1
|
Latacz BM, Fleck M, Jäger JI, Umbrazunas G, Arndt BP, Erlewein SR, Wursten EJ, Devlin JA, Micke P, Abbass F, Schweitzer D, Wiesinger M, Will C, Yildiz H, Blaum K, Matsuda Y, Mooser A, Ospelkaus C, Smorra C, Soter A, Quint W, Walz J, Yamazaki Y, Ulmer S. Orders of Magnitude Improved Cyclotron-Mode Cooling for Nondestructive Spin Quantum Transition Spectroscopy with Single Trapped Antiprotons. PHYSICAL REVIEW LETTERS 2024; 133:053201. [PMID: 39159098 DOI: 10.1103/physrevlett.133.053201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 05/08/2024] [Accepted: 06/17/2024] [Indexed: 08/21/2024]
Abstract
We demonstrate efficient subthermal cooling of the modified cyclotron mode of a single trapped antiproton and reach particle temperatures T_{+}=E_{+}/k_{B} below 200 mK in preparation times shorter than 500 s. This corresponds to the fastest resistive single-particle cyclotron cooling to subthermal temperatures ever demonstrated. By cooling trapped particles to such low energies, we demonstrate the detection of antiproton spin transitions with an error rate <0.000 023, more than 3 orders of magnitude better than in previous best experiments. This method has enormous impact on multi-Penning-trap experiments that measure magnetic moments with single nuclear spins for tests of matter and antimatter symmetry, high-precision mass spectrometry, and measurements of electron g factors bound to highly charged ions that test quantum electrodynamics and establish standards for magnetometry.
Collapse
Affiliation(s)
- B M Latacz
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
| | - M Fleck
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-0041, Japan
| | - J I Jäger
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117, Heidelberg, Germany
| | | | - B P Arndt
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117, Heidelberg, Germany
- GSI-Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291 Darmstadt, Germany
| | - S R Erlewein
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117, Heidelberg, Germany
| | - E J Wursten
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - J A Devlin
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
| | - P Micke
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | - C Smorra
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz, Germany
| | | | | | | | - Y Yamazaki
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - S Ulmer
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Heinrich Heine University, Düsseldorf, Univeristätsstrasse 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Will C, Wiesinger M, Micke P, Yildiz H, Driscoll T, Kommu S, Abbass F, Arndt BP, Bauer BB, Erlewein S, Fleck M, Jäger JI, Latacz BM, Mooser A, Schweitzer D, Umbrazunas G, Wursten E, Blaum K, Devlin JA, Ospelkaus C, Quint W, Soter A, Walz J, Smorra C, Ulmer S. Image-Current Mediated Sympathetic Laser Cooling of a Single Proton in a Penning Trap Down to 170 mK Axial Temperature. PHYSICAL REVIEW LETTERS 2024; 133:023002. [PMID: 39073978 DOI: 10.1103/physrevlett.133.023002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/28/2024] [Indexed: 07/31/2024]
Abstract
We demonstrate a new temperature record for image-current mediated sympathetic cooling of a single proton in a cryogenic Penning trap by laser-cooled ^{9}Be^{+}. An axial mode temperature of 170 mK is reached, which is a 15-fold improvement compared to the previous best value. Our cooling technique is applicable to any charged particle, so that the measurements presented here constitute a milestone toward the next generation of high-precision Penning-trap measurements with exotic particles.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - B P Arndt
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany
| | | | - S Erlewein
- CERN, 1211 Geneva, Switzerland
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - M Fleck
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | - J I Jäger
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
- CERN, 1211 Geneva, Switzerland
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - B M Latacz
- CERN, 1211 Geneva, Switzerland
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | - E Wursten
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Wiesinger M, Stuhlmann F, Bohman M, Micke P, Will C, Yildiz H, Abbass F, Arndt BP, Devlin JA, Erlewein S, Fleck M, Jäger JI, Latacz BM, Schweitzer D, Umbrazunas G, Wursten E, Blaum K, Matsuda Y, Mooser A, Quint W, Soter A, Walz J, Smorra C, Ulmer S. Trap-integrated fluorescence detection with silicon photomultipliers for sympathetic laser cooling in a cryogenic Penning trap. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:123202. [PMID: 38109470 DOI: 10.1063/5.0170629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/23/2023] [Indexed: 12/20/2023]
Abstract
We present a fluorescence-detection system for laser-cooled 9Be+ ions based on silicon photomultipliers (SiPMs) operated at 4 K and integrated into our cryogenic 1.9 T multi-Penning-trap system. Our approach enables fluorescence detection in a hermetically sealed cryogenic Penning-trap chamber with limited optical access, where state-of-the-art detection using a telescope and photomultipliers at room temperature would be extremely difficult. We characterize the properties of the SiPM in a cryocooler at 4 K, where we measure a dark count rate below 1 s-1 and a detection efficiency of 2.5(3)%. We further discuss the design of our cryogenic fluorescence-detection trap and analyze the performance of our detection system by fluorescence spectroscopy of 9Be+ ion clouds during several runs of our sympathetic laser-cooling experiment.
