1
|
Li RN, Chen SL. Recent Insights into the Reaction Mechanisms of Non-Heme Diiron Enzymes Containing Oxoiron(IV) Complexes. Chembiochem 2025; 26:e202400788. [PMID: 39508533 DOI: 10.1002/cbic.202400788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/15/2024]
Abstract
Oxoiron(IV) complexes are key intermediates in the catalytic reactions of some non-heme diiron enzymes. These enzymes, across various subfamilies, activate dioxygen to generate high-valent diiron-oxo species, which, in turn, drive the activation of substrates and mediate a variety of challenging oxidative transformations. In this review, we summarize the structures, formation mechanisms, and functions of high-valent diiron-oxo intermediates in eight representative diiron enzymes (sMMO, RNR, ToMO, MIOX, PhnZ, SCD1, AlkB, and SznF) spanning five subfamilies. We also categorize and analyze the structural and mechanistic differences among these enzymes.
Collapse
Affiliation(s)
- Rui-Ning Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shi-Lu Chen
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
2
|
Zhao S, Wu L, Xu Y, Nie Y. Fe(II) and 2-oxoglutarate-dependent dioxygenases for natural product synthesis: molecular insights into reaction diversity. Nat Prod Rep 2025; 42:67-92. [PMID: 39403014 DOI: 10.1039/d4np00030g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Covering: up to 2024Fe(II) and 2-oxoglutarate-dependent dioxygenases (Fe/2OG DOs) are a superfamily of enzymes that play important roles in a variety of catalytic reactions, including hydroxylation, ring formation, ring reconstruction, desaturation, and demethylation. Each member of this family has similarities in their overall structure, but they have varying specific differences, making Fe/2OG DOs attractive for catalytic diversity. With the advancement of current research, more Fe/2OG DOs have been discovered, and their catalytic scope has been further broadened; however, apart from hydroxylation, many reaction mechanisms have not been accurately demonstrated, and there is a lack of a systematic understanding of their molecular basis. Recently, an increasing number of X-ray structures of Fe/2OG DOs have provided new insights into the structural basis of their function and substrate-binding properties. This structural information is essential for understanding catalytic mechanisms and mining potential catalytic reactions. In this review, we summarize most of the Fe/2OG DOs whose structures have been resolved in recent years, focus on their structural features, and explore the relationships between various structural elements and unique catalytic mechanisms and their associated reaction type classification.
Collapse
Affiliation(s)
- Songyin Zhao
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| | - Lunjie Wu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| | - Yao Nie
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| |
Collapse
|
3
|
Wang X, Yang L, Wang S, Wang J, Li K, Naowarojna N, Ju Y, Ye K, Han Y, Yan W, Liu X, Zhang L, Liu P. Characterizing Y224 conformational flexibility in FtmOx1-catalysis using 19F NMR spectroscopy. Catal Sci Technol 2025; 15:386-395. [PMID: 39669701 PMCID: PMC11629144 DOI: 10.1039/d4cy01077a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/30/2024] [Indexed: 12/14/2024]
Abstract
α-Ketoglutarate-dependent non-haem iron (αKG-NHFe) enzymes play a crucial role in natural product biosynthesis, and in some cases exhibiting multifunctional catalysis capability. This study focuses on αKG-NHFe enzyme FtmOx1, which catalyzes endoperoxidation, dealkylation, and alcohol oxidation reactions in verruculogen biosynthesis. We explore the hypothesis that the conformational dynamics of the active site Y224 confer the multifunctional activities of FtmOx1-catalysis. Utilizing Y224-to-3,5-difluorotyrosine-substituted FtmOx1, produced via the amber codon suppression method, we conducted 19F NMR characterization to investigate FtmOx1's structural flexibility. Subsequent biochemical and X-ray crystallographic analyses provided insights into how specific conformations of FtmOx1-substrate complexes influence their catalytic activities. These findings underscore the utility of 19F NMR as a powerful tool for elucidating the complex mechanisms of multifunctional enzymes, offering potential avenues for developing biocatalytic processes to produce novel therapeutic agents harnessing their unique catalytic properties.
Collapse
Affiliation(s)
- Xinye Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Lingyun Yang
- iHuman Institute, Shanghaitech University Shanghai 201210 China
| | - Shenlin Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Jun Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Kelin Li
- Department of Chemistry, Boston University Boston Massachusetts 02215 USA
| | - Nathchar Naowarojna
- Program of Chemistry, Faculty of Science and Technology, Sakon Nakhon Rajabhat University Sakon Nakhon 47000 Thailand
| | - Yi Ju
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Ke Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Yuchen Han
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Wupeng Yan
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Pinghua Liu
- Department of Chemistry, Boston University Boston Massachusetts 02215 USA
| |
Collapse
|
4
|
Zhang S, He B, Qu-Bie A, Li M, Luo M, Feng M, Yan X, Sheng H, Li W, Gou Y, Liu Y. Endoperoxidases in biosynthesis of endoperoxide bonds. Int J Biol Macromol 2024; 282:136806. [PMID: 39447789 DOI: 10.1016/j.ijbiomac.2024.136806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/30/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Endoperoxides are important sources of ideas for drug discovery. Endoperoxide bonds are considered to be the cause of the interesting biological activities of endoperoxides, but there is limited knowledge regarding the biosynthetic mechanisms of most endoperoxide bonds. In this minireview, we summarize current knowledge about the biosynthesis of endoperoxides in nature and focus our discussion on plant-derived endoperoxides. In short, plants have evolved two systems, photocatalysis and enzyme catalysis, to catalyse the synthesis of endoperoxide bonds. Iron-dependent oxygenases, represented by the α-ketoglutarate (α-KG)-dependent dioxygenase (2-ODD) family, are most likely involved in the enzyme-catalysed reactions of endoperoxides in plants. Moreover, Nardostachys jatamansi (D.Don) DC, a plant native to the Himalayan alpine region, is strongly recommended for use in the discovery of plant-derived endoperoxidases.
Collapse
Affiliation(s)
- Shaoshan Zhang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Chengdu 610225, China; Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu 610225, China; Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan 610225, China.
| | - Bin He
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Chengdu 610225, China; Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu 610225, China
| | - Axiang Qu-Bie
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Chengdu 610225, China; Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu 610225, China
| | - Min Li
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Chengdu 610225, China; Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu 610225, China
| | - Mengting Luo
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Chengdu 610225, China; Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu 610225, China
| | - Mingkang Feng
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Chengdu 610225, China; Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu 610225, China
| | - Xinjia Yan
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Chengdu 610225, China; Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu 610225, China; Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Huachun Sheng
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Chengdu 610225, China; Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu 610225, China; Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Wenbing Li
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Chengdu 610225, China; Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu 610225, China; Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan 610225, China.
| | - Yan Gou
- Sichuan Provincial Institute for Drug Control/NMAP Key Laboratory of Quality Evaluation of Chinese Patent Medicine (Traditional Chinese Patent Medicine), Chengdu 611731, China.
| | - Yuan Liu
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Chengdu 610225, China; Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu 610225, China; Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan 610225, China.
| |
Collapse
|
5
|
Eka Ningrum N, Cahyaning Rahamjnhyu DU, Dianhar H, Wongso H, Keller PA, Satia Nugraha A. Chemical Diversity, Pharmacology, Synthesis and Detection of Naturally Occurring Peroxides. Chem Biodivers 2024; 21:e202400794. [PMID: 38997231 DOI: 10.1002/cbdv.202400794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/14/2024]
Abstract
Natural occurring peroxides are interesting bioprospecting targets due to their molecular structural diversity and the wide range of pharmacological activities. In this systematic review, a total of 123 peroxide compounds were analysed from 99 published papers with the compounds distributed in 31 plants, 18 animals and 41 microorganisms living in land and water ecosystems. The peroxide moiety exists as both cyclic and acyclic entities and can include 1,2-dioxolanes, 1,2-dioxane rings and common secondary metabolites with a peroxo group. These peroxides possessed diverse bioactivities including anticancer, antimalarial, antimicrobial, anti-inflammatory, neuroprotective, adipogenic suppressor, antituberculosis, anti-melanogenic and anti-coagulant agents. Biosynthetic pathways and mechanisms of most endoperoxides have not been well established. Method development in peroxide detection has been a challenging task requiring multidisciplinary investigation and exploration on peroxy-containing secondary metabolites are necessary.
