1
|
Mei J, Huang W, Meng Z, Wen S, Ou L, Bai J, Wang X, Yuan H, Li Y, Zhang L, You Y, Chen Y, Zheng X, Li F, Wang S, Zhu X, Wang Z, Zhu D, Nie X, Ma C. Super-Enhancer-Driven HCG20 Promotes Pulmonary Hypertension Through U2AF2 Splicing. Circ Res 2025. [PMID: 40433695 DOI: 10.1161/circresaha.125.326133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 05/09/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025]
Abstract
BACKGROUND Pulmonary artery endothelial cell (PAEC) dysfunction is a pathological hallmark of pulmonary hypertension (PH). Yet, the roles of long noncoding RNAs (lncRNAs) driven by super-enhancers (SEs) in PAECs are not well understood. In this study, we focused on the PAEC-specific SE-associated lncRNA HCG20 (HLA complex group 20) and to elucidate its role and underlying mechanisms in the progression of PH. METHODS ChIP-qPCR, chromosome conformation capture followed by PCR, CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9), and dual-luciferase reporter assays were used to identify dysregulated SE-associated lncRNAs in PAECs and to investigate the pathological role of HCG20. The role of HCG20 in pathological processes was validated in rodent models of PH induced by SU5416/hypoxia, monocrotaline, or hypoxia alone, through adeno-associated virus-mediated endothelial-specific HCG20 overexpression or knockdown of HCG20. RNA pull-down, mass spectrometry, RNA immunoprecipitation, and RNA sequencing were used to elucidate the underlying mechanisms of HCG20-mediated PAEC dysfunction. RESULTS We identified the SE-associated lncRNA HCG20 from histone H3 lysine-27 acetylation (H3K27ac) and histone H3 lysine-4 monomethylation (H3K4me1) ChIP-seq data derived from PAECs of patients with PH. A significant upregulation of HCG20 was found in hypoxia-induced human PAECs, lung tissues, and the plasma of patients with PH. Antisense oligonucleotide and CRISPR/Cas9, which, respectively, target HCG20 and its SE, alleviate hypoxia-induced pyroptosis and subsequent endothelial-to-mesenchymal transition. Human pulmonary artery smooth muscle cells internalize human PAEC-derived exosomes containing HCG20, inducing their excessive proliferation. Targeted delivery of HCG20 into the pulmonary vascular endothelium induced pulmonary vasculature remodeling and increased pulmonary artery systolic blood pressure in rodents. Mechanistically, HCG20 directly bound and stabilized the U2AF2 (U2 small nuclear RNA auxiliary factor 2) protein, thereby facilitating its impact on the alternative splicing of EIF2AK2 (eukaryotic translation initiation factor 2 alpha kinase 2). Furthermore, we identified a novel mouse ortholog gene, 4833427F10Rik (named Hcg20), of HCG20 for the first time. Our study demonstrated that specific interference with Hcg20 in the pulmonary vascular intima has been shown to ameliorate hypoxia-induced PH. CONCLUSIONS Collectively, our data suggest that HCG20, driven by SE, contributes to PAEC dysfunction through U2AF2-mediated alternative splicing of EIF2AK2. Our work underscores the potential of using HCG20 as a novel biomarker and a promising target for the treatment of PH.
Collapse
Affiliation(s)
- Jian Mei
- College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, PR China. (J.M., Z.M., S. Wen, L.O., L.Z., Y.C., X. Zheng, X. Zhu, Z.W., D.Z., C.M.)
| | - Wei Huang
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, PR China (W.H., Y.Y.)
| | - Zitong Meng
- College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, PR China. (J.M., Z.M., S. Wen, L.O., L.Z., Y.C., X. Zheng, X. Zhu, Z.W., D.Z., C.M.)
| | - Shiqing Wen
- College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, PR China. (J.M., Z.M., S. Wen, L.O., L.Z., Y.C., X. Zheng, X. Zhu, Z.W., D.Z., C.M.)
| | - Langlin Ou
- College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, PR China. (J.M., Z.M., S. Wen, L.O., L.Z., Y.C., X. Zheng, X. Zhu, Z.W., D.Z., C.M.)
| | - June Bai
- College of Pharmacy, Harbin Medical University, PR China (J.B., H.Y.)
| | - Xiaoying Wang
- College of Pharmacy, Harbin Medical University, Daqing, PR China. (X.W.)
| | - Hao Yuan
- College of Pharmacy, Harbin Medical University, PR China (J.B., H.Y.)
| | - Yanyu Li
- Department of Medical Informatics, Harbin Medical University, Daqing, PR China. (Y.L.)
| | - Lixin Zhang
- College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, PR China. (J.M., Z.M., S. Wen, L.O., L.Z., Y.C., X. Zheng, X. Zhu, Z.W., D.Z., C.M.)
| | - Yuwei You
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, PR China (W.H., Y.Y.)
| | - Yingli Chen
- College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, PR China. (J.M., Z.M., S. Wen, L.O., L.Z., Y.C., X. Zheng, X. Zhu, Z.W., D.Z., C.M.)
| | - Xiaodong Zheng
- College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, PR China. (J.M., Z.M., S. Wen, L.O., L.Z., Y.C., X. Zheng, X. Zhu, Z.W., D.Z., C.M.)
| | - Fei Li
- College of Basic Medical Sciences, Harbin Medical University, Daqing, PR China. (F.L., S. Wang)
| | - Song Wang
- College of Basic Medical Sciences, Harbin Medical University, Daqing, PR China. (F.L., S. Wang)
| | - Xiangrui Zhu
- College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, PR China. (J.M., Z.M., S. Wen, L.O., L.Z., Y.C., X. Zheng, X. Zhu, Z.W., D.Z., C.M.)
| | - Zhaosi Wang
- College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, PR China. (J.M., Z.M., S. Wen, L.O., L.Z., Y.C., X. Zheng, X. Zhu, Z.W., D.Z., C.M.)
| | - Daling Zhu
- College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, PR China. (J.M., Z.M., S. Wen, L.O., L.Z., Y.C., X. Zheng, X. Zhu, Z.W., D.Z., C.M.)
| | - Xiaowei Nie
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, PR China (X.N.)
| | - Cui Ma
- College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, PR China. (J.M., Z.M., S. Wen, L.O., L.Z., Y.C., X. Zheng, X. Zhu, Z.W., D.Z., C.M.)
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Fujian Branch of National Clinical Research Center for Cardiovascular Diseases, PR China (C.M.)
| |
Collapse
|
2
|
Lomoschitz A, Meyer J, Guitart T, Krepl M, Lapouge K, Hayn C, Schweimer K, Simon B, Šponer J, Gebauer F, Hennig J. The Drosophila RNA binding protein Hrp48 binds a specific RNA sequence of the msl-2 mRNA 3' UTR to regulate translation. Biophys Chem 2025; 316:107346. [PMID: 39504588 DOI: 10.1016/j.bpc.2024.107346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/02/2024] [Accepted: 10/26/2024] [Indexed: 11/08/2024]
Abstract
Repression of msl-2 mRNA translation is essential for viability of Drosophila melanogaster females to prevent hypertranscription of both X chromosomes. This translational control event is coordinated by the female-specific protein Sex-lethal (Sxl) which recruits the RNA binding proteins Unr and Hrp48 to the 3' untranslated region (UTR) of the msl-2 transcript and represses translation initiation. The mechanism exerted by Hrp48 during translation repression and its interaction with msl-2 are not well understood. Here we investigate the RNA binding specificity and affinity of the tandem RNA recognition motifs of Hrp48. Using NMR spectroscopy, molecular dynamics simulations and isothermal titration calorimetry, we identified the exact region of msl-2 3' UTR recognized by Hrp48. Additional biophysical experiments and translation assays give further insights into complex formation of Hrp48, Unr, Sxl and RNA. Our results show that Hrp48 binds independent of Sxl and Unr downstream of the E and F binding sites of Sxl and Unr to msl-2.
Collapse
Affiliation(s)
- Andrea Lomoschitz
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Julia Meyer
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Department of Biochemistry IV - Biophysical Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Tanit Guitart
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Karine Lapouge
- Protein Expression and Purification Core Facility, European Molecular Biology Laboratory Heidelberg, 69117 Heidelberg, Germany
| | - Clara Hayn
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Kristian Schweimer
- Department of Biochemistry IV - Biophysical Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Bernd Simon
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Molecular Biology and Biophysics - University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc 783 71, Czech Republic
| | - Fátima Gebauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Janosch Hennig
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Department of Biochemistry IV - Biophysical Chemistry, University of Bayreuth, 95447 Bayreuth, Germany.
| |
Collapse
|
3
|
Maji D, Jenkins JL, Boutz PL, Kielkopf CL. Recurrent Neurodevelopmentally Associated Variants of the Pre-mRNA Splicing Factor U2AF2 Alter RNA Binding Affinities and Interactions. Biochemistry 2024; 63:2718-2722. [PMID: 39388459 PMCID: PMC11542177 DOI: 10.1021/acs.biochem.4c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
De novo mutations affecting the pre-mRNA splicing factor U2AF2 are associated with developmental delays and intellectual disabilities, yet the molecular basis is unknown. Here, we demonstrated by fluorescence anisotropy RNA binding assays that recurrent missense mutants (Arg149Trp, Arg150His, or Arg150Cys) decreased the binding affinity of U2AF2 for a consensus splice site RNA. Crystal structures at 1.4 Å resolutions showed that Arg149Trp or Arg150His disrupted hydrogen bonds between U2AF2 and the terminal nucleotides of the RNA site. Reanalysis of publicly available RNaseq data confirmed that U2AF2 depletion altered splicing of transcripts encoding RNA binding proteins (RBPs). These results confirmed that the impaired RNA interactions of Arg149Trp and Arg150His U2AF2 variants could contribute to dysregulating an RBP-governed neurodevelopmental program of alternative splicing.
Collapse
Affiliation(s)
| | - Jermaine L. Jenkins
- Department of Biochemistry and Biophysics,
and the Center for RNA Biology, University
of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Paul L. Boutz
- Department of Biochemistry and Biophysics,
and the Center for RNA Biology, University
of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Clara L. Kielkopf
- Department of Biochemistry and Biophysics,
and the Center for RNA Biology, University
of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| |
Collapse
|
4
|
Martínez-Lumbreras S, Morguet C, Sattler M. Dynamic interactions drive early spliceosome assembly. Curr Opin Struct Biol 2024; 88:102907. [PMID: 39168044 DOI: 10.1016/j.sbi.2024.102907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024]
Abstract
Splicing is a critical processing step during pre-mRNA maturation in eukaryotes. The correct selection of splice sites during the early steps of spliceosome assembly is highly important and crucial for the regulation of alternative splicing. Splice site recognition and alternative splicing depend on cis-regulatory sequence elements in the RNA and trans-acting splicing factors that recognize these elements and crosstalk with the canonical splicing machinery. Structural mechanisms involving early spliceosome complexes are governed by dynamic RNA structures, protein-RNA interactions and conformational flexibility of multidomain RNA binding proteins. Here, we highlight structural studies and integrative structural biology approaches, which provide complementary information from cryo-EM, NMR, small angle scattering, and X-ray crystallography to elucidate mechanisms in the regulation of early spliceosome assembly and quality control, highlighting the role of conformational dynamics.
Collapse
Affiliation(s)
- Santiago Martínez-Lumbreras
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Technical University of Munich, TUM School of Natural Sciences, Bavarian NMR Center and Department of Bioscience, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Clara Morguet
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Technical University of Munich, TUM School of Natural Sciences, Bavarian NMR Center and Department of Bioscience, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Michael Sattler
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Technical University of Munich, TUM School of Natural Sciences, Bavarian NMR Center and Department of Bioscience, Lichtenbergstrasse 4, 85747 Garching, Germany.
| |
Collapse
|
5
|
Miyake H, Kawaguchi RK, Kiryu H. RNAelem: an algorithm for discovering sequence-structure motifs in RNA bound by RNA-binding proteins. BIOINFORMATICS ADVANCES 2024; 4:vbae144. [PMID: 39399375 PMCID: PMC11471262 DOI: 10.1093/bioadv/vbae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/08/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Motivation RNA-binding proteins (RBPs) play a crucial role in the post-transcriptional regulation of RNA. Given their importance, analyzing the specific RNA patterns recognized by RBPs has become a significant research focus in bioinformatics. Deep Neural Networks have enhanced the accuracy of prediction for RBP-binding sites, yet understanding the structural basis of RBP-binding specificity from these models is challenging due to their limited interpretability. To address this, we developed RNAelem, which combines profile context-free grammar and the Turner energy model for RNA secondary structure to predict sequence-structure motifs in RBP-binding regions. Results RNAelem exhibited superior detection accuracy compared to existing tools for RNA sequences with structural motifs. Upon applying RNAelem to the eCLIP database, we were not only able to reproduce many known primary sequence motifs in the absence of secondary structures, but also discovered many secondary structural motifs that contained sequence-nonspecific insertion regions. Furthermore, the high interpretability of RNAelem yielded insightful findings such as long-range base-pairing interactions in the binding region of the U2AF protein. Availability and implementation The code is available at https://github.com/iyak/RNAelem.