Collapse
Affiliation(s)
- M Wiesinger
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - F Stuhlmann
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - M Bohman
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - P Micke
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
| | - C Will
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - H Yildiz
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - F Abbass
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - B P Arndt
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - J A Devlin
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - S Erlewein
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - M Fleck
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - J I Jäger
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - B M Latacz
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - D Schweitzer
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - G Umbrazunas
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Eidgenössische Technische Hochschule Zürich, John-von-Neumann-Weg 9, 8093 Zürich, Switzerland
| | - E Wursten
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - K Blaum
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Y Matsuda
- Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - A Mooser
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - W Quint
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
| | - A Soter
- Eidgenössische Technische Hochschule Zürich, John-von-Neumann-Weg 9, 8093 Zürich, Switzerland
| | - J Walz
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
- Helmholtz-Institut Mainz, Staudingerweg 18, 55128 Mainz, Germany
| | - C Smorra
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - S Ulmer
- RIKEN, Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
4
|
Smorra C, Abbass F, Schweitzer D, Bohman M, Devine JD, Dutheil Y, Hobl A, Arndt B, Bauer BB, Devlin JA, Erlewein S, Fleck M, Jäger JI, Latacz BM, Micke P, Schiffelholz M, Umbrazunas G, Wiesinger M, Will C, Wursten E, Yildiz H, Blaum K, Matsuda Y, Mooser A, Ospelkaus C, Quint W, Soter A, Walz J, Yamazaki Y, Ulmer S. BASE-STEP: A transportable antiproton reservoir for fundamental interaction studies. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:113201. [PMID: 37972020 DOI: 10.1063/5.0155492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023]
Abstract
Currently, the world's only source of low-energy antiprotons is the AD/ELENA facility located at CERN. To date, all precision measurements on single antiprotons have been conducted at this facility and provide stringent tests of fundamental interactions and their symmetries. However, magnetic field fluctuations from the facility operation limit the precision of upcoming measurements. To overcome this limitation, we have designed the transportable antiproton trap system BASE-STEP to relocate antiprotons to laboratories with a calm magnetic environment. We anticipate that the transportable antiproton trap will facilitate enhanced tests of charge, parity, and time-reversal invariance with antiprotons and provide new experimental possibilities of using transported antiprotons and other accelerator-produced exotic ions. We present here the technical design of the transportable trap system. This includes the transportable superconducting magnet, the cryogenic inlay consisting of the trap stack and detection systems, and the differential pumping section to suppress the residual gas flow into the cryogenic trap chamber.
Collapse
Affiliation(s)
- C Smorra
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany
- RIKEN, Fundamental Symmetries Laboratory, Wako, Japan
| | - F Abbass
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany
| | - D Schweitzer
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany
| | - M Bohman
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | | | | | - A Hobl
- Bilfinger Noell GmbH, Würzburg, Germany
| | - B Arndt
- RIKEN, Fundamental Symmetries Laboratory, Wako, Japan
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - B B Bauer
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany
- RIKEN, Fundamental Symmetries Laboratory, Wako, Japan
| | - J A Devlin
- RIKEN, Fundamental Symmetries Laboratory, Wako, Japan
- CERN, Geneva, Switzerland
| | - S Erlewein
- RIKEN, Fundamental Symmetries Laboratory, Wako, Japan
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
- CERN, Geneva, Switzerland
| | - M Fleck
- RIKEN, Fundamental Symmetries Laboratory, Wako, Japan
| | - J I Jäger
- RIKEN, Fundamental Symmetries Laboratory, Wako, Japan
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
- CERN, Geneva, Switzerland
| | - B M Latacz
- RIKEN, Fundamental Symmetries Laboratory, Wako, Japan
- CERN, Geneva, Switzerland
| | - P Micke
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
- CERN, Geneva, Switzerland
| | - M Schiffelholz
- Institut für Quantenoptik, Leibniz Universität Hannover, Hannover, Germany
| | - G Umbrazunas
- RIKEN, Fundamental Symmetries Laboratory, Wako, Japan
- Eidgenössisch Technische Hochschule Zürich, Zürich, Switzerland
| | - M Wiesinger
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - C Will
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - E Wursten
- RIKEN, Fundamental Symmetries Laboratory, Wako, Japan
- CERN, Geneva, Switzerland
| | - H Yildiz
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany
| | - K Blaum
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - Y Matsuda
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - A Mooser
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - C Ospelkaus
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany
- Institut für Quantenoptik, Leibniz Universität Hannover, Hannover, Germany
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
| | - W Quint
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - A Soter
- Eidgenössisch Technische Hochschule Zürich, Zürich, Switzerland
| | - J Walz
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany
| | - Y Yamazaki
- RIKEN, Fundamental Symmetries Laboratory, Wako, Japan
| | - S Ulmer
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany
- RIKEN, Fundamental Symmetries Laboratory, Wako, Japan
| |
Collapse
|
5
|