Collapse
Affiliation(s)
- Nindya Eka Ningrum
- Drug Utilisation and Discovery Research Group, Faculty of Pharmacy, Universitas Jember, Jember, 68121, Indonesia
| | - Dyah Utami Cahyaning Rahamjnhyu
- School of Chemistry and Molecular Biosciences, Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia
| | - Hanhan Dianhar
- Universitas Negeri Jakarta, Chemistry Study Program, Faculty of Mathematics and Natural Sciences, Research Center for Radioisotope, East Jakarta, 13220, Indonesia
| | - Hendris Wongso
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Sumedang, Indonesia
- Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Banten, Indonesia
| | - Paul A Keller
- School of Chemistry and Molecular Biosciences, Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Ari Satia Nugraha
- Drug Utilisation and Discovery Research Group, Faculty of Pharmacy, Universitas Jember, Jember, 68121, Indonesia
- School of Chemistry and Molecular Biosciences, Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
6
|
Monkcom EC, Gómez L, Lutz M, Ye S, Bill E, Costas M, Klein Gebbink RJM. Synthesis, Structure and Reactivity of a Mononuclear N,N,O-Bound Fe(II) α-Keto-Acid Complex. Chemistry 2024; 30:e202302710. [PMID: 37882223 DOI: 10.1002/chem.202302710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023]
Abstract
A bulky, tridentate phenolate ligand (ImPh2 NNOtBu ) was used to synthesise the first example of a mononuclear, facial, N,N,O-bound iron(II) benzoylformate complex, [Fe(ImPh2 NNOtBu )(BF)] (2). The X-ray crystal structure of 2 reveals that the iron centre is pentacoordinate (τ=0.5), with a vacant site located cis to the bidentate BF ligand. The Mössbauer parameters of 2 are consistent with high-spin iron(II), and are very close to those reported for α-ketoglutarate-bound non-heme iron enzyme active sites. According to NMR and UV-vis spectroscopies, the structural integrity of 2 is retained in both coordinating and non-coordinating solvents. Cyclic voltammetry studies show that the iron centre has a very low oxidation potential and is more prone to electrochemical oxidation than the redox-active phenolate ligand. Complex 2 reacts with NO to form a S=3 /2 {FeNO}7 adduct in which NO binds directly to the iron centre, according to EPR, UV-vis, IR spectroscopies and DFT analysis. Upon O2 exposure, 2 undergoes oxidative decarboxylation to form a diiron(III) benzoate complex, [Fe2 (ImPh2 NNOtBu )2 (μ2 -OBz)(μ2 -OH)2 ]+ (3). A small amount of hydroxylated ligand was also observed by ESI-MS, hinting at the formation of a high-valent iron(IV)-oxo intermediate. Initial reactivity studies show that 2 is capable of oxygen atom transfer reactivity with O2 , converting methyl(p-tolyl)sulfide to sulfoxide.
Collapse
Affiliation(s)
- Emily C Monkcom
- Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Laura Gómez
- Serveis Tècnics de Recerca, Universitat de Girona, Pic de Peguera 15, Parc Cientific, 17003, Girona, Spain
| | - Martin Lutz
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion, 45470, Mülheim an der Ruhr, Germany
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi, Universitat de Girona, Pic de Peguera 15, Parc Cientific, 17003, Girona, Spain
| | - Robertus J M Klein Gebbink
- Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
7
|
Wu L, Wang Z, Cen Y, Wang B, Zhou J. Reply to Correspondence on "Structural Insight into the Catalytic Mechanism of the Endoperoxide Synthase FtmOx1''. Angew Chem Int Ed Engl 2023; 62:e202306059. [PMID: 37541667 DOI: 10.1002/anie.202306059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Indexed: 08/06/2023]
Abstract
The high-resolution X-ray crystal structure of the ternary complex FtmOx1 ⋅ 2OG ⋅ fumitremorgin B and the catalytic mechanism were recently reported by us (DOI 10.1002/anie.202112063). In their Correspondence, Zhang, Costello, Liu et al. criticize our work in several aspects. Herein, we address these questions one by one. These structural clarifications and new computational results further support the CarC-like mechanistic model.
Collapse
Affiliation(s)
- Lian Wu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zhanfeng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yixin Cen
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jiahai Zhou
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
8
|
Zhang L, Liu X, Wang X, Zhu G, Song H, Cheng R, Naowarojna N, Costello CE, Liu P. Correspondence on "Structural Insight into the Catalytic Mechanism of the Endoperoxide Synthase FtmOx1". Angew Chem Int Ed Engl 2023; 62:e202218643. [PMID: 37541669 PMCID: PMC10528348 DOI: 10.1002/anie.202218643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Indexed: 08/06/2023]
Abstract
In their recent Angewandte Chemie publication (doi: 10.1002/anie.202112063), Cen, Wang, Zhou et al. reported the crystal structure of a ternary complex of the non-heme iron endoperoxidase FtmOx1 (PDB entry 7ETK). The biochemical data assessed in this study were from a retracted study (doi: 10.1038/nature15519) by Zhang, Liu, Zhang et al.; no additional biochemical data were included, yet there was no discussion on the source of the biochemical data in the report by Cen, Wang, Zhou et al. Based on this new crystal structure and subsequent QM/MM-MD calculations, Cen, Wang, Zhou et al. concluded that their work provided evidence supporting the CarC-like mechanistic model for FtmOx1 catalysis. However, the authors did not accurately describe either the CarC-like model or the COX-like model, and they did not address the differences between them. Further, and contrary to their interpretations in the manuscript, the authors' data are consistent with the COX-like model once the details of the CarC-like and COX-like models have been carefully analyzed.
Collapse
Affiliation(s)
- Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China,
University of Science and Technology, Shanghai 200237 (China)
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China,
University of Science and Technology, Shanghai 200237 (China)
| | - Xinye Wang
- State Key Laboratory of Bioreactor Engineering, East China,
University of Science and Technology, Shanghai 200237 (China)
| | - Guoliang Zhu
- State Key Laboratory of Bioreactor Engineering, East China,
University of Science and Technology, Shanghai 200237 (China)
| | - Heng Song
- College of Chemistry and Molecular Sciences, Wuhan University,
Wuhan 430072 (China)
| | - Ronghai Cheng
- Department of Chemistry, Boston University, Boston, 02215 MA
(USA)
| | | | | | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, 02215 MA
(USA)
| |
Collapse
|
9
|
Yuan F, Su B, Yu Y, Wang J. Study and design of amino acid-based radical enzymes using unnatural amino acids. RSC Chem Biol 2023; 4:431-446. [PMID: 37292061 PMCID: PMC10246556 DOI: 10.1039/d2cb00250g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/17/2023] [Indexed: 06/10/2023] Open
Abstract
Radical enzymes harness the power of reactive radical species by placing them in a protein scaffold, and they are capable of catalysing many important reactions. New native radical enzymes, especially those with amino acid-based radicals, in the category of non-heme iron enzymes (including ribonucleotide reductases), heme enzymes, copper enzymes, and FAD-radical enzymes have been discovered and characterized. We discussed recent research efforts to discover new native amino acid-based radical enzymes, and to study the roles of radicals in processes such as enzyme catalysis and electron transfer. Furthermore, design of radical enzymes in a small and simple scaffold not only allows us to study the radical in a well-controlled system and test our understanding of the native enzymes, but also allows us to create powerful enzymes. In the study and design of amino acid-based radical enzymes, the use of unnatural amino acids allows precise control of pKa values and reduction potentials of the residue, as well as probing the location of the radical through spectroscopic methods, making it a powerful research tool. Our understanding of amino acid-based radical enzymes will allow us to tailor them to create powerful catalysts and better therapeutics.
Collapse
Affiliation(s)
- Feiyan Yuan
- Institute of Biochemical Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 102488 China
| | - Binbin Su
- Institute of Biochemical Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 102488 China
| | - Yang Yu
- Institute of Biochemical Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 102488 China
| | - Jiangyun Wang
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences Beijing 100101 China
| |
Collapse
|
10
|
Awakawa T, Mori T, Ushimaru R, Abe I. Structure-based engineering of α-ketoglutarate dependent oxygenases in fungal meroterpenoid biosynthesis. Nat Prod Rep 2023; 40:46-61. [PMID: 35642933 DOI: 10.1039/d2np00014h] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Non-heme iron- and α-ketoglutarate-dependent oxygenases (αKG OXs) are key enzymes that play a major role in diversifying the structure of fungal meroterpenoids. They activate a specific C-H bond of the substrate to first generate radical species, which is usually followed by oxygen rebound to produce cannonical hydroxylated products. However, in some cases remarkable chemistry induces dramatic structural changes in the molecular scaffolds, depending on the stereoelectronic characters of the substrate/intermediates and the resulting conformational changes/movements of the active site of the enzyme. Their molecular bases have been extensively investigated by crystallographic structural analyses and structure-based mutagenesis, which revealed intimate structural details of the enzyme reactions. This information facilitates the manipulation of the enzyme reactions to create unnatural, novel molecules for drug discovery. This review summarizes recent progress in the structure-based engineering of αKG OX enzymes, involved in the biosynthesis of polyketide-derived fungal meroterpenoids. The literature published from 2016 through February 2022 is reviewed.
Collapse
Affiliation(s)
- Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan. .,Collaborative Research Institute for Innovative Microbiology, the University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan. .,Collaborative Research Institute for Innovative Microbiology, the University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan. .,Collaborative Research Institute for Innovative Microbiology, the University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.,ACT-X, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan. .,Collaborative Research Institute for Innovative Microbiology, the University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
11
|
β-Hydroxylation of α-amino-β-hydroxylbutanoyl-glycyluridine catalyzed by a nonheme hydroxylase ensures the maturation of caprazamycin. Commun Chem 2022; 5:87. [PMID: 36697788 PMCID: PMC9814697 DOI: 10.1038/s42004-022-00703-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 07/13/2022] [Indexed: 01/28/2023] Open
Abstract
Caprazamycin is a nucleoside antibiotic that inhibits phospho-N-acetylmuramyl-pentapeptide translocase (MraY). The biosynthesis of nucleoside antibiotics has been studied but is still far from completion. The present study characterized enzymes Cpz10, Cpz15, Cpz27, Mur17, Mur23 out of caprazamycin/muraymycin biosynthetic gene cluster, particularly the nonheme αKG-dependent enzyme Cpz10. Cpz15 is a β-hydroxylase converting uridine mono-phosphate to uridine 5' aldehyde, then incorporating with threonine by Mur17 (Cpz14) to form 5'-C-glycyluridine. Cpz10 hydroxylates synthetic 11 to 12 in vitro. Major product 13 derived from mutant Δcpz10 is phosphorylated by Cpz27. β-Hydroxylation of 11 by Cpz10 permits the maturation of caprazamycin, but decarboxylation of 11 by Mur23 oriented to muraymycin formation. Cpz10 recruits two iron atoms to activate dioxygen with regio-/stereo-specificity and commit electron/charge transfer, respectively. The chemo-physical interrogations should greatly advance our understanding of caprazamycin biosynthesis, which is conducive to pathway/protein engineering for developing more effective nucleoside antibiotics.