Collapse
Affiliation(s)
- Hiroshi Miyake
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8561, Japan
| | - Risa Karakida Kawaguchi
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Sakyo-ku 606-8507, Japan
| | - Hisanori Kiryu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8561, Japan
| |
Collapse
|
6
|
Medina Gomez S, Visco I, Merino F, Bieling P, Linser R. Transient Structural Properties of the Rho GDP-Dissociation Inhibitor. Angew Chem Int Ed Engl 2024; 63:e202403941. [PMID: 38853146 PMCID: PMC7616425 DOI: 10.1002/anie.202403941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Rho GTPases, master spatial regulators of a wide range of cellular processes, are orchestrated by complex formation with guanine nucleotide dissociation inhibitors (RhoGDIs). These have been thought to possess an unstructured N-terminus that inhibits nucleotide exchange of their client upon binding/folding. Via NMR analyses, molecular dynamics simulations, and biochemical assays, we reveal instead pertinent structural properties transiently maintained both, in the presence and absence of the client, imposed onto the terminus context-specifically by modulating interactions with the surface of the folded C-terminal domain. These observations revise the long-standing textbook picture of the GTPases' mechanism of membrane extraction. Rather than by a disorder-to-order transition upon binding of an inhibitory peptide, the intricate and highly selective extraction process of RhoGTPases is orchestrated via a dynamic ensemble bearing preformed transient structural properties, suitably modulated by the specific surrounding along the multi-step process.
Collapse
Affiliation(s)
- Sara Medina Gomez
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Ilaria Visco
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Felipe Merino
- Department of Protein Evolution, Max Planck Institute of Developmental Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany
| | - Peter Bieling
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Rasmus Linser
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| |
Collapse
|
7
|
Chen W, Geng D, Chen J, Han X, Xie Q, Guo G, Chen X, Zhang W, Tang S, Zhong X. Roles and mechanisms of aberrant alternative splicing in melanoma - implications for targeted therapy and immunotherapy resistance. Cancer Cell Int 2024; 24:101. [PMID: 38462618 PMCID: PMC10926661 DOI: 10.1186/s12935-024-03280-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Despite advances in therapeutic strategies, resistance to immunotherapy and the off-target effects of targeted therapy have significantly weakened the benefits for patients with melanoma. MAIN BODY Alternative splicing plays a crucial role in transcriptional reprogramming during melanoma development. In particular, aberrant alternative splicing is involved in the efficacy of immunotherapy, targeted therapy, and melanoma metastasis. Abnormal expression of splicing factors and variants may serve as biomarkers or therapeutic targets for the diagnosis and prognosis of melanoma. Therefore, comprehensively integrating their roles and related mechanisms is essential. This review provides the first detailed summary of the splicing process in melanoma and the changes occurring in this pathway. CONCLUSION The focus of this review is to provide strategies for developing novel diagnostic biomarkers and summarize their potential to alter resistance to targeted therapies and immunotherapy.
Collapse
Affiliation(s)
- Wanxian Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Deyi Geng
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Jiasheng Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Xiaosha Han
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Qihu Xie
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Genghong Guo
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Xuefen Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Wancong Zhang
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Shijie Tang
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China
| | - Xiaoping Zhong
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, P. R. China.
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, China.
| |
Collapse
|
8
|
Roca-Martínez J, Kang HS, Sattler M, Vranken W. Analysis of the inter-domain orientation of tandem RRM domains with diverse linkers: connecting experimental with AlphaFold2 predicted models. NAR Genom Bioinform 2024; 6:lqae002. [PMID: 38288375 PMCID: PMC10823583 DOI: 10.1093/nargab/lqae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/07/2023] [Accepted: 01/09/2024] [Indexed: 01/31/2024] Open
Abstract
The RNA recognition motif (RRM) is the most prevalent RNA binding domain in eukaryotes and is involved in most RNA metabolism processes. Single RRM domains have a limited RNA specificity and affinity and tend to be accompanied by other RNA binding domains, frequently additional RRMs that contribute to an avidity effect. Within multi-RRM proteins, the most common arrangement are tandem RRMs, with two domains connected by a variable linker. Despite their prevalence, little is known about the features that lead to specific arrangements, and especially the role of the connecting linker. In this work, we present a novel and robust way to investigate the relative domain orientation in multi-domain proteins using inter-domain vectors referenced to a stable secondary structure element. We apply this method to tandem RRM domains and cluster experimental tandem RRM structures according to their inter-domain and linker-domain contacts, and report how this correlates with their orientation. By extending our analysis to AlphaFold2 predicted structures, with particular attention to the inter-domain predicted aligned error, we identify new orientations not reported experimentally. Our analysis provides novel insights across a range of tandem RRM orientations that may help for the design of proteins with a specific RNA binding mode.
Collapse
Affiliation(s)
- Joel Roca-Martínez
- Interuniversity Institute of Bioinformatics in Brussels, VUB/ULB, Brussels 1050, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Hyun-Seo Kang
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, 85764 Neuherberg, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, 85747 Garching, Germany
| | - Michael Sattler
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, 85764 Neuherberg, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, 85747 Garching, Germany
| | - Wim Vranken
- Interuniversity Institute of Bioinformatics in Brussels, VUB/ULB, Brussels 1050, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels 1050, Belgium
| |
Collapse
|
9
|
Schwarzl T, Sahadevan S, Lang B, Miladi M, Backofen R, Huber W, Hentze MW, Tartaglia GG. Improved discovery of RNA-binding protein binding sites in eCLIP data using DEWSeq. Nucleic Acids Res 2024; 52:e1. [PMID: 37962298 PMCID: PMC10783507 DOI: 10.1093/nar/gkad998] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/04/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Enhanced crosslinking and immunoprecipitation (eCLIP) sequencing is a method for transcriptome-wide detection of binding sites of RNA-binding proteins (RBPs). However, identified crosslink sites can deviate from experimentally established functional elements of even well-studied RBPs. Current peak-calling strategies result in low replication and high false positive rates. Here, we present the R/Bioconductor package DEWSeq that makes use of replicate information and size-matched input controls. We benchmarked DEWSeq on 107 RBPs for which both eCLIP data and RNA sequence motifs are available and were able to more than double the number of motif-containing binding regions relative to standard eCLIP processing. The improvement not only relates to the number of binding sites (3.1-fold with known motifs for RBFOX2), but also their subcellular localization (1.9-fold of mitochondrial genes for FASTKD2) and structural targets (2.2-fold increase of stem-loop regions for SLBP. On several orthogonal CLIP-seq datasets, DEWSeq recovers a larger number of motif-containing binding sites (3.3-fold). DEWSeq is a well-documented R/Bioconductor package, scalable to adequate numbers of replicates, and tends to substantially increase the proportion and total number of RBP binding sites containing biologically relevant features.
Collapse
Affiliation(s)
- Thomas Schwarzl
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Sudeep Sahadevan
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Benjamin Lang
- Department of Structural Biology and Center of Excellence for Data-Driven Discovery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Milad Miladi
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79098 Freiburg im Breisgau, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79098 Freiburg im Breisgau, Germany
| | - Wolfgang Huber
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Matthias W Hentze
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Gian Gaetano Tartaglia
- Center for Life Nano & Neuroscience, Italian Institute of Technology, 00161 Rome, Italy and Department of Biology, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
10
|
Vedel IM, Papagiannoula A, Naudi-Fabra S, Milles S. Nuclear magnetic resonance/single molecule fluorescence combinations to study dynamic protein systems. Curr Opin Struct Biol 2023; 82:102659. [PMID: 37499445 PMCID: PMC10565672 DOI: 10.1016/j.sbi.2023.102659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/04/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
Many proteins require different structural states or conformations for function, and intrinsically disordered proteins, i.e. proteins without stable three-dimensional structure, are certainly an extreme. Single molecule fluorescence and nuclear magnetic resonance (NMR) spectroscopy are both exceptionally well suited to decipher and describe these states and their interconversion. Different time scales, from picoseconds to several milliseconds, can be addressed by both techniques. The length scales probed and the sample requirements (e.g. concentration, molecular weight, sample complexity) are, however, vastly different, making NMR and single molecule fluorescence an excellent combination for integrated studies. Here, we review recently undertaken approaches for the combined use of NMR and single molecule fluorescence to study protein dynamics.
Collapse
Affiliation(s)
- Ida Marie Vedel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Andromachi Papagiannoula
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Samuel Naudi-Fabra
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Sigrid Milles
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| |
Collapse
|
11
|
Ebersberger S, Hipp C, Mulorz MM, Buchbender A, Hubrich D, Kang HS, Martínez-Lumbreras S, Kristofori P, Sutandy FXR, Llacsahuanga Allcca L, Schönfeld J, Bakisoglu C, Busch A, Hänel H, Tretow K, Welzel M, Di Liddo A, Möckel MM, Zarnack K, Ebersberger I, Legewie S, Luck K, Sattler M, König J. FUBP1 is a general splicing factor facilitating 3' splice site recognition and splicing of long introns. Mol Cell 2023:S1097-2765(23)00516-6. [PMID: 37506698 DOI: 10.1016/j.molcel.2023.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/19/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
Splicing of pre-mRNAs critically contributes to gene regulation and proteome expansion in eukaryotes, but our understanding of the recognition and pairing of splice sites during spliceosome assembly lacks detail. Here, we identify the multidomain RNA-binding protein FUBP1 as a key splicing factor that binds to a hitherto unknown cis-regulatory motif. By collecting NMR, structural, and in vivo interaction data, we demonstrate that FUBP1 stabilizes U2AF2 and SF1, key components at the 3' splice site, through multivalent binding interfaces located within its disordered regions. Transcriptional profiling and kinetic modeling reveal that FUBP1 is required for efficient splicing of long introns, which is impaired in cancer patients harboring FUBP1 mutations. Notably, FUBP1 interacts with numerous U1 snRNP-associated proteins, suggesting a unique role for FUBP1 in splice site bridging for long introns. We propose a compelling model for 3' splice site recognition of long introns, which represent 80% of all human introns.
Collapse
Affiliation(s)
| | - Clara Hipp
- Institute of Structural Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany; Bavarian NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany
| | - Miriam M Mulorz
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | | | - Dalmira Hubrich
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - Hyun-Seo Kang
- Institute of Structural Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany; Bavarian NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany
| | - Santiago Martínez-Lumbreras
- Institute of Structural Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany; Bavarian NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany
| | - Panajot Kristofori
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, 70569 Stuttgart, Germany
| | | | | | - Jonas Schönfeld
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - Cem Bakisoglu
- Buchmann Institute for Molecular Life Sciences & Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Anke Busch
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - Heike Hänel
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - Kerstin Tretow
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - Mareen Welzel
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | | | - Martin M Möckel
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences & Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; CardioPulmonary Institute (CPI), 35392 Gießen, Germany
| | - Ingo Ebersberger
- Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; Senckenberg Biodiversity and Climate Research Center (S-BIK-F), 60325 Frankfurt am Main, Germany; LOEWE Center for Translational Biodiversity Genomics (TBG), 60325 Frankfurt am Main, Germany
| | - Stefan Legewie
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, 70569 Stuttgart, Germany; Stuttgart Research Center for Systems Biology (SRCSB), University of Stuttgart, 70569 Stuttgart, Germany
| | - Katja Luck
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany.
