator of transcription during spermatid differentiation and an indispensable regulator of male fertility.
Collapse
Affiliation(s)
- Aushaq B. Malla
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Zachary D. Smith
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
- Yale Stem Cell Center, New Haven, CT 06510, USA
| | - Bluma J. Lesch
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
30
|
Quintela M, James DW, Pociute A, Powell L, Edwards K, Coombes Z, Garcia J, Garton N, Das N, Lutchman-Singh K, Margarit L, Beynon AL, Rioja I, Prinjha RK, Harker NR, Gonzalez D, Conlan RS, Francis LW. Bromodomain inhibitor i-BET858 triggers a unique transcriptional response coupled to enhanced DNA damage, cell cycle arrest and apoptosis in high-grade ovarian carcinoma cells. Clin Epigenetics 2023; 15:63. [PMID: 37060086 PMCID: PMC10105475 DOI: 10.1186/s13148-023-01477-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 03/29/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND Ovarian cancer has a specific unmet clinical need, with a persistently poor 5-year survival rate observed in women with advanced stage disease warranting continued efforts to develop new treatment options. The amplification of BRD4 in a significant subset of high-grade serous ovarian carcinomas (HGSC) has led to the development of BET inhibitors (BETi) as promising antitumour agents that have subsequently been evaluated in phase I/II clinical trials. Here, we describe the molecular effects and ex vivo preclinical activities of i-BET858, a bivalent pan-BET inhibitor with proven in vivo BRD inhibitory activity. RESULTS i-BET858 demonstrates enhanced cytotoxic activity compared with earlier generation BETis both in cell lines and primary cells derived from clinical samples of HGSC. At molecular level, i-BET858 triggered a bipartite transcriptional response, comprised of a 'core' network of genes commonly associated with BET inhibition in solid tumours, together with a unique i-BET858 gene signature. Mechanistically, i-BET858 elicited enhanced DNA damage, cell cycle arrest and apoptotic cell death compared to its predecessor i-BET151. CONCLUSIONS Overall, our ex vivo and in vitro studies indicate that i-BET858 represents an optimal candidate to pursue further clinical validation for the treatment of HGSC.
Collapse
Affiliation(s)
- Marcos Quintela
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - David W James
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Agne Pociute
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Lydia Powell
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Kadie Edwards
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Zoe Coombes
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Jetzabel Garcia
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Neil Garton
- Immunology Research Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, SG1 2NY, UK
| | - Nagindra Das
- Swansea Bay University Health Board, Swansea, SA12 7BR, UK
| | | | - Lavinia Margarit
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
- Cwm Taf Morgannwg University Health Board, Swansea, SA2 8QA, UK
| | | | - Inmaculada Rioja
- Immunology Research Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, SG1 2NY, UK
| | - Rab K Prinjha
- Immunology Research Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, SG1 2NY, UK
| | - Nicola R Harker
- Immunology Research Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, SG1 2NY, UK
| | - Deyarina Gonzalez
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - R Steven Conlan
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Lewis W Francis
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK.
| |
Collapse
|
31
|
Gaspa-Toneu L, Peters AH. Nucleosomes in mammalian sperm: conveying paternal epigenetic inheritance or subject to reprogramming between generations? Curr Opin Genet Dev 2023; 79:102034. [PMID: 36893482 PMCID: PMC10109108 DOI: 10.1016/j.gde.2023.102034] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023]
Abstract
The genome of mammalian sperm is largely packaged by sperm-specific proteins termed protamines. The presence of some residual nucleosomes has, however, emerged as a potential source of paternal epigenetic inheritance between generations. Sperm nucleosomes bear important regulatory histone marks and locate at gene-regulatory regions, functional elements, and intergenic regions. It is unclear whether sperm nucleosomes are retained at specific genomic locations in a deterministic manner or are randomly preserved due to inefficient exchange of histones by protamines. Recent studies indicate heterogeneity in chromatin packaging within sperm populations and an extensive reprogramming of paternal histone marks post fertilization. Obtaining single-sperm nucleosome distributions is fundamental to estimating the potential of sperm-borne nucleosomes in instructing mammalian embryonic development and in the transmission of acquired phenotypes.