Collapse
|
12
|
Zhu G, Yan W, Wang X, Cheng R, Naowarojna N, Wang K, Wang J, Song H, Wang Y, Liu H, Xia X, Costello CE, Liu X, Zhang L, Liu P. Dissecting the Mechanism of the Nonheme Iron Endoperoxidase FtmOx1 Using Substrate Analogues. JACS AU 2022; 2:1686-1698. [PMID: 35911443 PMCID: PMC9326825 DOI: 10.1021/jacsau.2c00248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
FtmOx1 is a nonheme iron (NHFe) endoperoxidase, catalyzing three disparate reactions, endoperoxidation, alcohol dehydrogenation, and dealkylation, under in vitro conditions; the diversity complicates its mechanistic studies. In this study, we use two substrate analogues to simplify the FtmOx1-catalyzed reaction to either a dealkylation or an alcohol dehydrogenation reaction for structure-function relationship analysis to address two key FtmOx1 mechanistic questions: (1) Y224 flipping in the proposed COX-like model vs α-ketoglutarate (αKG) rotation proposed in the CarC-like mechanistic model and (2) the involvement of a Y224 radical (COX-like model) or a Y68 radical (CarC-like model) in FtmOx1-catalysis. When 13-oxo-fumitremorgin B (7) is used as the substrate, FtmOx1-catalysis changes from the endoperoxidation to a hydroxylation reaction and leads to dealkylation. In addition, consistent with the dealkylation side-reaction in the COX-like model prediction, the X-ray structure of the FtmOx1•CoII•αKG•7 ternary complex reveals a flip of Y224 to an alternative conformation relative to the FtmOx1•FeII•αKG binary complex. Verruculogen (2) was used as a second substrate analogue to study the alcohol dehydrogenation reaction to examine the involvement of the Y224 radical or Y68 radical in FtmOx1-catalysis, and again, the results from the verruculogen reaction are more consistent with the COX-like model.
Collapse
Affiliation(s)
- Guoliang Zhu
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wupeng Yan
- School
of Life Sciences and Biotechnology, Shanghai
Jiao Tong University, Shanghai 200237, China
| | - Xinye Wang
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ronghai Cheng
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Nathchar Naowarojna
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Kun Wang
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jun Wang
- School
of Life Sciences and Biotechnology, Shanghai
Jiao Tong University, Shanghai 200237, China
| | - Heng Song
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan, Hubei Province 430072, China
| | - Yuyang Wang
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hairong Liu
- Key
Biosensor Laboratory of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy
of Sciences), Jinan, Shandong Province 250013, China
| | - Xuekui Xia
- Key
Biosensor Laboratory of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy
of Sciences), Jinan, Shandong Province 250013, China
| | - Catherine E. Costello
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Xueting Liu
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lixin Zhang
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Pinghua Liu
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
13
|
Mori T, Abe I. Structural basis for endoperoxide-forming oxygenases. Beilstein J Org Chem 2022; 18:707-721. [PMID: 35821691 PMCID: PMC9235837 DOI: 10.3762/bjoc.18.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022] Open
Abstract
Endoperoxide natural products are widely distributed in nature and exhibit various biological activities. Due to their chemical features, endoperoxide and endoperoxide-derived secondary metabolites have attracted keen attention in the field of natural products and organic synthesis. In this review, we summarize the structural analyses, mechanistic investigations, and proposed reaction mechanisms of endoperoxide-forming oxygenases, including cyclooxygenase, fumitremorgin B endoperoxidase (FtmOx1), and the asnovolin A endoperoxygenase NvfI.
Collapse
Affiliation(s)
- Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
14
|
Lin CY, Muñoz AL, Laremore TN, Silakov A, Krebs C, Boal AK, Bollinger JM. Use of Noncanonical Tyrosine Analogues to Probe Control of Radical Intermediates during Endoperoxide Installation by Verruculogen Synthase (FtmOx1). ACS Catal 2022; 12:6968-6979. [PMID: 37744570 PMCID: PMC10516331 DOI: 10.1021/acscatal.2c01037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Important bioactive natural products, including prostaglandin H2 and artemisinin, contain reactive endoperoxides. Known enzymatic pathways for endoperoxide installation require multiple hydrogen-atom transfers (HATs). For example, iron(II)- and 2-oxoglutarate-dependent verruculogen synthase (FtmOx1; EC 1.14.11.38) mediates HAT from aliphatic C21 of fumitremorgin B, capture of O2 by the C21 radical (C21•), addition of the peroxyl radical (C21-O-O•) to olefinic C27, and HAT to the resultant C26•. Recent studies proposed conflicting roles for FtmOx1 tyrosine residues, Tyr224 and Tyr68, in the HATs from C21 and to C26•. Here, analysis of variant proteins bearing a ring-halogenated tyrosine or (amino)phenylalanine in place of either residue establishes that Tyr68 is the hydrogen donor to C26•, while Tyr224 has no essential role. The radicals that accumulate rapidly in FtmOx1 variants bearing a HAT-competent tyrosine analog at position 68 exhibit hypsochromically shifted absorption and, in cases of fluorine substitution, 19F-coupled electron-paramagnetic-resonance (EPR) spectra. By contrast, functional Tyr224-substituted variants generate radicals with unaltered light-absorption and EPR signatures as they produce verruculogen. The alternative major product of the Tyr68Phe variant, which forms competitively with verruculogen also in wild-type FtmOx1 in 2H2O and in the variant with the less readily oxidized 2,3-F2Tyr at position 68, is identified by mass spectrometry and isotopic labeling as the 26-hydroxy-21,27-endoperoxide compound formed after capture of another equivalent of O2 by the longer lived C26•. The results highlight the considerable chemical challenges the enzyme must navigate in averting both oxygen rebound and a second O2 coupling to obtain verruculogen selectively over other possible products.
Collapse
Affiliation(s)
- Chi-Yun Lin
- Department of Chemistry, The Pennsylvania State University; University Park, PA 16802, USA
| | - Angel L. Muñoz
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University; University Park, PA 16802, USA
| | - Tatiana N. Laremore
- Huck Institutes of the Life Sciences, The Pennsylvania State University; University Park, PA 16802, USA
| | - Alexey Silakov
- Department of Chemistry, The Pennsylvania State University; University Park, PA 16802, USA
| | - Carsten Krebs
- Department of Chemistry, The Pennsylvania State University; University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University; University Park, PA 16802, USA
| | - Amie K. Boal
- Department of Chemistry, The Pennsylvania State University; University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University; University Park, PA 16802, USA
| | - J. Martin Bollinger
- Department of Chemistry, The Pennsylvania State University; University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University; University Park, PA 16802, USA
| |
Collapse
|
15
|
Zhang R, Wang H, Chen B, Dai H, Sun J, Han J, Liu H. Discovery of Anti-MRSA Secondary Metabolites from a Marine-Derived Fungus Aspergillus fumigatus. Mar Drugs 2022; 20:302. [PMID: 35621953 PMCID: PMC9146929 DOI: 10.3390/md20050302] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 12/30/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), a WHO high-priority pathogen that can cause great harm to living beings, is a primary cause of death from antibiotic-resistant infections. In the present study, six new compounds, including fumindoline A-C (1-3), 12β, 13β-hydroxy-asperfumigatin (4), 2-epi-tryptoquivaline F (17) and penibenzophenone E (37), and thirty-nine known ones were isolated from the marine-derived fungus Aspergillus fumigatus H22. The structures and the absolute configurations of the new compounds were unambiguously assigned by spectroscopic data, mass spectrometry (MS), electronic circular dichroism (ECD) spectroscopic analyses, quantum NMR and ECD calculations, and chemical derivatizations. Bioactivity screening indicated that nearly half of the compounds exhibit antibacterial activity, especially compounds 8 and 11, and 33-38 showed excellent antimicrobial activities against MRSA, with minimum inhibitory concentration (MIC) values ranging from 1.25 to 2.5 μM. In addition, compound 8 showed moderate inhibitory activity against Mycobacterium bovis (MIC: 25 μM), compound 10 showed moderate inhibitory activity against Candida albicans (MIC: 50 μM), and compound 13 showed strong inhibitory activity against the hatching of a Caenorhabditis elegans egg (IC50: 2.5 μM).
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Education, College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (R.Z.); (H.W.)
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (B.C.); (H.D.); (J.S.)
| | - Haifeng Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Education, College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (R.Z.); (H.W.)
| | - Baosong Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (B.C.); (H.D.); (J.S.)
| | - Huanqin Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (B.C.); (H.D.); (J.S.)
| | - Jingzu Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (B.C.); (H.D.); (J.S.)
| | - Junjie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (B.C.); (H.D.); (J.S.)
| | - Hongwei Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Education, College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (R.Z.); (H.W.)
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (B.C.); (H.D.); (J.S.)
| |
Collapse
|
16
|
Yeh CCG, Pierides C, Jameson GNL, de Visser SP. Structure and Functional Differences of Cysteine and 3-Mercaptopropionate Dioxygenases: A Computational Study. Chemistry 2021; 27:13793-13806. [PMID: 34310770 DOI: 10.1002/chem.202101878] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Indexed: 11/09/2022]
Abstract
Thiol dioxygenases are important enzymes for human health; they are involved in the detoxification and catabolism of toxic thiol-containing natural products such as cysteine. As such, these enzymes have relevance to the development of Alzheimer's and Parkinson's diseases in the brain. Recent crystal structure coordinates of cysteine and 3-mercaptopropionate dioxygenase (CDO and MDO) showed major differences in the second-coordination spheres of the two enzymes. To understand the difference in activity between these two analogous enzymes, we created large, active-site cluster models. We show that CDO and MDO have different iron(III)-superoxo-bound structures due to differences in ligand coordination. Furthermore, our studies show that the differences in the second-coordination sphere and particularly the position of a positively charged Arg residue results in changes in substrate positioning, mobility and enzymatic turnover. Furthermore, the substrate scope of MDO is explored with cysteinate and 2-mercaptosuccinic acid and their reactivity is predicted.