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany; Bavarian NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany.
| | - Julian König
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany.
| |
Collapse
|
12
|
Soni K, Jagtap PKA, Martínez-Lumbreras S, Bonnal S, Geerlof A, Stehle R, Simon B, Valcárcel J, Sattler M. Structural basis for specific RNA recognition by the alternative splicing factor RBM5. Nat Commun 2023; 14:4233. [PMID: 37454201 PMCID: PMC10349855 DOI: 10.1038/s41467-023-39961-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
The RNA-binding motif protein RBM5 belongs to a family of multi-domain RNA binding proteins that regulate alternative splicing of genes important for apoptosis and cell proliferation and have been implicated in cancer. RBM5 harbors structural modules for RNA recognition, such as RRM domains and a Zn finger, and protein-protein interactions such as an OCRE domain. Here, we characterize binding of the RBM5 RRM1-ZnF1-RRM2 domains to cis-regulatory RNA elements. A structure of the RRM1-ZnF1 region in complex with RNA shows how the tandem domains cooperate to sandwich target RNA and specifically recognize a GG dinucleotide in a non-canonical fashion. While the RRM1-ZnF1 domains act as a single structural module, RRM2 is connected by a flexible linker and tumbles independently. However, all three domains participate in RNA binding and adopt a closed architecture upon RNA binding. Our data highlight how cooperativity and conformational modularity of multiple RNA binding domains enable the recognition of distinct RNA motifs, thereby contributing to the regulation of alternative splicing. Remarkably, we observe surprising differences in coupling of the RNA binding domains between the closely related homologs RBM5 and RBM10.
Collapse
Affiliation(s)
- Komal Soni
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Pravin Kumar Ankush Jagtap
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Santiago Martínez-Lumbreras
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Sophie Bonnal
- Centre de Regulació Genòmica, Barcelona Institute of Science and Technology and Universitat Pompeu Fabra, Barcelona, Spain
| | - Arie Geerlof
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Ralf Stehle
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Bernd Simon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Juan Valcárcel
- Centre de Regulació Genòmica, Barcelona Institute of Science and Technology and Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Michael Sattler
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Lichtenbergstrasse 4, 85748, Garching, Germany.
| |
Collapse
|
13
|
Nagasawa CK, Garcia-Blanco MA. Early Splicing Complexes and Human Disease. Int J Mol Sci 2023; 24:11412. [PMID: 37511171 PMCID: PMC10379813 DOI: 10.3390/ijms241411412] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Over the last decade, our understanding of spliceosome structure and function has significantly improved, refining the study of the impact of dysregulated splicing on human disease. As a result, targeted splicing therapeutics have been developed, treating various diseases including spinal muscular atrophy and Duchenne muscular dystrophy. These advancements are very promising and emphasize the critical role of proper splicing in maintaining human health. Herein, we provide an overview of the current information on the composition and assembly of early splicing complexes-commitment complex and pre-spliceosome-and their association with human disease.
Collapse
Affiliation(s)
- Chloe K. Nagasawa
- Human Pathophysiology and Translational Medicine Program, Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555-5302, USA;
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-5302, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22903-2628, USA
| | - Mariano A. Garcia-Blanco
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-5302, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22903-2628, USA
- Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555-5302, USA
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555-5302, USA
| |
Collapse
|
14
|
Carico C, Placzek WJ. Reviewing PTBP1 Domain Modularity in the Pre-Genomic Era: A Foundation to Guide the Next Generation of Exploring PTBP1 Structure-Function Relationships. Int J Mol Sci 2023; 24:11218. [PMID: 37446395 DOI: 10.3390/ijms241311218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Polypyrimidine tract binding protein 1 (PTBP1) is one of the most well-described RNA binding proteins, known initially for its role as a splicing repressor before later studies revealed its numerous roles in RNA maturation, stability, and translation. While PTBP1's various biological roles have been well-described, it remains unclear how its four RNA recognition motif (RRM) domains coordinate these functions. The early PTBP1 literature saw extensive effort placed in detailing structures of each of PTBP1's RRMs, as well as their individual RNA sequence and structure preferences. However, limitations in high-throughput and high-resolution genomic approaches (i.e., next-generation sequencing had not yet been developed) precluded the functional translation of these findings into a mechanistic understanding of each RRM's contribution to overall PTBP1 function. With the emergence of new technologies, it is now feasible to begin elucidating the individual contributions of each RRM to PTBP1 biological functions. Here, we review all the known literature describing the apo and RNA bound structures of each of PTBP1's RRMs, as well as the emerging literature describing the dependence of specific RNA processing events on individual RRM domains. Our goal is to provide a framework of the structure-function context upon which to facilitate the interpretation of future studies interrogating the dynamics of PTBP1 function.
Collapse
Affiliation(s)
- Christine Carico
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - William J Placzek
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
15
|
Stitzinger SH, Sohrabi-Jahromi S, Söding J. Cooperativity boosts affinity and specificity of proteins with multiple RNA-binding domains. NAR Genom Bioinform 2023; 5:lqad057. [PMID: 37305168 PMCID: PMC10251633 DOI: 10.1093/nargab/lqad057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/24/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023] Open
Abstract
Numerous cellular processes rely on the binding of proteins with high affinity to specific sets of RNAs. Yet most RNA-binding domains display low specificity and affinity in comparison to DNA-binding domains. The best binding motif is typically only enriched by less than a factor 10 in high-throughput RNA SELEX or RNA bind-n-seq measurements. Here, we provide insight into how cooperative binding of multiple domains in RNA-binding proteins (RBPs) can boost their effective affinity and specificity orders of magnitude higher than their individual domains. We present a thermodynamic model to calculate the effective binding affinity (avidity) for idealized, sequence-specific RBPs with any number of RBDs given the affinities of their isolated domains. For seven proteins in which affinities for individual domains have been measured, the model predictions are in good agreement with measurements. The model also explains how a two-fold difference in binding site density on RNA can increase protein occupancy 10-fold. It is therefore rationalized that local clusters of binding motifs are the physiological binding targets of multi-domain RBPs.
Collapse
Affiliation(s)
- Simon H Stitzinger
- Quantitative and Computational Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Salma Sohrabi-Jahromi
- Quantitative and Computational Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Johannes Söding
- To whom correspondence should be addressed. Tel: +49 551 201 2890;
| |
Collapse
|
16
|
Yuan X, Howie KL, Kazemi Sabzvar M, Chinnaswamy K, Stuckey JA, Yang CY. Profiling the Binding Activities of Peptides and Inhibitors to the U2 Auxiliary Factor Homology Motif (UHM) Domains. ACS Med Chem Lett 2023; 14:450-457. [PMID: 37077390 PMCID: PMC10107908 DOI: 10.1021/acsmedchemlett.2c00537] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/17/2023] [Indexed: 04/21/2023] Open
Abstract
RNA splicing is a biological process to generate mature mRNA (mRNA) by removing introns and annexing exons in the nascent RNA transcript and is executed by a multiprotein complex called spliceosome. To aid RNA splicing, a class of splicing factors use an atypical RNA recognition domain (UHM) to bind with U2AF ligand motifs (ULMs) in proteins to form modules that recognize splice sites and splicing regulatory elements on mRNA. Mutations of UHM containing splicing factors have been found frequently in myeloid neoplasms. To profile the selectivity of UHMs for inhibitor development, we established binding assays to measure the binding activities between UHM domains and ULM peptides and a set of small-molecule inhibitors. Additionally, we computationally analyzed the targeting potential of the UHM domains by small-molecule inhibitors. Our study provided the binding assessment of UHM domains to diverse ligands that may guide development of selective UHM domain inhibitors in the future.
Collapse
Affiliation(s)
- Xinrui Yuan
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Kathryn L. Howie
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Mona Kazemi Sabzvar
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | | | - Jeanne A. Stuckey
- Life
Science Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chao-Yie Yang
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
17
|
Agam G, Gebhardt C, Popara M, Mächtel R, Folz J, Ambrose B, Chamachi N, Chung SY, Craggs TD, de Boer M, Grohmann D, Ha T, Hartmann A, Hendrix J, Hirschfeld V, Hübner CG, Hugel T, Kammerer D, Kang HS, Kapanidis AN, Krainer G, Kramm K, Lemke EA, Lerner E, Margeat E, Martens K, Michaelis J, Mitra J, Moya Muñoz GG, Quast RB, Robb NC, Sattler M, Schlierf M, Schneider J, Schröder T, Sefer A, Tan PS, Thurn J, Tinnefeld P, van Noort J, Weiss S, Wendler N, Zijlstra N, Barth A, Seidel CAM, Lamb DC, Cordes T. Reliability and accuracy of single-molecule FRET studies for characterization of structural dynamics and distances in proteins. Nat Methods 2023; 20:523-535. [PMID: 36973549 PMCID: PMC10089922 DOI: 10.1038/s41592-023-01807-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/31/2023] [Indexed: 03/29/2023]
Abstract
Single-molecule Förster-resonance energy transfer (smFRET) experiments allow the study of biomolecular structure and dynamics in vitro and in vivo. We performed an international blind study involving 19 laboratories to assess the uncertainty of FRET experiments for proteins with respect to the measured FRET efficiency histograms, determination of distances, and the detection and quantification of structural dynamics. Using two protein systems with distinct conformational changes and dynamics, we obtained an uncertainty of the FRET efficiency ≤0.06, corresponding to an interdye distance precision of ≤2 Å and accuracy of ≤5 Å. We further discuss the limits for detecting fluctuations in this distance range and how to identify dye perturbations. Our work demonstrates the ability of smFRET experiments to simultaneously measure distances and avoid the averaging of conformational dynamics for realistic protein systems, highlighting its importance in the expanding toolbox of integrative structural biology.
Collapse
Affiliation(s)
- Ganesh Agam
- Department of Chemistry, Ludwig-Maximilians University München, München, Germany
| | - Christian Gebhardt
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians University München, Planegg-Martinsried, Germany
| | - Milana Popara
- Molecular Physical Chemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Rebecca Mächtel
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians University München, Planegg-Martinsried, Germany
| | - Julian Folz
- Molecular Physical Chemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Neharika Chamachi
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Sang Yoon Chung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | | | - Marijn de Boer
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, AG Groningen, the Netherlands
| | - Dina Grohmann
- Department of Biochemistry, Genetics and Microbiology, Institute of Microbiology, Single-Molecule Biochemistry Laboratory, University of Regensburg, Regensburg, Germany
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine and Howard Hughes Medical Institute, Baltimore, MD, USA
| | - Andreas Hartmann
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Jelle Hendrix
- Dynamic Bioimaging Laboratory, Advanced Optical Microscopy Center and Biomedical Research Institute, Hasselt University, Agoralaan C (BIOMED), Hasselt, Belgium
- Department of Chemistry, KU Leuven, Leuven, Belgium
| | | | | | - Thorsten Hugel
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Dominik Kammerer
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK
- Kavli Institute of Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Hyun-Seo Kang
- Bayerisches NMR Zentrum, Department of Bioscience, School of Natural Sciences, Technical University of München, Garching, Germany
| | - Achillefs N Kapanidis
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK
- Kavli Institute of Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Georg Krainer
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Kevin Kramm
- Department of Biochemistry, Genetics and Microbiology, Institute of Microbiology, Single-Molecule Biochemistry Laboratory, University of Regensburg, Regensburg, Germany
| | - Edward A Lemke
- Biocenter, Johannes Gutenberg University Mainz, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics and Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Emmanuel Margeat
- Centre de Biologie Structurale (CBS), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Kirsten Martens
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, the Netherlands
| | | | - Jaba Mitra
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine and Howard Hughes Medical Institute, Baltimore, MD, USA
- Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Gabriel G Moya Muñoz
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians University München, Planegg-Martinsried, Germany
| | - Robert B Quast
- Centre de Biologie Structurale (CBS), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Nicole C Robb
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK
- Kavli Institute of Nanoscience Discovery, University of Oxford, Oxford, UK
- Warwick Medical School, The University of Warwick, Coventry, UK
| | - Michael Sattler
- Bayerisches NMR Zentrum, Department of Bioscience, School of Natural Sciences, Technical University of München, Garching, Germany
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Center Munich, Munich, Germany
| | - Michael Schlierf
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
| | - Jonathan Schneider
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians University München, Planegg-Martinsried, Germany
| | - Tim Schröder
- Department of Chemistry, Ludwig-Maximilians University München, München, Germany
| | - Anna Sefer
- Institute for Biophysics, Ulm University, Ulm, Germany
| | - Piau Siong Tan
- Biocenter, Johannes Gutenberg University Mainz, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Johann Thurn
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
- Institute of Technical Physics, German Aerospace Center (DLR), Stuttgart, Germany
| | - Philip Tinnefeld
- Department of Chemistry, Ludwig-Maximilians University München, München, Germany
| | - John van Noort
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, the Netherlands
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Nicolas Wendler
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians University München, Planegg-Martinsried, Germany
| | - Niels Zijlstra
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians University München, Planegg-Martinsried, Germany
| | - Anders Barth
- Molecular Physical Chemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
| | - Claus A M Seidel
- Molecular Physical Chemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| | - Don C Lamb
- Department of Chemistry, Ludwig-Maximilians University München, München, Germany.
