1
|
Seirin-Lee S, Kimura A. Geometric factors for cell arrangement: How do cells determine their position in vivo? Semin Cell Dev Biol 2025; 169:103604. [PMID: 40188659 DOI: 10.1016/j.semcdb.2025.103604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/05/2025] [Accepted: 03/05/2025] [Indexed: 04/13/2025]
Abstract
The spatial arrangement of cells plays a crucial role in ensuring robust development of organisms, directing cells to their specific fates in the right place and at the right time. In early embryogenesis, the cell arrangement is determined by several factors such as the cell division axis, cell-cell interactions, and surrounding geometric constraints. While many species utilize similar principles to determine the cell arrangement, the precise dynamics of cell arrangement differ among species, even at early stages. In particular, geometric constraints significantly impact cell arrangement. Nematode species exhibit diverse cell arrangement dynamics due to their rigid eggshells, which intensively confine the internal cells. In this paper, we review the mechanisms of cell arrangement with a focus on geometric constraints, drawing from interdisciplinary perspectives. We also review mathematical models developed to enhance our understanding of these mechanisms and discuss future directions for theoretical approaches in exploring geometric effects on cell arrangement in various tissues of various species.
Collapse
Affiliation(s)
- Sungrim Seirin-Lee
- Institute for the Advanced Study of Human Biology(ASHBi), Kyoto University Institute for Advanced Study, Kyoto University, Kyoto 606-8315, Japan; Department of Mathematical Medicine, Graduated School of Medicine, Kyoto University, Kyoto 606-8315, Japan.
| | - Akatsuki Kimura
- Department of Chromosome Science, National Institute of Genetics, Mishima 411-8540, Japan; Genetics Program, The Graduate University for Advanced Studies, Sokendai, Mishima 411-8540, Japan
| |
Collapse
|
2
|
Robertson C, Xue H, Saltini M, Fairnie ALM, Lang D, Kerstens MHL, Willemsen V, Ingle RA, Barrett SCH, Deinum EE, Illing N, Lenhard M. Spiral phyllotaxis predicts left-right asymmetric growth and style deflection in mirror-image flowers of Cyanella alba. Nat Commun 2025; 16:3695. [PMID: 40251172 PMCID: PMC12008388 DOI: 10.1038/s41467-025-58803-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/28/2025] [Indexed: 04/20/2025] Open
Abstract
Many animals and plants show left-right (LR) asymmetry. The LR asymmetry of mirror-image flowers has clear functional significance, with the reciprocal placement of male and female organs in left- versus right-handed flowers promoting cross-pollination. Here, we study how handedness of mirror-image flowers is determined and elaborated during development in the South African geophyte Cyanella alba. Inflorescences of C. alba produce flowers with a largely consistent handedness. However, this handedness has no simple genetic basis and individual plants can switch their predominant handedness between years. Rather, it is the direction of the phyllotactic spiral that predicts floral handedness. Style deflection is driven by increased cell expansion in the adaxial carpel facing the next oldest flower compared to the other adaxial carpel. The more expanding carpel shows transcriptional signatures of increased auxin signaling and auxin application can reverse the orientation of style deflection. We propose that a recently described inherent LR auxin asymmetry in the initiating organs of spiral phyllotaxis determines handedness in C. alba, creating a stable yet non-genetic floral polymorphism. This mechanism links chirality across different levels of plant development and exploits a developmental constraint in a core patterning process to produce morphological variation of ecological relevance.
Collapse
Affiliation(s)
- Caroline Robertson
- University of Cape Town, Department of Molecular and Cell Biology, Rondebosch, 7701, South Africa
| | - Haoran Xue
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam-Golm, Germany
| | - Marco Saltini
- Mathematical and Statistical Methods (Biometris), Plant Science Group, 6708 PB, Wageningen, The Netherlands
| | - Alice L M Fairnie
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, M5S 3B2, Canada
| | - Dirk Lang
- University of Cape Town, Department of Human Biology, Observatory, 7925, South Africa
| | - Merijn H L Kerstens
- Laboratory of Cell and Developmental Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Viola Willemsen
- Laboratory of Cell and Developmental Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Robert A Ingle
- University of Cape Town, Department of Molecular and Cell Biology, Rondebosch, 7701, South Africa
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, M5S 3B2, Canada
| | - Eva E Deinum
- Mathematical and Statistical Methods (Biometris), Plant Science Group, 6708 PB, Wageningen, The Netherlands
| | - Nicola Illing
- University of Cape Town, Department of Molecular and Cell Biology, Rondebosch, 7701, South Africa
| | - Michael Lenhard
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam-Golm, Germany.
| |
Collapse
|
3
|
Crossley M, Simon A, Marathe S, Rau C, Roth A, Marra V, Staras K. Functional mapping of the molluscan brain guided by synchrotron X-ray tomography. Proc Natl Acad Sci U S A 2025; 122:e2422706122. [PMID: 40014565 PMCID: PMC11892647 DOI: 10.1073/pnas.2422706122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/18/2025] [Indexed: 03/01/2025] Open
Abstract
Molluscan brains are composed of morphologically consistent and functionally interrogable neurons, offering rich opportunities for understanding how neural circuits drive behavior. Nonetheless, detailed component-level CNS maps are often lacking, total neuron numbers are unknown, and organizational principles remain poorly defined, limiting a full and systematic characterization of circuit operation. Here, we establish an accessible, generalizable approach, harnessing synchrotron X-ray tomography, to rapidly determine the three-dimensional structure of the multimillimeter-scale CNS of Lymnaea. Focusing on the feeding ganglia, we generate a full neuron-level reconstruction, revealing key design principles and revising cell count estimates upward threefold. Our atlas uncovers the superficial but also nonsuperficial ganglionic architecture, reveals the cell organization in normally hidden regions-ganglionic "dark sides"-and details features of single-neuron morphology, together guiding targeted follow-up functional investigation based on intracellular recordings. Using this approach, we identify three pivotal neuron classes: a command-like food-signaling cell type, a feeding central pattern generator interneuron, and a unique behavior-specific motoneuron, together significantly advancing understanding of the function of this classical control circuit. Combining our morphological and electrophysiological data, we also establish a functional CNS atlas in Lymnaea as a shared and scalable resource for the research community. Our approach enables the rapid construction of cell atlases in large-scale nervous systems, with key relevance to functional circuit interrogation in a diverse range of model organisms.
Collapse
Affiliation(s)
- Michael Crossley
- Department of Neuroscience, University of Sussex, BrightonBN1 9QG, United Kingdom
| | - Anna Simon
- Wolfson Institute for Biomedical Research, University College London, LondonWC1E 6BT, United Kingdom
| | - Shashidhara Marathe
- Diamond Light Source, Harwell Science and Innovation Campus, DidcotOX11 0DE, United Kingdom
| | - Christoph Rau
- Diamond Light Source, Harwell Science and Innovation Campus, DidcotOX11 0DE, United Kingdom
| | - Arnd Roth
- Wolfson Institute for Biomedical Research, University College London, LondonWC1E 6BT, United Kingdom
| | - Vincenzo Marra
- Department of Neuroscience, University of Sussex, BrightonBN1 9QG, United Kingdom
| | - Kevin Staras
- Department of Neuroscience, University of Sussex, BrightonBN1 9QG, United Kingdom
| |
Collapse
|
4
|
Yu H, Ren L, Wang Y, Wang H, Zhang M, Pan C, Yuan L, Zhang J, Epstein IR, Gao Q. Chiral Locomotion Transitions of an Active Gel and Their Chemomechanical Origin. J Am Chem Soc 2025; 147:5182-5188. [PMID: 39876696 DOI: 10.1021/jacs.4c15550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Transitions between chiral rotational locomotion modes occur in a variety of active individuals and populations, such as sidewinders, self-propelled chiral droplets, and dense bacterial suspensions. Despite recent progress in the study of active matter, general principles governing rotational chiral transition remain elusive. Here, we study, experimentally and theoretically, rotational locomotion and its chiral transition in a 2D polyacrylamide (PAAm)-based BZ gel driven by Belousov-Zhabotinsky reaction-diffusion waves. Analysis reveals that the phase difference (Δφ) between orthogonal components of kinematic quantities, such as chemomechanical force, displacement, and velocity, determines rotational chirality, i.e., chiral locomotion transition occurs when Δφ changes sign. This criterion is illustrated with a kinematic equation, which can be applied to biological and physical systems, including super-rotational/superhelical locomotion reported recently during E. gracilis swimming and sperm navigation. This work has potential applications for the design of functional materials and intelligent robots.
