1
|
Ye Y, Lu Y, Su H, Tian Y, Jin S, Li G, Yang Y, Jiang L, Zhou Z, Wei X, Tao TH, Sun L. A hybrid bioelectronic retina-probe interface for object recognition. Biosens Bioelectron 2025; 279:117408. [PMID: 40147085 DOI: 10.1016/j.bios.2025.117408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/05/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Retina converts light stimuli into spike firings, encoding abundant visual information critical for both fundamental studies of the visual system and therapies for visual diseases. However, probing these spikes directly from the retina is hindered by limited recording channels, insufficient contact between the retina and electrodes, and short operational lifetimes. In this study, we developed a perforated and flexible microelectrode array to achieve a robust retina-probe interface, ensuring high-quality detection of spike firings from hundreds of neurons. Leveraging the retina's natural light-sensing ability, we created a hybrid bioelectronic system that enables image recognition through machine learning integration. We systematically explored the system's spatial resolution, and demonstrated its capability to recognize different colors and light intensities. Importantly, due to the perforated structure, the hybrid system maintained over 94 % accuracy in distinguishing light on/off conditions for 9 h ex vivo. Finally, inspired by the eye's configuration, we developed a bioelectronic mimic eye capable of recognizing objects in real environments. This work demonstrated that the hybrid bioelectronic retina-probe interface is effective not only for light sensing but also for efficient image and object recognition.
Collapse
Affiliation(s)
- Yifei Ye
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yunxiao Lu
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai, 201306, China
| | - Haoyang Su
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye Tian
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Jin
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Gen Li
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingkang Yang
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Luyue Jiang
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zhitao Zhou
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xiaoling Wei
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Tiger H Tao
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, 519031, China; Tianqiao and Chrissy Chen Institute for Translational Research, Shanghai, 200020, China.
| | - Liuyang Sun
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| |
Collapse
|
2
|
Baden T, Angueyra JM, Bosten JM, Collin SP, Conway BR, Cortesi F, Dedek K, Euler T, Novales Flamarique I, Franklin A, Haverkamp S, Kelber A, Neuhauss SC, Li W, Lucas RJ, Osorio DC, Shekhar K, Tommasini D, Yoshimatsu T, Corbo JC. A standardized nomenclature for the rods and cones of the vertebrate retina. PLoS Biol 2025; 23:e3003157. [PMID: 40333813 PMCID: PMC12057980 DOI: 10.1371/journal.pbio.3003157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025] Open
Abstract
Vertebrate photoreceptors have been studied for well over a century, but a fixed nomenclature for referring to orthologous cell types across diverse species has been lacking. Instead, photoreceptors have been variably-and often confusingly-named according to morphology, presence/absence of 'rhodopsin', spectral sensitivity, chromophore usage, and/or the gene family of the opsin(s) they express. Here, we propose a unified nomenclature for vertebrate rods and cones that aligns with the naming systems of other retinal cell classes and that is based on the photoreceptor type's putative evolutionary history. This classification is informed by the functional, anatomical, developmental, and molecular identities of the neuron as a whole, including the expression of deeply conserved transcription factors required for development. The proposed names will be applicable across all vertebrates and indicative of the widest possible range of properties, including their postsynaptic wiring, and hence will allude to their common and species-specific roles in vision. Furthermore, the naming system is open-ended to accommodate the future discovery of as-yet unknown photoreceptor types.
Collapse
Affiliation(s)
- Tom Baden
- Sussex Neuroscience, University of Sussex, Brighton, United Kingdom
| | - Juan M. Angueyra
- Department of Biology and Brain and Behavior Institute, University of Maryland, College Park, Maryland, United States of America
| | - Jenny M. Bosten
- Sussex Neuroscience, University of Sussex, Brighton, United Kingdom
| | - Shaun P. Collin
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia,
| | - Bevil R. Conway
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, Maryland, United States of America
| | - Fabio Cortesi
- Faculty of Science, School of the Environment, University of Queensland, St Lucia, Australia,
| | - Karin Dedek
- Neurosensory/Animal Navigation, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Thomas Euler
- Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | | | - Anna Franklin
- Sussex Neuroscience, University of Sussex, Brighton, United Kingdom
| | - Silke Haverkamp
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior - Caesar, Bonn, Germany
| | - Almut Kelber
- Department of Biology, Lund University, Lund, Sweden
| | | | - Wei Li
- National Eye Institute, Bethesda, Maryland, United States of America
| | - Robert J. Lucas
- Centre for Biological Timing and Division of Neuroscience, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Daniel C. Osorio
- Sussex Neuroscience, University of Sussex, Brighton, United Kingdom
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California, United States of America
| | - Dario Tommasini
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California, United States of America
| | - Takeshi Yoshimatsu
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Joseph C. Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
3
|
Günther A, Balaji V, Leberecht B, Forst JJ, Rotov AY, Woldt T, Abdulazhanova D, Mouritsen H, Dedek K. Morphology and connectivity of retinal horizontal cells in two avian species. Front Cell Neurosci 2025; 19:1558605. [PMID: 40103750 PMCID: PMC11914121 DOI: 10.3389/fncel.2025.1558605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
In the outer vertebrate retina, the visual signal is separated into intensity and wavelength information. In birds, seven types of photoreceptors (one rod, four single cones, and two members of the double cone) mediate signals to >20 types of second-order neurons, the bipolar cells and horizontal cells. Horizontal cells contribute to color and contrast processing by providing feedback signals to photoreceptors and feedforward signals to bipolar cells. In fish, reptiles, and amphibians they either encode intensity or show color-opponent responses. Yet, for the bird retina, the number of horizontal cell types is not fully resolved and even more importantly, the synapses between photoreceptors and horizontal cells have never been quantified for any bird species. With a combination of light microscopy and serial EM reconstructions, we found four different types of horizontal cells in two distantly related species, the domestic chicken and the European robin. In agreement with some earlier studies, we confirmed two highly abundant cell types (H1, H2) and two rare cell types (H3, H4), of which H1 is an axon-bearing cell, whereas H2-H4 are axonless. H1 cells made chemical synapses with one type of bipolar cell and an interplexiform amacrine cell at their soma. Dendritic contacts of H1-H4 cells to photoreceptors were type-specific and similar to the turtle retina, which confirms the high degree of evolutionary conservation in the vertebrate outer retina. Our data further suggests that H1 and potentially H2 cells may encode intensity, whereas H3 and H4 may represent color opponent horizontal cells which may contribute to the birds' superb color and/or high acuity vision.
Collapse
Affiliation(s)
- Anja Günther
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| | - Vaishnavi Balaji
- Neurosensory/Animal Navigation, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Bo Leberecht
- Neurosensory/Animal Navigation, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Julia J Forst
- Neurosensory/Animal Navigation, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Alexander Y Rotov
- Neurosensory/Animal Navigation, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Tobias Woldt
- Neurosensory/Animal Navigation, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Dinora Abdulazhanova
- Neurosensory/Animal Navigation, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Henrik Mouritsen
- Neurosensory/Animal Navigation, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Karin Dedek
- Neurosensory/Animal Navigation, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
4
|
Greene MJ, Pandiyan VP, Sabesan R, Tuten WS. Local variations in L/M ratio influence the detection and color naming of small spots. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639104. [PMID: 40060642 PMCID: PMC11888223 DOI: 10.1101/2025.02.19.639104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
The distribution of long-wavelength sensitive (L) and middle-wavelength sensitive (M) cones in the retina determines how different frequencies of incident light are sampled across space, and has been hypothesized to influence spatial and color vision. We asked whether the detection and color naming of small, short-duration increment stimuli depend on the relative numbers of L and M cones illuminated. Stimuli were corrected for optical aberrations by an adaptive optics system, and targeted to locations in the parafovea where cone spectral types were known. We found that sensitivity to 680 nm light, normalized by sensitivity to 543 nm light, grew with the proportion of L cones at the stimulated locus, though intra- and intersubject variability was considerable. A similar trend was derived from a simple model of the achromatic (L+M) pathway, as well as from photoreceptor-level ideal observers, suggesting that small spot detection mainly relies on a non-opponent mechanism. Most stimuli were called achromatic, with red and green responses becoming more common as stimulus intensity and local L/M ratio symmetry increased. Our detection data confirm earlier reports that small spot psychophysics can reveal information about local cone topography, and our color naming findings suggest that chromatic sensitivity may improve when the L/M ratio approaches unity.
Collapse
Affiliation(s)
- Maxwell J Greene
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA, USA
| | - Vimal P Pandiyan
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Ramkumar Sabesan
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - William S Tuten
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
5
|
Juusola M, Takalo J, Kemppainen J, Haghighi KR, Scales B, McManus J, Bridges A, MaBouDi H, Chittka L. Theory of morphodynamic information processing: Linking sensing to behaviour. Vision Res 2025; 227:108537. [PMID: 39755072 DOI: 10.1016/j.visres.2024.108537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 01/06/2025]
Abstract
The traditional understanding of brain function has predominantly focused on chemical and electrical processes. However, new research in fruit fly (Drosophila) binocular vision reveals ultrafast photomechanical photoreceptor movements significantly enhance information processing, thereby impacting a fly's perception of its environment and behaviour. The coding advantages resulting from these mechanical processes suggest that similar physical motion-based coding strategies may affect neural communication ubiquitously. The theory of neural morphodynamics proposes that rapid biomechanical movements and microstructural changes at the level of neurons and synapses enhance the speed and efficiency of sensory information processing, intrinsic thoughts, and actions by regulating neural information in a phasic manner. We propose that morphodynamic information processing evolved to drive predictive coding, synchronising cognitive processes across neural networks to match the behavioural demands at hand effectively.
Collapse
Affiliation(s)
- Mikko Juusola
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK.
| | - Jouni Takalo
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Joni Kemppainen
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | | | - Ben Scales
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - James McManus
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Alice Bridges
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - HaDi MaBouDi
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Lars Chittka
- Centre for Brain and Behaviour, School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
6
|
Qiu L, Yu P, Li Q, Wen C, Wang H, Zhao D, Zhang T, Wang C, Liu L, Li D, Wen S, Sun Y. Comparative the effect of bisphenol A and bisphenol S on the development and spectral sensitivity of cone photoreceptors in zebrafish larvae (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117737. [PMID: 39826411 DOI: 10.1016/j.ecoenv.2025.117737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/24/2024] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Color vision, which is mediated by cone photoreceptors in vertebrates, is essential for perceiving the external environment. Bisphenol A (BPA) and its substitute bisphenol S (BPS) have been widely used worldwide, while the evaluation of their safety, especially the newly discovered visual toxicity mechanism caused by them in recent years, has not been clearly explored. In the present study, we investigated the effects of BPA treatment (1, 10, and 100 μg/L) on cone cell development and function to evaluate visual toxicity. We also compared the mechanisms of color deficiency induced by BPA and BPS at the same concentrations. The results indicated that BPA (10 and 100 μg/L) caused the abnormal proliferation (increased number of cone cells), morphological abnormalities (increased height of cone cells), mosaic pattern disorder, and depressed expression of key genes related to the photo-transduction pathway, and impaired the light perception ability of both red and UV cones ultimately. Similar to the BPA exposure group, BPS (1, 10, and 100 μg/L) exposure resulted in structural damage and mosaic arrays disorder of red and UV cone photoreceptors. In contrast to BPA exposure, BPS exposure resulted in significant activation of key genes involved in the phototransduction pathway. Our data indicate that both BPS and BPA exposure can interfere with the development of cone cells, and two types of compounds disturb the transduction of photon signals within cone cells in different ways, which further impaired the retinal spectral sensitivity to the light signal. This study clarifies the root cause for color vision impairment induced by BPA from the perspective of cone-mediated color vision. It also clarified that the BPA and its substitute BPS may not be entirely safe at the single-cell level.