Collapse
Affiliation(s)
- Laura Gaspa-Toneu
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4056 Basel, Switzerland
| | - Antoine Hfm Peters
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
32
|
Rehkopf L, Seidel J, Sindlinger J, Wang M, Kirchgäßner S, Schwarzer D. Synthesis of Nε-acetyl-L-homolysine by the Lossen rearrangement and its application for probing deacetylases and binding modules of acetyl-lysine. J Pept Sci 2023; 29:e3462. [PMID: 36416071 DOI: 10.1002/psc.3462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Lysine acetylation is a posttranslational protein modification mediating protein-protein interactions by recruitment of bromodomains. Investigations of bromodomains have focused so far on the sequence context of the modification site and acyl-modifications installed at lysine side chains. In contrast, there is only little information about the impact of the lysine residue that carries the modification on bromodomain binding. Here, we report a synthesis strategy for L-acetyl-homolysine from L-2-aminosuberic acid by the Lossen rearrangement. Peptide probes containing acetylated homolysine, lysine, and ornithine were generated and used for probing the binding preferences of four bromodomains from three different families. Tested bromodomains showed distinct binding patterns, and one of them bound acetylated homolysine with similar efficiency as the native substrate containing acetyl-lysine. Deacetylation assays with a bacterial sirtuin showed a strong preference for acetylated lysine, despite a broad specificity for N-acyl modifications.
Collapse
Affiliation(s)
- Luisa Rehkopf
- Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany
| | - Julian Seidel
- Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany.,Institute for Organic and Macromolecular Chemistry, Universität Jena, Jena, Germany
| | - Julia Sindlinger
- Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany.,Institute for Inorganic and Analytical Chemistry, Mass Spectrometry Platform, Universität Jena, Jena, Germany
| | - Mary Wang
- Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany
| | - Sören Kirchgäßner
- Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany
| | - Dirk Schwarzer
- Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany
| |
Collapse
|
33
|
Kirchgäßner S, Braun MB, Bartlick N, Koç C, Reinkemeier CD, Lemke EA, Stehle T, Schwarzer D. Synthesis, Biochemical Characterization, and Genetic Encoding of a 1,2,4-Triazole Amino Acid as an Acetyllysine Mimic for Bromodomains of the BET Family. Angew Chem Int Ed Engl 2023; 62:e202215460. [PMID: 36585954 DOI: 10.1002/anie.202215460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Lysine acetylation is a charge-neutralizing post-translational modification of proteins bound by bromodomains (Brds). A 1,2,4-triazole amino acid (ApmTri) was established as acetyllysine (Kac) mimic recruiting Brds of the BET family in contrast to glutamine commonly used for simulating this modification. Optimization of triazole substituents and side chain spacing allowed BET Brd recruitment to ApmTri-containing peptides with affinities similar to native substrates. Crystal structures of ApmTri-containing peptides in complex with two BET Brds revealed the binding mode which mirrored that of Kac ligands. ApmTri was genetically encoded and recombinant ApmTri-containing proteins co-enriched BRD3(2) from cellular lysates. This interaction was blocked by BET inhibitor JQ1. With genetically encoded ApmTri, biochemistry is now provided with a stable Kac mimic reflecting charge neutralization and Brd recruitment, allowing new investigations into BET proteins in vitro and in vivo.
Collapse
Affiliation(s)
- Sören Kirchgäßner
- Interfakultäres Institut für Biochemie, Universität Tübingen, Auf der Morgenstelle 34, 72076, Tübingen, Germany
| | - Michael B Braun
- Interfakultäres Institut für Biochemie, Universität Tübingen, Auf der Morgenstelle 34, 72076, Tübingen, Germany
| | - Natascha Bartlick
- Interfakultäres Institut für Biochemie, Universität Tübingen, Auf der Morgenstelle 34, 72076, Tübingen, Germany
| | - Cengiz Koç
- Interfakultäres Institut für Biochemie, Universität Tübingen, Auf der Morgenstelle 34, 72076, Tübingen, Germany.,Current address: Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, The Medical School, Beech Hill Rd, Sheffield, S10 2RX, UK
| | - Christopher D Reinkemeier
- Biocenter, Johannes Gutenberg University Mainz, 55128, Mainz, Germany.,Institute of Molecular Biology Mainz, 55128, Mainz, Germany.,Current address: Department of Biosystems Science and Engineering Basel, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Edward A Lemke
- Biocenter, Johannes Gutenberg University Mainz, 55128, Mainz, Germany.,Institute of Molecular Biology Mainz, 55128, Mainz, Germany
| | - Thilo Stehle
- Interfakultäres Institut für Biochemie, Universität Tübingen, Auf der Morgenstelle 34, 72076, Tübingen, Germany
| | - Dirk Schwarzer
- Interfakultäres Institut für Biochemie, Universität Tübingen, Auf der Morgenstelle 34, 72076, Tübingen, Germany
| |
Collapse
|
34
|
Martella N, Pensabene D, Varone M, Colardo M, Petraroia M, Sergio W, La Rosa P, Moreno S, Segatto M. Bromodomain and Extra-Terminal Proteins in Brain Physiology and Pathology: BET-ing on Epigenetic Regulation. Biomedicines 2023; 11:biomedicines11030750. [PMID: 36979729 PMCID: PMC10045827 DOI: 10.3390/biomedicines11030750] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
BET proteins function as histone code readers of acetylated lysins that determine the positive regulation in transcription of genes involved in cell cycle progression, differentiation, inflammation, and many other pathways. In recent years, thanks to the development of BET inhibitors, interest in this protein family has risen for its relevance in brain development and function. For example, experimental evidence has shown that BET modulation affects neuronal activity and the expression of genes involved in learning and memory. In addition, BET inhibition strongly suppresses molecular pathways related to neuroinflammation. These observations suggest that BET modulation may play a critical role in the onset and during the development of diverse neurodegenerative and neuropsychiatric disorders, such as Alzheimer’s disease, fragile X syndrome, and Rett syndrome. In this review article, we summarize the most recent evidence regarding the involvement of BET proteins in brain physiology and pathology, as well as their pharmacological potential as targets for therapeutic purposes.