Collapse
Affiliation(s)
- Haodi Yu
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P.R. China
| | - Lin Ren
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P.R. China
| | - Yunjie Wang
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P.R. China
| | - Hui Wang
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P.R. China
| | - Meng Zhang
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P.R. China
| | - Changwei Pan
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P.R. China
| | - Ling Yuan
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P.R. China
| | - Jiujun Zhang
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P.R. China
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian, P.R. China
| | - Irving R Epstein
- Department of Chemistry and Volen Center for Complex Systems, Brandeis University, Waltham 02454-9110, Massachusetts, United States
| | - Qingyu Gao
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P.R. China
| |
Collapse
|
5
|
Wang Y, Zhang X, Xie D, Chen C, Huang Z, Li ZA. Chiral Engineered Biomaterials: New Frontiers in Cellular Fate Regulation for Regenerative Medicine. ADVANCED FUNCTIONAL MATERIALS 2024. [DOI: 10.1002/adfm.202419610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Indexed: 01/03/2025]
Abstract
AbstractChirality, the property of objects that are nonsuperimposable on their mirror images, plays a crucial role in biological processes and cellular behaviors. Chiral engineered biomaterials have emerged as a promising approach to regulating cellular fate in regenerative medicine. However, few reviews provide a comprehensive examination of recent advancements in chiral biomaterials and their applications in cellular fate regulation. Herein, various fabrication techniques available for chiral biomaterials, including the use of chiral molecules, surface patterning, and self‐assembly are discussed. The mechanisms through which chiral biomaterials influence cellular responses, such as modulation of adhesion receptors, intracellular signaling, and gene expression, are explored. Notably, chiral biomaterials have demonstrated their ability to guide stem cell differentiation and augment tissue‐specific functions. The potential applications of chiral biomaterials in musculoskeletal disorders, neurodegenerative diseases, cardiovascular diseases, and wound healing are highlighted. Challenges and future perspectives, including standardization of fabrication methods and translation to clinical settings, are addressed. In conclusion, chiral engineered biomaterials offer exciting prospects for precisely controlling cellular fate, advancing regenerative medicine, and enabling personalized therapeutic strategies.
Collapse
Affiliation(s)
- Yuwen Wang
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
| | - Xin Zhang
- Institute of Sports Medicine Beijing Key Laboratory of Sports Injuries Peking University Third Hospital Beijing 100191 China
| | - Denghui Xie
- Department of Orthopaedic Surgery Center for Orthopaedic Surgery The Third Affiliated Hospital of Southern Medical University Guangzhou 510630 China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases Guangzhou 510630 China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety New Cornerstone Science Laboratory National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhifeng Huang
- Department of Chemistry The Chinese University of Hong Kong Shatin Hong Kong SAR China
- School of Biomedical Sciences The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
| | - Zhong Alan Li
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
- School of Biomedical Sciences The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
- Institute for Tissue Engineering and Regenerative Medicine The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
- Shun Hing Institute of Advanced Engineering The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
- Shenzhen Research Institute The Chinese University of Hong Kong No.10, 2nd Yuexing Road, Nanshan Shenzhen Guangdong Province 518057 China
| |
Collapse
|
6
|
Kuroda R. Left-Right Asymmetry in Invertebrates: From Molecules to Organisms. Annu Rev Cell Dev Biol 2024; 40:97-117. [PMID: 38985858 DOI: 10.1146/annurev-cellbio-111822-010628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Although most animals appear symmetric externally, they exhibit chirality within their body cavity, i.e., in terms of asymmetric organ position, directional organ looping, and lateralized organ function. Left-right (LR) asymmetry is determined genetically by intricate molecular interactions that occur during development. Key genes have been elucidated in several species. There are common mechanisms in vertebrates and invertebrates, but some appear to exhibit unique mechanisms. This review focuses on LR asymmetry formation in invertebrates, particularly Drosophila, ascidians, and mollusks. It aims to understand the role of the genes that are key to creating LR asymmetry and how chirality information is converted/transmitted across the hierarchies from molecules to cells and from cells to tissues.
Collapse
Affiliation(s)
- Reiko Kuroda
- International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM), World Premier International Research Center Initiative (WPI), Hiroshima University, Hiroshima, Japan
- Frontier Research Institute, Chubu University, Kasugai, Japan;
| |
Collapse
|
7
|
Kurup AJ, Bailet F, Fürthauer M. Myosin1G promotes Nodal signaling to control zebrafish left-right asymmetry. Nat Commun 2024; 15:6547. [PMID: 39095343 PMCID: PMC11297164 DOI: 10.1038/s41467-024-50868-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Myosin1D (Myo1D) has recently emerged as a conserved regulator of animal Left-Right (LR) asymmetry that governs the morphogenesis of the vertebrate central LR Organizer (LRO). In addition to Myo1D, the zebrafish genome encodes the closely related Myo1G. Here we show that while Myo1G also controls LR asymmetry, it does so through an entirely different mechanism. Myo1G promotes the Nodal-mediated transfer of laterality information from the LRO to target tissues. At the cellular level, Myo1G is associated with endosomes positive for the TGFβ signaling adapter SARA. myo1g mutants have fewer SARA-positive Activin receptor endosomes and a reduced responsiveness to Nodal ligands that results in a delay of left-sided Nodal propagation and tissue-specific laterality defects in organs that are most distant from the LRO. Additionally, Myo1G promotes signaling by different Nodal ligands in specific biological contexts. Our findings therefore identify Myo1G as a context-dependent regulator of the Nodal signaling pathway.
Collapse
|
8
|
Utsunomiya S, Takebayashi K, Yamaguchi A, Sasamura T, Inaki M, Ueda M, Matsuno K. Left-right Myosin-Is, Myosin1C, and Myosin1D exhibit distinct single molecule behaviors on the plasma membrane of Drosophila macrophages. Genes Cells 2024; 29:380-396. [PMID: 38454557 DOI: 10.1111/gtc.13110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
Left-right (LR) asymmetry is crucial for animal development, particularly in Drosophila where LR-asymmetric morphogenesis of organs hinges on cellular-level chirality, termed cell chirality. In this species, two class I myosins, Myosin1D (Myo1D), and Myosin1C (Myo1C), respectively determine dextral (wild type) and sinistral (mirror image) cell chirality. Previous studies demonstrated Myo1D's ability to propel F-actin in leftward circles during in vitro gliding assays, suggesting its mechanochemical role in defining dextral chirality. Conversely, Myo1C propels F-actin without exhibiting LR-directional preference in this assay, suggesting at other properties governing sinistral chirality. Given the interaction of Myo1D and Myo1C with the membrane, we hypothesized that differences in their membrane behaviors might be critical in dictating their dextral or sinistral activities. In this study, employing single-molecule imaging analyses, we investigated the dynamic behaviors of Myo1D and Myo1C on the plasma membrane. Our findings revealed that Myo1C exhibits a significantly greater proportion of slow-diffusing population compared to Myo1D. Importantly, this characteristic was contingent upon both head and tail domains of Myo1C. The distinct diffusion patterns of Myo1D and Myo1C did not exert mutual influence on each other. This divergence in membrane diffusion between Myo1D and Myo1C may be crucial for dictating cell and organ chirality.
Collapse
Affiliation(s)
- Sosuke Utsunomiya
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Kazutoshi Takebayashi
- Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Asuka Yamaguchi
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Takeshi Sasamura
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Mikiko Inaki
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Masahiro Ueda
- Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Kenji Matsuno
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| |
Collapse
|
9
|
Liu E, Wing D. Population effects of chiral snail shell development relate handedness to health and disease. JOURNAL OF UNDERGRADUATE LIFE SCIENCES 2022. [DOI: 10.33137/juls.v16i1.39954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The spiral patterns of snail shells exhibit chirality, or “handedness.” These patterns often heavily favor the dextral (right-handed, or clockwise) over the sinistral (left-handed, clockwise) phenotype. While the developmental pathways resulting in each enantiomorph (non-superimposable mirror image form) have been studied extensively, there has been limited investigation into how the emphasis on one spiral direction over the other may confer survival benefit. This perspective essay proposes that developmental events determining cell cleavage robustness, mating compatibility, and predator evasion can influence the distribution of dextral and sinistral snails. The connection between chirality and survivability has broader implications for exploring the role of handedness in diseases and their treatments.
Collapse
|
10
|
Truchado-García M, Perry KJ, Cavodeassi F, Kenny NJ, Henry JQ, Grande C. A Small Change With a Twist Ending: A Single Residue in EGF-CFC Drives Bilaterian Asymmetry. Mol Biol Evol 2022; 40:6947033. [PMID: 36537201 PMCID: PMC9907556 DOI: 10.1093/molbev/msac270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Asymmetries are essential for proper organization and function of organ systems. Genetic studies in bilaterians have shown signaling through the Nodal/Smad2 pathway plays a key, conserved role in the establishment of body asymmetries. Although the main molecular players in the network for the establishment of left-right asymmetry (LRA) have been deeply described in deuterostomes, little is known about the regulation of Nodal signaling in spiralians. Here, we identified orthologs of the egf-cfc gene, a master regulator of the Nodal pathway in vertebrates, in several invertebrate species, which includes the first evidence of its presence in non-deuterostomes. Our functional experiments indicate that despite being present, egf-cfc does not play a role in the establishment of LRA in gastropods. However, experiments in zebrafish suggest that a single amino acid mutation in the egf-cfc gene in at least the common ancestor of chordates was the necessary step to induce a gain of function in LRA regulation. This study shows that the egf-cfc gene likely appeared in the ancestors of deuterostomes and "protostomes", before being adopted as a mechanism to regulate the Nodal pathway and the establishment of LRA in some lineages of deuterostomes.