Collapse
Affiliation(s)
- Liguo Qiu
- College of Life Sciences, Dezhou University, De' zhou 253023, China.
| | - Peng Yu
- Dezhou Hospital, Qilu Hospital of Shandong University, Dezhou 253023, China.
| | - Qiang Li
- Jinan Ecological Environment Digital Application Center Lixia Branch, Jinan 250014, China
| | - Cuiping Wen
- College of Life Sciences, Dezhou University, De' zhou 253023, China
| | - Haiyang Wang
- College of Life Sciences, Dezhou University, De' zhou 253023, China
| | - Dongying Zhao
- College of Life Sciences, Dezhou University, De' zhou 253023, China
| | - Tianyu Zhang
- College of Life Sciences, Dezhou University, De' zhou 253023, China
| | - Chenghui Wang
- College of Life Sciences, Dezhou University, De' zhou 253023, China
| | - Lixia Liu
- Belgorod College of Food Sciences, Dezhou University, Dezhou 253023, China
| | - Dongxue Li
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Shiyong Wen
- College of Life Sciences, Dezhou University, De' zhou 253023, China
| | - Yinghui Sun
- College of Life Sciences, Dezhou University, De' zhou 253023, China.
| |
Collapse
|
7
|
Kremers J, Huchzermeyer C. Electroretinographic responses to periodic stimuli in primates and the relevance for visual perception and for clinical studies. Vis Neurosci 2024; 41:E004. [PMID: 39523890 PMCID: PMC11579838 DOI: 10.1017/s0952523824000038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 11/16/2024]
Abstract
Currently, electroretinograms (ERGs) are mainly recorded while using flashes as stimuli. In this review, we will argue that strong flashes are not ideal for studying visual information processing. ERG responses to periodic stimuli may be more strongly associated with the activity of post-receptoral neurons (belonging to different retino-geniculate pathways) and, therefore, be more relevant for visual perception. We will also argue that the use of periodic stimuli may be an attractive addition to clinically available retinal electrophysiological methods.
Collapse
Affiliation(s)
- Jan Kremers
- Section for Retinal Physiology, University Hospital Erlangen, Erlangen, Germany
| | - Cord Huchzermeyer
- Section for Retinal Physiology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
8
|
Kling A, Cooler S, Manookin MB, Rhoades C, Brackbill N, Field G, Rieke F, Sher A, Litke A, Chichilnisky EJ. Functional diversity in the output of the primate retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621339. [PMID: 39554060 PMCID: PMC11565969 DOI: 10.1101/2024.10.31.621339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The visual image transmitted by the retina to the brain has long been understood in terms of spatial filtering by the center-surround receptive fields of retinal ganglion cells (RGCs). Recently, this textbook view has been challenged by the stunning functional diversity and specificity observed in ∼40 distinct RGC types in the mouse retina. However, it is unclear whether the ∼20 morphologically and molecularly identified RGC types in primates exhibit similar functional diversity, or instead exhibit center-surround organization at different spatial scales. Here, we reveal striking and surprising functional diversity in macaque and human RGC types using large-scale multi-electrode recordings from isolated macaque and human retinas. In addition to the five well-known primate RGC types, 18-27 types were distinguished by their functional properties, likely revealing several previously unknown types. Surprisingly, many of these cell types exhibited striking non-classical receptive field structure, including irregular spatial and chromatic properties not previously reported in any species. Qualitatively similar results were observed in recordings from the human retina. The receptive fields of less-understood RGC types formed uniform mosaics covering visual space, confirming their classification, and the morphological counterparts of two types were established using single-cell recording. The striking receptive field diversity was paralleled by distinctive responses to natural movies and complexity of visual computation. These findings suggest that diverse RGC types, rather than merely filtering the scene at different spatial scales, instead play specialized roles in human vision.
Collapse
|
9
|
Wu EG, Brackbill N, Rhoades C, Kling A, Gogliettino AR, Shah NP, Sher A, Litke AM, Simoncelli EP, Chichilnisky EJ. Fixational eye movements enhance the precision of visual information transmitted by the primate retina. Nat Commun 2024; 15:7964. [PMID: 39261491 PMCID: PMC11390888 DOI: 10.1038/s41467-024-52304-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
Fixational eye movements alter the number and timing of spikes transmitted from the retina to the brain, but whether these changes enhance or degrade the retinal signal is unclear. To quantify this, we developed a Bayesian method for reconstructing natural images from the recorded spikes of hundreds of retinal ganglion cells (RGCs) in the macaque retina (male), combining a likelihood model for RGC light responses with the natural image prior implicitly embedded in an artificial neural network optimized for denoising. The method matched or surpassed the performance of previous reconstruction algorithms, and provides an interpretable framework for characterizing the retinal signal. Reconstructions were improved with artificial stimulus jitter that emulated fixational eye movements, even when the eye movement trajectory was assumed to be unknown and had to be inferred from retinal spikes. Reconstructions were degraded by small artificial perturbations of spike times, revealing more precise temporal encoding than suggested by previous studies. Finally, reconstructions were substantially degraded when derived from a model that ignored cell-to-cell interactions, indicating the importance of stimulus-evoked correlations. Thus, fixational eye movements enhance the precision of the retinal representation.
Collapse
Affiliation(s)
- Eric G Wu
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
| | - Nora Brackbill
- Department of Physics, Stanford University, Stanford, CA, USA
| | - Colleen Rhoades
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Alexandra Kling
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
- Hansen Experimental Physics Laboratory, Stanford University, 452 Lomita Mall, Stanford, 94305, CA, USA
| | - Alex R Gogliettino
- Hansen Experimental Physics Laboratory, Stanford University, 452 Lomita Mall, Stanford, 94305, CA, USA
- Neurosciences PhD Program, Stanford University, Stanford, CA, USA
| | - Nishal P Shah
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Alexander Sher
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Alan M Litke
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Eero P Simoncelli
- Flatiron Institute, Simons Foundation, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
- Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| | - E J Chichilnisky
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
- Department of Ophthalmology, Stanford University, Stanford, CA, USA.
- Hansen Experimental Physics Laboratory, Stanford University, 452 Lomita Mall, Stanford, 94305, CA, USA.
| |
Collapse
|
10
|
Kim YJ, Packer O, Dacey DM. A circuit motif for color in the human foveal retina. Proc Natl Acad Sci U S A 2024; 121:e2405138121. [PMID: 39190352 PMCID: PMC11388358 DOI: 10.1073/pnas.2405138121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/25/2024] [Indexed: 08/28/2024] Open
Abstract
The neural pathways that start human color vision begin in the complex synaptic network of the foveal retina where signals originating in long (L), middle (M), and short (S) wavelength-sensitive cone photoreceptor types are compared through antagonistic interactions, referred to as opponency. In nonhuman primates, two cone opponent pathways are well established: an L vs. M cone circuit linked to the midget ganglion cell type, often called the red-green pathway, and an S vs. L + M cone circuit linked to the small bistratified ganglion cell type, often called the blue-yellow pathway. These pathways have been taken to correspond in human vision to cardinal directions in a trichromatic color space, providing the parallel inputs to higher-level color processing. Yet linking cone opponency in the nonhuman primate retina to color mechanisms in human vision has proven particularly difficult. Here, we apply connectomic reconstruction to the human foveal retina to trace parallel excitatory synaptic outputs from the S-ON (or "blue-cone") bipolar cell to the small bistratified cell and two additional ganglion cell types: a large bistratified ganglion cell and a subpopulation of ON-midget ganglion cells, whose synaptic connections suggest a significant and unique role in color vision. These two ganglion cell types are postsynaptic to both S-ON and L vs. M opponent midget bipolar cells and thus define excitatory pathways in the foveal retina that merge the cardinal red-green and blue-yellow circuits, with the potential for trichromatic cone opponency at the first stage of human vision.
Collapse
Affiliation(s)
- Yeon Jin Kim
- Department of Biological Structure, University of Washington, Seattle, WA98195
| | - Orin Packer
- Department of Biological Structure, University of Washington, Seattle, WA98195
| | - Dennis M. Dacey
- Department of Biological Structure, University of Washington, Seattle, WA98195
- Washington National Primate Research Center, University of Washington, Seattle, WA98195
| |
Collapse
|
11
|
Marmoy OR, Tekavčič Pompe M, Kremers J. Chromatic visual evoked potentials: A review of physiology, methods and clinical applications. Prog Retin Eye Res 2024; 101:101272. [PMID: 38761874 DOI: 10.1016/j.preteyeres.2024.101272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Objective assessment of the visual system can be performed electrophysiologically using the visual evoked potential (VEP). In many clinical circumstances, this is performed using high contrast achromatic patterns or diffuse flash stimuli. These methods are clinically valuable but they may only assess a subset of possible physiological circuitries within the visual system, particularly those involved in achromatic (luminance) processing. The use of chromatic VEPs (cVEPs) in addition to standard VEPs can inform us of the function or dysfunction of chromatic pathways. The chromatic VEP has been well studied in human health and disease. Yet, to date our knowledge of their underlying mechanisms and applications remains limited. This likely reflects a heterogeneity in the methodology, analysis and conclusions of different works, which leads to ambiguity in their clinical use. This review sought to identify the primary methodologies employed for recording cVEPs. Furthermore cVEP maturation and application in understanding the function of the chromatic system under healthy and diseased conditions are reviewed. We first briefly describe the physiology of normal colour vision, before describing the methodologies and historical developments which have led to our understanding of cVEPs. We thereafter describe the expected maturation of the cVEP, followed by reviewing their application in several disorders: congenital colour vision deficiencies, retinal disease, glaucoma, optic nerve and neurological disorders, diabetes, amblyopia and dyslexia. We finalise the review with recommendations for testing and future directions.
Collapse
Affiliation(s)
- Oliver R Marmoy
- Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children, London, UK; UCL-GOS Institute of Child Health, University College London, London, UK.
| | - Manca Tekavčič Pompe
- University Eye Clinic, University Medical Centre Ljubljana, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Slovenia
| | - Jan Kremers
- Section of Retinal Physiology, University Hospital Erlangen, Germany
| |
Collapse
|
12
|
Greene MJ, Boehm AE, Vanston JE, Pandiyan VP, Sabesan R, Tuten WS. Unique yellow shifts for small and brief stimuli in the central retina. J Vis 2024; 24:2. [PMID: 38833255 PMCID: PMC11156209 DOI: 10.1167/jov.24.6.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/01/2024] [Indexed: 06/06/2024] Open
Abstract
The spectral locus of unique yellow was determined for flashes of different sizes (<11 arcmin) and durations (<500 ms) presented in and near the fovea. An adaptive optics scanning laser ophthalmoscope was used to minimize the effects of higher-order aberrations during simultaneous stimulus delivery and retinal imaging. In certain subjects, parafoveal cones were classified as L, M, or S, which permitted the comparison of unique yellow measurements with variations in local L/M ratios within and between observers. Unique yellow shifted to longer wavelengths as stimulus size or duration was reduced. This effect is most pronounced for changes in size and more apparent in the fovea than in the parafovea. The observed variations in unique yellow are not entirely predicted from variations in L/M ratio and therefore implicate neural processes beyond photoreception.
Collapse
Affiliation(s)
- Maxwell J Greene
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA, USA
| | - Alexandra E Boehm
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA, USA
| | - John E Vanston
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA, USA
| | - Vimal P Pandiyan
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Ramkumar Sabesan
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - William S Tuten
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
13
|
Baden T. The vertebrate retina: a window into the evolution of computation in the brain. Curr Opin Behav Sci 2024; 57:None. [PMID: 38899158 PMCID: PMC11183302 DOI: 10.1016/j.cobeha.2024.101391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 06/21/2024]
Abstract
Animal brains are probably the most complex computational machines on our planet, and like everything in biology, they are the product of evolution. Advances in developmental and palaeobiology have been expanding our general understanding of how nervous systems can change at a molecular and structural level. However, how these changes translate into altered function - that is, into 'computation' - remains comparatively sparsely explored. What, concretely, does it mean for neuronal computation when neurons change their morphology and connectivity, when new neurons appear or old ones disappear, or when transmitter systems are slowly modified over many generations? And how does evolution use these many possible knobs and dials to constantly tune computation to give rise to the amazing diversity in animal behaviours we see today? Addressing these major gaps of understanding benefits from choosing a suitable model system. Here, I present the vertebrate retina as one perhaps unusually promising candidate. The retina is ancient and displays highly conserved core organisational principles across the entire vertebrate lineage, alongside a myriad of adjustments across extant species that were shaped by the history of their visual ecology. Moreover, the computational logic of the retina is readily interrogated experimentally, and our existing understanding of retinal circuits in a handful of species can serve as an anchor when exploring the visual circuit adaptations across the entire vertebrate tree of life, from fish deep in the aphotic zone of the oceans to eagles soaring high up in the sky.