Latacz BM, Arndt BP, Devlin JA, Erlewein SR, Fleck M, Jäger JI, Micke P, Umbrazunas G, Wursten E, Abbass F, Schweitzer D, Wiesinger M, Will C, Yildiz H, Blaum K, Matsuda Y, Mooser A, Ospelkaus C, Smorra C, Sótér A, Quint W, Walz J, Yamazaki Y, Ulmer S. Ultra-thin polymer foil cryogenic window for antiproton deceleration and storage. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:103310. [PMID: 37874231 DOI: 10.1063/5.0167262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/17/2023] [Indexed: 10/25/2023]
Abstract
We present the design and characterization of a cryogenic window based on an ultra-thin aluminized biaxially oriented polyethylene terephthalate foil at T < 10 K, which can withstand a pressure difference larger than 1 bar at a leak rate <1×10-9 mbar l/s. Its thickness of ∼1.7 μm makes it transparent to various types of particles over a broad energy range. To optimize the transfer of 100 keV antiprotons through the window, we tested the degrading properties of different aluminum coated polymer foils of thicknesses between 900 and 2160 nm, concluding that 1760 nm foil decelerates antiprotons to an average energy of 5 keV. We have also explicitly studied the permeation as a function of coating thickness and temperature and have performed extensive thermal and mechanical endurance and stress tests. Our final design integrated into the experiment has an effective open surface consisting of seven holes with a diameter of 1 mm and will transmit up to 2.5% of the injected 100 keV antiproton beam delivered by the Antiproton Decelerator and Extra Low ENergy Antiproton ring facility of CERN.
Collapse
Affiliation(s)
- B M Latacz
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - B P Arndt
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
- GSI-Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291 Darmstadt, Germany
| | - J A Devlin
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - S R Erlewein
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - M Fleck
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-0041, Japan
| | - J I Jäger
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - P Micke
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - G Umbrazunas
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Eidgenössische Technische Hochschule Zürich, John-von-Neumann-Weg 9, 8093 Zürich, Switzerland
| | - E Wursten
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - F Abbass
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz, Germany
| | - D Schweitzer
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz, Germany
| | - M Wiesinger
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - C Will
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - H Yildiz
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz, Germany
| | - K Blaum
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - Y Matsuda
- Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-0041, Japan
| | - A Mooser
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - C Ospelkaus
- Institut für Quantenoptik, Leibniz Universität, Welfengarten 1, D-30167 Hannover, Germany
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, D-38116 Braunschweig, Germany
| | - C Smorra
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz, Germany
| | - A Sótér
- Eidgenössische Technische Hochschule Zürich, John-von-Neumann-Weg 9, 8093 Zürich, Switzerland
| | - W Quint
- GSI-Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291 Darmstadt, Germany
| | - J Walz
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz, Germany
- Helmholtz-Institut Mainz, Johannes Gutenberg-Universität, Staudingerweg 18, D-55128 Mainz, Germany
| | - Y Yamazaki
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - S Ulmer
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
6
|
Latacz BM, Arndt BP, Bauer BB, Devlin JA, Erlewein SR, Fleck M, Jäger JI, Schiffelholz M, Umbrazunas G, Wursten EJ, Abbass F, Micke P, Popper D, Wiesinger M, Will C, Yildiz H, Blaum K, Matsuda Y, Mooser A, Ospelkaus C, Quint W, Soter A, Walz J, Yamazaki Y, Smorra C, Ulmer S. BASE-high-precision comparisons of the fundamental properties of protons and antiprotons. THE EUROPEAN PHYSICAL JOURNAL. D, ATOMIC, MOLECULAR, AND OPTICAL PHYSICS 2023; 77:94. [PMID: 37288385 PMCID: PMC10241734 DOI: 10.1140/epjd/s10053-023-00672-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/01/2023] [Indexed: 06/09/2023]
Abstract
Abstract The BASE collaboration at the antiproton decelerator/ELENA facility of CERN compares the fundamental properties of protons and antiprotons with ultra-high precision. Using advanced Penning trap systems, we have measured the proton and antiproton magnetic moments with fractional uncertainties of 300 parts in a trillion (p.p.t.) and 1.5 parts in a billion (p.p.b.), respectively. The combined measurements improve the resolution of the previous best test in that sector by more than a factor of 3000. Very recently, we have compared the antiproton/proton charge-to-mass ratios with a fractional precision of 16 p.p.t., which improved the previous best measurement by a factor of 4.3. These results allowed us also to perform a differential matter/antimatter clock comparison test to limits better than 3 %. Our measurements enable us to set limits on 22 coefficients of CPT- and Lorentz-violating standard model extensions (SME) and to search for potentially asymmetric interactions between antimatter and dark matter. In this article, we review some of the recent achievements and outline recent progress towards a planned improved measurement of the antiproton magnetic moment with an at least tenfold improved fractional accuracy. Graphic Abstract
Collapse
Affiliation(s)
- B. M. Latacz
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
| | - B. P. Arndt
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
- GSI-Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
| | - B. B. Bauer
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, 55099 Mainz, Germany
| | - J. A. Devlin
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
| | - S. R. Erlewein
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - M. Fleck
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-0041 Japan
| | - J. I. Jäger
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - M. Schiffelholz
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Institut für Quantenoptik, Leibniz Universität, Welfengarten 1, 30167 Hannover, Germany
| | - G. Umbrazunas