Collapse
Affiliation(s)
- C-C George Yeh
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Christos Pierides
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Guy N L Jameson
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Vic, 3010, Australia
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
17
|
Mori T, Zhai R, Ushimaru R, Matsuda Y, Abe I. Molecular insights into the endoperoxide formation by Fe(II)/α-KG-dependent oxygenase NvfI. Nat Commun 2021; 12:4417. [PMID: 34285212 PMCID: PMC8292354 DOI: 10.1038/s41467-021-24685-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/30/2021] [Indexed: 11/08/2022] Open
Abstract
Endoperoxide-containing natural products are a group of compounds with structurally unique cyclized peroxide moieties. Although numerous endoperoxide-containing compounds have been isolated, the biosynthesis of the endoperoxides remains unclear. NvfI from Aspergillus novofumigatus IBT 16806 is an endoperoxidase that catalyzes the formation of fumigatonoid A in the biosynthesis of novofumigatonin. Here, we describe our structural and functional analyses of NvfI. The structural elucidation and mutagenesis studies indicate that NvfI does not utilize a tyrosyl radical in the reaction, in contrast to other characterized endoperoxidases. Further, the crystallographic analysis reveals significant conformational changes of two loops upon substrate binding, which suggests a dynamic movement of active site during the catalytic cycle. As a result, NvfI installs three oxygen atoms onto a substrate in a single enzyme turnover. Based on these results, we propose a mechanism for the NvfI-catalyzed, unique endoperoxide formation reaction to produce fumigatonoid A.
Collapse
Affiliation(s)
- Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
| | - Rui Zhai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- ACT-X, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
18
|
Zong JF, Zhang MM, Zhou YB, Li J, Hou AJ, Lei C. Polyprenylated acylphloroglucinol meroterpenoids with PTP1B inhibition from Hypericum forrestii. Fitoterapia 2021; 153:104959. [PMID: 34111550 DOI: 10.1016/j.fitote.2021.104959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 10/21/2022]
Abstract
Three new polyprenylated acylphloroglucinol meroterpenoids, hyperiforins A-C (1-3), were isolated from Hypericum forrestii (Chittenden) N. Robson, together with twelve known analogues (4-15). Their structures were established by extensive physical and spectroscopic data analysis. Compounds 1, 2, 5, 7, and 13-15 showed potent inhibitory effects on protein tyrosine phosphatase 1B with IC50 values from 6.63 ± 2.40 to 14.21 ± 3.51 μM.
Collapse
Affiliation(s)
- Jian-Fa Zong
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Meng-Meng Zhang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yu-Bo Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ai-Jun Hou
- School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Chun Lei
- School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
19
|
Ye Y, Fu H, Hyster TK. Activation modes in biocatalytic radical cyclization reactions. J Ind Microbiol Biotechnol 2021; 48:kuab021. [PMID: 33674826 PMCID: PMC8210684 DOI: 10.1093/jimb/kuab021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/26/2021] [Indexed: 12/17/2022]
Abstract
Radical cyclizations are essential reactions in the biosynthesis of secondary metabolites and the chemical synthesis of societally valuable molecules. In this review, we highlight the general mechanisms utilized in biocatalytic radical cyclizations. We specifically highlight cytochrome P450 monooxygenases (P450s) involved in the biosynthesis of mycocyclosin and vancomycin, nonheme iron- and α-ketoglutarate-dependent dioxygenases (Fe/αKGDs) used in the biosynthesis of kainic acid, scopolamine, and isopenicillin N, and radical S-adenosylmethionine (SAM) enzymes that facilitate the biosynthesis of oxetanocin A, menaquinone, and F420. Beyond natural mechanisms, we also examine repurposed flavin-dependent "ene"-reductases (ERED) for non-natural radical cyclization. Overall, these general mechanisms underscore the opportunity for enzymes to augment and enhance the synthesis of complex molecules using radical mechanisms.
Collapse
Affiliation(s)
- Yuxuan Ye
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Haigen Fu
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Todd K Hyster
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
20
|
Wang Y, Yan L, Li X, Zhang S, Wei J, Liu Y. Formation Mechanism of Cofactor Cys-Tyr in the Cysteine Dioxygenases (CDO and F 2-CDO) and Its Influence on Catalysis: A QM/MM Study. Inorg Chem 2021; 60:7844-7856. [PMID: 34008401 DOI: 10.1021/acs.inorgchem.1c00340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cysteine dioxygenase (CDO) is a nonheme mononuclear iron enzyme, which catalyzes the oxidation of cysteine to cysteine sulfinic acid. Crystal structure studies of mammalian CDO showed that there is a cross-linked cysteine-tyrosine (Cys-Tyr) cofactor in its active site. Moreover, the formation of the Cys-Tyr cofactor requires the metal cofactor (Fe2+) and O2, and it was previously considered to substantially enhance the catalytic efficiency and half-life of CDO. Recently, a pure human CDO (F2-CDO) without including the Cys-Tyr cofactor was crystalized by the site-directed mutagenesis approach in the anaerobic condition. In this work, to gain insights into the formation mechanism of the Cys-Tyr cofactor and whether it can really promote the catalytic reactivity of CDO, a series of computational models have been constructed, and quantum mechanical/molecular mechanical (QM/MM) calculations have been performed. Our calculation results reveal that WT-CDO and F2-CDO follow different mechanisms for the formation of the Cys-Tyr cofactor. In F2-CDO, the cofactor formation contains the H-abstraction, C-S bond formation, intramolecular F migration, and aromatization of the residue F2Y157, in which the Fe-coordinate dioxygen can be recovered after the formation cofactor; however, in the WT-CDO, the cofactor formation shows some differences. During the reaction, hydrogen peroxide is generated, and the final aromatization requires the assistance of one water molecule. Furthermore, the overall barriers of cofactor formation are always higher than l-cysteine oxidation for both WT-CDO and F2-CDO irrespective of the absence or presence of the cofactor. Thus, we can theoretically confirm that the Cys-Tyr cofactor is not essential for the oxidation activity of CDO, and cofactor formation is just an accompanying reaction but not a prerequisite for the oxidation reaction. These results may provide useful information for understanding the catalysis of CDO.
Collapse
Affiliation(s)
- Yijing Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Lijuan Yan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xinyi Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Shiqing Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jingjing Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
21
|
Ali HS, Henchman RH, Visser SP. Mechanism of Oxidative Ring‐Closure as Part of the Hygromycin Biosynthesis Step by a Nonheme Iron Dioxygenase. ChemCatChem 2021. [DOI: 10.1002/cctc.202100393] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hafiz Saqib Ali
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Richard H. Henchman
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Sam P. Visser
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Chemical Engineering and Analytical Science The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
22
|
Meyer F, Frey R, Ligibel M, Sager E, Schroer K, Snajdrova R, Buller R. Modulating Chemoselectivity in a Fe(II)/α-Ketoglutarate-Dependent Dioxygenase for the Oxidative Modification of a Nonproteinogenic Amino Acid. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fabian Meyer
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Raphael Frey
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Mathieu Ligibel
- Novartis Institutes for BioMedical Research, Global Discovery Chemistry, 4056 Basel, Switzerland
| | - Emine Sager
- Novartis Institutes for BioMedical Research, Global Discovery Chemistry, 4056 Basel, Switzerland
| | - Kirsten Schroer
- Novartis Institutes for BioMedical Research, Global Discovery Chemistry, 4056 Basel, Switzerland
| | - Radka Snajdrova
- Novartis Institutes for BioMedical Research, Global Discovery Chemistry, 4056 Basel, Switzerland
| | - Rebecca Buller
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| |
Collapse
|
23
|
Naowarojna N, Cheng R, Lopez J, Wong C, Qiao L, Liu P. Chemical modifications of proteins and their applications in metalloenzyme studies. Synth Syst Biotechnol 2021; 6:32-49. [PMID: 33665390 PMCID: PMC7897936 DOI: 10.1016/j.synbio.2021.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/14/2020] [Accepted: 01/03/2021] [Indexed: 12/21/2022] Open
Abstract
Protein chemical modifications are important tools for elucidating chemical and biological functions of proteins. Several strategies have been developed to implement these modifications, including enzymatic tailoring reactions, unnatural amino acid incorporation using the expanded genetic codes, and recognition-driven transformations. These technologies have been applied in metalloenzyme studies, specifically in dissecting their mechanisms, improving their enzymatic activities, and creating artificial enzymes with non-natural activities. Herein, we summarize some of the recent efforts in these areas with an emphasis on a few metalloenzyme case studies.