Collapse
Affiliation(s)
- Noemi Martella
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Daniele Pensabene
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
- Department of Science, University Roma Tre, Viale Marconi 446, 00146 Rome, Italy
- Laboratory of Neurodevelopment, Neurogenetics and Neuromolecular Biology, IRCCS Santa Lucia Foundation, 64 via del Fosso di Fiorano, 00179 Rome, Italy
| | - Michela Varone
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Mayra Colardo
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Michele Petraroia
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - William Sergio
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, via dei Marsi 78, 00185 Rome, Italy
| | - Sandra Moreno
- Department of Science, University Roma Tre, Viale Marconi 446, 00146 Rome, Italy
- Laboratory of Neurodevelopment, Neurogenetics and Neuromolecular Biology, IRCCS Santa Lucia Foundation, 64 via del Fosso di Fiorano, 00179 Rome, Italy
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
- Correspondence:
| |
Collapse
|
35
|
de la Iglesia A, Jodar M, Oliva R, Castillo J. Insights into the sperm chromatin and implications for male infertility from a protein perspective. WIREs Mech Dis 2023; 15:e1588. [PMID: 36181449 DOI: 10.1002/wsbm.1588] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022]
Abstract
Male germ cells undergo an extreme but fascinating process of chromatin remodeling that begins in the testis during the last phase of spermatogenesis and continues through epididymal sperm maturation. Most of the histones are replaced by small proteins named protamines, whose high basicity leads to a tight genomic compaction. This process is epigenetically regulated at many levels, not only by posttranslational modifications, but also by readers, writers, and erasers, in a context of a highly coordinated postmeiotic gene expression program. Protamines are key proteins for acquiring this highly specialized chromatin conformation, needed for sperm functionality. Interestingly, and contrary to what could be inferred from its very specific DNA-packaging function across protamine-containing species, human sperm chromatin contains a wide spectrum of protamine proteoforms, including truncated and posttranslationally modified proteoforms. The generation of protamine knock-out models revealed not only chromatin compaction defects, but also collateral sperm alterations contributing to infertile phenotypes, evidencing the importance of sperm chromatin protamination toward the generation of a new individual. The unique features of sperm chromatin have motivated its study, applying from conventional to the most ground-breaking techniques to disentangle its peculiarities and the cellular mechanisms governing its successful conferment, especially relevant from the protein point of view due to the important epigenetic role of sperm nuclear proteins. Gathering and contextualizing the most striking discoveries will provide a global understanding of the importance and complexity of achieving a proper chromatin compaction and exploring its implications on postfertilization events and beyond. This article is categorized under: Reproductive System Diseases > Genetics/Genomics/Epigenetics Reproductive System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Alberto de la Iglesia
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain
| | - Meritxell Jodar
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain.,Biochemistry and Molecular Genetics Service, Hospital Clinic, Barcelona, Spain
| | - Rafael Oliva
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain.,Biochemistry and Molecular Genetics Service, Hospital Clinic, Barcelona, Spain
| | - Judit Castillo
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
36
|
Wen H, Shi X. Histone Readers and Their Roles in Cancer. Cancer Treat Res 2023; 190:245-272. [PMID: 38113004 PMCID: PMC11395558 DOI: 10.1007/978-3-031-45654-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Histone proteins in eukaryotic cells are subjected to a wide variety of post-translational modifications, which are known to play an important role in the partitioning of the genome into distinctive compartments and domains. One of the major functions of histone modifications is to recruit reader proteins, which recognize the epigenetic marks and transduce the molecular signals in chromatin to downstream effects. Histone readers are defined protein domains with well-organized three-dimensional structures. In this Chapter, we will outline major histone readers, delineate their biochemical and structural features in histone recognition, and describe how dysregulation of histone readout leads to human cancer.