Collapse
Affiliation(s)
| | - Kimberly J Perry
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL 61801
| | - Florencia Cavodeassi
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain,Institute of Medical and Biomedical Education, St George's University of London, Cranmer Terrace, London SW17 0RE, United Kingdom
| | - Nathan J Kenny
- Natural History Museum, Cromwell Road, London, United Kingdom,Department of Biochemistry (Te Tari Matū Koiora), University of Otago, Dunedin, (Aotearoa) New Zealand
| | - Jonathan Q Henry
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL 61801,The Marine Biological Laboratory, Woods Hole, MA 02543
| | | |
Collapse
|
11
|
Yang KC, Reddy A, Tsai HW, Zhao W, Grason GM, Ho RM. Breaking Mirror Symmetry of Double Gyroids via Self-Assembly of Chiral Block Copolymers. ACS Macro Lett 2022; 11:930-934. [PMID: 35802510 DOI: 10.1021/acsmacrolett.2c00148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significant enhancement of segment-scale chirality, as measured by vibrational circular dichroism (VCD), is observed in the helical phase (H*) of polylactide-based chiral block copolymers (BCPs*) due to the mesoscale chirality of the microphase-separated domains. Here, we report a weaker, yet meaningful, enhancement on the VCD signal of a double gyroid phase (DG) as compared to a double diamond phase (DD) and disordered phase from the same diblock BCPs*. Residual VCD enhancement indicates a weak degree of chiral symmetry breaking, implying the formation of a chiral double gyroid (DG*) instead of the canonical achiral form. Calculations on the basis of orientational self-consistent field theory, comparing coupling between the segmental-scale preference of an intradomain twist and morphological chirality, show that a transition between DG and DG* takes place above the critical chiral strength, driving a weak volume asymmetry between the two enantiomeric single networks of DG*. The formation of nanostructures with controllable mesoscale chiral asymmetry indicates a pathway for the amplification of optical activity driven by self-assembly.
Collapse
Affiliation(s)
- Kai-Chieh Yang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Abhiram Reddy
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Hsiu-Wen Tsai
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wei Zhao
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510005, China
| | - Gregory M Grason
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Rong-Ming Ho
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
12
|
Schmidt-Ott U, Yoon Y. Evolution and loss of ß-catenin and TCF-dependent axis specification in insects. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100877. [PMID: 35104659 PMCID: PMC9133022 DOI: 10.1016/j.cois.2022.100877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Mechanisms and evolution of primary axis specification in insects are discussed in the context of the roles of ß-catenin and TCF in polarizing metazoan embryos. Three hypotheses are presented. First, insects with sequential segmentation and posterior growth use cell-autonomous mechanisms for establishing embryo polarity via the nuclear ratio of ß-catenin and TCF. Second, TCF homologs establish competence for anterior specification. Third, the evolution of simultaneous segmentation mechanisms, also known as long-germ development, resulted in primary axis specification mechanisms that are independent of ß-catenin but reliant on TCF, a condition that preceded the frequent replacement of anterior determinants in long germ insects.
Collapse
Affiliation(s)
- Urs Schmidt-Ott
- University of Chicago, Dept. of Organismal Biology and Anatomy, 1027 East 57th Street, Chicago, IL 60637, USA.
| | - Yoseop Yoon
- University of California, Irvine, Dept. of Microbiology and Molecular Genetics, School of Medicine, 811 Health Sciences Rd., Med Sci B262, CA 92617, USA
| |
Collapse
|
13
|
Harry CJ, Messar SM, Ragsdale EJ. Comparative reconstruction of the predatory feeding structures of the polyphenic nematode Pristionchus pacificus. Evol Dev 2022; 24:16-36. [PMID: 35239990 PMCID: PMC9286642 DOI: 10.1111/ede.12397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/06/2022] [Accepted: 02/01/2022] [Indexed: 12/25/2022]
Abstract
Pristionchus pacificus is a nematode model for the developmental genetics of morphological polyphenism, especially at the level of individual cells. Morphological polyphenism in this species includes an evolutionary novelty, moveable teeth, which have enabled predatory feeding in this species and others in its family (Diplogastridae). From transmission electron micrographs of serial thin sections through an adult hermaphrodite of P. pacificus, we three‐dimensionally reconstructed all epithelial and myoepithelial cells and syncytia, corresponding to 74 nuclei, of its face, mouth, and pharynx. We found that the epithelia that produce the predatory morphology of P. pacificus are identical to Caenorhabditis elegans in the number of cell classes and nuclei. However, differences in cell form, spatial relationships, and nucleus position correlate with gross morphological differences from C. elegans and outgroups. Moreover, we identified fine‐structural features, especially in the anteriormost pharyngeal muscles, that underlie the conspicuous, left‐right asymmetry that characterizes the P. pacificus feeding apparatus. Our reconstruction provides an anatomical map for studying the genetics of polyphenism, feeding behavior, and the development of novel form in a satellite model to C. elegans. All cells making the dimorphic, novel form of an animal with cell constancy were identified. Although the number of cells is fully conserved, divergence in form and connectivity—including fixed asymmetries—sheds light on the origins of this trait.
Collapse
Affiliation(s)
- Clayton J Harry
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Sonia M Messar
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Erik J Ragsdale
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
14
|
Cheng M, Gong W, Lu M, Ma J, Lu Z, Li H. Engineering and Application of Pillar[6]arene Functionalized Chiral Surface in Selective Adsorption of
R
‐Adrenaline. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ming Cheng
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry Central China Normal University Wuhan Hubei 430079 China
| | - Wen Gong
- Department of Cardiology, The Third People's Hospital of Hubei Province Hospital of Hubei Province Wuhan Hubei 430030 China
| | - Mingxiang Lu
- Department of Forensic Medicine Zhongnan Hospital of Wuhan University No.169 East Lake Road, Wuchang District Wuhan Hubei 430071 China
| | - Junkai Ma
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Department of Chemistry, School of Pharmacy Hubei University of Medicine Shiyan Hubei 442000 China
| | - Zhiyan Lu
- Department of Forensic Medicine Zhongnan Hospital of Wuhan University No.169 East Lake Road, Wuchang District Wuhan Hubei 430071 China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry Central China Normal University Wuhan Hubei 430079 China
| |
Collapse
|
15
|
Sugioka K. Symmetry-breaking of animal cytokinesis. Semin Cell Dev Biol 2021; 127:100-109. [PMID: 34955355 DOI: 10.1016/j.semcdb.2021.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/05/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022]
Abstract
Cytokinesis is a mechanism that separates dividing cells via constriction of a supramolecular structure, the contractile ring. In animal cells, three modes of symmetry-breaking of cytokinesis result in unilateral cytokinesis, asymmetric cell division, and oriented cell division. Each mode of cytokinesis plays a significant role in tissue patterning and morphogenesis by the mechanisms that control the orientation and position of the contractile ring relative to the body axis. Despite its significance, the mechanisms involved in the symmetry-breaking of cytokinesis remain unclear in many cell types. Classical embryologists have identified that the geometric relationship between the mitotic spindle and cell cortex induces cytokinesis asymmetry; however, emerging evidence suggests that a concerted flow of compressional cell-cortex materials (cortical flow) is a spindle-independent driving force in spatial cytokinesis control. This review provides an overview of both classical and emerging mechanisms of cytokinesis asymmetry and their roles in animal development.
Collapse
Affiliation(s)
- Kenji Sugioka
- Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T1Z3, Canada; Department of Zoology, The University of British Columbia, Vancouver, BC V6T1Z3, Canada.
| |
Collapse
|
16
|
The physical basis of mollusk shell chiral coiling. Proc Natl Acad Sci U S A 2021; 118:2109210118. [PMID: 34810260 DOI: 10.1073/pnas.2109210118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
Snails are model organisms for studying the genetic, molecular, and developmental bases of left-right asymmetry in Bilateria. However, the development of their typical helicospiral shell, present for the last 540 million years in environments as different as the abyss or our gardens, remains poorly understood. Conversely, ammonites typically have a bilaterally symmetric, planispiraly coiled shell, with only 1% of 3,000 genera displaying either a helicospiral or a meandering asymmetric shell. A comparative analysis suggests that the development of chiral shells in these mollusks is different and that, unlike snails, ammonites with asymmetric shells probably had a bilaterally symmetric body diagnostic of cephalopods. We propose a mathematical model for the growth of shells, taking into account the physical interaction during development between the soft mollusk body and its hard shell. Our model shows that a growth mismatch between the secreted shell tube and a bilaterally symmetric body in ammonites can generate mechanical forces that are balanced by a twist of the body, breaking shell symmetry. In gastropods, where a twist is intrinsic to the body, the same model predicts that helicospiral shells are the most likely shell forms. Our model explains a large diversity of forms and shows that, although molluscan shells are incrementally secreted at their opening, the path followed by the shell edge and the resulting form are partly governed by the mechanics of the body inside the shell, a perspective that explains many aspects of their development and evolution.