Collapse
Affiliation(s)
| | | | - Juan Lopez
- Department of Chemistry, Boston University, Boston, MA, 02215, United States
| | - Christina Wong
- Department of Chemistry, Boston University, Boston, MA, 02215, United States
| | - Lu Qiao
- Department of Chemistry, Boston University, Boston, MA, 02215, United States
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA, 02215, United States
| |
Collapse
|
24
|
Ali HS, Henchman RH, de Visser SP. What Determines the Selectivity of Arginine Dihydroxylation by the Nonheme Iron Enzyme OrfP? Chemistry 2020; 27:1795-1809. [PMID: 32965733 DOI: 10.1002/chem.202004019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/22/2020] [Indexed: 12/13/2022]
Abstract
The nonheme iron enzyme OrfP reacts with l-Arg selectively to form the 3R,4R-dihydroxyarginine product, which in mammals can inhibit the nitric oxide synthase enzymes involved in blood pressure control. To understand the mechanisms of dioxygen activation of l-Arg by OrfP and how it enables two sequential oxidation cycles on the same substrate, we performed a density functional theory study on a large active site cluster model. We show that substrate binding and positioning in the active site guides a highly selective reaction through C3 -H hydrogen atom abstraction. This happens despite the fact that the C3 -H and C4 -H bond strengths of l-Arg are very similar. Electronic differences in the two hydrogen atom abstraction pathways drive the reaction with an initial C3 -H activation to a low-energy 5 σ-pathway, while substrate positioning destabilizes the C4 -H abstraction and sends it over the higher-lying 5 π-pathway. We show that substrate and monohydroxylated products are strongly bound in the substrate binding pocket and hence product release is difficult and consequently its lifetime will be long enough to trigger a second oxygenation cycle.
Collapse
Affiliation(s)
- Hafiz Saqib Ali
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Richard H Henchman
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
25
|
Wang F, Zhu M, Song Z, Li C, Wang Y, Zhu Z, Sun D, Lu F, Qin HM. Reshaping the Binding Pocket of Lysine Hydroxylase for Enhanced Activity. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03841] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fenghua Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, People’s Republic of China
| | - Menglu Zhu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, People’s Republic of China
| | - Zhan Song
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, People’s Republic of China
| | - Chao Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, People’s Republic of China
| | - Yuying Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, People’s Republic of China
| | - Zhangliang Zhu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, People’s Republic of China
| | - Dengyue Sun
- College of Bioengineering, Qilu University of Technology, Jinan 250100, People’s Republic of China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, People’s Republic of China
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, People’s Republic of China
| |
Collapse
|
26
|
Cao Z, Yu J, Wang W, Lu H, Xia X, Xu H, Yang X, Bao L, Zhang Q, Wang H, Zhang S, Zhang L. Multi-scale data-driven engineering for biosynthetic titer improvement. Curr Opin Biotechnol 2020; 65:205-212. [DOI: 10.1016/j.copbio.2020.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/18/2020] [Accepted: 04/17/2020] [Indexed: 11/29/2022]
|
27
|
Abe I. Nonheme Iron- and 2-Oxoglutarate-Dependent Dioxygenases in Fungal Meroterpenoid Biosynthesis. Chem Pharm Bull (Tokyo) 2020; 68:823-831. [PMID: 32879222 DOI: 10.1248/cpb.c20-00360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review summarizes the recent progress in research on the non-heme Fe(II)- and 2-oxoglutarate-dependent dioxygenases, which are involved in the biosynthesis of pharmaceutically important fungal meroterpenoids. This enzyme class activates a selective C-H bond of the substrate and catalyzes a wide range of chemical reactions, from simple hydroxylation to dynamic carbon skeletal rearrangements, thereby significantly contributing to the structural diversification and complexification of the molecules. Structure-function studies of these enzymes provide an excellent platform for the development of useful biocatalysts for synthetic biology to create novel molecules for future drug discovery.
Collapse
Affiliation(s)
- Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| |
Collapse
|
28
|
Mrugała B, Miłaczewska A, Porebski PJ, Niedzialkowska E, Guzik M, Minor W, Borowski T. A study on the structure, mechanism, and biochemistry of kanamycin B dioxygenase (KanJ)-an enzyme with a broad range of substrates. FEBS J 2020; 288:1366-1386. [PMID: 32592631 DOI: 10.1111/febs.15462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/09/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023]
Abstract
Kanamycin A is an aminoglycoside antibiotic isolated from Streptomyces kanamyceticus and used against a wide spectrum of bacteria, including Mycobacterium tuberculosis. Biosynthesis of kanamycin involves an oxidative deamination step catalyzed by kanamycin B dioxygenase (KanJ), thereby the C2' position of kanamycin B is transformed into a keto group upon release of ammonia. Here, we present for the first time, structural models of KanJ with several ligands, which along with the results of ITC binding assays and HPLC activity tests explain substrate specificity of the enzyme. The large size of the binding pocket suggests that KanJ can accept a broad range of substrates, which was confirmed by activity tests. Specificity of the enzyme with respect to its substrate is determined by the hydrogen bond interactions between the methylamino group of the antibiotic and highly conserved Asp134 and Cys150 as well as between hydroxyl groups of the substrate and Asn120 and Gln80. Upon antibiotic binding, the C terminus loop is significantly rearranged and Gln80 and Asn120, which are directly involved in substrate recognition, change their conformations. Based on reaction energy profiles obtained by density functional theory (DFT) simulations, we propose a mechanism of ketone formation involving the reactive FeIV = O and proceeding either via OH rebound, which yields a hemiaminal intermediate or by abstraction of two hydrogen atoms, which leads to an imine species. At acidic pH, the latter involves a lower barrier than the OH rebound, whereas at basic pH, the barrier leading to an imine vanishes completely. DATABASES: Structural data are available in PDB database under the accession numbers: 6S0R, 6S0T, 6S0U, 6S0W, 6S0V, 6S0S. Diffraction images are available at the Integrated Resource for Reproducibility in Macromolecular Crystallography at http://proteindiffraction.org under DOIs: 10.18430/m36s0t, 10.18430/m36s0u, 10.18430/m36s0r, 10.18430/m36s0s, 10.18430/m36s0v, 10.18430/m36s0w. A data set collection of computational results is available in the Mendeley Data database under DOI: 10.17632/sbyzssjmp3.1 and in the ioChem-BD database under DOI: 10.19061/iochem-bd-4-18.
Collapse
Affiliation(s)
- Beata Mrugała
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| | - Anna Miłaczewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| | - Przemyslaw Jerzy Porebski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Ewa Niedzialkowska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Maciej Guzik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
29
|
Abstract
Fluorochemicals are a widely distributed class of compounds and have been utilized across a wide range of industries for decades. Given the environmental toxicity and adverse health threats of some fluorochemicals, the development of new methods for their decomposition is significant to public health. However, the carbon-fluorine (C-F) bond is among the most chemically robust bonds; consequently, the degradation of fluorinated hydrocarbons is exceptionally difficult. Here, metalloenzymes that catalyze the cleavage of this chemically challenging bond are reviewed. These enzymes include histidine-ligated heme-dependent dehaloperoxidase and tyrosine hydroxylase, thiolate-ligated heme-dependent cytochrome P450, and four nonheme oxygenases, namely, tetrahydrobiopterin-dependent aromatic amino acid hydroxylase, 2-oxoglutarate-dependent hydroxylase, Rieske dioxygenase, and thiol dioxygenase. While much of the literature regarding the aforementioned enzymes highlights their ability to catalyze C-H bond activation and functionalization, in many cases, the C-F bond cleavage has been shown to occur on fluorinated substrates. A copper-dependent laccase-mediated system representing an unnatural radical defluorination approach is also described. Detailed discussions on the structure-function relationships and catalytic mechanisms provide insights into biocatalytic defluorination, which may inspire drug design considerations and environmental remediation of halogenated contaminants.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemistry, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA.
| | | |
Collapse
|
30
|
Genome-based mining of new antimicrobial meroterpenoids from the phytopathogenic fungus Bipolaris sorokiniana strain 11134. Appl Microbiol Biotechnol 2020; 104:3835-3846. [PMID: 32215711 DOI: 10.1007/s00253-020-10522-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/21/2020] [Accepted: 03/03/2020] [Indexed: 01/14/2023]
Abstract
Polyketide-terpenoid hybrid compounds are one of the largest families of meroterpenoids, with great potential for drug development for resistant pathogens. Genome sequence analysis of secondary metabolite gene clusters of a phytopathogenic fungus, Bipolaris sorokiniana 11134, revealed a type I polyketide gene cluster, consisting of highly reducing polyketide synthase, non-reducing polyketide synthase, and adjacent prenyltransferase. MS- and UV-guided isolations led to the isolation of ten meroterpenoids, including two new compounds: 19-dehydroxyl-3-epi-arthripenoid A (1) and 12-keto-cochlioquinone A (2). The structures of 1-10 were elucidated by the analysis of NMR and high-resolution electrospray ionization mass spectroscopy data. Compounds 5-8 and 10 showed moderate activity against common Staphylococcus aureus and methicillin-resistant S. aureus, with minimum inhibitory concentration (MIC) values of 12.5-100 μg/mL. Compound 5 also exhibited activity against four clinical resistant S. aureus strains and synergistic antifungal activity against Candida albicans with MIC values of 12.5-25 μg/mL. The biosynthetic gene cluster of the isolated compounds and their putative biosynthetic pathway are also proposed. KEY POINTS: • Ten meroterpenoids were identified from B. sorokiniana, including two new compounds. • Cochlioquinone B (5) showed activity against MRSA and synergistic activity against C. albicans. • The biosynthetic gene cluster and biosynthetic pathway of meroterpenoids are proposed. • Genome mining provided a new direction to uncover the diversity of meroterpenoids.