Collapse
|
14
|
Rathbun DL, Jalligampala A, Zrenner E, Hosseinzadeh Z. Improvements for recording retinal function with Microelectrode Arrays. MethodsX 2024; 12:102543. [PMID: 38313698 PMCID: PMC10834997 DOI: 10.1016/j.mex.2023.102543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024] Open
Abstract
A microelectrode array (MEA) is a configuration of multiple electrodes that enables the concurrent targeting of multiple sites for extracellular recording and stimulation. By utilizing light pulses or electrical stimulations, MEA recordings unveil the complex patterns of electrical activities that arise from the signaling processes within the retinal network. Here, we present a stepwise approach for using microelectrode arrays (MEAs) for recording action potentials from the mouse retina in response to electrical and light stimuli. We provide detailed techniques accompanied by description of a custom optical system, example recordings, troubleshooting guidelines, and data processing methods including spike sorting and code resources for analyzing light and electrical responses. The comprehensive nature of this paper aims to guide researchers in utilizing MEAs effectively for investigating retinal functionality. In particular, it can be easy to have a MEA experiment fail, but hard to identify the source of the failure. This paper is meant to demystify that process. It includes:•A description of MEA setup, recording, and spike data validation.•A troubleshooting guide for common failure modes in MEA recordings from mouse retina.•Spike detection and sorting to precisely extract distinctive action potential.
Collapse
Affiliation(s)
- D L Rathbun
- Department of Ophthalmology, Detroit Institute of Ophthalmology, Henry Ford Health System, Detroit, MI 48202, USA
| | - A Jalligampala
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40202, USA
| | - E Zrenner
- Institute for Ophthalmic Research, Eberhard Karls University, 72076 Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), 72076 Tübingen, Germany
| | - Z Hosseinzadeh
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
15
|
Roy S, Yao X, Rathinavelu J, Field GD. GABAergic Inhibition Controls Receptive Field Size, Sensitivity, and Contrast Preference of Direction Selective Retinal Ganglion Cells Near the Threshold of Vision. J Neurosci 2024; 44:e1979232023. [PMID: 38182419 PMCID: PMC10941243 DOI: 10.1523/jneurosci.1979-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024] Open
Abstract
Information about motion is encoded by direction-selective retinal ganglion cells (DSGCs). These cells reliably transmit this information across a broad range of light levels, spanning moonlight to sunlight. Previous work indicates that adaptation to low light levels causes heterogeneous changes to the direction tuning of ON-OFF (oo)DSGCs and suggests that superior-preferring ON-OFF DSGCs (s-DSGCs) are biased toward detecting stimuli rather than precisely signaling direction. Using a large-scale multielectrode array, we measured the absolute sensitivity of ooDSGCs and found that s-DSGCs are 10-fold more sensitive to dim flashes of light than other ooDSGCs. We measured their receptive field (RF) sizes and found that s-DSGCs also have larger receptive fields than other ooDSGCs; however, the size difference does not fully explain the sensitivity difference. Using a conditional knock-out of gap junctions and pharmacological manipulations, we demonstrate that GABA-mediated inhibition contributes to the difference in absolute sensitivity and receptive field size at low light levels, while the connexin36-mediated gap junction coupling plays a minor role. We further show that under scotopic conditions, ooDSGCs exhibit only an ON response, but pharmacologically removing GABA-mediated inhibition unmasks an OFF response. These results reveal that GABAergic inhibition controls and differentially modulates the responses of ooDSGCs under scotopic conditions.
Collapse
Affiliation(s)
- Suva Roy
- Department of Ophthalmology, Jules Stein Eye Institute, University of California, Los Angeles, California 90095
| | - Xiaoyang Yao
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Jay Rathinavelu
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Greg D Field
- Department of Ophthalmology, Jules Stein Eye Institute, University of California, Los Angeles, California 90095
| |
Collapse
|
16
|
Baden T. Ancestral photoreceptor diversity as the basis of visual behaviour. Nat Ecol Evol 2024; 8:374-386. [PMID: 38253752 DOI: 10.1038/s41559-023-02291-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/10/2023] [Indexed: 01/24/2024]
Abstract
Animal colour vision is based on comparing signals from different photoreceptors. It is generally assumed that processing different spectral types of photoreceptor mainly serves colour vision. Here I propose instead that photoreceptors are parallel feature channels that differentially support visual-motor programmes like motion vision behaviours, prey capture and predator evasion. Colour vision may have emerged as a secondary benefit of these circuits, which originally helped aquatic vertebrates to visually navigate and segment their underwater world. Specifically, I suggest that ancestral vertebrate vision was built around three main systems, including a high-resolution general purpose greyscale system based on ancestral red cones and rods to mediate visual body stabilization and navigation, a high-sensitivity specialized foreground system based on ancestral ultraviolet cones to mediate threat detection and prey capture, and a net-suppressive system based on ancestral green and blue cones for regulating red/rod and ultraviolet circuits. This ancestral strategy probably still underpins vision today, and different vertebrate lineages have since adapted their original photoreceptor circuits to suit their diverse visual ecologies.
Collapse
Affiliation(s)
- Tom Baden
- University of Sussex, Sussex Neuroscience, Sussex Center for Sensory Neuroscience and Computation, Brighton, UK.
| |
Collapse
|
17
|
Weller M, Müller B, Stieger K. Long-Term Porcine Retina Explants as an Alternative to In Vivo Experimentation. Transl Vis Sci Technol 2024; 13:9. [PMID: 38477924 PMCID: PMC10941994 DOI: 10.1167/tvst.13.3.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/24/2024] [Indexed: 03/14/2024] Open
Abstract
Purpose The porcine retina represents an optimal model system to study treatment approaches for inherited retinal dystrophies owing to close anatomical similarities to the human retina, including a cone enriched visual streak. The aim of this work was to establish a protocol to keep explants in culture for up to 28 days with good morphological preservation. Methods Two to four retina explants per eye were obtained from the central part of the retina and transferred onto a membrane insert with the photoreceptors facing down. Different medium compositions using Neurobasal-A medium containing 100 or 450 mg/dL glucose and combinations of fetal calf serum, B-27 with or without insulin and N-2 were tested. We developed a tissue quality score with robust markers for different retinal cell types (protein kinase C alpha, peanut agglutinin and 4',6-diamidino-2-phenylindol). Results Retinae were kept until 28 days with only little degradation. The best results were attained using Neurobasal-A medium containing 100 mg/dL glucose supplemented with B-27 containing insulin and N-2. For an easy preparation process, it is necessary to minimize transport time and keep the eyes on ice until dissected. Heat-mediated decontamination by the butcher has to be avoided. Conclusions Using a standardized protocol, porcine retina explants represent an easy to handle intermediate model between in vitro and in vivo experimentation. This model system is robustly reproducible and contributes to the implementation of the 3R principle to minimize animal experimentation. Translational Relevance This model can be used to test future therapeutic approaches for inherited retinal dystrophies.
Collapse
Affiliation(s)
- Maria Weller
- Department of Ophthalmology, Justus-Liebig-University Giessen, Germany
| | - Brigitte Müller
- Department of Ophthalmology, Justus-Liebig-University Giessen, Germany
| | - Knut Stieger
- Department of Ophthalmology, Justus-Liebig-University Giessen, Germany
| |
Collapse
|
18
|
Boff JM, Shrestha AP, Madireddy S, Viswaprakash N, Della Santina L, Vaithianathan T. The Interplay between Neurotransmitters and Calcium Dynamics in Retinal Synapses during Development, Health, and Disease. Int J Mol Sci 2024; 25:2226. [PMID: 38396913 PMCID: PMC10889697 DOI: 10.3390/ijms25042226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The intricate functionality of the vertebrate retina relies on the interplay between neurotransmitter activity and calcium (Ca2+) dynamics, offering important insights into developmental processes, physiological functioning, and disease progression. Neurotransmitters orchestrate cellular processes to shape the behavior of the retina under diverse circumstances. Despite research to elucidate the roles of individual neurotransmitters in the visual system, there remains a gap in our understanding of the holistic integration of their interplay with Ca2+ dynamics in the broader context of neuronal development, health, and disease. To address this gap, the present review explores the mechanisms used by the neurotransmitters glutamate, gamma-aminobutyric acid (GABA), glycine, dopamine, and acetylcholine (ACh) and their interplay with Ca2+ dynamics. This conceptual outline is intended to inform and guide future research, underpinning novel therapeutic avenues for retinal-associated disorders.
Collapse
Affiliation(s)
- Johane M. Boff
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.M.B.); (A.P.S.)
| | - Abhishek P. Shrestha
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.M.B.); (A.P.S.)
| | - Saivikram Madireddy
- College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Nilmini Viswaprakash
- Department of Medical Education, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | | | - Thirumalini Vaithianathan
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.M.B.); (A.P.S.)
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
19
|
Dyballa L, Rudzite AM, Hoseini MS, Thapa M, Stryker MP, Field GD, Zucker SW. Population encoding of stimulus features along the visual hierarchy. Proc Natl Acad Sci U S A 2024; 121:e2317773121. [PMID: 38227668 PMCID: PMC10823231 DOI: 10.1073/pnas.2317773121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024] Open
Abstract
The retina and primary visual cortex (V1) both exhibit diverse neural populations sensitive to diverse visual features. Yet it remains unclear how neural populations in each area partition stimulus space to span these features. One possibility is that neural populations are organized into discrete groups of neurons, with each group signaling a particular constellation of features. Alternatively, neurons could be continuously distributed across feature-encoding space. To distinguish these possibilities, we presented a battery of visual stimuli to the mouse retina and V1 while measuring neural responses with multi-electrode arrays. Using machine learning approaches, we developed a manifold embedding technique that captures how neural populations partition feature space and how visual responses correlate with physiological and anatomical properties of individual neurons. We show that retinal populations discretely encode features, while V1 populations provide a more continuous representation. Applying the same analysis approach to convolutional neural networks that model visual processing, we demonstrate that they partition features much more similarly to the retina, indicating they are more like big retinas than little brains.
Collapse
Affiliation(s)
- Luciano Dyballa
- Department of Computer Science, Yale University, New Haven, CT06511
| | | | - Mahmood S. Hoseini
- Department of Physiology, University of California, San Francisco, CA94143
| | - Mishek Thapa
- Department of Neurobiology, Duke University, Durham, NC27708
- Department of Ophthalmology, David Geffen School of Medicine, Stein Eye Institute, University of California, Los Angeles, CA90095
| | - Michael P. Stryker
- Department of Physiology, University of California, San Francisco, CA94143
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA94143
| | - Greg D. Field
- Department of Neurobiology, Duke University, Durham, NC27708
- Department of Ophthalmology, David Geffen School of Medicine, Stein Eye Institute, University of California, Los Angeles, CA90095
| | - Steven W. Zucker
- Department of Computer Science, Yale University, New Haven, CT06511
- Department of Biomedical Engineering, Yale University, New Haven, CT06511
| |
Collapse
|
20
|
Chang L, Ran Y, Yang M, Auferkorte O, Butz E, Hüser L, Haverkamp S, Euler T, Schubert T. Spike desensitisation as a mechanism for high-contrast selectivity in retinal ganglion cells. Front Cell Neurosci 2024; 17:1337768. [PMID: 38269116 PMCID: PMC10806099 DOI: 10.3389/fncel.2023.1337768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
In the vertebrate retina, several dozens of parallel channels relay information about the visual world to the brain. These channels are represented by the different types of retinal ganglion cells (RGCs), whose responses are rendered selective for distinct sets of visual features by various mechanisms. These mechanisms can be roughly grouped into synaptic interactions and cell-intrinsic mechanisms, with the latter including dendritic morphology as well as ion channel complement and distribution. Here, we investigate how strongly ion channel complement can shape RGC output by comparing two mouse RGC types, the well-described ON alpha cell and a little-studied ON cell that is EGFP-labelled in the Igfbp5 mouse line and displays an unusual selectivity for stimuli with high contrast. Using patch-clamp recordings and computational modelling, we show that a higher activation threshold and a pronounced slow inactivation of the voltage-gated Na+ channels contribute to the distinct contrast tuning and transient responses in ON Igfbp5 RGCs, respectively. In contrast, such a mechanism could not be observed in ON alpha cells. This study provides an example for the powerful role that the last stage of retinal processing can play in shaping RGC responses.