Collapse
|
17
|
Hu H, Sekar S, Wu W, Battie Y, Lemaire V, Arteaga O, Poulikakos LV, Norris DJ, Giessen H, Decher G, Pauly M. Nanoscale Bouligand Multilayers: Giant Circular Dichroism of Helical Assemblies of Plasmonic 1D Nano-Objects. ACS NANO 2021; 15:13653-13661. [PMID: 34375085 DOI: 10.1021/acsnano.1c04804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chirality is found at all length scales in nature, and chiral metasurfaces have recently attracted attention due to their exceptional optical properties and their potential applications. Most of these metasurfaces are fabricated by top-down methods or bottom-up approaches that cannot be tuned in terms of structure and composition. By combining grazing incidence spraying of plasmonic nanowires and nanorods and Layer-by-Layer assembly, we show that nonchiral 1D nano-objects can be assembled into scalable chiral Bouligand nanostructures whose mesoscale anisotropy is controlled with simple macroscopic tools. Such multilayer helical assemblies of linearly oriented nanowires and nanorods display very high circular dichroism up to 13 000 mdeg and giant dissymmetry factors up to g ≈ 0.30 over the entire visible and near-infrared range. The chiroptical properties of the chiral multilayer stack are successfully modeled using a transfer matrix formalism based on the experimentally determined properties of each individual layer. The proposed approach can be extended to much more elaborate architectures and gives access to template-free and enantiomerically pure nanocomposites whose structure can be finely tuned through simple design principles.
Collapse
Affiliation(s)
- Hebing Hu
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 67000 Strasbourg, France
| | - Sribharani Sekar
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 67000 Strasbourg, France
| | - Wenbing Wu
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 67000 Strasbourg, France
| | - Yann Battie
- Université de Lorraine, LCP-A2MC, 57000 Metz, France
| | - Vincent Lemaire
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 67000 Strasbourg, France
| | - Oriol Arteaga
- Department Física Aplicada, Feman Group, Universitat de Barcelona, Barcelona 08028, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona 08028, Spain
| | - Lisa V Poulikakos
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - David J Norris
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Harald Giessen
- 4th Physics Institute, University of Stuttgart, Stuttgart 70569, Germany
| | - Gero Decher
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 67000 Strasbourg, France
- International Center for Frontier Research in Chemistry, 67083 Strasbourg, France
- International Center for Materials Nanoarchitectonics, Tsukuba, Ibaraki 305-0044, Japan
| | - Matthias Pauly
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 67000 Strasbourg, France
| |
Collapse
|
18
|
Identification and elimination of cancer cells by folate-conjugated CdTe/CdS Quantum Dots Chiral Nano-Sensors. Biochem Biophys Res Commun 2021; 560:199-204. [PMID: 34000469 DOI: 10.1016/j.bbrc.2021.04.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/16/2021] [Indexed: 11/21/2022]
Abstract
The specific identification and elimination of cancer cells has been a great challenge in the past few decades. In this study, the circular dichroism (CD) of cells was measured by a self-designed special system through the folate-conjugated chiral nano-sensor. A novel method was established to recognize cancer cells from normal cells according to the chirality of cells based on their CD signals. After a period of interaction between the nano-sensor and cells, the sharp weakening of CD signals was induced in cancer cells but normal cells remained unchanged. The biocompatibility of the nano-sensor was evaluated and the result showed that it exhibited significant cytotoxic activity against cancer cells while no obvious damage on normal cells. Notably, the research indicated that the nano-sensor may selectively cause apoptosis in cancer cells, and thus, have the potential to act as an antitumor agent.
Collapse
|
19
|
Onjiko RM, Nemes P, Moody SA. Altering metabolite distribution at Xenopus cleavage stages affects left-right gene expression asymmetries. Genesis 2021; 59:e23418. [PMID: 33826226 DOI: 10.1002/dvg.23418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
The left-right (L-R) axis of most bilateral animals is established during gastrulation when a transient ciliated structure creates a directional flow of signaling molecules that establish asymmetric gene expression in the lateral plate mesoderm. However, in some animals, an earlier differential distribution of molecules and cell division patterns initiate or at least influence L-R patterning. Using single-cell high-resolution mass spectrometry, we previously reported a limited number of small molecule (metabolite) concentration differences between left and right dorsal-animal blastomeres of the eight-cell Xenopus embryo. Herein, we examined whether altering the distribution of some of these molecules influenced early events in L-R patterning. Using lineage tracing, we found that injecting right-enriched metabolites into the left cell caused its descendant cells to disperse in patterns that varied from those in control gastrulae; this did not occur when left-enriched metabolites were injected into the right cell. At later stages, injecting left-enriched metabolites into the right cell perturbed the expression of genes known to: (a) be required for the formation of the gastrocoel roof plate (foxj1); (b) lead to the asymmetric expression of Nodal (dand5/coco); or (c) result from asymmetrical nodal expression (pitx2). Despite these perturbations in gene expression, we did not observe heterotaxy in heart or gut looping at tadpole stages. These studies indicate that altering metabolite distribution at cleavage stages at the concentrations tested in this study impacts the earliest steps of L-R gene expression that then can be compensated for during organogenesis.
Collapse
Affiliation(s)
- Rosemary M Onjiko
- Department of Chemistry, The George Washington University, Washington, District of Columbia
| | - Peter Nemes
- Department of Chemistry, The George Washington University, Washington, District of Columbia.,Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland
| | - Sally A Moody
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| |
Collapse
|
20
|
Oh JS, Kim KY, Park J, Lee H, Park Y, Cho J, Lee SS, Kim H, Jung SH, Jung JH. Dynamic Transformation of a Ag+-Coordinated Supramolecular Nanostructure from a 1D Needle to a 1D Helical Tube via a 2D Ribbon Accompanying the Conversion of Complex Structures. J Am Chem Soc 2021; 143:3113-3123. [DOI: 10.1021/jacs.0c10678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jeong Sang Oh
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ka Young Kim
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jaehyeon Park
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyeonju Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Younwoo Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaeheung Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Shim Sung Lee
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sung Ho Jung
- Department of Liberal Arts, Gyeongnam National University of Science and Technology (GNTECH), Jinju 52725, Republic of Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
21
|
Abstract
In this review, we consider transformations of axial symmetry in metazoan evolution and development, the genetic basis, and phenotypic expressions of different axial body plans. In addition to the main symmetry types in metazoan body plans, such as rotation (radial symmetry), reflection (mirror and glide reflection symmetry), and translation (metamerism), many biological objects show scale (fractal) symmetry as well as some symmetry-type combinations. Some genetic mechanisms of axial pattern establishment, creating a coordinate system of a metazoan body plan, bilaterian segmentation, and left–right symmetry/asymmetry, are analysed. Data on the crucial contribution of coupled functions of the Wnt, BMP, Notch, and Hedgehog signaling pathways (all pathways are designated according to the abbreviated or full names of genes or their protein products; for details, see below) and the axial Hox-code in the formation and maintenance of metazoan body plans are necessary for an understanding of the evolutionary diversification and phenotypic expression of various types of axial symmetry. The lost body plans of some extinct Ediacaran and early Cambrian metazoans are also considered in comparison with axial body plans and posterior growth in living animals.
Collapse
|
22
|
Abstract
The freshwater snail Lymnaea stagnalis has a long research history, but only relatively recently has it emerged as an attractive model organism to study molecular mechanisms in the areas of developmental biology and translational medicine such as learning/memory and neurodegenerative diseases. The species has the advantage of being a hermaphrodite and can both cross- and self-mate, which greatly facilitates genetic approaches. The establishment of body-handedness, or chiromorphogenesis, is a major topic of study, since chirality is evident in the shell coiling. Chirality is maternally inherited, and only recently a gene-editing approach identified the actin-related gene Lsdia1 as the key handedness determinant. This short article reviews the natural habitat, life cycle, major research questions and interests, and experimental approaches.
Collapse
Affiliation(s)
- Reiko Kuroda
- Frontier Research Institute, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan.
| | - Masanori Abe
- Frontier Research Institute, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| |
Collapse
|
23
|
Statistical Validation Verifies That Enantiomorphic States of Chiral Cells Are Determinant Dictating the Left- or Right-Handed Direction of the Hindgut Rotation in Drosophila. Symmetry (Basel) 2020. [DOI: 10.3390/sym12121991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the left–right (LR) asymmetric development of invertebrates, cell chirality is crucial. A left- or right-handed cell structure directs morphogenesis with corresponding LR-asymmetry. In Drosophila, cell chirality is thought to drive the LR-asymmetric development of the embryonic hindgut and other organs. This hypothesis is supported only by an apparent concordance between the LR-directionality of cell chirality and hindgut rotation and by computer simulations that connect the two events. In this article, we mathematically evaluated the causal relationship between the chirality of the hindgut epithelial cells and the LR-direction of hindgut rotation. Our logistic model, drawn from several Drosophila genotypes, significantly explained the correlation between the enantiomorphic (sinistral or dextral) state of chiral cells and the LR-directionality of hindgut rotation—even in individual live mutant embryos with stochastically determined cell chirality and randomized hindgut rotation, suggesting that the mechanism by which cell chirality forms is irrelevant to the direction of hindgut rotation. Thus, our analysis showed that cell chirality, which forms before hindgut rotation, is both sufficient and required for the subsequent rotation, validating the hypothesis that cell chirality causally defines the LR-directionality of hindgut rotation.