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians University München, Planegg-Martinsried, Germany.
| |
Collapse
|
18
|
Keil P, Wulf A, Kachariya N, Reuscher S, Hühn K, Silbern I, Altmüller J, Keller M, Stehle R, Zarnack K, Sattler M, Urlaub H, Sträßer K. Npl3 functions in mRNP assembly by recruitment of mRNP components to the transcription site and their transfer onto the mRNA. Nucleic Acids Res 2022; 51:831-851. [PMID: 36583366 PMCID: PMC9881175 DOI: 10.1093/nar/gkac1206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/25/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022] Open
Abstract
RNA-binding proteins (RBPs) control every RNA metabolic process by multiple protein-RNA and protein-protein interactions. Their roles have largely been analyzed by crude mutations, which abrogate multiple functions at once and likely impact the structural integrity of the large ribonucleoprotein particles (RNPs) these proteins function in. Using UV-induced RNA-protein crosslinking of entire cells, protein complex purification and mass spectrometric analysis, we identified >100 in vivo RNA crosslinks in 16 nuclear mRNP components in Saccharomyces cerevisiae. For functional analysis, we chose Npl3, which displayed crosslinks in its two RNA recognition motifs (RRMs) and in the connecting flexible linker region. Both RRM domains and the linker uniquely contribute to RNA recognition as revealed by NMR and structural analyses. Interestingly, mutations in these regions cause different phenotypes, indicating distinct functions of the different RNA-binding domains. Notably, an npl3-Linker mutation strongly impairs recruitment of several mRNP components to chromatin and incorporation of other mRNP components into nuclear mRNPs, establishing a so far unknown function of Npl3 in nuclear mRNP assembly. Taken together, our integrative analysis uncovers a specific function of the RNA-binding activity of the nuclear mRNP component Npl3. This approach can be readily applied to RBPs in any RNA metabolic process.
Collapse
Affiliation(s)
| | | | | | - Samira Reuscher
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt a.M., Germany
| | - Kristin Hühn
- Institute of Biochemistry, FB08, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Ivan Silbern
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Goettingen, University Medical Center Goettingen, Institute of Clinical Chemistry, Robert-Koch-Strasse 40, 37075 Goettingen, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, Weyertal 115b, 50931 Cologne, Germany,Technology platform genomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Mario Keller
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt a.M., Germany
| | - Ralf Stehle
- Bavarian NMR Center (BNMRZ), Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany,Institute of Structural Biology, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt a.M., Germany,Cardio-Pulmonary Institute (CPI), EXC 2026, 35392 Giessen, Germany
| | | | | | - Katja Sträßer
- To whom correspondence should be addressed. Tel: +49 641 99 35400; Fax: +49 641 99 35409;
| |
Collapse
|
19
|
Rozza R, Saltalamacchia A, Orrico C, Janoš P, Magistrato A. All-Atom Simulations Elucidate the Impact of U2AF2 Cancer-Associated Mutations on Pre-mRNA Recognition. J Chem Inf Model 2022; 62:6691-6703. [PMID: 36040856 DOI: 10.1021/acs.jcim.2c00511] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The U2AF2 splicing factor, made of two tandem RNA recognition motifs (RRMs) joined by a flexible linker, selects the intronic polypyrimidine sequence of premature mRNA, thus ensuring splicing fidelity. Increasing evidence links mutations of key splicing factors, including U2AF2, to a variety of cancers. Nevertheless, the impact of U2AF2 cancer-associated mutations on polypyrimidine recognition remains unclear. Here, we combined extensive (18 μs-long) all-atom molecular dynamics simulations and dynamical network theory analysis (NWA) of U2AF2, in its wild-type form and in the presence of the six most frequent cancer-associated mutations, bound to a poly-U strand. Our results reveal that the selected mutations affect the pre-mRNA binding at two hot spot regions, irrespectively of where these mutants are placed on the distinct U2AF2 domains. Complementarily, NWA traced the existence of cross-communication pathways, connecting each mutation site to these recognition hot spots, whose strength is altered by the mutations. Our outcomes suggest the existence of a structural/dynamical interplay of the two U2AF2's RRMs underlying the recognition of the polypyrimidine tract and reveal that the cancer-associated mutations affect the polypyrimidine selection by altering the RRMs' cooperativity. This mechanism may be shared by other RNA binding proteins hallmarked, like U2AF2, by multidomain architecture and high plasticity.
Collapse
Affiliation(s)
- Riccardo Rozza
- National Research Council of Italy (CNR)-IOM c/o International School for Advanced Studies (SISSA/ISAS), via Bonomea 265, 34136 Trieste, Italy
| | - Andrea Saltalamacchia
- International School for Advanced Studies (SISSA/ISAS), via Bonomea 265, 34136 Trieste, Italy
| | - Clarissa Orrico
- International School for Advanced Studies (SISSA/ISAS), via Bonomea 265, 34136 Trieste, Italy
| | - Pavel Janoš
- National Research Council of Italy (CNR)-IOM c/o International School for Advanced Studies (SISSA/ISAS), via Bonomea 265, 34136 Trieste, Italy
| | - Alessandra Magistrato
- National Research Council of Italy (CNR)-IOM c/o International School for Advanced Studies (SISSA/ISAS), via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
20
|
Zeng Y, Fair BJ, Zeng H, Krishnamohan A, Hou Y, Hall JM, Ruthenburg AJ, Li YI, Staley JP. Profiling lariat intermediates reveals genetic determinants of early and late co-transcriptional splicing. Mol Cell 2022; 82:4681-4699.e8. [PMID: 36435176 PMCID: PMC10448999 DOI: 10.1016/j.molcel.2022.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 09/10/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022]
Abstract
Long introns with short exons in vertebrate genes are thought to require spliceosome assembly across exons (exon definition), rather than introns, thereby requiring transcription of an exon to splice an upstream intron. Here, we developed CoLa-seq (co-transcriptional lariat sequencing) to investigate the timing and determinants of co-transcriptional splicing genome wide. Unexpectedly, 90% of all introns, including long introns, can splice before transcription of a downstream exon, indicating that exon definition is not obligatory for most human introns. Still, splicing timing varies dramatically across introns, and various genetic elements determine this variation. Strong U2AF2 binding to the polypyrimidine tract predicts early splicing, explaining exon definition-independent splicing. Together, our findings question the essentiality of exon definition and reveal features beyond intron and exon length that are determinative for splicing timing.
Collapse
Affiliation(s)
- Yi Zeng
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Benjamin J Fair
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Huilin Zeng
- 855 Jefferson Ave. Redwood City, CA 94063, USA
| | - Aiswarya Krishnamohan
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Yichen Hou
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Johnathon M Hall
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Alexander J Ruthenburg
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Yang I Li
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.
| | - Jonathan P Staley
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
21
|
Delhommel F, Martínez-Lumbreras S, Sattler M. Combining NMR, SAXS and SANS to characterize the structure and dynamics of protein complexes. Methods Enzymol 2022; 678:263-297. [PMID: 36641211 DOI: 10.1016/bs.mie.2022.09.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Understanding the structure and dynamics of biological macromolecules is essential to decipher the molecular mechanisms that underlie cellular functions. The description of structure and conformational dynamics often requires the integration of complementary techniques. In this review, we highlight the utility of combining nuclear magnetic resonance (NMR) spectroscopy with small angle scattering (SAS) to characterize these challenging biomolecular systems. NMR can assess the structure and conformational dynamics of multidomain proteins, RNAs and biomolecular complexes. It can efficiently provide information on interaction surfaces, long-distance restraints and relative domain orientations at residue-level resolution. Such information can be readily combined with high-resolution structural data available on subcomponents of biomolecular assemblies. Moreover, NMR is a powerful tool to characterize the dynamics of biomolecules on a wide range of timescales, from nanoseconds to seconds. On the other hand, SAS approaches provide global information on the size and shape of biomolecules and on the ensemble of all conformations present in solution. Therefore, NMR and SAS provide complementary data that are uniquely suited to investigate dynamic biomolecular assemblies. Here, we briefly review the type of data that can be obtained by both techniques and describe different approaches that can be used to combine them to characterize biomolecular assemblies. We then provide guidelines on which experiments are best suited depending on the type of system studied, ranging from fully rigid complexes, dynamic structures that interconvert between defined conformations and systems with very high structural heterogeneity.
Collapse
Affiliation(s)
- Florent Delhommel
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany; Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Santiago Martínez-Lumbreras
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany; Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany; Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching, Germany.
| |
Collapse
|
22
|
Rozza R, Janoš P, Spinello A, Magistrato A. Role of computational and structural biology in the development of small-molecule modulators of the spliceosome. Expert Opin Drug Discov 2022; 17:1095-1109. [PMID: 35983696 DOI: 10.1080/17460441.2022.2114452] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION RNA splicing is a pivotal step of eukaryotic gene expression during which the introns are excised from the precursor (pre-)RNA and the exons are joined together to form mature RNA products (i.e a protein-coding mRNA or long non-coding (lnc)RNAs). The spliceosome, a complex ribonucleoprotein machine, performs pre-RNA splicing with extreme precision. Deregulated splicing is linked to cancer, genetic, and neurodegenerative diseases. Hence, the discovery of small-molecules targeting core spliceosome components represents an appealing therapeutic opportunity. AREA COVERED Several atomic-level structures of the spliceosome and distinct splicing-modulators bound to its protein/RNA components have been solved. Here, we review recent advances in the discovery of small-molecule splicing-modulators, discuss opportunities and challenges for their therapeutic applicability, and showcase how structural data and/or all-atom simulations can illuminate key facets of their mechanism, thus contributing to future drug-discovery campaigns. EXPERT OPINION This review highlights the potential of modulating pre-RNA splicing with small-molecules, and anticipates how the synergy of computer and wet-lab experiments will enrich our understanding of splicing regulation/deregulation mechanisms. This information will aid future structure-based drug-discovery efforts aimed to expand the currently limited portfolio of selective splicing-modulators.
Collapse
Affiliation(s)
- Riccardo Rozza
- National Research Council of Italy, Institute of Materials-foundry (CNR-IOM) C/o SISSA, Trieste, Italy
| | - Pavel Janoš
- National Research Council of Italy, Institute of Materials-foundry (CNR-IOM) C/o SISSA, Trieste, Italy
| | - Angelo Spinello
- Department of Biological, Chemical and Pharmaceutical Sciences, University of Palermo, Palermo, Italy
| | - Alessandra Magistrato
- National Research Council of Italy, Institute of Materials-foundry (CNR-IOM) C/o SISSA, Trieste, Italy
| |
Collapse
|
23
|
Aguion PI, Marchanka A, Carlomagno T. Nucleic acid-protein interfaces studied by MAS solid-state NMR spectroscopy. J Struct Biol X 2022; 6:100072. [PMID: 36090770 PMCID: PMC9449856 DOI: 10.1016/j.yjsbx.2022.100072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Solid-state NMR (ssNMR) has become a well-established technique to study large and insoluble protein assemblies. However, its application to nucleic acid-protein complexes has remained scarce, mainly due to the challenges presented by overlapping nucleic acid signals. In the past decade, several efforts have led to the first structure determination of an RNA molecule by ssNMR. With the establishment of these tools, it has become possible to address the problem of structure determination of nucleic acid-protein complexes by ssNMR. Here we review first and more recent ssNMR methodologies that study nucleic acid-protein interfaces by means of chemical shift and peak intensity perturbations, direct distance measurements and paramagnetic effects. At the end, we review the first structure of an RNA-protein complex that has been determined from ssNMR-derived intermolecular restraints.