Collapse
Affiliation(s)
- Le Chang
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
- Key Laboratory of Primate Neurobiology, Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yanli Ran
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Mingpo Yang
- Key Laboratory of Primate Neurobiology, Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | | | - Elisabeth Butz
- Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany
| | - Laura Hüser
- Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany
| | - Silke Haverkamp
- Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior – Caesar, Bonn, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
| |
Collapse
|
21
|
Vėbraitė I, Bar-Haim C, David-Pur M, Hanein Y. Bi-directional electrical recording and stimulation of the intact retina with a screen-printed soft probe: a feasibility study. Front Neurosci 2024; 17:1288069. [PMID: 38264499 PMCID: PMC10804455 DOI: 10.3389/fnins.2023.1288069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction Electrophysiological investigations of intact neural circuits are challenged by the gentle and complex nature of neural tissues. Bi-directional electrophysiological interfacing with the retina, in its intact form, is particularly demanding and currently there is no feasible approach to achieve such investigations. Here we present a feasibility study of a novel soft multi-electrode array suitable for bi-directional electrophysiological study of the intact retina. Methods Screen-printed soft electrode arrays were developed and tested. The soft probes were designed to accommodate the curvature of the retina in the eye and offer an opportunity to study the retina in its intact form. Results For the first time, we show both electrical recording and stimulation capabilities from the intact retina. In particular, we demonstrate the ability to characterize retina responses to electrical stimulation and reveal stable, direct, and indirect responses compared with ex-vivo conditions. Discussion These results demonstrate the unique performances of the new probe while also suggesting that intact retinas retain better stability and robustness than ex-vivo retinas making them more suitable for characterizing retina responses to electrical stimulation.
Collapse
Affiliation(s)
- Ieva Vėbraitė
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Chen Bar-Haim
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Moshe David-Pur
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yael Hanein
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
22
|
Abstract
When vertebrates first conquered the land, they encountered a visual world that was radically distinct from that of their aquatic ancestors. Fish exploit the strong wavelength-dependent interactions of light with water by differentially feeding the signals from up to 5 spectral photoreceptor types into distinct behavioural programmes. However, above the water the same spectral rules do not apply, and this called for an update to visual circuit strategies. Early tetrapods soon evolved the double cone, a still poorly understood pair of new photoreceptors that brought the "ancestral terrestrial" complement from 5 to 7. Subsequent nonmammalian lineages differentially adapted this highly parallelised retinal input strategy for their diverse visual ecologies. By contrast, mammals shed most ancestral photoreceptors and converged on an input strategy that is exceptionally general. In eutherian mammals including in humans, parallelisation emerges gradually as the visual signal traverses the layers of the retina and into the brain.
Collapse
Affiliation(s)
- Tom Baden
- University of Sussex, Sussex Neuroscience, Sussex Center for Sensory Neuroscience and Computation, Brighton, United Kingdom
| |
Collapse
|
23
|
Scalabrino ML, Thapa M, Wang T, Sampath AP, Chen J, Field GD. Late gene therapy limits the restoration of retinal function in a mouse model of retinitis pigmentosa. Nat Commun 2023; 14:8256. [PMID: 38086857 PMCID: PMC10716155 DOI: 10.1038/s41467-023-44063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Retinitis pigmentosa is an inherited photoreceptor degeneration that begins with rod loss followed by cone loss. This cell loss greatly diminishes vision, with most patients becoming legally blind. Gene therapies are being developed, but it is unknown how retinal function depends on the time of intervention. To uncover this dependence, we utilize a mouse model of retinitis pigmentosa capable of artificial genetic rescue. This model enables a benchmark of best-case gene therapy by removing variables that complicate answering this question. Complete genetic rescue was performed at 25%, 50%, and 70% rod loss (early, mid and late, respectively). Early and mid treatment restore retinal output to near wild-type levels. Late treatment retinas exhibit continued, albeit slowed, loss of sensitivity and signal fidelity among retinal ganglion cells, as well as persistent gliosis. We conclude that gene replacement therapies delivered after 50% rod loss are unlikely to restore visual function to normal. This is critical information for administering gene therapies to rescue vision.
Collapse
Affiliation(s)
- Miranda L Scalabrino
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, CA, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Mishek Thapa
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, CA, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Tian Wang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alapakkam P Sampath
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, CA, USA
| | - Jeannie Chen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Greg D Field
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, CA, USA.
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
24
|
Soucy JR, Aguzzi EA, Cho J, Gilhooley MJ, Keuthan C, Luo Z, Monavarfeshani A, Saleem MA, Wang XW, Wohlschlegel J, Baranov P, Di Polo A, Fortune B, Gokoffski KK, Goldberg JL, Guido W, Kolodkin AL, Mason CA, Ou Y, Reh TA, Ross AG, Samuels BC, Welsbie D, Zack DJ, Johnson TV. Retinal ganglion cell repopulation for vision restoration in optic neuropathy: a roadmap from the RReSTORe Consortium. Mol Neurodegener 2023; 18:64. [PMID: 37735444 PMCID: PMC10514988 DOI: 10.1186/s13024-023-00655-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Retinal ganglion cell (RGC) death in glaucoma and other optic neuropathies results in irreversible vision loss due to the mammalian central nervous system's limited regenerative capacity. RGC repopulation is a promising therapeutic approach to reverse vision loss from optic neuropathies if the newly introduced neurons can reestablish functional retinal and thalamic circuits. In theory, RGCs might be repopulated through the transplantation of stem cell-derived neurons or via the induction of endogenous transdifferentiation. The RGC Repopulation, Stem Cell Transplantation, and Optic Nerve Regeneration (RReSTORe) Consortium was established to address the challenges associated with the therapeutic repair of the visual pathway in optic neuropathy. In 2022, the RReSTORe Consortium initiated ongoing international collaborative discussions to advance the RGC repopulation field and has identified five critical areas of focus: (1) RGC development and differentiation, (2) Transplantation methods and models, (3) RGC survival, maturation, and host interactions, (4) Inner retinal wiring, and (5) Eye-to-brain connectivity. Here, we discuss the most pertinent questions and challenges that exist on the path to clinical translation and suggest experimental directions to propel this work going forward. Using these five subtopic discussion groups (SDGs) as a framework, we suggest multidisciplinary approaches to restore the diseased visual pathway by leveraging groundbreaking insights from developmental neuroscience, stem cell biology, molecular biology, optical imaging, animal models of optic neuropathy, immunology & immunotolerance, neuropathology & neuroprotection, materials science & biomedical engineering, and regenerative neuroscience. While significant hurdles remain, the RReSTORe Consortium's efforts provide a comprehensive roadmap for advancing the RGC repopulation field and hold potential for transformative progress in restoring vision in patients suffering from optic neuropathies.
Collapse
Affiliation(s)
- Jonathan R Soucy
- Department of Ophthalmology, Schepens Eye Research Institute of Mass. Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Erika A Aguzzi
- The Institute of Ophthalmology, University College London, London, England, UK
| | - Julie Cho
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Michael James Gilhooley
- The Institute of Ophthalmology, University College London, London, England, UK
- Moorfields Eye Hospital, London, England, UK
| | - Casey Keuthan
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ziming Luo
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Aboozar Monavarfeshani
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Meher A Saleem
- Bascom Palmer Eye Institute, University of Miami Health System, Miami, FL, USA
| | - Xue-Wei Wang
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Petr Baranov
- Department of Ophthalmology, Schepens Eye Research Institute of Mass. Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Research Centre, Montreal, QC, Canada
| | - Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Health, Portland, OR, USA
| | - Kimberly K Gokoffski
- Department of Ophthalmology, Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Alex L Kolodkin
- The Solomon H Snyder, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carol A Mason
- Departments of Pathology and Cell Biology, Neuroscience, and Ophthalmology, College of Physicians and Surgeons, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Yvonne Ou
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Ahmara G Ross
- Departments of Ophthalmology and Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian C Samuels
- Department of Ophthalmology and Visual Sciences, Callahan Eye Hospital, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Derek Welsbie
- Shiley Eye Institute and Viterbi Family Department of Ophthalmology, University of California, San Diego, CA, USA
| | - Donald J Zack
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, 21287 MD, USA
- Departments of Neuroscience, Molecular Biology & Genetics, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas V Johnson
- Departments of Neuroscience, Molecular Biology & Genetics, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Cellular & Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, 21287 MD, USA.
| |
Collapse
|
25
|
Godat T, Kohout K, Yang Q, Parkins K, McGregor JE, Merigan WH, Williams DR, Patterson SS. Cone-Opponent Ganglion Cells in the Primate Fovea Tuned to Non-Cardinal Color Directions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.557995. [PMID: 37745616 PMCID: PMC10516013 DOI: 10.1101/2023.09.15.557995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
A long-standing question in vision science is how the three cone photoreceptor types - long (L), medium (M) and short (S) wavelength sensitive - combine to generate our perception of color. Hue perception can be described along two opponent axes: red-green and blue-yellow. Psychophysical measurements of color appearance indicate that the cone inputs to the red-green and blue-yellow opponent axes are M vs. L+S and L vs. M+S, respectively. However, the "cardinal directions of color space" revealed by psychophysical measurements of color detection thresholds are L vs. M and S vs. L+M. The cardinal directions match the most common cone-opponent retinal ganglion cells (RGCs) in the primate retina. Accordingly, the cone opponency necessary for color appearance is thought to be established in cortex. However, small populations with the appropriate M vs. L+S and L vs. M+S cone-opponency have been reported in large surveys of cone inputs to primate RGCs and their projections to the lateral geniculate nucleus (LGN) yet their existence continues to be debated. Resolving this long-standing open question is needed as a complete account of the cone-opponency in the retinal output is critical for efforts to understand how downstream neural circuits process color. Here, we performed adaptive optics calcium imaging to longitudinally and noninvasively measurements of the foveal RGC light responses in the living macaque eye. We confirm the presence of L vs. M+S and M vs. L+S neurons with non-cardinal cone-opponency and demonstrate that cone-opponent signals in the retinal output are substantially more diverse than classically thought.
Collapse
Affiliation(s)
- Tyler Godat
- Center for Visual Science, University of Rochester, Rochester, NY, 14607
- Institute of Optics, University of Rochester, Rochester, NY, 14627
| | - Kendall Kohout
- Center for Visual Science, University of Rochester, Rochester, NY, 14607
| | - Qiang Yang
- Center for Visual Science, University of Rochester, Rochester, NY, 14607
| | - Keith Parkins
- Center for Visual Science, University of Rochester, Rochester, NY, 14607
| | - Juliette E. McGregor
- Center for Visual Science, University of Rochester, Rochester, NY, 14607
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, 14642
| | - William H. Merigan
- Center for Visual Science, University of Rochester, Rochester, NY, 14607
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, 14642
| | - David R. Williams
- Center for Visual Science, University of Rochester, Rochester, NY, 14607
- Institute of Optics, University of Rochester, Rochester, NY, 14627
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, 14642
| | - Sara S. Patterson
- Center for Visual Science, University of Rochester, Rochester, NY, 14607
| |
Collapse
|
26
|
Seifert M, Roberts PA, Kafetzis G, Osorio D, Baden T. Birds multiplex spectral and temporal visual information via retinal On- and Off-channels. Nat Commun 2023; 14:5308. [PMID: 37652912 PMCID: PMC10471707 DOI: 10.1038/s41467-023-41032-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 08/18/2023] [Indexed: 09/02/2023] Open
Abstract
In vertebrate vision, early retinal circuits divide incoming visual information into functionally opposite elementary signals: On and Off, transient and sustained, chromatic and achromatic. Together these signals can yield an efficient representation of the scene for transmission to the brain via the optic nerve. However, this long-standing interpretation of retinal function is based on mammals, and it is unclear whether this functional arrangement is common to all vertebrates. Here we show that male poultry chicks use a fundamentally different strategy to communicate information from the eye to the brain. Rather than using functionally opposite pairs of retinal output channels, chicks encode the polarity, timing, and spectral composition of visual stimuli in a highly correlated manner: fast achromatic information is encoded by Off-circuits, and slow chromatic information overwhelmingly by On-circuits. Moreover, most retinal output channels combine On- and Off-circuits to simultaneously encode, or multiplex, both achromatic and chromatic information. Our results from birds conform to evidence from fish, amphibians, and reptiles which retain the full ancestral complement of four spectral types of cone photoreceptors.