Collapse
Affiliation(s)
- Hong Wen
- Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA
| | - Xiaobing Shi
- Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
37
|
Targeting emerging cancer hallmarks by transition metal complexes: Epigenetic reprogramming and epitherapies. Part II. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Singh AK, Phillips M, Alkrimi S, Tonelli M, Boyson SP, Malone KL, Nix JC, Glass KC. Structural insights into acetylated histone ligand recognition by the BDP1 bromodomain of Plasmodium falciparum. Int J Biol Macromol 2022; 223:316-326. [PMID: 36328269 PMCID: PMC10093686 DOI: 10.1016/j.ijbiomac.2022.10.247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/05/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
Abstract
Plasmodium falciparum requires a two-host system, moving between Anopheles mosquito and humans, to complete its life cycle. To overcome such dynamic growth conditions its histones undergo various post-translational modifications to regulate gene expression. The P. falciparum Bromodomain Protein 1 (PfBDP1) has been shown to interact with acetylated lysine modifications on histone H3 to regulate the expression of invasion-related genes. Here, we investigated the ability of the PfBDP1 bromodomain to interact with acetyllsyine modifications on additional core and variant histones. A crystal structure of the PfBDP1 bromodomain (PfBDP1-BRD) reveals it contains the conserved bromodomain fold, but our comparative analysis between the PfBDP1-BRD and human bromodomain families indicates it has a unique binding mechanism. Solution NMR spectroscopy and ITC binding assays carried out with acetylated histone ligands demonstrate that it preferentially recognizes tetra-acetylated histone H4, and we detected weaker interactions with multi-acetylated H2A.Z in addition to the previously reported interactions with acetylated histone H3. Our findings indicate PfBDP1 may play additional roles in the P. falciparum life cycle, and the distinctive features of its bromodomain binding pocket could be leveraged for the development of new therapeutic agents to help overcome the continuously evolving resistance of P. falciparum against currently available drugs.
Collapse
Affiliation(s)
- Ajit Kumar Singh
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Margaret Phillips
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Saleh Alkrimi
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA
| | - Marco Tonelli
- NMRFAM and Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Samuel P Boyson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA
| | - Kiera L Malone
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Jay C Nix
- Molecular Biology Consortium, Advanced Light Source, Berkeley, CA 94720, USA
| | - Karen C Glass
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA.
| |
Collapse
|
39
|
H4K5 Butyrylation Coexist with Acetylation during Human Spermiogenesis and Are Retained in the Mature Sperm Chromatin. Int J Mol Sci 2022; 23:ijms232012398. [PMID: 36293256 PMCID: PMC9604518 DOI: 10.3390/ijms232012398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Male germ cells experience a drastic chromatin remodeling through the nucleo-histone to nucleo-protamine (NH-NP) transition necessary for proper sperm functionality. Post-translational modifications (PTMs) of H4 Lys5, such as acetylation (H4K5ac), play a crucial role in epigenetic control of nucleosome disassembly facilitating protamine incorporation into paternal DNA. It has been shown that butyrylation on the same residue (H4K5bu) participates in temporal regulation of NH-NP transition in mice, delaying the bromodomain testis specific protein (BRDT)-dependent nucleosome disassembly and potentially marking retained nucleosomes. However, no information was available so far on this modification in human sperm. Here, we report a dual behavior of H4K5bu and H4K5ac in human normal spermatogenesis, suggesting a specific role of H4K5bu during spermatid elongation, coexisting with H4K5ac although with different starting points. This pattern is stable under different testicular pathologies, suggesting a highly conserved function of these modifications. Despite a drastic decrease of both PTMs in condensed spermatids, they are retained in ejaculated sperm, with 30% of non-colocalizing nucleosome clusters, which could reflect differential paternal genome retention. Whereas no apparent effect of these PTMs was observed associated with sperm quality, their presence in mature sperm could entail a potential role in the zygote.