Collapse
Affiliation(s)
- Philipp Innig Aguion
- Institute for Organic Chemistry and Centre of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Alexander Marchanka
- Institute for Organic Chemistry and Centre of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Teresa Carlomagno
- School of Biosciences/College of Life and Enviromental Sciences, Institute of Cancer and Genomic Sciences/College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
24
|
Jones AN, Graß C, Meininger I, Geerlof A, Klostermann M, Zarnack K, Krappmann D, Sattler M. Modulation of pre-mRNA structure by hnRNP proteins regulates alternative splicing of MALT1. SCIENCE ADVANCES 2022; 8:eabp9153. [PMID: 35921415 PMCID: PMC9348792 DOI: 10.1126/sciadv.abp9153] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Alternative splicing plays key roles for cell type-specific regulation of protein function. It is controlled by cis-regulatory RNA elements that are recognized by RNA binding proteins (RBPs). The MALT1 paracaspase is a key factor of signaling pathways that mediate innate and adaptive immune responses. Alternative splicing of MALT1 is critical for controlling optimal T cell activation. We demonstrate that MALT1 splicing depends on RNA structural elements that sequester the splice sites of the alternatively spliced exon7. The RBPs hnRNP U and hnRNP L bind competitively to stem-loop RNA structures that involve the 5' and 3' splice sites flanking exon7. While hnRNP U stabilizes RNA stem-loop conformations that maintain exon7 skipping, hnRNP L disrupts these RNA elements to facilitate recruitment of the essential splicing factor U2AF2, thereby promoting exon7 inclusion. Our data represent a paradigm for the control of splice site selection by differential RBP binding and modulation of pre-mRNA structure.
Collapse
Affiliation(s)
- Alisha N. Jones
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, 85764 München, Germany
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching, 85748 München, Germany
| | - Carina Graß
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, 85764 München, Germany
| | - Isabel Meininger
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, 85764 München, Germany
| | - Arie Geerlof
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, 85764 München, Germany
| | - Melina Klostermann
- Buchmann Institute for Molecular Life Sciences (BMLS) & Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS) & Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Daniel Krappmann
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, 85764 München, Germany
- Corresponding author. (D.K.); (M.S.)
| | - Michael Sattler
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, 85764 München, Germany
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching, 85748 München, Germany
- Corresponding author. (D.K.); (M.S.)
| |
Collapse
|
25
|
Galardi JW, Bela VN, Jeffery N, He X, Glasser E, Loerch S, Jenkins JL, Pulvino MJ, Boutz PL, Kielkopf CL. A UHM - ULM interface with unusual structural features contributes to U2AF2 and SF3B1 association for pre-mRNA splicing. J Biol Chem 2022; 298:102224. [PMID: 35780835 PMCID: PMC9364107 DOI: 10.1016/j.jbc.2022.102224] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 11/30/2022] Open
Abstract
During spliceosome assembly, the 3′ splice site is recognized by sequential U2AF2 complexes, first with Splicing Factor 1 (SF1) and second by the SF3B1 subunit of the U2 small nuclear ribonuclear protein particle. The U2AF2–SF1 interface is well characterized, comprising a U2AF homology motif (UHM) of U2AF2 bound to a U2AF ligand motif (ULM) of SF1. However, the structure of the U2AF2–SF3B1 interface and its importance for pre-mRNA splicing are unknown. To address this knowledge gap, we determined the crystal structure of the U2AF2 UHM bound to a SF3B1 ULM site at 1.8-Å resolution. We discovered a distinctive trajectory of the SF3B1 ULM across the U2AF2 UHM surface, which differs from prior UHM/ULM structures and is expected to modulate the orientations of the full-length proteins. We established that the binding affinity of the U2AF2 UHM for the cocrystallized SF3B1 ULM rivals that of a nearly full-length U2AF2 protein for an N-terminal SF3B1 region. An additional SF3B6 subunit had no detectable effect on the U2AF2–SF3B1 binding affinities. We further showed that key residues at the U2AF2 UHM–SF3B1 ULM interface contribute to coimmunoprecipitation of the splicing factors. Moreover, disrupting the U2AF2–SF3B1 interface changed splicing of representative human transcripts. From analysis of genome-wide data, we found that many of the splice sites coregulated by U2AF2 and SF3B1 differ from those coregulated by U2AF2 and SF1. Taken together, these findings support distinct structural and functional roles for the U2AF2—SF1 and U2AF2—SF3B1 complexes during the pre-mRNA splicing process.
Collapse
Affiliation(s)
- Justin W Galardi
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Victoria N Bela
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Nazish Jeffery
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Xueyang He
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Eliezra Glasser
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Sarah Loerch
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Jermaine L Jenkins
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Mary J Pulvino
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Paul L Boutz
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Clara L Kielkopf
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
26
|
González-Blanco G, García-Rivera G, Talmás-Rohana P, Orozco E, Galindo-Rosales JM, Vélez C, Salucedo-Cárdenas O, Azuara-Liceaga E, Rodríguez-Rodríguez MA, Nozaki T, Valdés J. An Unusual U2AF2 Inhibits Splicing and Attenuates the Virulence of the Human Protozoan Parasite Entamoeba histolytica. Front Cell Infect Microbiol 2022; 12:888428. [PMID: 35782149 PMCID: PMC9247205 DOI: 10.3389/fcimb.2022.888428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
E. histolytica is the etiological agent of intestinal amebiasis and liver abscesses, which still poses public health threat globally. Metronidazole is the drug of choice against amebiasis. However, metronidazole-resistant amoebic clinical isolates and strains have been reported recently, challenging the efforts for amebiasis eradication. In search of alternative treatments, E. histolytica transcriptomes have shown the association of genes involved in RNA metabolism with the virulence of the parasite. Among the upregulated genes in amoebic liver abscesses are the splicing factors EhU2AF2 and a paralog of EhSF3B1. For this reason and because EhU2AF2 contains unusual KH-QUA2 (84KQ) motifs in its lengthened C-terminus domain, here we investigated how the role of EhU2AF2 in pre-mRNA processing impacts the virulence of the parasite. We found that 84KQ is involved in splicing inhibition/intron retention of several virulence and non-virulence-related genes. The 84KQ domain interacts with the same domain of the constitutive splicing factor SF1 (SF1KQ), both in solution and when SF1KQ is bound to branchpoint signal RNA probes. The 84KQ–SF1KQ interaction prevents splicing complex E to A transition, thus inhibiting splicing. Surprisingly, the deletion of the 84KQ domain in EhU2AF2 amoeba transformants increased splicing and enhanced the in vitro and in vivo virulence phenotypes. We conclude that the interaction of the 84KQ and SF1KQ domains, probably involving additional factors, tunes down Entamoeba virulence by favoring intron retention.
Collapse
Affiliation(s)
- Gretter González-Blanco
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Guillermina García-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Patricia Talmás-Rohana
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Ester Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - José Manuel Galindo-Rosales
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Cristina Vélez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Odila Salucedo-Cárdenas
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Elisa Azuara-Liceaga
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, CDMX, Mexico
| | - Mario Alberto Rodríguez-Rodríguez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Tomoyoshi Nozaki
- Laboratory of Biomedical Chemistry, Department of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jesús Valdés
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
- *Correspondence: Jesús Valdés,
| |
Collapse
|
27
|
Glasser E, Maji D, Biancon G, Puthenpeedikakkal A, Cavender C, Tebaldi T, Jenkins J, Mathews D, Halene S, Kielkopf C. Pre-mRNA splicing factor U2AF2 recognizes distinct conformations of nucleotide variants at the center of the pre-mRNA splice site signal. Nucleic Acids Res 2022; 50:5299-5312. [PMID: 35524551 PMCID: PMC9128377 DOI: 10.1093/nar/gkac287] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/03/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022] Open
Abstract
The essential pre-mRNA splicing factor U2AF2 (also called U2AF65) identifies polypyrimidine (Py) tract signals of nascent transcripts, despite length and sequence variations. Previous studies have shown that the U2AF2 RNA recognition motifs (RRM1 and RRM2) preferentially bind uridine-rich RNAs. Nonetheless, the specificity of the RRM1/RRM2 interface for the central Py tract nucleotide has yet to be investigated. We addressed this question by determining crystal structures of U2AF2 bound to a cytidine, guanosine, or adenosine at the central position of the Py tract, and compared U2AF2-bound uridine structures. Local movements of the RNA site accommodated the different nucleotides, whereas the polypeptide backbone remained similar among the structures. Accordingly, molecular dynamics simulations revealed flexible conformations of the central, U2AF2-bound nucleotide. The RNA binding affinities and splicing efficiencies of structure-guided mutants demonstrated that U2AF2 tolerates nucleotide substitutions at the central position of the Py tract. Moreover, enhanced UV-crosslinking and immunoprecipitation of endogenous U2AF2 in human erythroleukemia cells showed uridine-sensitive binding sites, with lower sequence conservation at the central nucleotide positions of otherwise uridine-rich, U2AF2-bound splice sites. Altogether, these results highlight the importance of RNA flexibility for protein recognition and take a step towards relating splice site motifs to pre-mRNA splicing efficiencies.
Collapse
Affiliation(s)
- Eliezra Glasser
- Department of Biochemistry and Biophysics, and the Center for
RNA Biology, University of Rochester School of Medicine and
Dentistry, Rochester,
NY 14642, USA
| | - Debanjana Maji
- Department of Biochemistry and Biophysics, and the Center for
RNA Biology, University of Rochester School of Medicine and
Dentistry, Rochester,
NY 14642, USA
| | - Giulia Biancon
- Section of Hematology, Department of Internal Medicine and
Yale Cancer Center, Yale University School of Medicine,
New Haven,
CT 06520, USA
| | | | - Chapin E Cavender
- Department of Biochemistry and Biophysics, and the Center for
RNA Biology, University of Rochester School of Medicine and
Dentistry, Rochester,
NY 14642, USA
| | - Toma Tebaldi
- Section of Hematology, Department of Internal Medicine and
Yale Cancer Center, Yale University School of Medicine,
New Haven,
CT 06520, USA
- Department of Cellular, Computational and Integrative Biology
(CIBIO), University of
Trento, Trento, Italy
| | - Jermaine L Jenkins
- Department of Biochemistry and Biophysics, and the Center for
RNA Biology, University of Rochester School of Medicine and
Dentistry, Rochester,
NY 14642, USA
| | - David H Mathews
- Department of Biochemistry and Biophysics, and the Center for
RNA Biology, University of Rochester School of Medicine and
Dentistry, Rochester,
NY 14642, USA
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine and
Yale Cancer Center, Yale University School of Medicine,
New Haven,
CT 06520, USA
- Yale Center for RNA Science and Medicine, Yale University
School of Medicine, New Haven,
CT 06520, USA
- Department of Pathology, Yale University School of
Medicine, New Haven,
CT 06520, USA
| | - Clara L Kielkopf
- Department of Biochemistry and Biophysics, and the Center for
RNA Biology, University of Rochester School of Medicine and
Dentistry, Rochester,
NY 14642, USA
- Wilmot Cancer Institute, University of Rochester School of
Medicine and Dentistry, Rochester,
NY 14642, USA
| |
Collapse
|
28
|
Knörlein A, Sarnowski CP, de Vries T, Stoltz M, Götze M, Aebersold R, Allain FHT, Leitner A, Hall J. Nucleotide-amino acid π-stacking interactions initiate photo cross-linking in RNA-protein complexes. Nat Commun 2022; 13:2719. [PMID: 35581222 PMCID: PMC9114321 DOI: 10.1038/s41467-022-30284-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 04/20/2022] [Indexed: 12/26/2022] Open
Abstract
Photo-induced cross-linking is a mainstay technique to characterize RNA-protein interactions. However, UV-induced cross-linking between RNA and proteins at “zero-distance” is poorly understood. Here, we investigate cross-linking of the RBFOX alternative splicing factor with its hepta-ribonucleotide binding element as a model system. We examine the influence of nucleobase, nucleotide position and amino acid composition using CLIR-MS technology (crosslinking-of-isotope-labelled-RNA-and-tandem-mass-spectrometry), that locates cross-links on RNA and protein with site-specific resolution. Surprisingly, cross-linking occurs only at nucleotides that are π-stacked to phenylalanines. Notably, this π-stacking interaction is also necessary for the amino-acids flanking phenylalanines to partake in UV-cross-linking. We confirmed these observations in several published datasets where cross-linking sites could be mapped to a high resolution structure. We hypothesize that π-stacking to aromatic amino acids activates cross-linking in RNA-protein complexes, whereafter nucleotide and peptide radicals recombine. These findings will facilitate interpretation of cross-linking data from structural studies and from genome-wide datasets generated using CLIP (cross-linking-and-immunoprecipitation) methods. Although UV-induced cross-linking is a widely used method to study RNA-protein complexes, the cross-linking reactions are poorly understood. Here, the authors show that π-stacking interactions between nucleobases and aromatic amino acids play a key role in the cross-linking process.