Collapse
Affiliation(s)
- Marvin Seifert
- School of Life Sciences, University of Sussex, Brighton, UK.
| | - Paul A Roberts
- School of Life Sciences, University of Sussex, Brighton, UK
| | | | - Daniel Osorio
- School of Life Sciences, University of Sussex, Brighton, UK.
| | - Tom Baden
- School of Life Sciences, University of Sussex, Brighton, UK.
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
27
|
Zaidi M, Aggarwal G, Shah NP, Karniol-Tambour O, Goetz G, Madugula SS, Gogliettino AR, Wu EG, Kling A, Brackbill N, Sher A, Litke AM, Chichilnisky EJ. Inferring light responses of primate retinal ganglion cells using intrinsic electrical signatures. J Neural Eng 2023; 20:10.1088/1741-2552/ace657. [PMID: 37433293 PMCID: PMC11067857 DOI: 10.1088/1741-2552/ace657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
Objective. Retinal implants are designed to stimulate retinal ganglion cells (RGCs) in a way that restores sight to individuals blinded by photoreceptor degeneration. Reproducing high-acuity vision with these devices will likely require inferring the natural light responses of diverse RGC types in the implanted retina, without being able to measure them directly. Here we demonstrate an inference approach that exploits intrinsic electrophysiological features of primate RGCs.Approach.First, ON-parasol and OFF-parasol RGC types were identified using their intrinsic electrical features in large-scale multi-electrode recordings from macaque retina. Then, the electrically inferred somatic location, inferred cell type, and average linear-nonlinear-Poisson model parameters of each cell type were used to infer a light response model for each cell. The accuracy of the cell type classification and of reproducing measured light responses with the model were evaluated.Main results.A cell-type classifier trained on 246 large-scale multi-electrode recordings from 148 retinas achieved 95% mean accuracy on 29 test retinas. In five retinas tested, the inferred models achieved an average correlation with measured firing rates of 0.49 for white noise visual stimuli and 0.50 for natural scenes stimuli, compared to 0.65 and 0.58 respectively for models fitted to recorded light responses (an upper bound). Linear decoding of natural images from predicted RGC activity in one retina showed a mean correlation of 0.55 between decoded and true images, compared to an upper bound of 0.81 using models fitted to light response data.Significance.These results suggest that inference of RGC light response properties from intrinsic features of their electrical activity may be a useful approach for high-fidelity sight restoration. The overall strategy of first inferring cell type from electrical features and then exploiting cell type to help infer natural cell function may also prove broadly useful to neural interfaces.
Collapse
Affiliation(s)
- Moosa Zaidi
- Stanford University School of Medicine, Stanford University, Stanford, CA, United States of America
- Neurosurgery, Stanford University, Stanford, CA, United States of America
| | - Gorish Aggarwal
- Neurosurgery, Stanford University, Stanford, CA, United States of America
- Electrical Engineering, Stanford University, Stanford, CA, United States of America
| | - Nishal P Shah
- Neurosurgery, Stanford University, Stanford, CA, United States of America
| | - Orren Karniol-Tambour
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States of America
| | - Georges Goetz
- Neurosurgery, Stanford University, Stanford, CA, United States of America
| | - Sasidhar S Madugula
- Stanford University School of Medicine, Stanford University, Stanford, CA, United States of America
- Neurosciences, Stanford University, Stanford, CA, United States of America
| | - Alex R Gogliettino
- Neurosciences, Stanford University, Stanford, CA, United States of America
| | - Eric G Wu
- Electrical Engineering, Stanford University, Stanford, CA, United States of America
| | - Alexandra Kling
- Neurosurgery, Stanford University, Stanford, CA, United States of America
| | - Nora Brackbill
- Physics, Stanford University, Stanford, CA, United States of America
| | - Alexander Sher
- Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, United States of America
| | - Alan M Litke
- Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, United States of America
| | - E J Chichilnisky
- Neurosurgery, Stanford University, Stanford, CA, United States of America
- Ophthalmology, Stanford University, Stanford, CA, United States of America
| |
Collapse
|
28
|
Stallwitz N, Joachimsthaler A, Kremers J. Single opsin driven white noise ERGs in mice. Front Neurosci 2023; 17:1211329. [PMID: 37583414 PMCID: PMC10423813 DOI: 10.3389/fnins.2023.1211329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023] Open
Abstract
Purpose Electroretinograms elicited by photopigment isolating white noise stimuli (wnERGs) in mice were measured. The dependency of rod- and cone-opsin-driven wnERGs on mean luminance was studied. Methods Temporal white noise stimuli (containing all frequencies up to 20 Hz, equal amplitudes, random phases) that modulated either rhodopsin, S-opsin or L*-opsin, using the double silent substitution technique, were used to record wnERGs in mice expressing a human L*-opsin instead of the native murine M-opsin. Responses were recorded at 4 mean luminances (MLs).Impulse response functions (IRFs) were obtained by cross-correlating the wnERG recordings with the corresponding modulation of the photopigment excitation elicited by the stimulus. So-called modulation transfer functions (MTFs) were obtained by performing a Fourier transform on the IRFs.Potentials of two repeated wnERG recordings at corresponding time points were plotted against each other. The correlation coefficient (r2repr) of the linear regression through these data was used to quantify reproducibility. Another correlation coefficient (r2ML) was used to quantify the correlations of the wnERGs obtained at different MLs with those at the highest (for cone isolating stimuli) or lowest (for rod isolating stimuli) ML. Results IRFs showed an initial negative (a-wave like) trough N1 and a subsequent positive (b-wave like) peak P1. No oscillatory potential-like components were observed. At 0.4 and 1.0 log cd/m2 ML robust L*- and S-opsin-driven IRFs were obtained that displayed similar latencies and dependencies on ML. L*-opsin-driven IRFs were 2.5-3 times larger than S-opsin-driven IRFs. Rhodopsin-driven IRFs were observed at -0.8 and - 0.2 log cd/m2 and decreased in amplitude with increasing ML. They displayed an additional pronounced late negativity (N2), which may be a correlate of retinal ganglion cell activity.R2repr and r2ML values increased for cones with increasing ML whereas they decreased for rods. For rhodopsin-driven MTFs at low MLs and L*-opsin-driven MTFs at high MLs amplitudes decreased with increasing frequency, with much faster decreasing amplitudes for rhodopsin. A delay was calculated from MTF phases showing larger delays for rhodopsin- vs. low delays for L*-opsin-driven responses. Conclusion Opsin-isolating wnERGs in mice show characteristics of different retinal cell types and their connected pathways.
Collapse
Affiliation(s)
- Nina Stallwitz
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany
- Animal Physiology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Anneka Joachimsthaler
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany
- Animal Physiology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Jan Kremers
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
29
|
Wang Y, Wong J, Duncan JL, Roorda A, Tuten WS. Enhanced S-Cone Syndrome: Elevated Cone Counts Confer Supernormal Visual Acuity in the S-Cone Pathway. Invest Ophthalmol Vis Sci 2023; 64:17. [PMID: 37459066 PMCID: PMC10362924 DOI: 10.1167/iovs.64.10.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Purpose To measure photoreceptor packing density and S-cone spatial resolution as a function of retinal eccentricity in patients with enhanced S-cone syndrome (ESCS) and to discuss the possible mechanisms supporting their supernormal S-cone acuity. Methods We used an adaptive optics scanning laser ophthalmoscope (AOSLO) to characterize photoreceptor packing. A custom non-AO display channel was used to measure L/M- and S-cone-mediated visual acuity during AOSLO imaging. Acuity measurements were obtained using a four-alternative, forced-choice, tumbling E paradigm along the temporal meridian between the fovea and 4° eccentricity in five of six patients and in seven control subjects. L/M acuity was tested by presenting long-pass-filtered optotypes on a black background, excluding wavelengths to which S-cones are sensitive. S-cone isolation was achieved using a two-color, blue-on-yellow chromatic adaptation method that was validated on three control subjects. Results Inter-cone spacing measurements revealed a near-uniform cone density profile (ranging from 0.9-1.5 arcmin spacing) throughout the macula in ESCS. For comparison, normal cone density decreases by a factor of 14 from the fovea to 6°. Cone spacing of ESCS subjects was higher than normal in the fovea and subnormal beyond 2°. Compared to the control subjects (n = 7), S-cone-mediated acuities in patients with ESCS were normal near the fovea and became increasingly supernormal with retinal eccentricity. Beyond 2°, S-cone acuities were superior to L/M-cone-mediated acuity in the ESCS cohort, a reversal of the trend observed in normal retinas. Conclusions Higher than normal parafoveal cone densities (presumably dominated by S-cones) confer better than normal S-cone-mediated acuity in ESCS subjects.
Collapse
Affiliation(s)
- Yiyi Wang
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, California, United States
| | - Jessica Wong
- Department of Ophthalmology, University of California, San Francisco, California, United States
| | - Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, California, United States
| | - Austin Roorda
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, California, United States
| | - William S Tuten
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, California, United States
| |
Collapse
|
30
|
Dyballa L, Rudzite AM, Hoseini MS, Thapa M, Stryker MP, Field GD, Zucker SW. Population encoding of stimulus features along the visual hierarchy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.545450. [PMID: 37425920 PMCID: PMC10327159 DOI: 10.1101/2023.06.27.545450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The retina and primary visual cortex (V1) both exhibit diverse neural populations sensitive to diverse visual features. Yet it remains unclear how neural populations in each area partition stimulus space to span these features. One possibility is that neural populations are organized into discrete groups of neurons, with each group signaling a particular constellation of features. Alternatively, neurons could be continuously distributed across feature-encoding space. To distinguish these possibilities, we presented a battery of visual stimuli to mouse retina and V1 while measuring neural responses with multi-electrode arrays. Using machine learning approaches, we developed a manifold embedding technique that captures how neural populations partition feature space and how visual responses correlate with physiological and anatomical properties of individual neurons. We show that retinal populations discretely encode features, while V1 populations provide a more continuous representation. Applying the same analysis approach to convolutional neural networks that model visual processing, we demonstrate that they partition features much more similarly to the retina, indicating they are more like big retinas than little brains.
Collapse
Affiliation(s)
| | | | | | - Mishek Thapa
- Department of Neurobiology, Duke University
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles
| | - Michael P. Stryker
- Department of Physiology, University of California, San Francisco
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco
| | - Greg D. Field
- Department of Neurobiology, Duke University
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles
| | - Steven W. Zucker
- Department of Computer Science, Yale University
- Department of Biomedical Engineering, Yale University
| |
Collapse
|
31
|
Gogliettino AR, Madugula SS, Grosberg LE, Vilkhu RS, Brown J, Nguyen H, Kling A, Hottowy P, Dąbrowski W, Sher A, Litke AM, Chichilnisky EJ. High-Fidelity Reproduction of Visual Signals by Electrical Stimulation in the Central Primate Retina. J Neurosci 2023; 43:4625-4641. [PMID: 37188516 PMCID: PMC10286946 DOI: 10.1523/jneurosci.1091-22.2023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023] Open
Abstract
Electrical stimulation of retinal ganglion cells (RGCs) with electronic implants provides rudimentary artificial vision to people blinded by retinal degeneration. However, current devices stimulate indiscriminately and therefore cannot reproduce the intricate neural code of the retina. Recent work has demonstrated more precise activation of RGCs using focal electrical stimulation with multielectrode arrays in the peripheral macaque retina, but it is unclear how effective this can be in the central retina, which is required for high-resolution vision. This work probes the neural code and effectiveness of focal epiretinal stimulation in the central macaque retina, using large-scale electrical recording and stimulation ex vivo The functional organization, light response properties, and electrical properties of the major RGC types in the central retina were mostly similar to the peripheral retina, with some notable differences in density, kinetics, linearity, spiking statistics, and correlations. The major RGC types could be distinguished by their intrinsic electrical properties. Electrical stimulation targeting parasol cells revealed similar activation thresholds and reduced axon bundle activation in the central retina, but lower stimulation selectivity. Quantitative evaluation of the potential for image reconstruction from electrically evoked parasol cell signals revealed higher overall expected image quality in the central retina. An exploration of inadvertent midget cell activation suggested that it could contribute high spatial frequency noise to the visual signal carried by parasol cells. These results support the possibility of reproducing high-acuity visual signals in the central retina with an epiretinal implant.SIGNIFICANCE STATEMENT Artificial restoration of vision with retinal implants is a major treatment for blindness. However, present-day implants do not provide high-resolution visual perception, in part because they do not reproduce the natural neural code of the retina. Here, we demonstrate the level of visual signal reproduction that is possible with a future implant by examining how accurately responses to electrical stimulation of parasol retinal ganglion cells can convey visual signals. Although the precision of electrical stimulation in the central retina was diminished relative to the peripheral retina, the quality of expected visual signal reconstruction in parasol cells was greater. These findings suggest that visual signals could be restored with high fidelity in the central retina using a future retinal implant.