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Eidgenössisch Technische Hochschule Zürich, Rämistrasse 101, 8092 Zürich, Switzerland
| | - E. J. Wursten
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| | - F. Abbass
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, 55099 Mainz, Germany
| | - P. Micke
- CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - D. Popper
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, 55099 Mainz, Germany
| | - M. Wiesinger
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - C. Will
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - H. Yildiz
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, 55099 Mainz, Germany
| | - K. Blaum
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Y. Matsuda
- Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-0041 Japan
| | - A. Mooser
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - C. Ospelkaus
- Institut für Quantenoptik, Leibniz Universität, Welfengarten 1, 30167 Hannover, Germany
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| | - W. Quint
- GSI-Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
| | - A. Soter
- Eidgenössisch Technische Hochschule Zürich, Rämistrasse 101, 8092 Zürich, Switzerland
| | - J. Walz
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, 55099 Mainz, Germany
- Helmholtz-Institut Mainz, Johannes Gutenberg-Universität, Staudingerweg 18, 55128 Mainz, Germany
| | - Y. Yamazaki
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| | - C. Smorra
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, 55099 Mainz, Germany
| | - S. Ulmer
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Heinrich-Heine Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
7
|
Bassi A, Cacciapuoti L, Capozziello S, Dell'Agnello S, Diamanti E, Giulini D, Iess L, Jetzer P, Joshi SK, Landragin A, Poncin-Lafitte CL, Rasel E, Roura A, Salomon C, Ulbricht H. A way forward for fundamental physics in space. NPJ Microgravity 2022; 8:49. [PMID: 36336703 PMCID: PMC9637703 DOI: 10.1038/s41526-022-00229-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/03/2022] [Indexed: 11/08/2022] Open
Abstract
Space-based research can provide a major leap forward in the study of key open questions in the fundamental physics domain. They include the validity of Einstein's Equivalence principle, the origin and the nature of dark matter and dark energy, decoherence and collapse models in quantum mechanics, and the physics of quantum many-body systems. Cold-atom sensors and quantum technologies have drastically changed the approach to precision measurements. Atomic clocks and atom interferometers as well as classical and quantum links can be used to measure tiny variations of the space-time metric, elusive accelerations, and faint forces to test our knowledge of the physical laws ruling the Universe. In space, such instruments can benefit from unique conditions that allow improving both their precision and the signal to be measured. In this paper, we discuss the scientific priorities of a space-based research program in fundamental physics.
Collapse
Affiliation(s)
- A Bassi
- Department of Physics, University of Trieste, Strada Costiera 11, 34151, Trieste, Italy
- Istituto Nazionale di Fisica Nucleare, Trieste Section, Via Valerio 2, 34127, Trieste, Italy
| | - L Cacciapuoti
- European Space Agency, Keplerlaan 1 - P.O. Box 299, 2200 AG, Noordwijk, ZH, The Netherlands.
| | - S Capozziello
- Dipartimento di Fisica 'E. Pancini', Università di Napoli 'Federico II', INFN, Sezione di Napoli, via Cinthia 9, I-80126, Napoli, Italy
- Scuola Superiore Meridionale, Largo S. Marcellino 10, I-80138, Napoli, Italy
| | - S Dell'Agnello
- Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati (INFN-LNF), via E. Fermi 54, 00044, Frascati (Rome), Italy
| | - E Diamanti
- LIP6, CNRS, Sorbonne Université, Paris, France
| | - D Giulini
- Institute for Theoretical Physics, Leibniz University Hannover, Appelstrasse 2, 30167, Hannover, Germany
| | - L Iess
- Sapienza Università di Roma, 00184, Rome, Italy
| | - P Jetzer
- Department of Physics, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - S K Joshi
- Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory & Department of Electrical and Electronic Engineering, University of Bristol, Bristol, UK
| | - A Landragin
- SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, LNE, Paris, France
| | - C Le Poncin-Lafitte
- SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, LNE, Paris, France
| | - E Rasel
- Leibniz Universität Hannover, Institut für Quantenoptik, Welfengarten 1, 30167, Hannover, Germany
| | - A Roura
- Institute of Quantum Technologies, German Aerospace Center (DLR), Wilhelm-Runge-Straße 10, 89081, Ulm, Germany
| | - C Salomon
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, Paris, France
| | - H Ulbricht
- School of Physics and Astronomy, University of Southampton, SO17 1BJ, Southampton, United Kingdom
| |
Collapse
|
8
|
Völksen F, Devlin JA, Borchert MJ, Erlewein SR, Fleck M, Jäger JI, Latacz BM, Micke P, Nuschke P, Umbrazunas G, Wursten EJ, Abbass F, Bohman MA, Popper D, Wiesinger M, Will C, Blaum K, Matsuda Y, Mooser A, Ospelkaus C, Smorra C, Soter A, Quint W, Walz J, Yamazaki Y, Ulmer S. A high-Q superconducting toroidal medium frequency detection system with a capacitively adjustable frequency range >180 kHz. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:093303. [PMID: 36182508 DOI: 10.1063/5.0089182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We describe a newly developed polytetrafluoroethylene/copper capacitor driven by a cryogenic piezoelectric slip-stick stage and demonstrate with the chosen layout cryogenic capacitance tuning of ≈60 pF at ≈10 pF background capacitance. Connected to a highly sensitive superconducting toroidal LC circuit, we demonstrate tuning of the resonant frequency between 345 and 685 kHz, at quality factors Q > 100 000. Connected to a cryogenic ultra low noise amplifier, a frequency tuning range between 520 and 710 kHz is reached, while quality factors Q > 86 000 are achieved. This new device can be used as a versatile image current detector in high-precision Penning-trap experiments or as an LC-circuit-based haloscope detector to search for the conversion of axion-like dark matter to radio-frequency photons. This new development increases the sensitive detection bandwidth of our axion haloscope by a factor of ≈1000.