Collapse
|
40
|
Wernersson S, Bobby R, Flavell L, Milbradt AG, Holdgate GA, Embrey KJ, Akke M. Bromodomain Interactions with Acetylated Histone 4 Peptides in the BRD4 Tandem Domain: Effects on Domain Dynamics and Internal Flexibility. Biochemistry 2022; 61:2303-2318. [PMID: 36215732 PMCID: PMC9631989 DOI: 10.1021/acs.biochem.2c00226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The bromodomain and extra-terminal (BET) protein BRD4
regulates
gene expression via recruitment of transcriptional regulatory complexes
to acetylated chromatin. Like other BET proteins, BRD4 contains two
bromodomains, BD1 and BD2, that can interact cooperatively with target
proteins and designed ligands, with important implications for drug
discovery. Here, we used nuclear magnetic resonance (NMR) spectroscopy
to study the dynamics and interactions of the isolated bromodomains,
as well as the tandem construct including both domains and the intervening
linker, and investigated the effects of binding a tetra-acetylated
peptide corresponding to the tail of histone 4. The peptide affinity
is lower for both domains in the tandem construct than for the isolated
domains. Using 15N spin relaxation, we determined the global
rotational correlation times and residue-specific order parameters
for BD1 and BD2. Isolated BD1 is monomeric in the apo state but apparently
dimerizes upon binding the tetra-acetylated peptide. Isolated BD2
partially dimerizes in both the apo and peptide-bound states. The
backbone order parameters reveal marked differences between BD1 and
BD2, primarily in the acetyl-lysine binding site where the ZA loop
is more flexible in BD2. Peptide binding reduces the order parameters
of the ZA loop in BD1 and the ZA and BC loops in BD2. The AB loop,
located distally from the binding site, shows variable dynamics that
reflect the different dimerization propensities of the domains. These
results provide a basis for understanding target recognition by BRD4.
Collapse
Affiliation(s)
- Sven Wernersson
- Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, SE-221 00Lund, Sweden
| | - Romel Bobby
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, CambridgeCB4 0WG, U.K
| | - Liz Flavell
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge Science Park, CambridgeCB4 0WG, U.K
| | - Alexander G Milbradt
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, CambridgeCB4 0WG, U.K
| | - Geoffrey A Holdgate
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, CambridgeCB4 0WG, U.K
| | - Kevin J Embrey
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, CambridgeCB4 0WG, U.K
| | - Mikael Akke
- Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, SE-221 00Lund, Sweden
| |
Collapse
|
41
|
Si P, Chen H, Liu J, Zhang E, Li C, Gu J, Wang R, Li W. Identification of (S)-10-Hydroxycamptothecin as a potent BRD4 inhibitor for treating triple-negative breast cancer. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Maree JP, Tvardovskiy A, Ravnsborg T, Jensen ON, Rudenko G, Patterton HG. Trypanosoma brucei histones are heavily modified with combinatorial post-translational modifications and mark Pol II transcription start regions with hyperacetylated H2A. Nucleic Acids Res 2022; 50:9705-9723. [PMID: 36095123 PMCID: PMC9508842 DOI: 10.1093/nar/gkac759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/09/2022] [Accepted: 08/30/2022] [Indexed: 11/12/2022] Open
Abstract
Trypanosomes diverged from the main eukaryotic lineage about 600 million years ago, and display some unusual genomic and epigenetic properties that provide valuable insight into the early processes employed by eukaryotic ancestors to regulate chromatin-mediated functions. We analysed Trypanosoma brucei core histones by high mass accuracy middle-down mass spectrometry to map core histone post-translational modifications (PTMs) and elucidate cis-histone combinatorial PTMs (cPTMs). T. brucei histones are heavily modified and display intricate cPTMs patterns, with numerous hypermodified cPTMs that could contribute to the formation of non-repressive euchromatic states. The Trypanosoma brucei H2A C-terminal tail is hyperacetylated, containing up to five acetylated lysine residues. MNase-ChIP-seq revealed a striking enrichment of hyperacetylated H2A at Pol II transcription start regions, and showed that H2A histones that are hyperacetylated in different combinations localised to different genomic regions, suggesting distinct epigenetic functions. Our genomics and proteomics data provide insight into the complex epigenetic mechanisms used by this parasite to regulate a genome that lacks the transcriptional control mechanisms found in later-branched eukaryotes. The findings further demonstrate the complexity of epigenetic mechanisms that were probably shared with the last eukaryotic common ancestor.