Collapse
Affiliation(s)
- Alex R Gogliettino
- Neurosciences PhD Program, Stanford University, Stanford, California 94305
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
| | - Sasidhar S Madugula
- Neurosciences PhD Program, Stanford University, Stanford, California 94305
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
- Stanford School of Medicine, Stanford University, Stanford, California 94305
| | - Lauren E Grosberg
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
- Department of Neurosurgery, Stanford University, Stanford, California 94305
| | - Ramandeep S Vilkhu
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
- Department of Electrical Engineering, Stanford University, Stanford, California 94305
| | - Jeff Brown
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
- Department of Neurosurgery, Stanford University, Stanford, California 94305
- Department of Electrical Engineering, Stanford University, Stanford, California 94305
| | - Huy Nguyen
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
| | - Alexandra Kling
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
- Department of Neurosurgery, Stanford University, Stanford, California 94305
| | - Paweł Hottowy
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059, Kraków, Poland
| | - Władysław Dąbrowski
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059, Kraków, Poland
| | - Alexander Sher
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, California 95064
| | - Alan M Litke
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, California 95064
| | - E J Chichilnisky
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305
- Department of Neurosurgery, Stanford University, Stanford, California 94305
- Department of Electrical Engineering, Stanford University, Stanford, California 94305
- Department of Ophthalmology, Stanford University, Stanford, California 94305
| |
Collapse
|
32
|
Amorim-de-Sousa A, Pauné J, Silva-Leite S, Fernandes P, Gozález-Méijome JM, Queirós A. Changes in Choroidal Thickness and Retinal Activity with a Myopia Control Contact Lens. J Clin Med 2023; 12:jcm12113618. [PMID: 37297813 DOI: 10.3390/jcm12113618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
PURPOSE The axial elongation in myopia is associated with some structural and functional retinal changes. The purpose of this study was to investigate the effect of a contact lens (CL) intended for myopia control on the choroidal thickness (ChT) and the retinal electrical response. METHODS Ten myopic eyes (10 subjects, 18-35 years of age) with spherical equivalents from -0.75 to -6.00 diopters (D) were enrolled. The ChT at different eccentricities (3 mm temporal, 1.5 mm temporal, sub-foveal ChT, 1.5 mm nasal, and 3 mm nasal), the photopic 3.0 b-wave of ffERG and the PERG were recorded and compared with two material-matched contact lenses following 30 min of wear: a single-vision CL (SV) and a radial power gradient CL with +1.50 D addition (PG). RESULTS Compared with the SV, the PG increased the ChT at all eccentricities, with statistically significant differences at 3.0 mm temporal (10.30 ± 11.51 µm, p = 0.020), in sub-foveal ChT (17.00 ± 20.01 µm, p = 0.025), and at 1.5 mm nasal (10.70 ± 14.50 µm, p = 0.044). The PG decreased significantly the SV amplitude of the ffERG photopic b-wave (11.80 (30.55) µV, p = 0.047), N35-P50 (0.90 (0.96) µV, p = 0.017), and P50-N95 (0.46 (2.50) µV, p = 0.047). The amplitude of the a-wave was negatively correlated with the ChT at 3.0T (r = -0.606, p = 0.038) and 1.5T (r = -0.748, p = 0.013), and the amplitude of the b-wave showed a negative correlation with the ChT at 1.5T (r = -0.693, p = 0.026). CONCLUSIONS The PG increased the ChT in a similar magnitude observed in previous studies. These CLs attenuated the amplitude of the retinal response, possibly due to the combined effect of the induced peripheral defocus high-order aberrations impacting the central retinal image. The decrease in the response of bipolar and ganglion cells suggests a potential retrograde feedback signaling effect from the inner to outer retinal layers observed in previous studies.
Collapse
Affiliation(s)
- Ana Amorim-de-Sousa
- Clinical and Experimental Optometry Research Lab (CEORLab), School of Science, University of Minho, 4710-057 Braga, Portugal
| | - Jaume Pauné
- Teknon Medical Center, 08022 Barcelona, Spain
- Faculty of Optics and Optometry Polytechnic, University of Catalonia, 08222 Terrassa, Spain
| | - Sara Silva-Leite
- Clinical and Experimental Optometry Research Lab (CEORLab), School of Science, University of Minho, 4710-057 Braga, Portugal
| | - Paulo Fernandes
- Clinical and Experimental Optometry Research Lab (CEORLab), School of Science, University of Minho, 4710-057 Braga, Portugal
- Physics Center of Minho and Porto Universities, CF-UM-UP, 4710-057 Braga, Portugal
| | - José Manuel Gozález-Méijome
- Clinical and Experimental Optometry Research Lab (CEORLab), School of Science, University of Minho, 4710-057 Braga, Portugal
- Physics Center of Minho and Porto Universities, CF-UM-UP, 4710-057 Braga, Portugal
| | - António Queirós
- Clinical and Experimental Optometry Research Lab (CEORLab), School of Science, University of Minho, 4710-057 Braga, Portugal
- Physics Center of Minho and Porto Universities, CF-UM-UP, 4710-057 Braga, Portugal
| |
Collapse
|
33
|
Ellis EM, Paniagua AE, Scalabrino ML, Thapa M, Rathinavelu J, Jiao Y, Williams DS, Field GD, Fain GL, Sampath AP. Cones and cone pathways remain functional in advanced retinal degeneration. Curr Biol 2023; 33:1513-1522.e4. [PMID: 36977418 PMCID: PMC10133175 DOI: 10.1016/j.cub.2023.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/14/2022] [Accepted: 03/03/2023] [Indexed: 03/29/2023]
Abstract
Most defects causing retinal degeneration in retinitis pigmentosa (RP) are rod-specific mutations, but the subsequent degeneration of cones, which produces loss of daylight vision and high-acuity perception, is the most debilitating feature of the disease. To understand better why cones degenerate and how cone vision might be restored, we have made the first single-cell recordings of light responses from degenerating cones and retinal interneurons after most rods have died and cones have lost their outer-segment disk membranes and synaptic pedicles. We show that degenerating cones have functional cyclic-nucleotide-gated channels and can continue to give light responses, apparently produced by opsin localized either to small areas of organized membrane near the ciliary axoneme or distributed throughout the inner segment. Light responses of second-order horizontal and bipolar cells are less sensitive but otherwise resemble those of normal retina. Furthermore, retinal output as reflected in responses of ganglion cells is less sensitive but maintains spatiotemporal receptive fields at cone-mediated light levels. Together, these findings show that cones and their retinal pathways can remain functional even as degeneration is progressing, an encouraging result for future research aimed at enhancing the light sensitivity of residual cones to restore vision in patients with genetically inherited retinal degeneration.
Collapse
Affiliation(s)
- Erika M Ellis
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095-7000, USA
| | - Antonio E Paniagua
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095-7000, USA
| | - Miranda L Scalabrino
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095-7000, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mishek Thapa
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095-7000, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jay Rathinavelu
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yuekan Jiao
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095-7000, USA
| | - David S Williams
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095-7000, USA.
| | - Greg D Field
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095-7000, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Gordon L Fain
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095-7000, USA.
| | - Alapakkam P Sampath
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095-7000, USA.
| |
Collapse
|
34
|
Scalabrino ML, Thapa M, Wang T, Sampath AP, Chen J, Field GD. Late gene therapy limits the restoration of retinal function in a mouse model of retinitis pigmentosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536035. [PMID: 37066264 PMCID: PMC10104154 DOI: 10.1101/2023.04.07.536035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Retinitis pigmentosa is an inherited photoreceptor degeneration that begins with rod loss followed by cone loss and eventual blindness. Gene therapies are being developed, but it is unknown how retinal function depends on the time of intervention. To uncover this dependence, we utilized a mouse model of retinitis pigmentosa capable of artificial genetic rescue. This model enables a benchmark of best-case gene therapy by removing the variables that complicate the ability to answer this vital question. Complete genetic rescue was performed at 25%, 50%, and 70% rod loss (early, mid and late, respectively). Early and mid treatment restored retinal function to near wild-type levels, specifically the sensitivity and signal fidelity of retinal ganglion cells (RGCs), the 'output' neurons of the retina. However, some anatomical defects persisted. Late treatment retinas exhibited continued, albeit slowed, loss of sensitivity and signal fidelity among RGCs, as well as persistent gliosis. We conclude that gene replacement therapies delivered after 50% rod loss are unlikely to restore visual function to normal. This is critical information for administering gene therapies to rescue vision.
Collapse
Affiliation(s)
- Miranda L Scalabrino
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles CA
- Department of Neurobiology, Duke University School of Medicine, Durham NC
| | - Mishek Thapa
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles CA
- Department of Neurobiology, Duke University School of Medicine, Durham NC
| | - Tian Wang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles CA
| | - Alapakkam P Sampath
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles CA
| | - Jeannie Chen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles CA
| | - Greg D Field
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles CA
- Department of Neurobiology, Duke University School of Medicine, Durham NC
| |
Collapse
|
35
|
Ji J, Zou A, Liu J, Yang C, Zhang X, Song Y. A Survey on Brain Effective Connectivity Network Learning. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:1879-1899. [PMID: 34469315 DOI: 10.1109/tnnls.2021.3106299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Human brain effective connectivity characterizes the causal effects of neural activities among different brain regions. Studies of brain effective connectivity networks (ECNs) for different populations contribute significantly to the understanding of the pathological mechanism associated with neuropsychiatric diseases and facilitate finding new brain network imaging markers for the early diagnosis and evaluation for the treatment of cerebral diseases. A deeper understanding of brain ECNs also greatly promotes brain-inspired artificial intelligence (AI) research in the context of brain-like neural networks and machine learning. Thus, how to picture and grasp deeper features of brain ECNs from functional magnetic resonance imaging (fMRI) data is currently an important and active research area of the human brain connectome. In this survey, we first show some typical applications and analyze existing challenging problems in learning brain ECNs from fMRI data. Second, we give a taxonomy of ECN learning methods from the perspective of computational science and describe some representative methods in each category. Third, we summarize commonly used evaluation metrics and conduct a performance comparison of several typical algorithms both on simulated and real datasets. Finally, we present the prospects and references for researchers engaged in learning ECNs.
Collapse
|
36
|
Rhim I, Nauhaus I. Joint representations of color and form in mouse visual cortex described by random pooling from rods and cones. J Neurophysiol 2023; 129:619-634. [PMID: 36696968 PMCID: PMC9988525 DOI: 10.1152/jn.00138.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 12/30/2022] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Spatial transitions in color can aid any visual perception task, and its neural representation, the "integration of color and form," is thought to begin at primary visual cortex (V1). Integration of color and form is untested in mouse V1, yet studies show that the ventral retina provides the necessary substrate from green-sensitive rods and ultraviolet-sensitive cones. Here, we used two-photon imaging in V1 to measure spatial frequency (SF) tuning along four axes of rod and cone contrast space, including luminance and color. We first reveal that V1's sensitivity to color is similar to luminance, yet average SF tuning is significantly shifted lowpass for color. Next, guided by linear models, we used SF tuning along all four color axes to estimate the proportion of neurons that fall into classic models of color opponency, i.e., "single-," "double-," and "non-opponent." Few neurons (∼6%) fit the criteria for double opponency, which are uniquely tuned for chromatic borders. Most of the population can be described as a unimodal distribution ranging from strongly single-opponent to non-opponent. Consistent with recent studies of the rodent and primate retina, our V1 data are well-described by a simple model in which ON and OFF channels to V1 sample the photoreceptor mosaic randomly. Finally, an analysis comparing color opponency to preferred orientation and retinotopy further validates rods, and not cone M-opsin, as opponent with cone S-opsin in the upper visual field.NEW & NOTEWORTHY This study is the first to show that mouse V1 is highly sensitive to UV-green color contrast. Furthermore, it provides a detailed characterization of "color opponency," which is the putative neural basis for color perception. Finally, using an extremely simple yet novel random wiring model, we account for our observations.