Collapse
Affiliation(s)
- F Völksen
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - J A Devlin
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - M J Borchert
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - S R Erlewein
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - M Fleck
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - J I Jäger
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - B M Latacz
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - P Micke
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - P Nuschke
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - G Umbrazunas
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - E J Wursten
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - F Abbass
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz, Germany
| | - M A Bohman
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - D Popper
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz, Germany
| | - M Wiesinger
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - C Will
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - K Blaum
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - Y Matsuda
- Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-0041, Japan
| | - A Mooser
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - C Ospelkaus
- Institut für Quantenoptik, Leibniz Universität, Welfengarten 1, D-30167 Hannover, Germany
| | - C Smorra
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - A Soter
- Eidgenössisch Technische Hochschule Zürich, Rämistrasse 101, 8092 Zürich, Switzerland
| | - W Quint
- GSI-Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291 Darmstadt, Germany
| | - J Walz
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55099 Mainz, Germany
| | - Y Yamazaki
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - S Ulmer
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
9
|
Uribe AJ, Cridland Mathad A, Lacy JH, Pinder J, Willetts R, Verdú J. High frequency properties of a planar ion trap fabricated on a chip. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:083202. [PMID: 36050058 DOI: 10.1063/5.0091745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
We report on the measurement of the high frequency properties of a planar Penning ion trap fabricated on a chip. Two types of chips have been measured: the first manufactured by photolithographic metal deposition on a p-doped silicon substrate and the second made with printed circuit board technology on an alumina substrate. The input capacitances and the admittances between the different trap's electrodes play a critical role in the electronic detection of the trapped particles. The measured input capacitances of the photolithographic chip amount to 65-76 pF, while the values for the printed circuit board chips are in the range of 3-5 pF. The latter are small enough for detecting non-destructively a single trapped electron or ion with a specifically tuned LC resonator. We have also measured a mutual capacitance of ∼85 fF between two of the trap's electrodes in the printed circuit board chip. This enables the detection of single, or very few, trapped particles in a broader range of charge-to-mass ratios with a simple resistor on the chip. We provide analytic calculations of the capacitances and discuss their origin and possible further reduction.
Collapse
Affiliation(s)
- A J Uribe
- Department of Physics and Astronomy, University of Sussex, Falmer BN1 9QH, United Kingdom
| | - A Cridland Mathad
- Department of Physics and Astronomy, University of Sussex, Falmer BN1 9QH, United Kingdom
| | - J H Lacy
- Department of Physics and Astronomy, University of Sussex, Falmer BN1 9QH, United Kingdom
| | - J Pinder
- Department of Physics and Astronomy, University of Sussex, Falmer BN1 9QH, United Kingdom
| | - R Willetts
- Department of Physics and Astronomy, University of Sussex, Falmer BN1 9QH, United Kingdom
| | - J Verdú
- Department of Physics and Astronomy, University of Sussex, Falmer BN1 9QH, United Kingdom
| |
Collapse
|
10
|
Schneider A, Sikora B, Dickopf S, Müller M, Oreshkina NS, Rischka A, Valuev IA, Ulmer S, Walz J, Harman Z, Keitel CH, Mooser A, Blaum K. Direct measurement of the 3He + magnetic moments. Nature 2022; 606:878-883. [PMID: 35676477 PMCID: PMC9242863 DOI: 10.1038/s41586-022-04761-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/13/2022] [Indexed: 11/08/2022]
Abstract
Helium-3 has nowadays become one of the most important candidates for studies in fundamental physics1-3, nuclear and atomic structure4,5, magnetometry and metrology6, as well as chemistry and medicine7,8. In particular, 3He nuclear magnetic resonance (NMR) probes have been proposed as a new standard for absolute magnetometry6,9. This requires a high-accuracy value for the 3He nuclear magnetic moment, which, however, has so far been determined only indirectly and with a relative precision of 12 parts per billon10,11. Here we investigate the 3He+ ground-state hyperfine structure in a Penning trap to directly measure the nuclear g-factor of 3He+ [Formula: see text], the zero-field hyperfine splitting [Formula: see text] Hz and the bound electron g-factor [Formula: see text]. The latter is consistent with our theoretical value [Formula: see text] based on parameters and fundamental constants from ref. 12. Our measured value for the 3He+ nuclear g-factor enables determination of the g-factor of the bare nucleus [Formula: see text] via our accurate calculation of the diamagnetic shielding constant13 [Formula: see text]. This constitutes a direct calibration for 3He NMR probes and an improvement of the precision by one order of magnitude compared to previous indirect results. The measured zero-field hyperfine splitting improves the precision by two orders of magnitude compared to the previous most precise value14 and enables us to determine the Zemach radius15 to [Formula: see text] fm.