Collapse
Affiliation(s)
- Anna Knörlein
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Chris P Sarnowski
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Tebbe de Vries
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Moritz Stoltz
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Michael Götze
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Free University Berlin, Berlin, Germany
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Frédéric H-T Allain
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
29
|
Sette C, Paronetto MP. Somatic Mutations in Core Spliceosome Components Promote Tumorigenesis and Generate an Exploitable Vulnerability in Human Cancer. Cancers (Basel) 2022; 14:cancers14071827. [PMID: 35406598 PMCID: PMC8997811 DOI: 10.3390/cancers14071827] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary High throughput exome sequencing approaches have disclosed recurrent cancer-associated mutations in spliceosomal components, which drive aberrant pre-mRNA processing events and support the tumor phenotype. At the same time, mutations in spliceosome genes and aberrant splicing regulation establish a selective vulnerability of cancer cells to splicing-targeting approaches, which could be exploited therapeutically. It is conceivable that a better understanding of the mechanisms and roles of abnormal splicing in tumor metabolism will facilitate the development of a novel generation of tumor-targeting drugs. In this review, we describe recent advances in the elucidation of the biological impact and biochemical effects of somatic mutations in core spliceosome components on splicing choices and their associated targetable vulnerabilities. Abstract Alternative pre-mRNA processing enables the production of distinct mRNA and protein isoforms from a single gene, thus greatly expanding the coding potential of eukaryotic genomes and fine-tuning gene expression programs. Splicing is carried out by the spliceosome, a complex molecular machinery which assembles step-wise on mRNA precursors in the nucleus of eukaryotic cells. In the last decade, exome sequencing technologies have allowed the identification of point mutations in genes encoding splicing factors as a recurrent hallmark of human cancers, with higher incidence in hematological malignancies. These mutations lead to production of splicing factors that reduce the fidelity of the splicing process and yield splicing variants that are often advantageous for cancer cells. However, at the same time, these mutations increase the sensitivity of transformed cells to splicing inhibitors, thus offering a therapeutic opportunity for novel targeted strategies. Herein, we review the recent literature documenting cancer-associated mutations in components of the early spliceosome complex and discuss novel therapeutic strategies based on small-molecule spliceosome inhibitors that exhibit strong anti-tumor effects, particularly against cancer cells harboring mutations in spliceosomal components.
Collapse
Affiliation(s)
- Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- GSTEP-Organoids Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis, 6, 00135 Rome, Italy
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, IRCCS, Via del Fosso di Fiorano 64, 00143 Rome, Italy
- Correspondence:
| |
Collapse
|
30
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
31
|
Gaither J, Lin YH, Bundschuh R. RBPBind: Quantitative prediction of Protein-RNA interactions. J Mol Biol 2022; 434:167515. [DOI: 10.1016/j.jmb.2022.167515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 10/19/2022]
|
32
|
Lopez A, Dahiya V, Delhommel F, Freiburger L, Stehle R, Asami S, Rutz D, Blair L, Buchner J, Sattler M. Client binding shifts the populations of dynamic Hsp90 conformations through an allosteric network. SCIENCE ADVANCES 2021; 7:eabl7295. [PMID: 34919431 PMCID: PMC8682993 DOI: 10.1126/sciadv.abl7295] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/01/2021] [Indexed: 05/31/2023]
Abstract
Hsp90 is a molecular chaperone that interacts with a specific set of client proteins and assists their folding. The underlying molecular mechanisms, involving dynamic transitions between open and closed conformations, are still enigmatic. Combining nuclear magnetic resonance, small-angle x-ray scattering, and biochemical experiments, we have identified a key intermediate state of Hsp90 induced by adenosine triphosphate (ATP) binding, in which rotation of the Hsp90 N-terminal domain (NTD) yields a domain arrangement poised for closing. This ATP-stabilized NTD rotation is allosterically communicated across the full Hsp90 dimer, affecting distant client sites. By analyzing the interactions of four distinct clients, i.e., steroid hormone receptors (glucocorticoid receptor and mineralocorticoid receptor), p53, and Tau, we show that client-specific interactions with Hsp90 select and enhance the NTD-rotated state and promote closing of the full-length Hsp90 dimer. The p23 co-chaperone shifts the population of Hsp90 toward the closed state, thereby enhancing client interaction and processing.
Collapse
Affiliation(s)
- Abraham Lopez
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Vinay Dahiya
- Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Florent Delhommel
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Lee Freiburger
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Ralf Stehle
- Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Sam Asami
- Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Daniel Rutz
- Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
- Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Laura Blair
- USF Health Byrd Institute, Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL, USA
| | - Johannes Buchner
- Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| |
Collapse
|
33
|
Jonely M, Singh RK, Donelick HM, Bass BL, Noriega R. Loquacious-PD regulates the terminus-dependent molecular recognition of Dicer-2 toward double-stranded RNA. Chem Commun (Camb) 2021; 57:10879-10882. [PMID: 34590626 DOI: 10.1039/d1cc03843e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dicer-2 cleaves double-stranded RNA into siRNAs in a terminus-dependent manner as part of D. melanogaster's RNA interference pathway. Using ultrafast fluorescence, we probe the local environment of chromophores at the dsRNA terminus upon binding by Dicer-2 and interrogate the effects of Loquacious-PD, an accessory protein. We find substrate-selective modes of molecular recognition that distinguish between blunt and 3'overhang termini, but whose differences are greatly reduced by Loquacious-PD. These results connect the molecular recognition properties of Dicer-2 to its selective processing of dsRNAs with different termini and to its need for Loquacious-PD to efficiently produce endogenous siRNAs.
Collapse
Affiliation(s)
- McKenzie Jonely
- University of Utah, Department of Chemistry, Salt Lake City, UT 84112, USA.
| | - Raushan K Singh
- University of Utah, Department of Biochemistry, Salt Lake City, UT 84112, USA
| | - Helen M Donelick
- University of Utah, Department of Biochemistry, Salt Lake City, UT 84112, USA
| | - Brenda L Bass
- University of Utah, Department of Biochemistry, Salt Lake City, UT 84112, USA
| | - Rodrigo Noriega
- University of Utah, Department of Chemistry, Salt Lake City, UT 84112, USA.
| |
Collapse
|
34
|
Nasiri-Aghdam M, Garcia-Garduño TC, Jave-Suárez LF. CELF Family Proteins in Cancer: Highlights on the RNA-Binding Protein/Noncoding RNA Regulatory Axis. Int J Mol Sci 2021; 22:11056. [PMID: 34681716 PMCID: PMC8537729 DOI: 10.3390/ijms222011056] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/17/2022] Open
Abstract
Post-transcriptional modifications to coding and non-coding RNAs are unquestionably a pivotal way in which human mRNA and protein diversity can influence the different phases of a transcript's life cycle. CELF (CUGBP Elav-like family) proteins are RBPs (RNA-binding proteins) with pleiotropic capabilities in RNA processing. Their responsibilities extend from alternative splicing and transcript editing in the nucleus to mRNA stability, and translation into the cytoplasm. In this way, CELF family members have been connected to global alterations in cancer proliferation and invasion, leading to their identification as potential tumor suppressors or even oncogenes. Notably, genetic variants, alternative splicing, phosphorylation, acetylation, subcellular distribution, competition with other RBPs, and ultimately lncRNAs, miRNAs, and circRNAs all impact CELF regulation. Discoveries have emerged about the control of CELF functions, particularly via noncoding RNAs, and CELF proteins have been identified as competing, antagonizing, and regulating agents of noncoding RNA biogenesis. On the other hand, CELFs are an intriguing example through which to broaden our understanding of the RBP/noncoding RNA regulatory axis. Balancing these complex pathways in cancer is undeniably pivotal and deserves further research. This review outlines some mechanisms of CELF protein regulation and their functional consequences in cancer physiology.
Collapse
Affiliation(s)
- Maryam Nasiri-Aghdam
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico;
- Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Texali C. Garcia-Garduño
- Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Luis Felipe Jave-Suárez
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico;
| |
Collapse
|
35
|
Vandermeulen C, O’Grady T, Wayet J, Galvan B, Maseko S, Cherkaoui M, Desbuleux A, Coppin G, Olivet J, Ben Ameur L, Kataoka K, Ogawa S, Hermine O, Marcais A, Thiry M, Mortreux F, Calderwood MA, Van Weyenbergh J, Peloponese JM, Charloteaux B, Van den Broeke A, Hill DE, Vidal M, Dequiedt F, Twizere JC. The HTLV-1 viral oncoproteins Tax and HBZ reprogram the cellular mRNA splicing landscape. PLoS Pathog 2021; 17:e1009919. [PMID: 34543356 PMCID: PMC8483338 DOI: 10.1371/journal.ppat.1009919] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/30/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Viral infections are known to hijack the transcription and translation of the host cell. However, the extent to which viral proteins coordinate these perturbations remains unclear. Here we used a model system, the human T-cell leukemia virus type 1 (HTLV-1), and systematically analyzed the transcriptome and interactome of key effectors oncoviral proteins Tax and HBZ. We showed that Tax and HBZ target distinct but also common transcription factors. Unexpectedly, we also uncovered a large set of interactions with RNA-binding proteins, including the U2 auxiliary factor large subunit (U2AF2), a key cellular regulator of pre-mRNA splicing. We discovered that Tax and HBZ perturb the splicing landscape by altering cassette exons in opposing manners, with Tax inducing exon inclusion while HBZ induces exon exclusion. Among Tax- and HBZ-dependent splicing changes, we identify events that are also altered in Adult T cell leukemia/lymphoma (ATLL) samples from two independent patient cohorts, and in well-known cancer census genes. Our interactome mapping approach, applicable to other viral oncogenes, has identified spliceosome perturbation as a novel mechanism coordinated by Tax and HBZ to reprogram the transcriptome. Tax and HBZ are two viral regulatory proteins encoded by the human T-cell leukemia virus type 1 (HTLV-1) via sense and antisense transcripts, respectively. Both proteins are known to drive oncogenic processes that culminate in a T-cell neoplasm, known as Adult T cell leukemia/lymphoma (ATLL). We measured the effects of Tax and HBZ on host gene expression pathway by analyzing the interactome with cellular transcriptional and post-transcriptional regulators, and the transcriptome and mRNA splicing of cell lines expressing either Tax or HBZ. We compared our results with data obtained from independent cohorts of Japanese and Afro-Caribbean patients, and identified common splicing changes that might represent clinically useful biomarkers for ATLL. Finally, we provide evidence that the viral protein Tax can reprogram initial steps of the T-cell transcriptome diversification by hijacking the U2AF complex, a key cellular regulator of pre-mRNA splicing.