Collapse
Affiliation(s)
- Johannes P Maree
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Andrey Tvardovskiy
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, and Center for Epigenetics, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Tina Ravnsborg
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, and Center for Epigenetics, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, and Center for Epigenetics, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Gloria Rudenko
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Hugh-G Patterton
- Center for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
43
|
A Comprehensive Review of BET-targeting PROTACs for Cancer Therapy. Bioorg Med Chem 2022; 73:117033. [DOI: 10.1016/j.bmc.2022.117033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/11/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022]
|
44
|
Gibbons MD, Fang Y, Spicola AP, Linzer N, Jones SM, Johnson BR, Li L, Xie M, Bungert J. Enhancer-Mediated Formation of Nuclear Transcription Initiation Domains. Int J Mol Sci 2022; 23:ijms23169290. [PMID: 36012554 PMCID: PMC9409229 DOI: 10.3390/ijms23169290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Enhancers in higher eukaryotes and upstream activating sequences (UASs) in yeast have been shown to recruit components of the RNA polymerase II (Pol II) transcription machinery. At least a fraction of Pol II recruited to enhancers in higher eukaryotes initiates transcription and generates enhancer RNA (eRNA). In contrast, UASs in yeast do not recruit transcription factor TFIIH, which is required for transcription initiation. For both yeast and mammalian systems, it was shown that Pol II is transferred from enhancers/UASs to promoters. We propose that there are two modes of Pol II recruitment to enhancers in higher eukaryotes. Pol II complexes that generate eRNAs are recruited via TFIID, similar to mechanisms operating at promoters. This may involve the binding of TFIID to acetylated nucleosomes flanking the enhancer. The resulting eRNA, together with enhancer-bound transcription factors and co-regulators, contributes to the second mode of Pol II recruitment through the formation of a transcription initiation domain. Transient contacts with target genes, governed by proteins and RNA, lead to the transfer of Pol II from enhancers to TFIID-bound promoters.
Collapse
|
45
|
Guan X, Cheryala N, Karim RM, Chan A, Berndt N, Qi J, Georg GI, Schönbrunn E. Bivalent BET Bromodomain Inhibitors Confer Increased Potency and Selectivity for BRDT via Protein Conformational Plasticity. J Med Chem 2022; 65:10441-10458. [PMID: 35867655 PMCID: PMC11727429 DOI: 10.1021/acs.jmedchem.2c00453] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Bromodomain and extraterminal domain (BET) proteins are important regulators of gene transcription and chromatin remodeling. BET family members BRD4 and BRDT are validated targets for cancer and male contraceptive drug development, respectively. Due to the high structural similarity of the acetyl-lysine binding sites, most reported inhibitors lack intra-BET selectivity. We surmised that protein-protein interactions induced by bivalent inhibitors may differ between BRD4 and BRDT, conferring an altered selectivity profile. Starting from nonselective monovalent inhibitors, we developed cell-active bivalent BET inhibitors with increased activity and selectivity for BRDT. X-ray crystallographic and solution studies revealed unique structural states of BRDT and BRD4 upon interaction with bivalent inhibitors. Varying spacer lengths and symmetric vs unsymmetric connections resulted in the same dimeric states, whereas different chemotypes induced different dimers. The findings indicate that the increased intra-BET selectivity of bivalent inhibitors is due to the differential plasticity of BET bromodomains upon inhibitor-induced dimerization.
Collapse
Affiliation(s)
- Xianghong Guan
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, 717 Delaware Street, MN 55414, USA
| | - Narsihmulu Cheryala
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, 717 Delaware Street, MN 55414, USA
| | - Rezaul Md Karim
- Moffitt Cancer Center, Drug Discovery Department, 12902 Magnolia Drive, Tampa, Fl 33612, USA
| | - Alice Chan
- Moffitt Cancer Center, Drug Discovery Department, 12902 Magnolia Drive, Tampa, Fl 33612, USA
| | - Norbert Berndt
- Moffitt Cancer Center, Drug Discovery Department, 12902 Magnolia Drive, Tampa, Fl 33612, USA
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Gunrda I. Georg
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, 717 Delaware Street, MN 55414, USA
| | - Ernst Schönbrunn
- Moffitt Cancer Center, Drug Discovery Department, 12902 Magnolia Drive, Tampa, Fl 33612, USA
| |
Collapse
|
46
|
BET-Independent Murine Leukemia Virus Integration Is Retargeted
In Vivo