Collapse
Affiliation(s)
- A Schneider
- Max Planck Institute for Nuclear Physics, Heidelberg, Germany.
| | - B Sikora
- Max Planck Institute for Nuclear Physics, Heidelberg, Germany
| | - S Dickopf
- Max Planck Institute for Nuclear Physics, Heidelberg, Germany
| | - M Müller
- Max Planck Institute for Nuclear Physics, Heidelberg, Germany
| | - N S Oreshkina
- Max Planck Institute for Nuclear Physics, Heidelberg, Germany
| | - A Rischka
- Max Planck Institute for Nuclear Physics, Heidelberg, Germany
| | - I A Valuev
- Max Planck Institute for Nuclear Physics, Heidelberg, Germany
| | - S Ulmer
- RIKEN, Ulmer Fundamental Symmetries Laboratory, Wako, Japan
| | - J Walz
- Institute for Physics, Johannes Gutenberg-University Mainz, Mainz, Germany
- Helmholtz Institute Mainz, Mainz, Germany
| | - Z Harman
- Max Planck Institute for Nuclear Physics, Heidelberg, Germany
| | - C H Keitel
- Max Planck Institute for Nuclear Physics, Heidelberg, Germany
| | - A Mooser
- Max Planck Institute for Nuclear Physics, Heidelberg, Germany
| | - K Blaum
- Max Planck Institute for Nuclear Physics, Heidelberg, Germany
| |
Collapse
|
11
|
Low Energy Antimatter Physics. UNIVERSE 2022. [DOI: 10.3390/universe8020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We will review the motivations and the general features of experiments devoted to testing fundamental laws with antimatter at low energies, namely the study of CPT invariance and the Weak Equivalence Principle. A summary of the recent experimental results will be presented.
Collapse
|
12
|
Borchert MJ, Devlin JA, Erlewein SR, Fleck M, Harrington JA, Higuchi T, Latacz BM, Voelksen F, Wursten EJ, Abbass F, Bohman MA, Mooser AH, Popper D, Wiesinger M, Will C, Blaum K, Matsuda Y, Ospelkaus C, Quint W, Walz J, Yamazaki Y, Smorra C, Ulmer S. A 16-parts-per-trillion measurement of the antiproton-to-proton charge-mass ratio. Nature 2022; 601:53-57. [PMID: 34987217 DOI: 10.1038/s41586-021-04203-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/03/2021] [Indexed: 11/09/2022]
Abstract
The standard model of particle physics is both incredibly successful and glaringly incomplete. Among the questions left open is the striking imbalance of matter and antimatter in the observable universe1, which inspires experiments to compare the fundamental properties of matter/antimatter conjugates with high precision2-5. Our experiments deal with direct investigations of the fundamental properties of protons and antiprotons, performing spectroscopy in advanced cryogenic Penning trap systems6. For instance, we previously compared the proton/antiproton magnetic moments with 1.5 parts per billion fractional precision7,8, which improved upon previous best measurements9 by a factor of greater than 3,000. Here we report on a new comparison of the proton/antiproton charge-to-mass ratios with a fractional uncertainty of 16 parts per trillion. Our result is based on the combination of four independent long-term studies, recorded in a total time span of 1.5 years. We use different measurement methods and experimental set-ups incorporating different systematic effects. The final result, [Formula: see text], is consistent with the fundamental charge-parity-time reversal invariance, and improves the precision of our previous best measurement6 by a factor of 4.3. The measurement tests the standard model at an energy scale of 1.96 × 10-27 gigaelectronvolts (confidence level 0.68), and improves ten coefficients of the standard model extension10. Our cyclotron clock study also constrains hypothetical interactions mediating violations of the clock weak equivalence principle (WEPcc) for antimatter to less than 1.8 × 10-7, and enables the first differential test of the WEPcc using antiprotons11. From this interpretation we constrain the differential WEPcc-violating coefficient to less than 0.030.