Collapse
Affiliation(s)
- Issac Rhim
- Department of Psychology, The University of Texas at Austin, Austin, Texas, United States
- Center for Perceptual Systems, The University of Texas at Austin, Austin, Texas, United States
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States
| | - Ian Nauhaus
- Department of Psychology, The University of Texas at Austin, Austin, Texas, United States
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas, United States
- Center for Perceptual Systems, The University of Texas at Austin, Austin, Texas, United States
| |
Collapse
|
37
|
Luminance Contrast Shifts Dominance Balance between ON and OFF Pathways in Human Vision. J Neurosci 2023; 43:993-1007. [PMID: 36535768 PMCID: PMC9908321 DOI: 10.1523/jneurosci.1672-22.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/14/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Human vision processes light and dark stimuli in visual scenes with separate ON and OFF neuronal pathways. In nature, stimuli lighter or darker than their local surround have different spatial properties and contrast distributions (Ratliff et al., 2010; Cooper and Norcia, 2015; Rahimi-Nasrabadi et al., 2021). Similarly, in human vision, we show that luminance contrast affects the perception of lights and darks differently. At high contrast, human subjects of both sexes locate dark stimuli faster and more accurately than light stimuli, which is consistent with a visual system dominated by the OFF pathway. However, at low contrast, they locate light stimuli faster and more accurately than dark stimuli, which is consistent with a visual system dominated by the ON pathway. Luminance contrast was strongly correlated with multiple ON/OFF dominance ratios estimated from light/dark ratios of performance errors, missed targets, or reaction times (RTs). All correlations could be demonstrated at multiple eccentricities of the central visual field with an ON-OFF perimetry test implemented in a head-mounted visual display. We conclude that high-contrast stimuli are processed faster and more accurately by OFF pathways than ON pathways. However, the OFF dominance shifts toward ON dominance when stimulus contrast decreases, as expected from the higher-contrast sensitivity of ON cortical pathways (Kremkow et al., 2014; Rahimi-Nasrabadi et al., 2021). The results highlight the importance of contrast polarity in visual field measurements and predict a loss of low-contrast vision in humans with ON pathway deficits, as demonstrated in animal models (Sarnaik et al., 2014).SIGNIFICANCE STATEMENT ON and OFF retino-thalamo-cortical pathways respond differently to luminance contrast. In both animal models and humans, low contrasts drive stronger responses from ON pathways, whereas high contrasts drive stronger responses from OFF pathways. We demonstrate that these ON-OFF pathway differences have a correlate in human vision. At low contrast, humans locate light targets faster and more accurately than dark targets but, as contrast increases, dark targets become more visible than light targets. We also demonstrate that contrast is strongly correlated with multiple light/dark ratios of visual performance in central vision. These results provide a link between neuronal physiology and human vision while emphasizing the importance of stimulus polarity in measurements of visual fields and contrast sensitivity.
Collapse
|
38
|
Reconstruction of sparse recurrent connectivity and inputs from the nonlinear dynamics of neuronal networks. J Comput Neurosci 2023; 51:43-58. [PMID: 35849304 DOI: 10.1007/s10827-022-00831-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/16/2022] [Accepted: 07/13/2022] [Indexed: 01/18/2023]
Abstract
Reconstructing the recurrent structural connectivity of neuronal networks is a challenge crucial to address in characterizing neuronal computations. While directly measuring the detailed connectivity structure is generally prohibitive for large networks, we develop a novel framework for reverse-engineering large-scale recurrent network connectivity matrices from neuronal dynamics by utilizing the widespread sparsity of neuronal connections. We derive a linear input-output mapping that underlies the irregular dynamics of a model network composed of both excitatory and inhibitory integrate-and-fire neurons with pulse coupling, thereby relating network inputs to evoked neuronal activity. Using this embedded mapping and experimentally feasible measurements of the firing rate as well as voltage dynamics in response to a relatively small ensemble of random input stimuli, we efficiently reconstruct the recurrent network connectivity via compressive sensing techniques. Through analogous analysis, we then recover high dimensional natural stimuli from evoked neuronal network dynamics over a short time horizon. This work provides a generalizable methodology for rapidly recovering sparse neuronal network data and underlines the natural role of sparsity in facilitating the efficient encoding of network data in neuronal dynamics.
Collapse
|
39
|
Li L, Feng X, Fang F, Miller DA, Zhang S, Zhuang P, Huang H, Liu P, Liu J, Sredar N, Liu L, Sun Y, Duan X, Goldberg JL, Zhang HF, Hu Y. Longitudinal in vivo Ca 2+ imaging reveals dynamic activity changes of diseased retinal ganglion cells at the single-cell level. Proc Natl Acad Sci U S A 2022; 119:e2206829119. [PMID: 36409915 PMCID: PMC9889883 DOI: 10.1073/pnas.2206829119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/05/2022] [Indexed: 11/22/2022] Open
Abstract
Retinal ganglion cells (RGCs) are heterogeneous projection neurons that convey distinct visual features from the retina to brain. Here, we present a high-throughput in vivo RGC activity assay in response to light stimulation using noninvasive Ca2+ imaging of thousands of RGCs simultaneously in living mice. Population and single-cell analyses of longitudinal RGC Ca2+ imaging reveal distinct functional responses of RGCs and unprecedented individual RGC activity conversions during traumatic and glaucomatous degeneration. This study establishes a foundation for future in vivo RGC function classifications and longitudinal activity evaluations using more advanced imaging techniques and visual stimuli under normal, disease, and neural repair conditions. These analyses can be performed at both the population and single-cell levels using temporal and spatial information, which will be invaluable for understanding RGC pathophysiology and identifying functional biomarkers for diverse optic neuropathies.
Collapse
Affiliation(s)
- Liang Li
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA94304
| | - Xue Feng
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA94304
| | - Fang Fang
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA94304
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha410011, China
| | - David A. Miller
- Department of Biomedical Engineering, Northwestern University, Evanston, IL60208
| | - Shaobo Zhang
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA94143
| | - Pei Zhuang
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA94304
| | - Haoliang Huang
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA94304
| | - Pingting Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA94304
| | - Junting Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA94304
| | - Nripun Sredar
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA94304
| | - Liang Liu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA94304
| | - Yang Sun
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA94304
| | - Xin Duan
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA94143
| | - Jeffrey L. Goldberg
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA94304
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL60208
| | - Yang Hu
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA94304
| |
Collapse
|
40
|
Li P, Garg AK, Zhang LA, Rashid MS, Callaway EM. Cone opponent functional domains in primary visual cortex combine signals for color appearance mechanisms. Nat Commun 2022; 13:6344. [PMID: 36284139 PMCID: PMC9596481 DOI: 10.1038/s41467-022-34020-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 10/11/2022] [Indexed: 12/25/2022] Open
Abstract
Studies of color perception have led to mechanistic models of how cone-opponent signals from retinal ganglion cells are integrated to generate color appearance. But it is unknown how this hypothesized integration occurs in the brain. Here we show that cone-opponent signals transmitted from retina to primary visual cortex (V1) are integrated through highly organized circuits within V1 to implement the color opponent interactions required for color appearance. Combining intrinsic signal optical imaging (ISI) and 2-photon calcium imaging (2PCI) at single cell resolution, we demonstrate cone-opponent functional domains (COFDs) that combine L/M cone-opponent and S/L + M cone-opponent signals following the rules predicted from psychophysical studies of color perception. These give rise to an orderly organization of hue preferences of the neurons within the COFDs and the generation of hue "pinwheels". Thus, spatially organized neural circuits mediate an orderly transition from cone-opponency to color appearance that begins in V1.
Collapse
Affiliation(s)
- Peichao Li
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, 311121, Hangzhou, China
| | - Anupam K Garg
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
- Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, 92093, USA
- Wilmer Eye Institute, Johns Hopkins University, 600N Wolfe Street, Baltimore, MD, 21287, USA
| | - Li A Zhang
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | | | - Edward M Callaway
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
41
|
Scalabrino ML, Thapa M, Chew LA, Zhang E, Xu J, Sampath AP, Chen J, Field GD. Robust cone-mediated signaling persists late into rod photoreceptor degeneration. eLife 2022; 11:e80271. [PMID: 36040015 PMCID: PMC9560159 DOI: 10.7554/elife.80271] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/25/2022] [Indexed: 01/13/2023] Open
Abstract
Rod photoreceptor degeneration causes deterioration in the morphology and physiology of cone photoreceptors along with changes in retinal circuits. These changes could diminish visual signaling at cone-mediated light levels, thereby limiting the efficacy of treatments such as gene therapy for rescuing normal, cone-mediated vision. However, the impact of progressive rod death on cone-mediated signaling remains unclear. To investigate the fidelity of retinal ganglion cell (RGC) signaling throughout disease progression, we used a mouse model of rod degeneration (Cngb1neo/neo). Despite clear deterioration of cone morphology with rod death, cone-mediated signaling among RGCs remained surprisingly robust: spatiotemporal receptive fields changed little and the mutual information between stimuli and spiking responses was relatively constant. This relative stability held until nearly all rods had died and cones had completely lost well-formed outer segments. Interestingly, RGC information rates were higher and more stable for natural movies than checkerboard noise as degeneration progressed. The main change in RGC responses with photoreceptor degeneration was a decrease in response gain. These results suggest that gene therapies for rod degenerative diseases are likely to prolong cone-mediated vision even if there are changes to cone morphology and density.
Collapse
Affiliation(s)
- Miranda L Scalabrino
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| | - Mishek Thapa
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| | - Lindsey A Chew
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| | - Esther Zhang
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| | - Jason Xu
- Department of Statistical Science, Duke UniversityDurhamUnited States
| | - Alapakkam P Sampath
- Jules Stein Eye Institute, University of California, Los AngelesLos AngelesUnited States
| | - Jeannie Chen
- Zilkha Neurogenetics Institute, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Greg D Field
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| |
Collapse
|
42
|
Roy S, Field GD. An optical approach for mapping functional connectivity at single-cell resolution in brain circuits. CELL REPORTS METHODS 2022; 2:100272. [PMID: 36046621 PMCID: PMC9421506 DOI: 10.1016/j.crmeth.2022.100272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the current issue of Cell Reports Methods, Spampinato et al. demonstrate a multiplexed system combining holographic photo-stimulation and functional imaging that may offer a generalizable approach for revealing how signals interact in complex neural circuits.
Collapse
Affiliation(s)
- Suva Roy
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Greg D. Field
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
43
|
Kremers J, Aher AJ, Parry NRA, Patel NB, Frishman LJ. Electroretinographic responses to luminance and cone-isolating white noise stimuli in macaques. Front Neurosci 2022; 16:925405. [PMID: 35968368 PMCID: PMC9372266 DOI: 10.3389/fnins.2022.925405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Electroretinograms (ERGs) are mass potentials with a retinal origin that can be measured non-invasively. They can provide information about the physiology of the retina. Often, ERGs are measured to flashes that are highly unnatural stimuli. To obtain more information about the physiology of the retina, we measured ERGs with temporal white noise (TWN) stimuli that are more natural and keep the retina in a normal range of operation. The stimuli can be combined with the silent substitution stimulation technique with which the responses of single photoreceptor types can be isolated. We characterized electroretinogram (ERG) responses driven by luminance activity or by the L- or the M-cones. The ERGs were measured from five anesthetized macaques (two females) to luminance, to L-cone isolating and to M-cone isolating stimuli in which luminance or cone excitation were modulated with a TWN profile. The responses from different recordings were correlated with each other to study reproducibility and inter-individual variability. Impulse response functions (IRFs) were derived by cross-correlating the response with the stimulus. Modulation transfer functions (MTFs) were the IRFs in the frequency domain. The responses to luminance and L-cone isolating stimuli showed the largest reproducibility. The M-cone driven responses showed the smallest inter-individual variability. The IRFs and MTFs showed early (high frequency) components that were dominated by L-cone driven signals. A late component was equally driven by L- and M-cone activity. The IRFs showed characteristic similarities and differences relative to flash ERGs. The responses to TWN stimuli can be used to characterize the involvement of retinal cells and pathways to the ERG response. It can also be used to identify linear and non-linear processes.