Collapse
|
24
|
Chen Y, Pangannaya S, Sun B, Qian C, Sun G, Cheng M, Lin C, Lu X, Jiang J, Wang L. Stoichiometry-Controlled Chirality Induced by Co-assembly of Tetraphenylethylene Derivative, γ-CD, and Water-Soluble Pillar[5]arene. ACS APPLIED BIO MATERIALS 2020; 4:2066-2072. [DOI: 10.1021/acsabm.0c01100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yuan Chen
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Srikala Pangannaya
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Baobao Sun
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Cheng Qian
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Guangping Sun
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ming Cheng
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chen Lin
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiancai Lu
- School of Earth Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Juli Jiang
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
25
|
Abstract
Photomechanical materials exhibit mechanical motion in response to light as an external stimulus. They have attracted much attention because they can convert light energy directly to mechanical energy, and their motions can be controlled without any physical contact. This review paper introduces the photomechanical motions of photoresponsive molecular crystals, especially bending and twisting behaviors, from the viewpoint of symmetry breaking. The bending (right–left symmetry breaking) and twisting (chiral symmetry breaking) of photomechanical crystals are based on both intrinsic and extrinsic factors like molecular orientation in the crystal and illumination conditions. The ability to design and control this symmetry breaking will be vital for generating new science and new technological applications for organic crystalline materials.
Collapse
|
26
|
Davison A, Thomas P. Internet 'shellebrity' reflects on origin of rare mirror-image snails. Biol Lett 2020; 16:20200110. [PMID: 32486938 DOI: 10.1098/rsbl.2020.0110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
While animal bodies are typically bilaterally symmetric on the outside, the internal organs nearly always show an invariant left-right (LR) asymmetry. In comparison, snails are both internally and externally LR asymmetric, outwardly obvious in the shell coiling direction, or chirality. Although some species of snail are naturally variable for chirality, sinistral individuals occur very rarely in most species. The developmental and genetic basis of these rare mirror-imaged individuals remains mysterious. To resolve this issue, the finding of a 'one in a million' sinistral garden snail called 'Jeremy' was used to recruit citizen scientists to find further sinistral snails. These snails were then bred together to understand whether their occurrence is due an inherited condition. The combined evidence shows that rare sinistral garden snails are not usually produced due to a major effect maternal Mendelian locus. Instead, they are likely mainly produced by a developmental accident. This finding has relevance to understanding the common factors that define cellular and organismal LR asymmetry, and the origin of rare reversed individuals in other animal groups that exhibit nearly invariant LR asymmetry.
Collapse
Affiliation(s)
- Angus Davison
- School of Life Sciences, University of Nottingham, University Park NG7 2RD, UK
| | - Philippe Thomas
- School of Life Sciences, University of Nottingham, University Park NG7 2RD, UK
| | | |
Collapse
|
27
|
Petri ND. Evolutionary Diversity of the Mechanisms Providing the Establishment of Left-Right Asymmetry in Metazoans. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360420020058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Abstract
Left-right (L-R) asymmetry of visceral organs in animals is established during embryonic development via a stepwise process. While some steps are conserved, different strategies are employed among animals for initiating the breaking of body symmetry. In zebrafish (teleost),
Xenopus (amphibian), and mice (mammal), symmetry breaking is elicited by directional fluid flow at the L-R organizer, which is generated by motile cilia and sensed by mechanoresponsive cells. In contrast, birds and reptiles do not rely on the cilia-driven fluid flow. Invertebrates such as
Drosophila and snails employ another distinct mechanism, where the symmetry breaking process is underpinned by cellular chirality acquired downstream of the molecular interaction of myosin and actin. Here, we highlight the convergent entry point of actomyosin interaction and planar cell polarity to the diverse L-R symmetry breaking mechanisms among animals.
Collapse
Affiliation(s)
- Hiroshi Hamada
- Organismal Pattterning Lab, RIKEN Center for Biosystems Dynamics Research, RIKEN, Kobe, Hyogo, Japan
| | - Patrick Tam
- Embryology Unit, Children's Medical Research Institute and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
29
|
A chordate species lacking Nodal utilizes calcium oscillation and Bmp for left-right patterning. Proc Natl Acad Sci U S A 2020; 117:4188-4198. [PMID: 32029598 DOI: 10.1073/pnas.1916858117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Larvaceans are chordates with a tadpole-like morphology. In contrast to most chordates of which early embryonic morphology is bilaterally symmetric and the left-right (L-R) axis is specified by the Nodal pathway later on, invariant L-R asymmetry emerges in four-cell embryos of larvaceans. The asymmetric cell arrangements exist through development of the tailbud. The tail thus twists 90° in a counterclockwise direction relative to the trunk, and the tail nerve cord localizes on the left side. Here, we demonstrate that larvacean embryos have nonconventional L-R asymmetries: 1) L- and R-cells of the two-cell embryo had remarkably asymmetric cell fates; 2) Ca2+ oscillation occurred through embryogenesis; 3) Nodal, an evolutionarily conserved left-determining gene, was absent in the genome; and 4) bone morphogenetic protein gene (Bmp) homolog Bmp.a showed right-sided expression in the tailbud and larvae. We also showed that Ca2+ oscillation is required for Bmp.a expression, and that BMP signaling suppresses ectopic expression of neural genes. These results indicate that there is a chordate species lacking Nodal that utilizes Ca2+ oscillation and Bmp.a for embryonic L-R patterning. The right-side Bmp.a expression may have arisen via cooption of conventional BMP signaling in order to restrict neural gene expression on the left side.
Collapse
|
30
|
Davison A. Flipping Shells! Unwinding LR Asymmetry in Mirror-Image Molluscs. Trends Genet 2020; 36:189-202. [PMID: 31952839 DOI: 10.1016/j.tig.2019.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/08/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022]
Abstract
In seeking to understand the establishment of left-right (LR) asymmetry, a limiting factor is that most animals are ordinarily invariant in their asymmetry, except when manipulated or mutated. It is therefore surprising that the wider scientific field does not appear to fully appreciate the remarkable fact that normal development in molluscs, especially snails, can flip between two chiral types without pathology. Here, I describe recent progress in understanding the evolution, development, and genetics of chiral variation in snails, and place it in context with other animals. I argue that the natural variation of snails is a crucial resource towards understanding the invariance in other animal groups and, ultimately, will be key in revealing the common factors that define cellular and organismal LR asymmetry.
Collapse
Affiliation(s)
- Angus Davison
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
31
|
Affiliation(s)
- Reiko Kuroda
- Institute of Science and Technology Research, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501 Japan
| | - Masanori Abe
- Institute of Science and Technology Research, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501 Japan
| |
Collapse
|
32
|
Abstract
Snails, earthworms and flatworms are remarkably different animals, but they all exhibit a very similar mode of early embryogenesis: spiral cleavage. This is one of the most widespread developmental programs in animals, probably ancestral to almost half of the animal phyla, and therefore its study is essential for understanding animal development and evolution. However, our knowledge of spiral cleavage is still in its infancy. Recent technical and conceptual advances, such as the establishment of genome editing and improved phylogenetic resolution, are paving the way for a fresher and deeper look into this fascinating early cleavage mode.
Collapse
Affiliation(s)
- José M Martín-Durán
- Queen Mary, University of London, School of Biological and Chemical Sciences, Mile End Road, E1 4NS London, UK
| | - Ferdinand Marlétaz
- Molecular Genetics Unit, Okinawa Institute of Science & Technology, 1919-1, Tancha, Onna 904-0495, Japan
| |
Collapse
|
33
|
Abstract
Cells are arranged into species-specific patterns during early embryogenesis. Such cell division patterns are important since they often reflect the distribution of localized cortical factors from eggs/fertilized eggs to specific cells as well as the emergence of organismal form. However, it has proven difficult to reveal the mechanisms that underlie the emergence of cell positioning patterns that underlie embryonic shape, likely because a systems-level approach is required that integrates cell biological, genetic, developmental, and mechanical parameters. The choice of organism to address such questions is also important. Because ascidians display the most extreme form of invariant cleavage pattern among the metazoans, we have been analyzing the cell biological mechanisms that underpin three aspects of cell division (unequal cell division (UCD), oriented cell division (OCD), and asynchronous cell cycles) which affect the overall shape of the blastula-stage ascidian embryo composed of 64 cells. In ascidians, UCD creates two small cells at the 16-cell stage that in turn undergo two further successive rounds of UCD. Starting at the 16-cell stage, the cell cycle becomes asynchronous, whereby the vegetal half divides before the animal half, thus creating 24-, 32-, 44-, and then 64-cell stages. Perturbing either UCD or the alternate cell division rhythm perturbs cell position. We propose that dynamic cell shape changes propagate throughout the embryo via cell-cell contacts to create the ascidian-specific invariant cleavage pattern.