Collapse
Affiliation(s)
- M J Borchert
- Ulmer Fundamental Symmetries Laboratory, RIKEN, Saitama, Japan.,Institut für Quantenoptik, Leibniz Universität Hannover, Hannover, Germany.,Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
| | - J A Devlin
- Ulmer Fundamental Symmetries Laboratory, RIKEN, Saitama, Japan.,CERN, Meyrin, Switzerland
| | - S R Erlewein
- Ulmer Fundamental Symmetries Laboratory, RIKEN, Saitama, Japan.,CERN, Meyrin, Switzerland.,Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - M Fleck
- Ulmer Fundamental Symmetries Laboratory, RIKEN, Saitama, Japan.,Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - J A Harrington
- Ulmer Fundamental Symmetries Laboratory, RIKEN, Saitama, Japan.,Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - T Higuchi
- Ulmer Fundamental Symmetries Laboratory, RIKEN, Saitama, Japan.,Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - B M Latacz
- Ulmer Fundamental Symmetries Laboratory, RIKEN, Saitama, Japan
| | - F Voelksen
- Ulmer Fundamental Symmetries Laboratory, RIKEN, Saitama, Japan.,GSI-Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - E J Wursten
- Ulmer Fundamental Symmetries Laboratory, RIKEN, Saitama, Japan.,CERN, Meyrin, Switzerland.,Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - F Abbass
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany
| | - M A Bohman
- Ulmer Fundamental Symmetries Laboratory, RIKEN, Saitama, Japan.,Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - A H Mooser
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - D Popper
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany
| | - M Wiesinger
- Ulmer Fundamental Symmetries Laboratory, RIKEN, Saitama, Japan.,Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - C Will
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - K Blaum
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - Y Matsuda
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - C Ospelkaus
- Institut für Quantenoptik, Leibniz Universität Hannover, Hannover, Germany.,Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
| | - W Quint
- GSI-Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - J Walz
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany.,Helmholtz-Institut Mainz, Johannes Gutenberg-Universität, Mainz, Germany
| | - Y Yamazaki
- Ulmer Fundamental Symmetries Laboratory, RIKEN, Saitama, Japan
| | - C Smorra
- Ulmer Fundamental Symmetries Laboratory, RIKEN, Saitama, Japan.,Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany
| | - S Ulmer
- Ulmer Fundamental Symmetries Laboratory, RIKEN, Saitama, Japan.
| |
Collapse
|
13
|
Wehrli D, Spyszkiewicz-Kaczmarek A, Puchalski M, Pachucki K. QED Effect on the Nuclear Magnetic Shielding of ^{3}He. PHYSICAL REVIEW LETTERS 2021; 127:263001. [PMID: 35029494 DOI: 10.1103/physrevlett.127.263001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
The leading quantum electrodynamic corrections to the nuclear magnetic shielding in one- and two-electron atomic systems are obtained in a complete form, and the shielding constants of ^{1}H, ^{3}He^{+}, and ^{3}He are calculated to be 17.735 436(3)×10^{-6}, 35.507 434(9)×10^{-6}, and 59.967 029(23)×10^{-6}, respectively. These results are orders of magnitude more accurate than previous ones, and, with the ongoing measurement of the nuclear magnetic moment of ^{3}He^{+} and planned ^{3}He^{2+}, they open the window for high-precision absolute magnetometry using ^{3}He NMR probes. The presented theoretical approach is applicable to all other light atomic and molecular systems, which facilitates the improved determination of magnetic moments of any light nuclei.
Collapse
Affiliation(s)
- Dominik Wehrli
- Laboratorium für Physikalische Chemie, ETH-Zürich, 8093 Zürich, Switzerland
| | | | - Mariusz Puchalski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Krzysztof Pachucki
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
14
|
Herkenhoff J, Door M, Filianin P, Huang W, Kromer K, Lange D, Schüssler RX, Schweiger C, Eliseev S, Blaum K. A digital feedback system for advanced ion manipulation techniques in Penning traps. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:103201. [PMID: 34717400 DOI: 10.1063/5.0064369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The possibility of applying active feedback to a single ion in a Penning trap using a fully digital system is demonstrated. Previously realized feedback systems rely on analog circuits that are susceptible to environmental fluctuations and long term drifts, as well as being limited to the specific task they were designed for. The presented system is implemented using a field-programmable gate array (FPGA)-based platform (STEMlab), offering greater flexibility, higher temporal stability, and the possibility for highly dynamic variation of feedback parameters. The system's capabilities were demonstrated by applying feedback to the ion detection system primarily consisting of a resonant circuit. This allowed shifts in its resonance frequency of up to several kHz and free modification of its quality factor within two orders of magnitude, which reduces the temperature of a single ion by a factor of 6. Furthermore, a phase-sensitive detection technique for the axial ion oscillation was implemented, which reduces the current measurement time by two orders of magnitude, while simultaneously eliminating model-related systematic uncertainties. The use of FPGA technology allowed the implementation of a fully-featured data acquisition system, making it possible to realize feedback techniques that require constant monitoring of the ion signal. This was successfully used to implement a single-ion self-excited oscillator.