Collapse
Affiliation(s)
- Jan Kremers
- Section for Retinal Physiology, University Hospital Erlangen, Erlangen, Germany
- *Correspondence: Jan Kremers,
| | - Avinash J. Aher
- Section for Retinal Physiology, University Hospital Erlangen, Erlangen, Germany
| | - Neil R. A. Parry
- Vision Science Centre, Manchester Academic Health Science Centre, Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Nimesh B. Patel
- Department of Vision Sciences, College of Optometry, University of Houston, Houston, TX, United States
| | - Laura J. Frishman
- Department of Vision Sciences, College of Optometry, University of Houston, Houston, TX, United States
| |
Collapse
|
44
|
Zapp SJ, Nitsche S, Gollisch T. Retinal receptive-field substructure: scaffolding for coding and computation. Trends Neurosci 2022; 45:430-445. [DOI: 10.1016/j.tins.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/28/2022] [Accepted: 03/17/2022] [Indexed: 11/29/2022]
|
45
|
Zhang LQ, Cottaris NP, Brainard DH. An image reconstruction framework for characterizing initial visual encoding. eLife 2022; 11:e71132. [PMID: 35037622 PMCID: PMC8846596 DOI: 10.7554/elife.71132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
We developed an image-computable observer model of the initial visual encoding that operates on natural image input, based on the framework of Bayesian image reconstruction from the excitations of the retinal cone mosaic. Our model extends previous work on ideal observer analysis and evaluation of performance beyond psychophysical discrimination, takes into account the statistical regularities of the visual environment, and provides a unifying framework for answering a wide range of questions regarding the visual front end. Using the error in the reconstructions as a metric, we analyzed variations of the number of different photoreceptor types on human retina as an optimal design problem. In addition, the reconstructions allow both visualization and quantification of information loss due to physiological optics and cone mosaic sampling, and how these vary with eccentricity. Furthermore, in simulations of color deficiencies and interferometric experiments, we found that the reconstructed images provide a reasonable proxy for modeling subjects' percepts. Lastly, we used the reconstruction-based observer for the analysis of psychophysical threshold, and found notable interactions between spatial frequency and chromatic direction in the resulting spatial contrast sensitivity function. Our method is widely applicable to experiments and applications in which the initial visual encoding plays an important role.
Collapse
Affiliation(s)
- Ling-Qi Zhang
- Department of Psychology, University of PennsylvaniaPhiladelphiaUnited States
| | - Nicolas P Cottaris
- Department of Psychology, University of PennsylvaniaPhiladelphiaUnited States
| | - David H Brainard
- Department of Psychology, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
46
|
Bartel P, Yoshimatsu T, Janiak FK, Baden T. Spectral inference reveals principal cone-integration rules of the zebrafish inner retina. Curr Biol 2021; 31:5214-5226.e4. [PMID: 34653362 PMCID: PMC8669161 DOI: 10.1016/j.cub.2021.09.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 01/05/2023]
Abstract
Retinal bipolar cells integrate cone signals at dendritic and axonal sites. The axonal route, involving amacrine cells, remains largely uncharted. However, because cone types differ in their spectral sensitivities, insights into bipolar cells' cone integration might be gained based on their spectral tunings. We therefore recorded in vivo responses of bipolar cell presynaptic terminals in larval zebrafish to widefield but spectrally resolved flashes of light and mapped the results onto spectral responses of the four cones. This "spectral circuit mapping" allowed explaining ∼95% of the spectral and temporal variance of bipolar cell responses in a simple linear model, thereby revealing several notable integration rules of the inner retina. Bipolar cells were dominated by red-cone inputs, often alongside equal sign inputs from blue and green cones. In contrast, UV-cone inputs were uncorrelated with those of the remaining cones. This led to a new axis of spectral opponency where red-, green-, and blue-cone "Off" circuits connect to "natively-On" UV-cone circuits in the outermost fraction of the inner plexiform layer-much as how key color opponent circuits are established in mammals. Beyond this, and despite substantial temporal diversity that was not present in the cones, bipolar cell spectral tunings were surprisingly simple. They either approximately resembled both opponent and non-opponent spectral motifs already present in the cones or exhibited a stereotyped non-opponent broadband response. In this way, bipolar cells not only preserved the efficient spectral representations in the cones but also diversified them to set up a total of six dominant spectral motifs, which included three axes of spectral opponency.
Collapse
Affiliation(s)
- Philipp Bartel
- School of Life Sciences, University of Sussex, Biology Road, BN1 9QG Brighton, UK
| | - Takeshi Yoshimatsu
- School of Life Sciences, University of Sussex, Biology Road, BN1 9QG Brighton, UK
| | - Filip K Janiak
- School of Life Sciences, University of Sussex, Biology Road, BN1 9QG Brighton, UK
| | - Tom Baden
- School of Life Sciences, University of Sussex, Biology Road, BN1 9QG Brighton, UK; Institute of Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany.
| |
Collapse
|
47
|
Jia S, Xing D, Yu Z, Liu JK. Dissecting cascade computational components in spiking neural networks. PLoS Comput Biol 2021; 17:e1009640. [PMID: 34843460 PMCID: PMC8659421 DOI: 10.1371/journal.pcbi.1009640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/09/2021] [Accepted: 11/14/2021] [Indexed: 01/15/2023] Open
Abstract
Finding out the physical structure of neuronal circuits that governs neuronal responses is an important goal for brain research. With fast advances for large-scale recording techniques, identification of a neuronal circuit with multiple neurons and stages or layers becomes possible and highly demanding. Although methods for mapping the connection structure of circuits have been greatly developed in recent years, they are mostly limited to simple scenarios of a few neurons in a pairwise fashion; and dissecting dynamical circuits, particularly mapping out a complete functional circuit that converges to a single neuron, is still a challenging question. Here, we show that a recent method, termed spike-triggered non-negative matrix factorization (STNMF), can address these issues. By simulating different scenarios of spiking neural networks with various connections between neurons and stages, we demonstrate that STNMF is a persuasive method to dissect functional connections within a circuit. Using spiking activities recorded at neurons of the output layer, STNMF can obtain a complete circuit consisting of all cascade computational components of presynaptic neurons, as well as their spiking activities. For simulated simple and complex cells of the primary visual cortex, STNMF allows us to dissect the pathway of visual computation. Taken together, these results suggest that STNMF could provide a useful approach for investigating neuronal systems leveraging recorded functional neuronal activity. It is well known that the computation of neuronal circuits is carried out through the staged and cascade structure of different types of neurons. Nevertheless, the information, particularly sensory information, is processed in a network primarily with feedforward connections through different pathways. A peculiar example is the early visual system, where light is transcoded by the retinal cells, routed by the lateral geniculate nucleus, and reached the primary visual cortex. One meticulous interest in recent years is to map out these physical structures of neuronal pathways. However, most methods so far are limited to taking snapshots of a static view of connections between neurons. It remains unclear how to obtain a functional and dynamical neuronal circuit beyond the simple scenarios of a few randomly sampled neurons. Using simulated spiking neural networks of visual pathways with different scenarios of multiple stages, mixed cell types, and natural image stimuli, we demonstrate that a recent computational tool, named spike-triggered non-negative matrix factorization, can resolve these issues. It enables us to recover the entire structural components of neural networks underlying the computation, together with the functional components of each individual neuron. Utilizing it for complex cells of the primary visual cortex allows us to reveal every underpinning of the nonlinear computation. Our results, together with other recent experimental and computational efforts, show that it is possible to systematically dissect neural circuitry with detailed structural and functional components.
Collapse
Affiliation(s)
- Shanshan Jia
- Institute for Artificial Intelligence, Department of Computer Science and Technology, Peking University, Beijing, China
| | - Dajun Xing
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Zhaofei Yu
- Institute for Artificial Intelligence, Department of Computer Science and Technology, Peking University, Beijing, China
- * E-mail: (ZY); (JKL)
| | - Jian K. Liu
- School of Computing, University of Leeds, Leeds, United Kingdom
- * E-mail: (ZY); (JKL)
| |
Collapse
|
48
|
Lehnert BP, Santiago C, Huey EL, Emanuel AJ, Renauld S, Africawala N, Alkislar I, Zheng Y, Bai L, Koutsioumpa C, Hong JT, Magee AR, Harvey CD, Ginty DD. Mechanoreceptor synapses in the brainstem shape the central representation of touch. Cell 2021; 184:5608-5621.e18. [PMID: 34637701 PMCID: PMC8556359 DOI: 10.1016/j.cell.2021.09.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 08/10/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
Mammals use glabrous (hairless) skin of their hands and feet to navigate and manipulate their environment. Cortical maps of the body surface across species contain disproportionately large numbers of neurons dedicated to glabrous skin sensation, in part reflecting a higher density of mechanoreceptors that innervate these skin regions. Here, we find that disproportionate representation of glabrous skin emerges over postnatal development at the first synapse between peripheral mechanoreceptors and their central targets in the brainstem. Mechanoreceptor synapses undergo developmental refinement that depends on proximity of their terminals to glabrous skin, such that those innervating glabrous skin make synaptic connections that expand their central representation. In mice incapable of sensing gentle touch, mechanoreceptors innervating glabrous skin still make more powerful synapses in the brainstem. We propose that the skin region a mechanoreceptor innervates controls the developmental refinement of its central synapses to shape the representation of touch in the brain.
Collapse
Affiliation(s)
- Brendan P Lehnert
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Celine Santiago
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Erica L Huey
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Alan J Emanuel
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Sophia Renauld
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Nusrat Africawala
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Ilayda Alkislar
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Yang Zheng
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Ling Bai
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Charalampia Koutsioumpa
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Jennifer T Hong
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Alexandra R Magee
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Christopher D Harvey
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - David D Ginty
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
49
|
Yoshimatsu T, Bartel P, Schröder C, Janiak FK, St-Pierre F, Berens P, Baden T. Ancestral circuits for vertebrate color vision emerge at the first retinal synapse. SCIENCE ADVANCES 2021; 7:eabj6815. [PMID: 34644120 PMCID: PMC8514090 DOI: 10.1126/sciadv.abj6815] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
For color vision, retinal circuits separate information about intensity and wavelength. In vertebrates that use the full complement of four “ancestral” cone types, the nature and implementation of this computation remain poorly understood. Here, we establish the complete circuit architecture of outer retinal circuits underlying color processing in larval zebrafish. We find that the synaptic outputs of red and green cones efficiently rotate the encoding of natural daylight in a principal components analysis–like manner to yield primary achromatic and spectrally opponent axes, respectively. Blue cones are tuned to capture most remaining variance when opposed to green cones, while UV cone present a UV achromatic axis for prey capture. We note that fruitflies use essentially the same strategy. Therefore, rotating color space into primary achromatic and chromatic axes at the eye’s first synapse may thus be a fundamental principle of color vision when using more than two spectrally well-separated photoreceptor types.
Collapse
Affiliation(s)
| | - Philipp Bartel
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Cornelius Schröder
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | | | - François St-Pierre
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA
| | - Philipp Berens
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Tom Baden
- School of Life Sciences, University of Sussex, Brighton, UK
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Corresponding author.
| |
Collapse
|
50
|
Grünert U, Martin PR. Morphology, Molecular Characterization, and Connections of Ganglion Cells in Primate Retina. Annu Rev Vis Sci 2021; 7:73-103. [PMID: 34524877 DOI: 10.1146/annurev-vision-100419-115801] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The eye sends information about the visual world to the brain on over 20 parallel signal pathways, each specialized to signal features such as spectral reflection (color), edges, and motion of objects in the environment. Each pathway is formed by the axons of a separate type of retinal output neuron (retinal ganglion cell). In this review, we summarize what is known about the excitatory retinal inputs, brain targets, and gene expression patterns of ganglion cells in humans and nonhuman primates. We describe how most ganglion cell types receive their input from only one or two of the 11 types of cone bipolar cell and project selectively to only one or two target regions in the brain. We also highlight how genetic methods are providing tools to characterize ganglion cells and establish cross-species homologies.
Collapse
Affiliation(s)
- Ulrike Grünert
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney NSW 2000, Australia; , .,Sydney Node, Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney NSW 2000, Australia
| | - Paul R Martin
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney NSW 2000, Australia; , .,Sydney Node, Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney NSW 2000, Australia
| |
Collapse
|