Collapse
|
34
|
Basquin C, Ershov D, Gaudin N, Vu HTK, Louis B, Papon JF, Orfila AM, Mansour S, Rink JC, Azimzadeh J. Emergence of a Bilaterally Symmetric Pattern from Chiral Components in the Planarian Epidermis. Dev Cell 2019; 51:516-525.e5. [DOI: 10.1016/j.devcel.2019.10.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 09/06/2019] [Accepted: 10/21/2019] [Indexed: 01/22/2023]
|
35
|
Abstract
Symmetry is appealing, be it in architecture, art or facial expression, where symmetry is a key feature to finding someone attractive or not. Yet, asymmetries are widespread in nature, not as an erroneous deviation from the norm but as a way to adapt to the prevailing environmental conditions at a time. Asymmetries in many cases are actively selected for: they might well have increased the evolutionary fitness of a species. Even many single-celled organisms are built asymmetrically, such as the pear-shaped ciliate Paramecium, which may depend on its asymmetry to navigate towards the oxygen-richer surface of turbid waters, at least based on modeling. Everybody knows the lobster with its asymmetric pair of claws, the large crusher usually on the left and the smaller cutter on the right. Snail shells coil asymmetrically, as do the organs they house. Organ asymmetries are found throughout the animal kingdom, referring to asymmetric positioning, asymmetric morphology or both, with the vertebrate heart being an example for the latter. Functional asymmetries, such as that of the human brain with its localization of the language center in one hemisphere, add to the complexity of organ asymmetries and presumably played a decisive role for sociocultural evolution. The evolutionary origin of organ asymmetries may have been a longer than body length gut, which allows efficient retrieval of nutrients, and the need to stow a long gut in the body cavity in an orderly manner that ensures optimal functioning. Vertebrate organ asymmetries (situs solitus) are quite sophisticated: in humans, the apex of the asymmetrically built heart points to the left; the lung in turn, due to space restrictions, has fewer lobes on the left than on the right side (two versus three in humans), stomach and spleen are found on the left, the liver on the right, and small and large intestine coil in a chiral manner (Figure 1A). In very rare cases (1:10,000), the organ situs is inverted (situs inversus), while heterotaxia refers to another rare situation (about 1:1,000), in which subsets of organs show normal or aberrant positioning or morphology (Figure 1B). Individuals with situs solitus or situs inversus are healthy, whereas heterotaxia presents severe congenital malformations. Many human syndromes are known in which patients suffer from laterality defects, such as Katagener syndrome, in which the organ situs is inverted in one half of patients and males are sterile. Snail shells and vertebrate organs are examples of biased asymmetries with on average only one inversion in every 10,000 cases. Other asymmetries such as the coiling of the tails of piglets occur randomly with a 50:50 distribution. This primer exclusively deals with organ asymmetries in the animal kingdom, specifically with the mechanisms that ensure the development of biased asymmetries during embryogenesis.
Collapse
Affiliation(s)
- Martin Blum
- University of Hohenheim, Institute of Zoology, Garbenstr. 30 70599 Stuttgart, Germany.
| | - Tim Ott
- University of Hohenheim, Institute of Zoology, Garbenstr. 30 70599 Stuttgart, Germany
| |
Collapse
|
36
|
Kim JY, Yeom J, Zhao G, Calcaterra H, Munn J, Zhang P, Kotov N. Assembly of Gold Nanoparticles into Chiral Superstructures Driven by Circularly Polarized Light. J Am Chem Soc 2019; 141:11739-11744. [PMID: 31329438 PMCID: PMC7263784 DOI: 10.1021/jacs.9b00700] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Photon-to-matter chirality transfer offers both simplicity and universality to chiral synthesis, but its efficiency is typically low for organic compounds. Besides the fundamental importance of this process relevant for understanding the origin of homochirality on Earth, new pathways for imposing chiral bias during chemical process are essential for a variety of technologies from medicine to informatics. The strong optical activity of inorganic nanoparticles (NPs) affords photosynthetic routes to chiral superstructures using circularly polarized photons. Although plasmonic NPs are promising candidates for such synthetic routes due to the strong rotatory power of highly delocalized plasmonic states (Ma et al. Chem. Rev. 2017, 117 (12), 8041), realization of light-driven synthesis of chiral nanostructures has been more challenging for plasmonic NPs than for the semiconductor due to the short lifetime of the plasmonic states. Here we show that illumination of gold salt solutions with circularly polarized light induces the formation of NPs and their subsequent assembly into chiral nanostructures 10-15 nm in diameter. Despite their seemingly irregular shape, the resulting nanocolloids showed circular dichroism (CD) spectra with opposite polarity after exposure to photons with left and right circular polarization. The sign and spectral position of the CD peaks of illuminated dispersions matched those calculated for nanostructures with complex geometry identified from electron tomography images. Quantification of the complex shapes of NP assemblies using chirality measures revealed a direct correlation with the experimental spectra. The light-driven assembly of chiral nanostructures originates from the asymmetric displacement of NPs in dynamic assemblies by plasmonic fields followed by particle-to-particle attachment. The ability of gold NPs to "lock" the chirality of the incident photons in assembled nanostructures can be used to create a variety of chiral nanomaterials with plasmonic resonances.
Collapse
Affiliation(s)
| | | | - Gongpu Zhao
- Department of Structural Biology , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
- David Van Andel Advanced Cryo-Electron Microscopy Suite , Van Andel Research Institute , Grand Rapids , Michigan 49503 , United States
| | | | - Jiyoun Munn
- COMSOL, Inc. , Burlington , Massachusetts 01803 , United States
| | - Peijun Zhang
- Department of Structural Biology , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics , University of Oxford , Oxford , OX3 7BN , U.K
- Electron Bio-Imaging Centre, Diamond Light Source , Harwell Science and Innovation Campus , Didcot OX11 0DE , U.K
| | - Nicholas Kotov
- Michigan Institute for Translational Nanotechnology , Ypsilanti , Michigan 48198 , United States
| |
Collapse
|
37
|
Abe M, Kuroda R. The development of CRISPR for a mollusc establishes the formin Lsdia1 as the long-sought gene for snail dextral/sinistral coiling. Development 2019; 146:dev.175976. [PMID: 31088796 DOI: 10.1242/dev.175976] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/11/2019] [Indexed: 01/09/2023]
Abstract
The establishment of left-right body asymmetry is a key biological process that is tightly regulated genetically. In the first application of CRISPR/Cas9 to a mollusc, we show decisively that the actin-related diaphanous gene Lsdia1 is the single maternal gene that determines the shell coiling direction of the freshwater snail Lymnaea stagnalis Biallelic frameshift mutations of the gene produced sinistrally coiled offspring generation after generation, in the otherwise totally dextral genetic background. This is the gene sought for over a century. We also show that the gene sets the chirality at the one-cell stage, the earliest observed symmetry-breaking event linked directly to body handedness in the animal kingdom. The early intracellular chirality is superseded by the inter-cellular chirality during the 3rd cleavage, leading to asymmetric nodal and Pitx expression, and then to organismal body handedness. Thus, our findings have important implications for chiromorphogenesis in invertebrates as well as vertebrates, including humans, and for the evolution of snail chirality. This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Masanori Abe
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | - Reiko Kuroda
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan .,Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| |
Collapse
|
38
|
Takahashi H, Abe M, Kuroda R. GSK3β controls the timing and pattern of the fifth spiral cleavage at the 2-4 cell stage in Lymnaea stagnalis. Dev Genes Evol 2019; 229:73-81. [PMID: 30631925 DOI: 10.1007/s00427-018-00625-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/27/2018] [Indexed: 11/26/2022]
Abstract
Establishment of the body plan of multicellular organisms by the primary body axis determination and cell-fate specification is a key issue in biology. We have examined the mRNA localization of three Wnt pathway components gsk3β, β-catenin, and disheveled and investigated the effects of four selective inhibitors of these proteins on the early developmental stages of the spiral cleavage embryo of the fresh water snail Lymnaea (L.) stagnalis. mRNAs for gsk3β and β-catenin were distributed uniformly throughout the embryo during development whereas disheveled mRNA showed specific localization with intra- and inter-blastomere differences in concentration along the A-V axis during spiral cleavages. Remarkably, through inhibitor studies, we identified a short sensitive period from the 2- to 4-cell stage in which GSK3β inhibition by the highly specific 1-azakenpaullone (AZ) and by LiCl induced a subsequent dramatic developmental delay and alteration of the cleavage patterns of blastomeres at the fifth cleavage (16- to 24-cell stage) resulting in exogastrulation and other abnormalities in later stages. Inhibition of β-Catenin or Disheveled had no effect. Our inhibitor experiments establish a novel role for GSK3β in the developmental timing and orientated cell division of the snail embryo. Further work will be needed to identify the downstream targets of the kinase.