Collapse
Affiliation(s)
- Charlotte Vandermeulen
- Laboratory of Viral Interactomes, GIGA Institute, University of Liege, Liege, Belgium
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Laboratory of Gene Expression and Cancer, GIGA Institute, University of Liege, Liege, Belgium
| | - Tina O’Grady
- Laboratory of Gene Expression and Cancer, GIGA Institute, University of Liege, Liege, Belgium
| | - Jerome Wayet
- Unit of Animal Genomics, GIGA, Université de Liège (ULiège), Liège, Belgium
| | - Bartimee Galvan
- Laboratory of Gene Expression and Cancer, GIGA Institute, University of Liege, Liege, Belgium
| | - Sibusiso Maseko
- Laboratory of Viral Interactomes, GIGA Institute, University of Liege, Liege, Belgium
| | - Majid Cherkaoui
- Laboratory of Viral Interactomes, GIGA Institute, University of Liege, Liege, Belgium
| | - Alice Desbuleux
- Laboratory of Viral Interactomes, GIGA Institute, University of Liege, Liege, Belgium
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Georges Coppin
- Laboratory of Viral Interactomes, GIGA Institute, University of Liege, Liege, Belgium
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Julien Olivet
- Laboratory of Viral Interactomes, GIGA Institute, University of Liege, Liege, Belgium
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Lamya Ben Ameur
- Laboratory of Biology and Modeling of the Cell, CNRS UMR 5239, INSERM U1210, University of Lyon, Lyon, France
| | - Keisuke Kataoka
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Olivier Hermine
- Service Hématologie Adultes, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants Malades, Université de Paris, Laboratoire d’onco-hématologie, Institut Necker-Enfants Malades, INSERM U1151, Université de Paris, Paris, France
| | - Ambroise Marcais
- Service Hématologie Adultes, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants Malades, Université de Paris, Laboratoire d’onco-hématologie, Institut Necker-Enfants Malades, INSERM U1151, Université de Paris, Paris, France
| | - Marc Thiry
- Unit of Cell and Tissue Biology, GIGA Institute, University of Liege, Liege, Belgium
| | - Franck Mortreux
- Laboratory of Biology and Modeling of the Cell, CNRS UMR 5239, INSERM U1210, University of Lyon, Lyon, France
| | - Michael A. Calderwood
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Johan Van Weyenbergh
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Catholic University of Leuven, Leuven, Belgium
| | | | - Benoit Charloteaux
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Human Genetics, CHU of Liege, University of Liege, Liege, Belgium
| | - Anne Van den Broeke
- Unit of Animal Genomics, GIGA, Université de Liège (ULiège), Liège, Belgium
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
- * E-mail: (AVdB); (DEH); (MV); (FD); (J-CT)
| | - David E. Hill
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- * E-mail: (AVdB); (DEH); (MV); (FD); (J-CT)
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (AVdB); (DEH); (MV); (FD); (J-CT)
| | - Franck Dequiedt
- Laboratory of Gene Expression and Cancer, GIGA Institute, University of Liege, Liege, Belgium
- * E-mail: (AVdB); (DEH); (MV); (FD); (J-CT)
| | - Jean-Claude Twizere
- Laboratory of Viral Interactomes, GIGA Institute, University of Liege, Liege, Belgium
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- * E-mail: (AVdB); (DEH); (MV); (FD); (J-CT)
| |
Collapse
|
36
|
A synthetic small molecule stalls pre-mRNA splicing by promoting an early-stage U2AF2-RNA complex. Cell Chem Biol 2021; 28:1145-1157.e6. [PMID: 33689684 PMCID: PMC8380659 DOI: 10.1016/j.chembiol.2021.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/25/2021] [Accepted: 02/11/2021] [Indexed: 12/20/2022]
Abstract
Dysregulated pre-mRNA splicing is an emerging Achilles heel of cancers and myelodysplasias. To expand the currently limited portfolio of small-molecule drug leads, we screened for chemical modulators of the U2AF complex, which nucleates spliceosome assembly and is mutated in myelodysplasias. A hit compound specifically enhances RNA binding by a U2AF2 subunit. Remarkably, the compound inhibits splicing of representative substrates and stalls spliceosome assembly at the stage of U2AF function. Computational docking, together with structure-guided mutagenesis, indicates that the compound bridges the tandem U2AF2 RNA recognition motifs via hydrophobic and electrostatic moieties. Cells expressing a cancer-associated U2AF1 mutant are preferentially killed by treatment with the compound. Altogether, our results highlight the potential of trapping early spliceosome assembly as an effective pharmacological means to manipulate pre-mRNA splicing. By extension, we suggest that stabilizing assembly intermediates may offer a useful approach for small-molecule inhibition of macromolecular machines.
Collapse
|
37
|
Fukumura K, Yoshimoto R, Sperotto L, Kang HS, Hirose T, Inoue K, Sattler M, Mayeda A. SPF45/RBM17-dependent, but not U2AF-dependent, splicing in a distinct subset of human short introns. Nat Commun 2021; 12:4910. [PMID: 34389706 PMCID: PMC8363638 DOI: 10.1038/s41467-021-24879-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 07/06/2021] [Indexed: 11/11/2022] Open
Abstract
Human pre-mRNA introns vary in size from under fifty to over a million nucleotides. We searched for essential factors involved in the splicing of human short introns by screening siRNAs against 154 human nuclear proteins. The splicing activity was assayed with a model HNRNPH1 pre-mRNA containing short 56-nucleotide intron. We identify a known alternative splicing regulator SPF45 (RBM17) as a constitutive splicing factor that is required to splice out this 56-nt intron. Whole-transcriptome sequencing of SPF45-deficient cells reveals that SPF45 is essential in the efficient splicing of many short introns. To initiate the spliceosome assembly on a short intron with the truncated poly-pyrimidine tract, the U2AF-homology motif (UHM) of SPF45 competes out that of U2AF65 (U2AF2) for binding to the UHM-ligand motif (ULM) of the U2 snRNP protein SF3b155 (SF3B1). We propose that splicing in a distinct subset of human short introns depends on SPF45 but not U2AF heterodimer. The length distribution of human pre-mRNA introns is very extensive. The authors demonstrate that splicing in a subset of short introns is dependent on SPF45 (RBM17), which replaces authentic U2AF-heterodimer on the truncated poly-pyrimidine tracts and interacts with the U2 snRNP protein SF3b155.
Collapse
Affiliation(s)
- Kazuhiro Fukumura
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan.
| | - Rei Yoshimoto
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan.,Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Hirakata, Osaka, Japan
| | - Luca Sperotto
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Bavarian NMR Center (BNMRZ), Chemistry Department, Technical University of Munich, Garching, Germany
| | - Hyun-Seo Kang
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Bavarian NMR Center (BNMRZ), Chemistry Department, Technical University of Munich, Garching, Germany
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Kunio Inoue
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Hyogo, Japan
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Bavarian NMR Center (BNMRZ), Chemistry Department, Technical University of Munich, Garching, Germany
| | - Akila Mayeda
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan.
| |
Collapse
|
38
|
Korn SM, Ulshöfer CJ, Schneider T, Schlundt A. Structures and target RNA preferences of the RNA-binding protein family of IGF2BPs: An overview. Structure 2021; 29:787-803. [PMID: 34022128 DOI: 10.1016/j.str.2021.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/12/2021] [Accepted: 04/30/2021] [Indexed: 02/08/2023]
Abstract
Insulin-like growth factor 2 mRNA-binding proteins (IMPs, IGF2BPs) act in mRNA transport and translational control but are oncofetal tumor marker proteins. The IMP protein family represents a number of bona fide multi-domain RNA-binding proteins with up to six RNA-binding domains, resulting in a high complexity of possible modes of interactions with target mRNAs. Their exact mechanism in stability control of oncogenic mRNAs is only partially understood. Our and other laboratories' recent work has significantly pushed the understanding of IMP protein specificities both toward RNA engagement and between each other from NMR and crystal structures serving the basis for systematic biochemical and functional investigations. We here summarize the known structural and biochemical information about IMP RNA-binding domains and their RNA preferences. The article also touches on the respective roles of RNA secondary and protein tertiary structures for specific RNA-protein complexes, including the limited knowledge about IMPs' protein-protein interactions, which are often RNA mediated.
Collapse
Affiliation(s)
- Sophie Marianne Korn
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Corinna Jessica Ulshöfer
- Institute of Biochemistry, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Tim Schneider
- Institute of Biochemistry, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
39
|
Nussinov R, Jang H, Gursoy A, Keskin O, Gaponenko V. Inhibition of Nonfunctional Ras. Cell Chem Biol 2021; 28:121-133. [PMID: 33440168 PMCID: PMC7897307 DOI: 10.1016/j.chembiol.2020.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/28/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Intuitively, functional states should be targeted; not nonfunctional ones. So why could drugging the inactive K-Ras4BG12Cwork-but drugging the inactive kinase will likely not? The reason is the distinct oncogenic mechanisms. Kinase driver mutations work by stabilizing the active state and/or destabilizing the inactive state. Either way, oncogenic kinases are mostly in the active state. Ras driver mutations work by quelling its deactivation mechanisms, GTP hydrolysis, and nucleotide exchange. Covalent inhibitors that bind to the inactive GDP-bound K-Ras4BG12C conformation can thus work. By contrast, in kinases, allosteric inhibitors work by altering the active-site conformation to favor orthosteric drugs. From the translational standpoint this distinction is vital: it expedites effective pharmaceutical development and extends the drug classification based on the mechanism of action. Collectively, here we postulate that drug action relates to blocking the mechanism of activation, not to whether the protein is in the active or inactive state.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Attila Gursoy
- Department of Computer Engineering, Koc University, Istanbul 34450, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Istanbul 34450, Turkey
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
40
|
Schott G, Galarza-Muñoz G, Trevino N, Chen X, Weirauch M, Gregory SG, Bradrick SS, Garcia-Blanco MA. U2AF2 binds IL7R exon 6 ectopically and represses its inclusion. RNA (NEW YORK, N.Y.) 2021; 27:rna.078279.120. [PMID: 33568552 PMCID: PMC8051268 DOI: 10.1261/rna.078279.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/02/2021] [Indexed: 06/03/2023]
Abstract
Interleukin 7 receptor α-chain is crucial for the development and maintenance of T cells and is genetically associated with autoimmune disorders including multiple sclerosis (MS), a demyelinating disease of the CNS. Exon 6 of IL7R encodes for the transmembrane domain of the receptor and is regulated by alternative splicing: inclusion or skipping of IL7R exon 6 results in membrane-bound or soluble IL7R isoforms, respectively. We previously identified a SNP (rs6897932) in IL7R exon 6, strongly associated with MS risk and showed that the risk allele (C) increases skipping of the exon, resulting in elevated levels of sIL7R. This has important pathological consequences as elevated levels of sIL7R has been shown to exacerbate the disease in the experimental autoimmune encephalomyelitis mouse model of MS. Understanding the regulation of exon 6 splicing provides important mechanistic insights into the pathogenesis of MS. Here we report two mechanisms by which IL7R exon 6 is controlled. First, a competition between PTBP1 and U2AF2 at the polypyrimidine tract (PPT) of intron 5, and second, an unexpected U2AF2-mediated assembly of spicing factors in the exon. We noted the presence of a branchpoint sequence (BPS) (TACTAAT or TACTAAC) within exon 6, which is stronger with the C allele. We also noted that the BPS is followed by a PPT and conjectured that silencing could be mediated by the binding of U2AF2 to that tract. In support of this model, we show that evolutionary conservation of the exonic PPT correlates well with the degree of alternative splicing of exon 6 in two non-human primate species and that U2AF2 binding to this PPT recruits U2 snRNP components to the exon. These observations provide the first explanation for the stronger silencing of IL7R exon 6 with the disease associated C allele at rs6897932.
Collapse
|
41
|
Maji D, Glasser E, Henderson S, Galardi J, Pulvino MJ, Jenkins JL, Kielkopf CL. Representative cancer-associated U2AF2 mutations alter RNA interactions and splicing. J Biol Chem 2020; 295:17148-17157. [PMID: 33020180 PMCID: PMC7863893 DOI: 10.1074/jbc.ra120.015339] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/21/2020] [Indexed: 12/17/2022] Open
Abstract
High-throughput sequencing of hematologic malignancies and other cancers has revealed recurrent mis-sense mutations of genes encoding pre-mRNA splicing factors. The essential splicing factor U2AF2 recognizes a polypyrimidine-tract splice-site signal and initiates spliceosome assembly. Here, we investigate representative, acquired U2AF2 mutations, namely N196K or G301D amino acid substitutions associated with leukemia or solid tumors, respectively. We determined crystal structures of the wild-type (WT) compared with N196K- or G301D-substituted U2AF2 proteins, each bound to a prototypical AdML polypyrimidine tract, at 1.5, 1.4, or 1.7 Å resolutions. The N196K residue appears to stabilize the open conformation of U2AF2 with an inter-RNA recognition motif hydrogen bond, in agreement with an increased apparent RNA-binding affinity of the N196K-substituted protein. The G301D residue remains in a similar position as the WT residue, where unfavorable proximity to the RNA phosphodiester could explain the decreased RNA-binding affinity of the G301D-substituted protein. We found that expression of the G301D-substituted U2AF2 protein reduces splicing of a minigene transcript carrying prototypical splice sites. We further show that expression of either N196K- or G301D-substituted U2AF2 can subtly alter splicing of representative endogenous transcripts, despite the presence of endogenous, WT U2AF2 such as would be present in cancer cells. Altogether, our results demonstrate that acquired U2AF2 mutations such as N196K and G301D are capable of dysregulating gene expression for neoplastic transformation.