and Selects Distinct Genomic Elements for Lymphomagenesis. Microbiol Spectr 2022; 10:e0147822. [PMID: 35852337 PMCID: PMC9431007 DOI: 10.1128/spectrum.01478-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Moloney murine leukemia virus (MLV) infects BALB/c mice and induces T-cell lymphoma in mice. Retroviral integration is mediated by the interaction of the MLV integrase (IN) with members of the bromodomain and extraterminal motif (BET) protein family (BRD2, BRD3, and BRD4). The introduction of the W390A mutation into MLV IN abolishes the BET interaction. Here, we compared the replication of W390A MLV to that of wild-type (WT) MLV in adult BALB/c mice to study the role of BET proteins in replication, integration, and tumorigenesis in vivo. Comparing WT and W390A MLV infections revealed similar viral loads in the blood, thymus, and spleen cells. Interestingly, W390A MLV integration was retargeted away from GC-enriched genomic regions. However, both WT MLV- and W390A MLV-infected mice developed T-cell lymphoma after similar latencies represented by an enlarged thymus and spleen and multiorgan tumor infiltration. Integration site sequencing from splenic tumor cells revealed clonal expansion in all WT MLV- and W390A MLV-infected mice. However, the integration profiles of W390A MLV and WT MLV differed significantly. Integrations were enriched in enhancers and promoters, but compared to the WT, W390A MLV integrated less frequently into enhancers and more frequently into oncogene bodies such as Notch1 and Ppp1r16b. We conclude that host factors direct MLV in vivo integration site selection. Although BET proteins target WT MLV integration preferentially toward enhancers and promoters, insertional lymphomagenesis can occur independently from BET, likely due to the intrinsically strong enhancer/promoter of the MLV long terminal repeat (LTR). IMPORTANCE In this study, we have shown that the in vivo replication of murine leukemia virus happens independently of BET proteins, which are key host determinants involved in retroviral integration site selection. This finding opens a new research line in the discovery of alternative viral or host factors that may complement the dominant host factor. In addition, our results show that BET-independent murine leukemia virus uncouples insertional mutagenesis from gene enhancers, although lymphomagenesis still occurs despite the lack of an interaction with BET proteins. Our findings also have implications for the engineering of BET-independent MLV-based vectors for gene therapy, which may not be a safe alternative.
Collapse
|
47
|
Elucidation of binding preferences of YEATS domains to site-specific acetylated nucleosome core particles. J Biol Chem 2022; 298:102164. [PMID: 35732209 PMCID: PMC9293779 DOI: 10.1016/j.jbc.2022.102164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 01/02/2023] Open
Abstract
Acetylated lysine residues (Kac) in histones are recognized by epigenetic reader proteins, such as Yaf9, ENL, AF9, Taf14, and Sas5 (YEATS) domain-containing proteins. Human YEATS domains bind to the acetylated N-terminal tail of histone H3; however, their Kac-binding preferences at the level of the nucleosome are unknown. Through genetic code reprogramming, here, we established a nucleosome core particle (NCP) array containing histones that were acetylated at specific residues and used it to compare the Kac-binding preferences of human YEATS domains. We found that AF9-YEATS showed basal binding to the unmodified NCP and that it bound stronger to the NCP containing a single acetylation at one of K4, K9, K14, or K27 of H3, or to histone H4 multi-acetylated between K5 and K16. Crystal structures of AF9-YEATS in complex with an H4 peptide diacetylated either at K5/K8 or K8/K12 revealed that the aromatic cage of the YEATS domain recognized the acetylated K8 residue. Interestingly, E57 and D103 of AF9, both located outside of the aromatic cage, were shown to interact with acetylated K5 and K12 of H4, respectively, consistent with the increase in AF9-YEATS binding to the H4K8-acetylated NCP upon additional acetylation at K5 or K12. Finally, we show that a mutation of E57 to alanine in AF9-YEATS reduced the binding affinity for H4 multiacetylated NCPs containing H4K5ac. Our data suggest that the Kac-binding affinity of AF9-YEATS increases additively with the number of Kac in the histone tail.
Collapse
|
48
|
Doherty J, Mandati V, González-Rodriguez MA, Troutman S, Shepard A, Harbaugh D, Brody R, Miller DC, Kareta MS, Kissil JL. Validation of BET proteins as therapeutic targets in Neurofibromatosis type 2. Neurooncol Adv 2022; 4:vdac072. [PMID: 35855490 PMCID: PMC9278623 DOI: 10.1093/noajnl/vdac072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background Neurofibromatosis type 2 (NF2) is an autosomal dominant genetic disease characterized by development of schwannomas on the VIIIth (vestibular) cranial nerves. Bromodomain and extra-terminal domain (BET) proteins regulate gene transcription and their activity is required in a variety of cancers including malignant peripheral nerve sheath tumors. The use of BET inhibitors as a therapeutic option to treat NF2 schwannomas has not been explored and is the focus of this study. Methods A panel of normal and NF2-null Schwann and schwannoma cell lines were used to characterize the impact of the BET inhibitor JQ1 in vitro and in vivo. The mechanism of action was explored by chromatin immunoprecipitation of the BET BRD4, phospho-kinase arrays and immunohistochemistry (IHC) of BRD4 in vestibular schwannomas. Results JQ1 inhibited proliferation of NF2-null schwannoma and Schwann cell lines in vitro and in vivo. Further, loss of NF2 by CRISPR deletion or siRNA knockdown increased sensitivity of cells to JQ1. Loss of function experiments identified BRD4, and to a lesser extent BRD2, as BET family members mediating the majority of JQ1 effects. IHC demonstrated elevated levels of BRD4 protein in human vestibular schwannomas. Analysis of signaling pathways effected by JQ1 treatment suggests that the effects of JQ1 treatment are mediated, at least in part, via inhibition of PI3K/Akt signaling. Conclusions NF2-deficient Schwann and schwannoma cells are sensitive to BET inhibition, primarily mediated by BRD4, which is overexpressed in human vestibular schwannomas. Our results suggest BRD4 regulates PI3K signaling and likely impedes NF2 schwannoma growth via this inhibition. These findings implicate BET inhibition as a therapeutic option for NF2-deficient schwannomas.