Collapse
Affiliation(s)
- Hiromi Takahashi
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | - Masanori Abe
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | - Reiko Kuroda
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan.
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan.
| |
Collapse
|
39
|
Imai Y, Yuasa J. Supramolecular chirality transformation driven by monodentate ligand binding to a coordinatively unsaturated self-assembly based on C 3-symmetric ligands. Chem Sci 2019; 10:4236-4245. [PMID: 31057752 PMCID: PMC6471804 DOI: 10.1039/c9sc00399a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/01/2019] [Indexed: 01/04/2023] Open
Abstract
Monodentate ligand binding is facilitated by supramolecular chirality transformations from propeller-shaped chirality into single-twist chirality by altering the self-assembly of C 3-symmetric chiral ligands. The C 3-symmetric chiral ligands (Im R 3Bz and Im S 3Bz) contain three chiral imidazole side arms (Im R and Im S ) at the 1,3,5-positions of a central benzene ring. Upon coordination to zinc ions (Zn2+), which have a tetrahedral coordination preference, the C 3-symmetric chiral ligands assemble, in a stepwise manner, into a propeller-shaped assembly with a general formula (Im( R or S ) 3Bz)4(Zn2+)3. In this structure each Zn2+ ion coordinates to the three individual imidazole side arms. The resulting assembly is formally coordinatively unsaturated (coordination number, n = 3) and capable of accepting monodentate co-ligands (imidazole: ImH2) to afford a coordinatively saturated assembly [(ImH2)3(Im R 3Bz)4(Zn2+)3]. The preformed propeller-shaped chirality is preserved during this transformation. However, an excess of the monodentate co-ligand (ImH2/Zn2+ molar ratio of ∼1.7) alters the propeller-shaped assembly into a stacked dimer assembly [(ImH2) m (Im R 3Bz)2(Zn2+)3] (m = 4-6) with single-twist chirality. This switch alters the degree of enhancement and the circular dichroism (CD) pattern, suggesting a structural transition into a chiral object with a different shape. This architectural chirality transformation presents a new approach to forming dynamic coordination-assemblies, which have transformable geometric chiral structures.
Collapse
Affiliation(s)
- Yuki Imai
- Department of Applied Chemistry , Tokyo University of Science , 1-3, Kagurazaka, Shinjuku , Tokyo 162-8601 , Japan .
| | - Junpei Yuasa
- Department of Applied Chemistry , Tokyo University of Science , 1-3, Kagurazaka, Shinjuku , Tokyo 162-8601 , Japan .
| |
Collapse
|
40
|
Theodosiou NA, Oppong E. 3D morphological analysis of spiral intestine morphogenesis in the little skate,
Leucoraja erinacea. Dev Dyn 2019; 248:688-701. [DOI: 10.1002/dvdy.34] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
| | - Emmanuela Oppong
- Department of Biological SciencesUnion College Schenectady New York
| |
Collapse
|
41
|
Cells with Broken Left–Right Symmetry: Roles of Intrinsic Cell Chirality in Left–Right Asymmetric Epithelial Morphogenesis. Symmetry (Basel) 2019. [DOI: 10.3390/sym11040505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Chirality is a fundamental feature in biology, from the molecular to the organismal level. An animal has chirality in the left–right asymmetric structure and function of its body. In general, chirality occurring at the molecular and organ/organism scales has been studied separately. However, recently, chirality was found at the cellular level in various species. This “cell chirality” can serve as a link between molecular chirality and that of an organ or animal. Cell chirality is observed in the structure, motility, and cytoplasmic dynamics of cells and the mechanisms of cell chirality formation are beginning to be understood. In all cases studied so far, proteins that interact chirally with F-actin, such as formin and myosin I, play essential roles in cell chirality formation or the switching of a cell’s enantiomorphic state. Thus, the chirality of F-actin may represent the ultimate origin of cell chirality. Links between cell chirality and left–right body asymmetry are also starting to be revealed in various animal species. In this review, the mechanisms of cell chirality formation and its roles in left–right asymmetric development are discussed, with a focus on the fruit fly Drosophila, in which many of the pioneering studies were conducted.
Collapse
|
42
|
Ishibashi T, Hatori R, Maeda R, Nakamura M, Taguchi T, Matsuyama Y, Matsuno K. E and ID proteins regulate cell chirality and left-right asymmetric development in Drosophila. Genes Cells 2019; 24:214-230. [PMID: 30624823 DOI: 10.1111/gtc.12669] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/13/2018] [Accepted: 12/28/2018] [Indexed: 02/07/2023]
Abstract
How left-right (LR) asymmetric forms in the animal body is a fundamental problem in Developmental Biology. Although the mechanisms for LR asymmetry are well studied in some species, they are still poorly understood in invertebrates. We previously showed that the intrinsic LR asymmetry of cells (designated as cell chirality) drives LR asymmetric development in the Drosophila embryonic hindgut, although the machinery of the cell chirality formation remains elusive. Here, we found that the Drosophila homologue of the Id gene, extra macrochaetae (emc), is required for the normal LR asymmetric morphogenesis of this organ. Id proteins, including Emc, are known to interact with and inhibit E-box-binding proteins (E proteins), such as Drosophila Daughterless (Da). We found that the suppression of da by wild-type emc was essential for cell chirality formation and for normal LR asymmetric development of the embryonic hindgut. Myosin ID (MyoID), which encodes the Drosophila Myosin ID protein, is known to regulate cell chirality. We further showed that Emc-Da regulates cell chirality formation, in which Emc functions upstream of or parallel to MyoID. Abnormal Id-E protein regulation is involved in various human diseases. Our results suggest that defects in cell shape may contribute to the pathogenesis of such diseases.
Collapse
Affiliation(s)
- Tomoki Ishibashi
- Department of Biological Sciences, Osaka University, Toyonaka, Osaka, Japan
| | - Ryo Hatori
- Department of Biological Sciences, Osaka University, Toyonaka, Osaka, Japan
| | - Reo Maeda
- Department of Biological Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | | | - Tomohiro Taguchi
- Department of Biological Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Yoko Matsuyama
- Department of Biological Sciences, Osaka University, Toyonaka, Osaka, Japan
| | - Kenji Matsuno
- Department of Biological Sciences, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
43
|
Wanninger A, Wollesen T. The evolution of molluscs. Biol Rev Camb Philos Soc 2019; 94:102-115. [PMID: 29931833 PMCID: PMC6378612 DOI: 10.1111/brv.12439] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/25/2018] [Accepted: 05/31/2018] [Indexed: 01/24/2023]
Abstract
Molluscs are extremely diverse invertebrate animals with a rich fossil record, highly divergent life cycles, and considerable economical and ecological importance. Key representatives include worm-like aplacophorans, armoured groups (e.g. polyplacophorans, gastropods, bivalves) and the highly complex cephalopods. Molluscan origins and evolution of their different phenotypes have largely remained unresolved, but significant progress has been made over recent years. Phylogenomic studies revealed a dichotomy of the phylum, resulting in Aculifera (shell-less aplacophorans and multi-shelled polyplacophorans) and Conchifera (all other, primarily uni-shelled groups). This challenged traditional hypotheses that proposed that molluscs gradually evolved complex phenotypes from simple, worm-like animals, a view that is corroborated by developmental studies that showed that aplacophorans are secondarily simplified. Gene expression data indicate that key regulators involved in anterior-posterior patterning (the homeobox-containing Hox genes) lost this function and were co-opted into the evolution of taxon-specific novelties in conchiferans. While the bone morphogenetic protein (BMP)/decapentaplegic (Dpp) signalling pathway, that mediates dorso-ventral axis formation, and molecular components that establish chirality appear to be more conserved between molluscs and other metazoans, variations from the common scheme occur within molluscan sublineages. The deviation of various molluscs from developmental pathways that otherwise appear widely conserved among metazoans provides novel hypotheses on molluscan evolution that can be tested with genome editing tools such as the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats-associated protein9) system.