Collapse
|
31
|
Visser SP. Second‐Coordination Sphere Effects on Selectivity and Specificity of Heme and Nonheme Iron Enzymes. Chemistry 2020; 26:5308-5327. [DOI: 10.1002/chem.201905119] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/04/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Sam P. Visser
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical ScienceThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
32
|
Yee DA, Kakule TB, Cheng W, Chen M, Chong CTY, Hai Y, Hang LF, Hung YS, Liu N, Ohashi M, Okorafor IC, Song Y, Tang M, Zhang Z, Tang Y. Genome Mining of Alkaloidal Terpenoids from a Hybrid Terpene and Nonribosomal Peptide Biosynthetic Pathway. J Am Chem Soc 2020; 142:710-714. [PMID: 31885262 DOI: 10.1021/jacs.9b13046] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Biosynthetic pathways containing multiple core enzymes have potential to produce structurally complex natural products. Here we mined a fungal gene cluster that contains two predicted terpene cyclases (TCs) and a nonribosomal peptide synthetase (NRPS). We showed the flv pathway produces flavunoidine 1, an alkaloidal terpenoid. The core of 1 is a tetracyclic, cage-like, and oxygenated sesquiterpene that is connected to dimethylcadaverine via a C-N bond and is acylated with 5,5-dimethyl-l-pipecolate. The roles of all flv enzymes are established on the basis of metabolite analysis from heterologous expression.
Collapse
Affiliation(s)
| | | | - Wei Cheng
- State Key Laboratory of Natural and Biomimetic Drugs , Peking University , Beijing 100191 , China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ghafoor S, Mansha A, de Visser SP. Selective Hydrogen Atom Abstraction from Dihydroflavonol by a Nonheme Iron Center Is the Key Step in the Enzymatic Flavonol Synthesis and Avoids Byproducts. J Am Chem Soc 2019; 141:20278-20292. [PMID: 31749356 DOI: 10.1021/jacs.9b10526] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The plant non-heme iron dioxygenase flavonol synthase performs a regioselective desaturation reaction as part of the biosynthesis of the signaling molecule flavonol that triggers the growing of leaves and flowers. These compounds also have health benefits for humans. Desaturation of aliphatic compounds generally proceeds through two consecutive hydrogen atom abstraction steps from two adjacent carbon atoms and in nature often is performed by a high-valent iron(IV)-oxo species. We show that the order of the hydrogen atom abstraction steps, however, is opposite of those expected from the C-H bond strengths in the substrate and determines the product distributions. As such, flavonol synthase follows a negative catalysis mechanism. Using density functional theory methods on large active-site model complexes, we investigated pathways for desaturation and hydroxylation by an iron(IV)-oxo active-site model. Contrary to thermochemical predictions, we find that the oxidant abstracts the hydrogen atom from the strong C2-H bond rather than the weaker C3-H bond of the substrate first. We analyze the origin of this unexpected selective hydrogen atom abstraction pathway and find that the alternative C3-H hydrogen atom abstraction would be followed by a low-energy and competitive substrate hydroxylation mechanism hence, should give considerable amount of byproducts. Our computational modeling studies show that substrate positioning in flavonol synthase is essential, as it guides the reactivity to a chemo- and regioselective substrate desaturation from the C2-H group, leading to desaturation products efficiently.
Collapse
Affiliation(s)
- Sidra Ghafoor
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science , The University of Manchester , 131 Princess Street , Manchester M1 7DN , United Kingdom.,Department of Chemistry , Government College University Faisalabad , New Campus, Jhang Road , Faisalabad 38000 , Pakistan
| | - Asim Mansha
- Department of Chemistry , Government College University Faisalabad , New Campus, Jhang Road , Faisalabad 38000 , Pakistan
| | - Sam P de Visser
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science , The University of Manchester , 131 Princess Street , Manchester M1 7DN , United Kingdom
| |
Collapse
|
34
|
Miłaczewska A, Borowski T. On the reaction mechanism of an endoperoxide ring formation by fumitremorgin B endoperoxidase. The right arrangement makes a difference. Dalton Trans 2019; 48:16211-16221. [PMID: 31580360 DOI: 10.1039/c9dt02581b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fumitremorgin B endoperoxidase (FtmF) belongs to 2-oxoglutarate dependent dioxygenases and catalyzes an unusual oxidative reaction of endoperoxide formation at the final stage of biosynthesis of verruculogen - a mycotoxin produced by Aspergillus and Penicillinum strains. The published crystal structure of FtmF (PDB: ), which is of overall good quality, contains a model of the substrate bound in the active site, which, however, has very low occupancy and its conformation does not comply with the small molecule crystal structure. Moreover, a previous computational study that employed a model based on this crystal structure revealed a substantial reaction barrier, which might indicate that the model of FtmF/substrate complex can have serious errors. The purpose of this work was to model with computational methods the structure of the enzyme-substrate complex and to investigate the mechanisms of the enzymatic reaction. Docking, molecular dynamics simulation and DFT results, all indicate the substrate most likely binds in the active site in a configuration very different from that originally suggested. Moreover, for this newly proposed structure of the enzyme-substrate complex, the reaction energy profile is characterised exclusively by low barriers and it successfully explains the observed regiospecificity of the enzymatic process. Finally, a plausible binding site for ascorbate was found and it is suggested that ascorbate is involved in the final step of the FtmF reaction.
Collapse
Affiliation(s)
- Anna Miłaczewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland.
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland.
| |
Collapse
|
35
|
Song H, Naowarojna N, Cheng R, Lopez J, Liu P. Non-heme iron enzyme-catalyzed complex transformations: Endoperoxidation, cyclopropanation, orthoester, oxidative C-C and C-S bond formation reactions in natural product biosynthesis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 117:1-61. [PMID: 31564305 DOI: 10.1016/bs.apcsb.2019.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Non-heme iron enzymes catalyze a wide range of chemical transformations, serving as one of the key types of tailoring enzymes in the biosynthesis of natural products. Hydroxylation reaction is the most common type of reactions catalyzed by these enzymes and hydroxylation reactions have been extensively investigated mechanistically. However, the mechanistic details for other types of transformations remain largely unknown or unexplored. In this paper, we present some of the most recently discovered transformations, including endoperoxidation, orthoester formation, cyclopropanation, oxidative C-C and C-S bond formation reactions. In addition, many of them are multi-functional enzymes, which further complicate their mechanistic investigations. In this work, we summarize their biosynthetic pathways, with special emphasis on the mechanistic details available for these newly discovered enzymes.
Collapse
Affiliation(s)
- Heng Song
- College of Chemistry and Molecular Sciences, Wuhan University, Hubei, People's Republic of China
| | | | - Ronghai Cheng
- Department of Chemistry, Boston University, Boston, MA, United States
| | - Juan Lopez
- Department of Chemistry, Boston University, Boston, MA, United States
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA, United States
| |
Collapse
|
36
|
Deng Q, Liu Y, Chen L, Xu M, Naowarojna N, Lee N, Chen L, Zhu D, Hong X, Deng Z, Liu P, Zhao C. Biochemical Characterization of a Multifunctional Mononuclear Nonheme Iron Enzyme (PtlD) in Neopentalenoketolactone Biosynthesis. Org Lett 2019; 21:7592-7596. [DOI: 10.1021/acs.orglett.9b02872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Qian Deng
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
| | - Yang Liu
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
| | - Linyue Chen
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
| | - Meiling Xu
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Nathchar Naowarojna
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Norman Lee
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Li Chen
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Dongqing Zhu
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
| | - Xuechuan Hong
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
| | - Zixin Deng
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
| | - Pinghua Liu
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Changming Zhao
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
| |
Collapse
|
37
|
Hagel JM, Facchini PJ. Expanding the roles for 2-oxoglutarate-dependent oxygenases in plant metabolism. Nat Prod Rep 2019; 35:721-734. [PMID: 29488530 DOI: 10.1039/c7np00060j] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Covering: up to 2018 2-Oxoglutarate-dependent oxygenases (2ODOs) comprise a large enzyme superfamily in plant genomes, second in size only to the cytochromes P450 monooxygenase (CYP) superfamily. 2ODOs participate in both primary and specialized plant pathways, and their occurrence across all life kingdoms points to an ancient origin. Phylogenetic evidence supports substantial expansion and diversification of 2ODOs following the split from the common ancestor of land plants. More conserved roles for these enzymes include oxidation within hormone metabolism, such as the recently described capacity of Dioxygenase for Auxin Oxidation (DAO) for governing auxin homeostasis. Conserved structural features among 2ODOs has provided a basis for continued investigation into their mechanisms, and recent structural work is expected to illuminate intriguing reactions such as that of 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO). Phylogenetic radiation among this superfamily combined with neo- and subfunctionalization has enabled recruitment to highly specialized pathways, including those yielding medicines, flavours, dyes, poisons, and compounds important for plant-environment interactions. Catalytic versatility of 2ODOs in plants and across broader taxa continues to inspire biochemists tasked with the discovery of new enzymes. This highlight article summarizes recent reports up to 2018 of 2ODOs within plant metabolism. Furthermore, the respective contributions of 2ODOs and other oxidases to natural product biosynthesis are discussed as a framework for continued discovery.