Collapse
Affiliation(s)
- Debanjana Maji
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Eliezra Glasser
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Steven Henderson
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Justin Galardi
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Mary J Pulvino
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Jermaine L Jenkins
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Clara L Kielkopf
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| |
Collapse
|
42
|
Capturing the Conformational Ensemble of the Mixed Folded Polyglutamine Protein Ataxin-3. Structure 2020; 29:70-81.e5. [PMID: 33065068 DOI: 10.1016/j.str.2020.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/22/2020] [Accepted: 09/24/2020] [Indexed: 01/31/2023]
Abstract
Ataxin-3 is a deubiquitinase involved in protein quality control and other essential cellular functions. It preferentially interacts with polyubiquitin chains of four or more units attached to proteins delivered to the ubiquitin-proteasome system. Ataxin-3 is composed of an N-terminal Josephin domain and a flexible C terminus that contains two or three ubiquitin-interacting motifs (UIMs) and a polyglutamine tract, which, when expanded beyond a threshold, leads to protein aggregation and misfolding and causes spinocerebellar ataxia type 3. The high-resolution structure of the Josephin domain is available, but the structural and dynamical heterogeneity of ataxin-3 has so far hindered the structural description of the full-length protein. Here, we characterize non-expanded and expanded variants of ataxin-3 in terms of conformational ensembles adopted by the proteins in solution by jointly using experimental data from nuclear magnetic resonance and small-angle X-ray scattering with coarse-grained simulations. Our results pave the way to a molecular understanding of polyubiquitin recognition.
Collapse
|
43
|
Crawley-Snowdon H, Yang JC, Zaccai NR, Davis LJ, Wartosch L, Herman EK, Bright NA, Swarbrick JS, Collins BM, Jackson LP, Seaman MNJ, Luzio JP, Dacks JB, Neuhaus D, Owen DJ. Mechanism and evolution of the Zn-fingernail required for interaction of VARP with VPS29. Nat Commun 2020; 11:5031. [PMID: 33024112 PMCID: PMC7539009 DOI: 10.1038/s41467-020-18773-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/08/2020] [Indexed: 01/13/2023] Open
Abstract
VARP and TBC1D5 are accessory/regulatory proteins of retromer-mediated retrograde trafficking from endosomes. Using an NMR/X-ray approach, we determined the structure of the complex between retromer subunit VPS29 and a 12 residue, four-cysteine/Zn++ microdomain, which we term a Zn-fingernail, two of which are present in VARP. Mutations that abolish VPS29:VARP binding inhibit trafficking from endosomes to the cell surface. We show that VARP and TBC1D5 bind the same site on VPS29 and can compete for binding VPS29 in vivo. The relative disposition of VPS29s in hetero-hexameric, membrane-attached, retromer arches indicates that VARP will prefer binding to assembled retromer coats through simultaneous binding of two VPS29s. The TBC1D5:VPS29 interaction is over one billion years old but the Zn-fingernail appears only in VARP homologues in the lineage directly giving rise to animals at which point the retromer/VARP/TBC1D5 regulatory network became fully established.
Collapse
Affiliation(s)
- Harriet Crawley-Snowdon
- MRC Laboratory of Molecular Biology Cambridge Biomedical Campus, Francis Crick Ave, Cambridge, CB2 0QH, UK
| | - Ji-Chun Yang
- MRC Laboratory of Molecular Biology Cambridge Biomedical Campus, Francis Crick Ave, Cambridge, CB2 0QH, UK
| | - Nathan R Zaccai
- CIMR, The Keith Peters Building, Hills Road, Cambridge, CB2 0QQ, UK
| | - Luther J Davis
- CIMR, The Keith Peters Building, Hills Road, Cambridge, CB2 0QQ, UK
| | - Lena Wartosch
- CIMR, The Keith Peters Building, Hills Road, Cambridge, CB2 0QQ, UK
| | - Emily K Herman
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Canada, T6G 2G3
| | | | - James S Swarbrick
- Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Brett M Collins
- The University of Queensland, Institute for Molecular Bioscience, St Lucia, QLD, 4072, Australia
| | - Lauren P Jackson
- CIMR, The Keith Peters Building, Hills Road, Cambridge, CB2 0QQ, UK
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | | | - J Paul Luzio
- CIMR, The Keith Peters Building, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Joel B Dacks
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Canada, T6G 2G3.
| | - David Neuhaus
- MRC Laboratory of Molecular Biology Cambridge Biomedical Campus, Francis Crick Ave, Cambridge, CB2 0QH, UK.
| | - David J Owen
- CIMR, The Keith Peters Building, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
44
|
Warnasooriya C, Feeney CF, Laird KM, Ermolenko DN, Kielkopf CL. A splice site-sensing conformational switch in U2AF2 is modulated by U2AF1 and its recurrent myelodysplasia-associated mutation. Nucleic Acids Res 2020; 48:5695-5709. [PMID: 32343311 PMCID: PMC7261175 DOI: 10.1093/nar/gkaa293] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/09/2020] [Accepted: 04/17/2020] [Indexed: 02/02/2023] Open
Abstract
An essential heterodimer of the U2AF1 and U2AF2 pre-mRNA splicing factors nucleates spliceosome assembly at polypyrimidine (Py) signals preceding the major class of 3′ splice sites. U2AF1 frequently acquires an S34F-encoding mutation among patients with myelodysplastic syndromes (MDS). The influence of the U2AF1 subunit and its S34F mutation on the U2AF2 conformations remains unknown. Here, we employ single molecule Förster resonance energy transfer (FRET) to determine the influence of wild-type or S34F-substituted U2AF1 on the conformational dynamics of U2AF2 and its splice site RNA complexes. In the absence of RNA, the U2AF1 subunit stabilizes a high FRET value, which by structure-guided mutagenesis corresponds to a closed conformation of the tandem U2AF2 RNA recognition motifs (RRMs). When the U2AF heterodimer is bound to a strong, uridine-rich splice site, U2AF2 switches to a lower FRET value characteristic of an open, side-by-side arrangement of the RRMs. Remarkably, the U2AF heterodimer binds weak, uridine-poor Py tracts as a mixture of closed and open U2AF2 conformations, which are modulated by the S34F mutation. Shifts between open and closed U2AF2 may underlie U2AF1-dependent splicing of degenerate Py tracts and contribute to a subset of S34F-dysregulated splicing events in MDS patients.
Collapse
Affiliation(s)
- Chandani Warnasooriya
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Callen F Feeney
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Kholiswa M Laird
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Dmitri N Ermolenko
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Clara L Kielkopf
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
45
|
Fica SM. Cryo-EM snapshots of the human spliceosome reveal structural adaptions for splicing regulation. Curr Opin Struct Biol 2020; 65:139-148. [PMID: 32717639 DOI: 10.1016/j.sbi.2020.06.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/28/2022]
Abstract
Introns are excised from pre-messenger RNAs by the spliceosome, which produces mRNAs with continuous protein-coding information. In humans, most pre-mRNAs undergo alternative splicing to expand proteomic diversity. Cryo-electron microscopy (cryo-EM) structures of the yeast spliceosome elucidated how proteins stabilize and remodel an RNA-based active site to effect splicing catalysis. More recent cryo-EM snapshots of the human spliceosome reveal a complex protein scaffold and provide insights into the role of specific human proteins in modulating spliceosome activation, splice site positioning, and the ATPase-mediated dynamics of the active site. The emerging molecular picture highlights how, compared to its yeast counterpart, the human spliceosome has coopted additional protein factors to allow increased plasticity of splice site recognition and remodeling, and potentially to regulate alternative splicing.
Collapse
Affiliation(s)
- Sebastian M Fica
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
46
|
Arribere JA, Kuroyanagi H, Hundley HA. mRNA Editing, Processing and Quality Control in Caenorhabditis elegans. Genetics 2020; 215:531-568. [PMID: 32632025 PMCID: PMC7337075 DOI: 10.1534/genetics.119.301807] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/03/2020] [Indexed: 02/06/2023] Open
Abstract
While DNA serves as the blueprint of life, the distinct functions of each cell are determined by the dynamic expression of genes from the static genome. The amount and specific sequences of RNAs expressed in a given cell involves a number of regulated processes including RNA synthesis (transcription), processing, splicing, modification, polyadenylation, stability, translation, and degradation. As errors during mRNA production can create gene products that are deleterious to the organism, quality control mechanisms exist to survey and remove errors in mRNA expression and processing. Here, we will provide an overview of mRNA processing and quality control mechanisms that occur in Caenorhabditis elegans, with a focus on those that occur on protein-coding genes after transcription initiation. In addition, we will describe the genetic and technical approaches that have allowed studies in C. elegans to reveal important mechanistic insight into these processes.
Collapse
Affiliation(s)
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan, and
| | - Heather A Hundley
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Indiana 47405
| |
Collapse
|
47
|
Integrating Non-NMR Distance Restraints to Augment NMR Depiction of Protein Structure and Dynamics. J Mol Biol 2020; 432:2913-2929. [DOI: 10.1016/j.jmb.2020.01.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 11/24/2022]
|
48
|
Delhommel F, Gabel F, Sattler M. Current approaches for integrating solution NMR spectroscopy and small-angle scattering to study the structure and dynamics of biomolecular complexes. J Mol Biol 2020; 432:2890-2912. [DOI: 10.1016/j.jmb.2020.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/27/2020] [Accepted: 03/10/2020] [Indexed: 01/24/2023]
|
49
|
An autoinhibitory intramolecular interaction proof-reads RNA recognition by the essential splicing factor U2AF2. Proc Natl Acad Sci U S A 2020; 117:7140-7149. [PMID: 32188783 DOI: 10.1073/pnas.1913483117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The recognition of cis-regulatory RNA motifs in human transcripts by RNA binding proteins (RBPs) is essential for gene regulation. The molecular features that determine RBP specificity are often poorly understood. Here, we combined NMR structural biology with high-throughput iCLIP approaches to identify a regulatory mechanism for U2AF2 RNA recognition. We found that the intrinsically disordered linker region connecting the two RNA recognition motif (RRM) domains of U2AF2 mediates autoinhibitory intramolecular interactions to reduce nonproductive binding to weak Py-tract RNAs. This proofreading favors binding of U2AF2 at stronger Py-tracts, as required to define 3' splice sites at early stages of spliceosome assembly. Mutations that impair the linker autoinhibition enhance the affinity for weak Py-tracts result in promiscuous binding of U2AF2 along mRNAs and impact on splicing fidelity. Our findings highlight an important role of intrinsically disordered linkers to modulate RNA interactions of multidomain RBPs.
Collapse
|
50
|
Herdt O, Reich S, Medenbach J, Timmermann B, Olofsson D, Preußner M, Heyd F. The zinc finger domains in U2AF26 and U2AF35 have diverse functionalities including a role in controlling translation. RNA Biol 2020; 17:843-856. [PMID: 32116123 DOI: 10.1080/15476286.2020.1732701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recent work has associated point mutations in both zinc fingers (ZnF) of the spliceosome component U2AF35 with malignant transformation. However, surprisingly little is known about the functionality of the U2AF35 ZnF domains in general. Here we have analysed key functionalities of the ZnF domains of mammalian U2AF35 and its paralog U2AF26. Both ZnFs are required for splicing regulation, whereas only ZnF2 controls protein stability and contributes to the interaction with U2AF65. These features are confirmed in a naturally occurring splice variant of U2AF26 lacking ZnF2, that is strongly induced upon activation of primary mouse T cells and localized in the cytoplasm. Using Ribo-Seq in a model T cell line we provide evidence for a role of U2AF26 in activating cytoplasmic steps in gene expression, notably translation. Consistently, an MS2 tethering assay shows that cytoplasmic U2AF26/35 increase translation when localized to the 5'UTR of a model mRNA. This regulation is partially dependent on ZnF1 thus providing a connection between a core splicing factor, the ZnF domains and the regulation of translation. Altogether, our work reveals unexpected functions of U2AF26/35 and their ZnF domains, thereby contributing to a better understanding of their role and regulation in mammalian cells.
Collapse
Affiliation(s)
- Olga Herdt
- Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Freie Universität Berlin , Berlin, Germany
| | - Stefan Reich
- Institute of Biochemistry I, University of Regensburg , Regensburg, Germany
| | - Jan Medenbach
- Institute of Biochemistry I, University of Regensburg , Regensburg, Germany
| | - Bernd Timmermann
- Sequencing Core Facility, Max-Planck-Institute for Molecular Genetics , Berlin, Germany
| | - Didrik Olofsson
- Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Freie Universität Berlin , Berlin, Germany
| | - Marco Preußner
- Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Freie Universität Berlin , Berlin, Germany
| | - Florian Heyd
- Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Freie Universität Berlin , Berlin, Germany
| |
Collapse
|