Collapse
Affiliation(s)
- Andreas Wanninger
- Department of Integrative ZoologyUniversity of ViennaAlthanstrasse 14, 1090 ViennaAustria
| | - Tim Wollesen
- Department of Integrative ZoologyUniversity of ViennaAlthanstrasse 14, 1090 ViennaAustria
| |
Collapse
|
44
|
Namigai† EKO, Shimeld SM. Live Imaging of Cleavage Variability and Vesicle Flow Dynamics in Dextral and Sinistral Spiralian Embryos. Zoolog Sci 2019; 36:5-16. [DOI: 10.2108/zs180088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/13/2018] [Indexed: 11/17/2022]
Affiliation(s)
- Erica K. O. Namigai†
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, U. K
| | - Sebastian M. Shimeld
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, U. K
| |
Collapse
|
45
|
Noda T, Satoh N, Asami T. Heterochirality results from reduction of maternal diaph expression in a terrestrial pulmonate snail. ZOOLOGICAL LETTERS 2019; 5:2. [PMID: 30656060 PMCID: PMC6329061 DOI: 10.1186/s40851-018-0120-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Spiral cleavage is a feature of non-ecdysozoan protostomes, in which left-right reversal frequently evolved in gastropod molluscs. In pulmonate gastropods, maternal molecules are responsible for chirality patterning, on which the polarities of visceral and coiling asymmetries depend. In the pond snail, Lymnaea stagnalis (the clade Hygrophila), a frame-shift mutation of one of tandem-duplicated, diaphanous-related formin genes (diaph) resulted in incomplete reversal from dextral to sinistral cleavage. Is this mechanism of chirality regulation common to, or shared with other pulmonates? To answer this question, we examined genes involved in chirality patterning in the land snail, Bradybaena similaris which belongs to the clade Stylommatophora. RESULTS Both dextral and sinistral siblings develop from progeny of a racemic mutant of B. similaris. Differences in maternal mRNAs between the two strains were searched by transcriptome analyses. We found fifty maternal transcripts that exhibited less expression in early embryos of the mutant strain. The most conspicuous was a homolog of diaph. The diaph gene was duplicated in the stylommatophoran ancestor (diaph-a and diaph-b), as in the case of the ancestor of Lymnaea (Lsdiaph1 and Lsdiaph2). The quantity of maternal diaph-b mRNA was drastically reduced in early embryos of the racemic mutant compared to wild-type, while diaph-a expression was at nearly the same level in both strains. Unlike the case of Lsdiaph2, which is frame-shifted to produce truncated peptides in the mutant of L. stagnalis, however, Bsdiaph-b mRNA in the mutant strain is not frame-shifted and most probably produces normal Diaph-b protein. These results suggest the presence of regulatory mechanisms of gene expression for chirality patterning in pulmonate gastropods, although genomic analyses are required for confirmation. CONCLUSIONS Heterochirality resulting from the loss of polarity control in spiral cleavage does not require mutation of the diaph gene in B. similaris. The determination of left-right polarity instead depends on the expression of this diaph gene, which is duplicated in stylommatophoran Bradybaena, as well as in hygrophilan Lymnaea. Our results provide an avenue to identifying a regulatory mechanism that controls the direction of spiral cleavage in gastropods.
Collapse
Affiliation(s)
- Takeshi Noda
- Department of Biology, Faculty of Sciences, Shinshu University, Matsumoto, 390-8621 Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495 Japan
| | - Takahiro Asami
- Department of Biology, Faculty of Sciences, Shinshu University, Matsumoto, 390-8621 Japan
| |
Collapse
|
46
|
Montague TG, Gagnon JA, Schier AF. Conserved regulation of Nodal-mediated left-right patterning in zebrafish and mouse. Development 2018; 145:dev.171090. [PMID: 30446628 DOI: 10.1242/dev.171090] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/09/2018] [Indexed: 01/01/2023]
Abstract
Nodal is the major effector of left-right axis development. In mice, Nodal forms heterodimers with Gdf1 and is inhibited by Cerl2/Dand5 at the node, and by Lefty1 in the lateral plate mesoderm (LPM). Studies in zebrafish have suggested some parallels, but also differences, between left-right patterning in mouse and zebrafish. To address these discrepancies, we generated single and double zebrafish mutants for southpaw (spaw, the Nodal ortholog), dand5 and lefty1, and performed biochemical and activity assays with Spaw and Vg1/Gdf3 (the Gdf1 ortholog). Contrary to previous findings, spaw mutants failed to initiate spaw expression in the LPM, and asymmetric heart looping was absent, similar to mouse Nodal mutants. In blastoderm assays, Vg1 and Spaw were interdependent for target gene induction, and contrary to previous results, formed heterodimers. Loss of Dand5 or Lefty1 caused bilateral spaw expression, similar to mouse mutants, and Lefty1 was replaceable with a uniform Nodal signaling inhibitor. Collectively, these results indicate that Dand5 activity biases Spaw-Vg1 heterodimer activity to the left, Spaw around Kupffer's vesicle induces the expression of spaw in the LPM and global Nodal inhibition maintains the left bias of Spaw activity, demonstrating conservation between zebrafish and mouse mechanisms of left-right patterning.
Collapse
Affiliation(s)
- Tessa G Montague
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - James A Gagnon
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA .,Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Harvard Stem Cell Institute, Cambridge, MA 02138, USA.,FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA.,Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
47
|
Ferreira RR, Pakula G, Klaeyle L, Fukui H, Vilfan A, Supatto W, Vermot J. Chiral Cilia Orientation in the Left-Right Organizer. Cell Rep 2018; 25:2008-2016.e4. [DOI: 10.1016/j.celrep.2018.10.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 09/13/2018] [Accepted: 10/18/2018] [Indexed: 01/28/2023] Open
|
48
|
Yang Y, Liang J, Pan F, Wang Z, Zhang J, Amin K, Fang J, Zou W, Chen Y, Shi X, Wei Z. Macroscopic helical chirality and self-motion of hierarchical self-assemblies induced by enantiomeric small molecules. Nat Commun 2018; 9:3808. [PMID: 30228273 PMCID: PMC6143534 DOI: 10.1038/s41467-018-06239-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/27/2018] [Indexed: 12/22/2022] Open
Abstract
Transfer of molecular chirality to supramolecular chirality at nanoscale and microscale by chemical self-assembly has been studied intensively for years. However, how such molecular chirality further transfers to the macroscale along the same path remains elusive. Here we reveal how the chirality from molecular level transfers to macroscopic level via self-assembly. We assemble a macrostripe using enantiomeric camphorsulfonic acid (CSA)-doped polyaniline with hierarchical order. The stripe can twist into a single-handed helical ribbon via helical self-motion. A multi-scale chemo-mechanical model is used to elucidate the mechanism underlying its chirality transfer and induction. The molecular origin of this macroscopic helical chirality is verified. Results provide a comprehensive understanding of hierarchical chirality transfer and helical motion in self-assembled materials and even their natural analogues. The stripe exhibits disparate actuation behaviour under stimuli of enantiomeric amines and integrating such chiral perception with helical self-motion may motivate chiral biomimetic studies of smart materials. Chirality transfer by chemical self-assembly has been studied intensively for years but chirality transfers along the same path remains elusive. Here the authors use a multiscale chemo-mechanical model to elucidate the mechanism underlying the chirality transfer via self-assembly in hierarchical camphorsulfonic acid doped polyaniline.
Collapse
Affiliation(s)
- Yang Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jie Liang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China
| | - Fei Pan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China.,Institute of Solid Mechanics, Beihang University, 100191, Beijing, China
| | - Zhen Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China
| | - Kamran Amin
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jin Fang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China
| | - Wenjun Zou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China
| | - Yuli Chen
- Institute of Solid Mechanics, Beihang University, 100191, Beijing, China
| | - Xinghua Shi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
49
|
Saydmohammed M, Yagi H, Calderon M, Clark MJ, Feinstein T, Sun M, Stolz DB, Watkins SC, Amack JD, Lo CW, Tsang M. Vertebrate myosin 1d regulates left-right organizer morphogenesis and laterality. Nat Commun 2018; 9:3381. [PMID: 30139971 PMCID: PMC6107537 DOI: 10.1038/s41467-018-05866-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 07/28/2018] [Indexed: 11/25/2022] Open
Abstract
Establishing left-right asymmetry is a fundamental process essential for arrangement of visceral organs during development. In vertebrates, motile cilia-driven fluid flow in the left-right organizer (LRO) is essential for initiating symmetry breaking event. Here, we report that myosin 1d (myo1d) is essential for establishing left-right asymmetry in zebrafish. Using super-resolution microscopy, we show that the zebrafish LRO, Kupffer's vesicle (KV), fails to form a spherical lumen and establish proper unidirectional flow in the absence of myo1d. This process requires directed vacuolar trafficking in KV epithelial cells. Interestingly, the vacuole transporting function of zebrafish Myo1d can be substituted by myosin1C derived from an ancient eukaryote, Acanthamoeba castellanii, where it regulates the transport of contractile vacuoles. Our findings reveal an evolutionary conserved role for an unconventional myosin in vacuole trafficking, lumen formation, and determining laterality.
Collapse
Affiliation(s)
- Manush Saydmohammed
- Department of Developmental Biology, University of Pittsburgh, 3501 5th Avenue, Pittsburgh, PA, 5213, USA.
| | - Hisato Yagi
- Department of Developmental Biology, University of Pittsburgh, 3501 5th Avenue, Pittsburgh, PA, 5213, USA
| | - Michael Calderon
- Department of Cell Biology, University of Pittsburgh, 3500 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Madeline J Clark
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA
| | - Timothy Feinstein
- Department of Developmental Biology, University of Pittsburgh, 3501 5th Avenue, Pittsburgh, PA, 5213, USA
| | - Ming Sun
- Department of Cell Biology, University of Pittsburgh, 3500 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh, 3500 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh, 3500 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Jeffrey D Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh, 3501 5th Avenue, Pittsburgh, PA, 5213, USA
| | - Michael Tsang
- Department of Developmental Biology, University of Pittsburgh, 3501 5th Avenue, Pittsburgh, PA, 5213, USA.
| |
Collapse
|
50
|
|