Collapse
Affiliation(s)
- J M Hagel
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada.
| | - P J Facchini
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
38
|
Dunham NP, Del Río Pantoja JM, Zhang B, Rajakovich LJ, Allen BD, Krebs C, Boal AK, Bollinger JM. Hydrogen Donation but not Abstraction by a Tyrosine (Y68) during Endoperoxide Installation by Verruculogen Synthase (FtmOx1). J Am Chem Soc 2019; 141:9964-9979. [PMID: 31117657 PMCID: PMC6901024 DOI: 10.1021/jacs.9b03567] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hydrogen-atom transfer (HAT) from a substrate carbon to an iron(IV)-oxo (ferryl) intermediate initiates a diverse array of enzymatic transformations. For outcomes other than hydroxylation, coupling of the resultant carbon radical and hydroxo ligand (oxygen rebound) must generally be averted. A recent study of FtmOx1, a fungal iron(II)- and 2-(oxo)glutarate-dependent oxygenase that installs the endoperoxide of verruculogen by adding O2 between carbons 21 and 27 of fumitremorgin B, posited that tyrosine (Tyr or Y) 224 serves as HAT intermediary to separate the C21 radical (C21•) and Fe(III)-OH HAT products and prevent rebound. Our reinvestigation of the FtmOx1 mechanism revealed, instead, direct HAT from C21 to the ferryl complex and surprisingly competitive rebound. The C21-hydroxylated (rebound) product, which undergoes deprenylation, predominates when low [O2] slows C21•-O2 coupling in the next step of the endoperoxidation pathway. This pathway culminates with addition of the C21-O-O• peroxyl adduct to olefinic C27 followed by HAT to the C26• from a Tyr. The last step results in sequential accumulation of Tyr radicals, which are suppressed without detriment to turnover by inclusion of the reductant, ascorbate. Replacement of each of four candidates for the proximal C26 H• donor (including Y224) with phenylalanine (F) revealed that only the Y68F variant (i) fails to accumulate the first Tyr• and (ii) makes an altered major product, identifying Y68 as the donor. The implied proximities of C21 to the iron cofactor and C26 to Y68 support a new docking model of the enzyme-substrate complex that is consistent with all available data.
Collapse
Affiliation(s)
- Noah P. Dunham
- Department of Biochemistry and Molecular Biology, The
Pennsylvania State University, University Park, PA 16802
- Present Address: Division of Chemistry and Chemical
Engineering, California Institute of Technology, Pasadena, CA 91125
| | - José M. Del Río Pantoja
- Department of Biochemistry and Molecular Biology, The
Pennsylvania State University, University Park, PA 16802
- Present Address: Department of Chemistry and Chemical
Biology, Harvard University, Cambridge, MA 02138
| | - Bo Zhang
- Department of Chemistry, The Pennsylvania State University,
University Park, PA 16802
- Present Address: Renewable Energy Group, Inc., 600 Gateway
Blvd, South San Francisco, CA 94080
| | - Lauren J. Rajakovich
- Department of Biochemistry and Molecular Biology, The
Pennsylvania State University, University Park, PA 16802
- Present Address: Department of Chemistry and Chemical
Biology, Harvard University, Cambridge, MA 02138
| | - Benjamin D. Allen
- The Huck Institutes for Life Sciences, The Pennsylvania
State University, University Park, PA 16802
| | - Carsten Krebs
- Department of Biochemistry and Molecular Biology, The
Pennsylvania State University, University Park, PA 16802
- Department of Chemistry, The Pennsylvania State University,
University Park, PA 16802
| | - Amie K. Boal
- Department of Biochemistry and Molecular Biology, The
Pennsylvania State University, University Park, PA 16802
- Department of Chemistry, The Pennsylvania State University,
University Park, PA 16802
| | - J. Martin Bollinger
- Department of Biochemistry and Molecular Biology, The
Pennsylvania State University, University Park, PA 16802
- Department of Chemistry, The Pennsylvania State University,
University Park, PA 16802
| |
Collapse
|
39
|
Genome- and MS-based mining of antibacterial chlorinated chromones and xanthones from the phytopathogenic fungus Bipolaris sorokiniana strain 11134. Appl Microbiol Biotechnol 2019; 103:5167-5181. [PMID: 31001746 DOI: 10.1007/s00253-019-09821-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022]
Abstract
Halogen substituents are important for biological activity in many compounds. Genome-based mining of halogenase along with its biosynthetic gene cluster provided an efficient approach for the discovery of naturally occurring organohalogen compounds. Analysis of the genome sequence of a phytopathogenic fungus Bipolaris sorokiniana 11134 revealed a polyketide gene cluster adjacent to a flavin-dependent halogenase capable of encoding halogenated polyketides, which are rarely reported in phytopathogenic fungi. Furthermore, MS- and UV-guided isolation and purification led to the identification of five chlorine-containing natural products together with seven other chromones and xanthones. Two of the chlorinated compounds and four chromones are new compounds. Their structures were elucidated by NMR spectroscopic analysis and HRESIMS data. The biosynthetic gene clusters of isolated compounds and their putative biosynthetic pathway are also proposed. One new chlorinated compound showed activity against Staphylococcus aureus, methicillin-resistant S. aureus, and three clinical-resistant S. aureus strains with a shared minimum inhibitory concentration (MIC) of 12.5 μg/mL. Genome-based mining of halogenases combined with high-resolution MS- and UV-guided identification provides an efficient approach to discover new halogenated natural products from microorganisms.
Collapse
|
40
|
Stampfli AR, Goncharenko KV, Meury M, Dubey BN, Schirmer T, Seebeck FP. An Alternative Active Site Architecture for O 2 Activation in the Ergothioneine Biosynthetic EgtB from Chloracidobacterium thermophilum. J Am Chem Soc 2019; 141:5275-5285. [PMID: 30883103 DOI: 10.1021/jacs.8b13023] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sulfoxide synthases are nonheme iron enzymes that catalyze oxidative carbon-sulfur bond formation between cysteine derivatives and N-α-trimethylhistidine as a key step in the biosynthesis of thiohistidines. The complex catalytic mechanism of this enzyme reaction has emerged as the controversial subject of several biochemical and computational studies. These studies all used the structure of the γ-glutamyl cysteine utilizing sulfoxide synthase, MthEgtB from Mycobacterium thermophilum (EC 1.14.99.50), as a structural basis. To provide an alternative model system, we have solved the crystal structure of CthEgtB from Chloracidobacterium thermophilum (EC 1.14.99.51) that utilizes cysteine as a sulfur donor. This structure reveals a completely different configuration of active site residues that are involved in oxygen binding and activation. Furthermore, comparison of the two EgtB structures enables a classification of all ergothioneine biosynthetic EgtBs into five subtypes, each characterized by unique active-site features. This active site diversity provides an excellent platform to examine the catalytic mechanism of sulfoxide synthases by comparative enzymology, but also raises the question as to why so many different solutions to the same biosynthetic problem have emerged.
Collapse
Affiliation(s)
- Anja R Stampfli
- Department of Chemistry , University of Basel , Mattenstrasse 24a , Basel 4002 , Switzerland.,Focal Area Structural Biology and Biophysics, Biozentrum , University of Basel , Basel 4056 , Switzerland
| | - Kristina V Goncharenko
- Department of Chemistry , University of Basel , Mattenstrasse 24a , Basel 4002 , Switzerland
| | - Marcel Meury
- Department of Chemistry , University of Basel , Mattenstrasse 24a , Basel 4002 , Switzerland
| | - Badri N Dubey
- Focal Area Structural Biology and Biophysics, Biozentrum , University of Basel , Basel 4056 , Switzerland
| | - Tilman Schirmer
- Focal Area Structural Biology and Biophysics, Biozentrum , University of Basel , Basel 4056 , Switzerland
| | - Florian P Seebeck
- Department of Chemistry , University of Basel , Mattenstrasse 24a , Basel 4002 , Switzerland
| |
Collapse
|
41
|
Abstract
C–H functionalization is a chemically challenging but highly desirable transformation. 2-oxoglutarate-dependent oxygenases (2OGXs) are remarkably versatile biocatalysts for the activation of C–H bonds. In nature, they have been shown to accept both small and large molecules carrying out a plethora of reactions, including hydroxylations, demethylations, ring formations, rearrangements, desaturations, and halogenations, making them promising candidates for industrial manufacture. In this review, we describe the current status of 2OGX use in biocatalytic applications concentrating on 2OGX-catalyzed oxyfunctionalization of amino acids and synthesis of antibiotics. Looking forward, continued bioinformatic sourcing will help identify additional, practical useful members of this intriguing enzyme family, while enzyme engineering will pave the way to enhance 2OGX reactivity for non-native substrates.
Collapse
|
42
|
Guo M, Corona T, Ray K, Nam W. Heme and Nonheme High-Valent Iron and Manganese Oxo Cores in Biological and Abiological Oxidation Reactions. ACS CENTRAL SCIENCE 2019; 5:13-28. [PMID: 30693322 PMCID: PMC6346628 DOI: 10.1021/acscentsci.8b00698] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Indexed: 05/23/2023]
Abstract
Utilization of O2 as an abundant and environmentally benign oxidant is of great interest in the design of bioinspired synthetic catalytic oxidation systems. Metalloenzymes activate O2 by employing earth-abundant metals and exhibit diverse reactivities in oxidation reactions, including epoxidation of olefins, functionalization of alkane C-H bonds, arene hydroxylation, and syn-dihydroxylation of arenes. Metal-oxo species are proposed as reactive intermediates in these reactions. A number of biomimetic metal-oxo complexes have been synthesized in recent years by activating O2 or using artificial oxidants at iron and manganese centers supported on heme or nonheme-type ligand environments. Detailed reactivity studies together with spectroscopy and theory have helped us understand how the reactivities of these metal-oxygen intermediates are controlled by the electronic and steric properties of the metal centers. These studies have provided important insights into biological reactions, which have contributed to the design of biologically inspired oxidation catalysts containing earth-abundant metals like iron and manganese. In this Outlook article, we survey a few examples of these advances with particular emphasis in each case on the interplay of catalyst design and our understanding of metalloenzyme structure and function.
Collapse
Affiliation(s)
- Mian Guo
- Department
of Chemistry and Nano Science, Ewha Womans
University, Seoul 03760, Korea
| | - Teresa Corona
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Kallol Ray
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Wonwoo Nam
- Department
of Chemistry and Nano Science, Ewha Womans
University, Seoul 03760, Korea
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for
Excellence in Molecular Synthesis, Suzhou
Research Institute of LICP, Lanzhou Institute of Chemical Physics
(LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R.