Collapse
Affiliation(s)
- Joanne Doherty
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, USA
| | - Vinay Mandati
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, USA
| | | | - Scott Troutman
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Alyssa Shepard
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, USA
| | - David Harbaugh
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, USA
| | - Rachel Brody
- Department of Pathology, Molecular, and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Douglas C Miller
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, USA
| | - Michael S Kareta
- Genetics and Genomics Group, Sanford Research, Sioux Falls, South Dakota, 57104, USA
| | - Joseph L Kissil
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
49
|
Guo Z, Sun Y, Liang L, Lu W, Luo B, Wu Z, Huo B, Hu Y, Huang P, Wu Q, Wen S. Design and Synthesis of Dual EZH2/BRD4 Inhibitors to Target Solid Tumors. J Med Chem 2022; 65:6573-6592. [PMID: 35500243 DOI: 10.1021/acs.jmedchem.1c01876] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
EZH2 inhibitors that prevent trimethylation of histone lysine 27 (H3K27) are often limited to the treatment of a subset of hematological malignancies. In most solid tumors, EZH2 inhibitors induce reciprocal H3K27 acetylation that subsequently results in acquired drug resistance. The combination of EZH2 and BRD4 inhibitors to resensitize solid cancer cells to EZH2 inhibitors has proven to be effective, underlying the significance of developing dual inhibitors. Herein, we present the design, synthesis, and biological evaluation of first-in-class dual EZH2/BRD4 inhibitors. Our most promising compound, YM458, displays potent inhibitory activity against EZH2 and BRD4 and remarkable antiproliferative capacity against 11 solid cancer cell lines. Its in vivo therapeutic potential is validated in both lung cancer and pancreatic cancer xenograft tumor mice models, highlighting the potential of EZH2/BRD4 dual inhibitors to target a broad scope of EZH2 inhibitor-resistant solid tumors.
Collapse
Affiliation(s)
- Zhirong Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Yameng Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Liyun Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Wenhua Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Bingling Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Zhouming Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Bitao Huo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Yumin Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Qiang Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau 999078
| | - Shijun Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| |
Collapse
|
50
|
NUT Is a Driver of p300-Mediated Histone Hyperacetylation: From Spermatogenesis to Cancer. Cancers (Basel) 2022; 14:cancers14092234. [PMID: 35565363 PMCID: PMC9103113 DOI: 10.3390/cancers14092234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The functional characterization of the BRD4-NUT fusion protein as the driver of the highly aggressive NUT Carcinoma is fundamental to the understanding of the mechanisms responsible for the genome-wide hyperacetylation of histones prior to their eviction during the final stages of sperm cells maturation. Abstract In maturing sperm cells, a major genome re-organization takes place, which includes a global increase in the acetylation of histones prior to their replacement by protamines, the latter being responsible for the tight packaging of the male genome. Understanding the function of the oncogenic BRD4-NUT fusion protein in NUT carcinoma (NC) cells has proven to be essential in uncovering the mechanisms underlying histone hyperacetylation in spermatogenic cells. Indeed, these studies have revealed the mechanism by which a cooperation between BRD4, a bromodomain factor of the BET family, NUT, a normally testis-specific factor, and the histone acetyltransferase p300, induces the generation of hyperacetylated chromatin domains which are present in NC cells. The generation of Nut ko mice enabled us to demonstrate a genetic interaction between Nut and Brdt, encoding BRDT, a testis-specific BRD4-like factor. Indeed, in spermatogenic cells, NUT and p300 interact, which results in an increased acetylation of histone H4 at both positions K5 and K8. These two positions, when both acetylated, are specifically recognized by the first bromodomain of BRDT, which then mediates the removal of histone and their replacement by protamines. Taken together, these investigations show that the fusion of NUT to BRD4 in NUT Carcinoma cells reconstitutes, in somatic cells, a functional loop, which normally drives histone hyperacetylation and chromatin binding by a BET factor in spermatogenic cells.
Collapse
|