China
| |
Collapse
|
43
|
Bai J, Hou Q, Zhu W, Liu Y. Mechanical insights into the oxidative cleavage of resveratrol catalyzed by dioxygenase NOV1 from Novosphingobium aromaticivorans: confirmation of dioxygenase mechanism by QM/MM calculations. Catal Sci Technol 2019. [DOI: 10.1039/c8cy01885e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
QM/MM calculations confirm that the oxidative cleavage of resveratrol catalyzed by dioxygenase NOV1 follows the dioxygenase mechanism.
Collapse
Affiliation(s)
- Jie Bai
- Key Lab of Colloid and Interface Chemistry, Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| | - Qianqian Hou
- Shandong Non-metallic Materials Institute
- Jinan
- China
| | - Wenyou Zhu
- College of Chemistry and Chemical Engineering
- Xuzhou Institute of Technology
- Xuzhou
- China
| | - Yongjun Liu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| |
Collapse
|
44
|
Sun D, Gao D, Liu X, Zhu M, Li C, Chen Y, Zhu Z, Lu F, Qin HM. Redesign and engineering of a dioxygenase targeting biocatalytic synthesis of 5-hydroxyl leucine. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00110g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The protein engineering and metabolic engineering strategies are performed to solve rate-limiting steps in the biosynthesis of 5-HLeu.
Collapse
Affiliation(s)
- Dengyue Sun
- Key Laboratory of Industrial Fermentation Microbiology
- Ministry of Education
- Tianjin 300457
- People's Republic of China
- College of Biotechnology
| | - Dengke Gao
- College of Biotechnology
- Tianjin University of Science and Technology
- Tianjin 300457
- People's Republic of China
| | - Xin Liu
- College of Biotechnology
- Tianjin University of Science and Technology
- Tianjin 300457
- People's Republic of China
| | - Menglu Zhu
- College of Biotechnology
- Tianjin University of Science and Technology
- Tianjin 300457
- People's Republic of China
| | - Chao Li
- College of Biotechnology
- Tianjin University of Science and Technology
- Tianjin 300457
- People's Republic of China
| | - Ying Chen
- College of Biotechnology
- Tianjin University of Science and Technology
- Tianjin 300457
- People's Republic of China
| | - Zhangliang Zhu
- Key Laboratory of Industrial Fermentation Microbiology
- Ministry of Education
- Tianjin 300457
- People's Republic of China
- College of Biotechnology
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology
- Ministry of Education
- Tianjin 300457
- People's Republic of China
- College of Biotechnology
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology
- Ministry of Education
- Tianjin 300457
- People's Republic of China
- College of Biotechnology
| |
Collapse
|
45
|
Chang WC, Yang ZJ, Tu YH, Chien TC. Reaction Mechanism of a Nonheme Iron Enzyme Catalyzed Oxidative Cyclization via C-C Bond Formation. Org Lett 2018; 21:228-232. [PMID: 30550285 DOI: 10.1021/acs.orglett.8b03670] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A complementary study including design of mechanistic probes, biochemical assays, model analysis, and liquid chromatography coupled mass spectrometry was conducted to establish the reaction mechanism for a nonheme iron enzyme catalyzed (-)-podophyllotoxin formation. Our results indicate that the originally proposed hydroxylated intermediate is unlikely to be involved in this reaction. Instead, the formation of benzylic radical/carbocation intermediate can be utilized to trigger the C-C bond formation to construct the C-ring of (-)-podophyllotoxin.
Collapse
Affiliation(s)
- Wei-Chen Chang
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Zhi-Jie Yang
- Department of Chemistry , National Taiwan Normal University , Taipei 11677 , Taiwan
| | - Yueh-Hua Tu
- Department of Chemistry , National Taiwan Normal University , Taipei 11677 , Taiwan
| | - Tun-Cheng Chien
- Department of Chemistry , National Taiwan Normal University , Taipei 11677 , Taiwan
| |
Collapse
|
46
|
Ran H, Wohlgemuth V, Xie X, Li SM. A Nonheme Fe II/2-Oxoglutarate-Dependent Oxygenase Catalyzes a Double Bond Migration within a Dimethylallyl Moiety Accompanied by Hydroxylation. ACS Chem Biol 2018; 13:2949-2955. [PMID: 30226371 DOI: 10.1021/acschembio.8b00588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prenylation of cyclodipeptides contributes largely to the structure diversification and biological activity. The prenylated products can be further metabolized by modifications like hydroxylation with cytochrome P450 enzymes or nonheme FeII/2-oxoglutarate-dependent oxygenases. Herein, we cloned and overexpressed NFIA_045530 from Neosartorya fischeri, which shares high sequence similarity with the nonheme FeII/2-oxoglutarate-dependent oxygenase FtmOx1Af from Aspergillus fumigatus on the amino acid level. FtmOx1Af is a member of the biosynthetic enzymes for fumitremorgin-type mycotoxins and catalyzes the conversion of fumitremorgin B to verruculogen by insertion of an oxygen molecule into the two prenyl moieties. The recombinant protein EAW25734 encoded by NFIA_045530 was purified to apparent homogeneity and then was used for incubation with intermediates of the fumitremorgin biosynthetic pathway. LC-MS analysis revealed no consumption of fumitremorgin B but good conversion with its biosynthetic precursor tryprostatin B in the presence of FeII and 2-oxoglutarate. Structure elucidation confirmed 22-hydroxylisotryprostatin B and 14α, 22-dihydroxylisotryprostatin B as the major enzyme products. Further detailed biochemical characterization led to the identification of a novel enzyme, which catalyzes a double bond migration within the dimethylallyl moiety of tryprostatin B with concomitant hydroxylation. Incubation with 18O2-enriched atmosphere confirmed O2 as the major origin of the hydroxyl groups. Solvent exchange was also observed for that at C22. LC-MS analysis confirmed the presence of 22-hydroxylisotryprostatin B in a Neosartorya fischeri extract, highlighting the role of this enzyme in the metabolism of intermediates of the fumitremorgin/verruculogen pathway. A plausible reaction mechanism implementing a radical rearrangement prior to accepting a hydroxyl radical from FeIII is discussed.
Collapse
Affiliation(s)
- Huomiao Ran
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Viola Wohlgemuth
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Xiulan Xie
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| |
Collapse
|
47
|
Meng S, Tang GL, Pan HX. Enzymatic Formation of Oxygen-Containing Heterocycles in Natural Product Biosynthesis. Chembiochem 2018; 19:2002-2022. [PMID: 30039582 DOI: 10.1002/cbic.201800225] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Indexed: 01/12/2023]
Abstract
Oxygen-containing heterocycles are widely encountered in natural products that display diverse pharmacological properties and have potential benefits to human health. The formation of O-heterocycles catalyzed by different types of enzymes in the biosynthesis of natural products not only contributes to the structural diversity of these compounds, but also enriches our understanding of nature's ability to construct complex molecules. This minireview focuses on the various modes of enzymatic O-heterocyclization identified in natural product biosynthesis and summarizes the possible mechanisms involved in ring closure.
Collapse
Affiliation(s)
- Song Meng
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of the Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Gong-Li Tang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of the Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Hai-Xue Pan
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of the Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
48
|
Gao SS, Naowarojna N, Cheng R, Liu X, Liu P. Recent examples of α-ketoglutarate-dependent mononuclear non-haem iron enzymes in natural product biosyntheses. Nat Prod Rep 2018; 35:792-837. [PMID: 29932179 PMCID: PMC6093783 DOI: 10.1039/c7np00067g] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: up to 2018 α-Ketoglutarate (αKG, also known as 2-oxoglutarate)-dependent mononuclear non-haem iron (αKG-NHFe) enzymes catalyze a wide range of biochemical reactions, including hydroxylation, ring fragmentation, C-C bond cleavage, epimerization, desaturation, endoperoxidation and heterocycle formation. These enzymes utilize iron(ii) as the metallo-cofactor and αKG as the co-substrate. Herein, we summarize several novel αKG-NHFe enzymes involved in natural product biosyntheses discovered in recent years, including halogenation reactions, amino acid modifications and tailoring reactions in the biosynthesis of terpenes, lipids, fatty acids and phosphonates. We also conducted a survey of the currently available structures of αKG-NHFe enzymes, in which αKG binds to the metallo-centre bidentately through either a proximal- or distal-type binding mode. Future structure-function and structure-reactivity relationship investigations will provide crucial information regarding how activities in this large class of enzymes have been fine-tuned in nature.
Collapse
Affiliation(s)
- Shu-Shan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Ronghai Cheng
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - Xueting Liu
- Department of Chemistry, Boston University, Boston, MA 02215, USA. and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
49
|
Abstract
The Natural Product Reports themed issue on ‘Metalloenzymes in natural product biosynthetic pathways’ is introduced by the Guest Editors, Katherine Ryan and Catherine Drennan.
Collapse
Affiliation(s)
- Katherine S Ryan
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, CanadaV6T 1Z1.
| | | |
Collapse
|
50
|
Nakashima Y, Mitsuhashi T, Matsuda Y, Senda M, Sato H, Yamazaki M, Uchiyama M, Senda T, Abe I. Structural and Computational Bases for Dramatic Skeletal Rearrangement in Anditomin Biosynthesis. J Am Chem Soc 2018; 140:9743-9750. [DOI: 10.1021/jacs.8b06084] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yu Nakashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takaaki Mitsuhashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yudai Matsuda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Miki Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Hajime Sato
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
- Cluster of Pioneering Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mami Yamazaki
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Cluster of Pioneering Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies (Soken-dai), 1−1 Oho, Tsukuba, Ibaraki 305−0801, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|