Collapse
Affiliation(s)
- Jost Herkenhoff
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69 117 Heidelberg, Germany
| | - Menno Door
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69 117 Heidelberg, Germany
| | - Pavel Filianin
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69 117 Heidelberg, Germany
| | - Wenjia Huang
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69 117 Heidelberg, Germany
| | - Kathrin Kromer
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69 117 Heidelberg, Germany
| | - Daniel Lange
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69 117 Heidelberg, Germany
| | - Rima X Schüssler
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69 117 Heidelberg, Germany
| | - Christoph Schweiger
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69 117 Heidelberg, Germany
| | - Sergey Eliseev
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69 117 Heidelberg, Germany
| | - Klaus Blaum
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69 117 Heidelberg, Germany
| |
Collapse
|
15
|
Penning-Trap Searches for Lorentz and CPT Violation. Symmetry (Basel) 2021. [DOI: 10.3390/sym13091703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
An overview of recent progress on testing Lorentz and CPT symmetry using Penning traps is presented. The theory of quantum electrodynamics with Lorentz-violating operators of mass dimensions up to six is summarized. Dominant shifts in the cyclotron and anomaly frequencies of the confined particles and antiparticles due to Lorentz and CPT violation are derived. Existing results of the comparisons of charge-to-mass ratios and magnetic moments involving protons, antiprotons, electrons, and positrons are used to constrain various coefficients for Lorentz violation.
Collapse
|
16
|
Cerchiari G, Araneda G, Podhora L, Slodička L, Colombe Y, Blatt R. Measuring Ion Oscillations at the Quantum Level with Fluorescence Light. PHYSICAL REVIEW LETTERS 2021; 127:063603. [PMID: 34420343 DOI: 10.1103/physrevlett.127.063603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
We demonstrate an optical method for detecting the mechanical oscillations of an atom with single-phonon sensitivity. The measurement signal results from the interference between the light scattered by a trapped atomic ion and that of its mirror image. We detect the oscillations of the atom in the Doppler cooling limit and reconstruct average trajectories in phase space. We demonstrate single-phonon sensitivity near the ground state of motion after electronically induced transparency cooling. These results could be applied for motion detection of other light scatterers of fundamental interest, such as trapped nanoparticles.
Collapse
Affiliation(s)
- G Cerchiari
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - G Araneda
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
| | - L Podhora
- Department of Optics, Palacký University, 17. Listopadu 12, 77146 Olomouc, Czech Republic
| | - L Slodička
- Department of Optics, Palacký University, 17. Listopadu 12, 77146 Olomouc, Czech Republic
| | - Y Colombe
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - R Blatt
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Technikerstrasse 21a, 6020 Innsbruck, Austria
| |
Collapse
|
17
|
Bohman M, Grunhofer V, Smorra C, Wiesinger M, Will C, Borchert MJ, Devlin JA, Erlewein S, Fleck M, Gavranovic S, Harrington J, Latacz B, Mooser A, Popper D, Wursten E, Blaum K, Matsuda Y, Ospelkaus C, Quint W, Walz J, Ulmer S. Sympathetic cooling of a trapped proton mediated by an LC circuit. Nature 2021; 596:514-518. [PMID: 34433946 PMCID: PMC8387233 DOI: 10.1038/s41586-021-03784-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
Efficient cooling of trapped charged particles is essential to many fundamental physics experiments1,2, to high-precision metrology3,4 and to quantum technology5,6. Until now, sympathetic cooling has required close-range Coulomb interactions7,8, but there has been a sustained desire to bring laser-cooling techniques to particles in macroscopically separated traps5,9,10, extending quantum control techniques to previously inaccessible particles such as highly charged ions, molecular ions and antimatter. Here we demonstrate sympathetic cooling of a single proton using laser-cooled Be+ ions in spatially separated Penning traps. The traps are connected by a superconducting LC circuit that enables energy exchange over a distance of 9 cm. We also demonstrate the cooling of a resonant mode of a macroscopic LC circuit with laser-cooled ions and sympathetic cooling of an individually trapped proton, reaching temperatures far below the environmental temperature. Notably, as this technique uses only image-current interactions, it can be easily applied to an experiment with antiprotons1, facilitating improved precision in matter-antimatter comparisons11 and dark matter searches12,13.
Collapse
Affiliation(s)
- M Bohman
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany.
- RIKEN, Fundamental Symmetries Laboratory, Saitama, Japan.
| | - V Grunhofer
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany
| | - C Smorra
- RIKEN, Fundamental Symmetries Laboratory, Saitama, Japan
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany
| | - M Wiesinger
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
- RIKEN, Fundamental Symmetries Laboratory, Saitama, Japan
| | - C Will
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - M J Borchert
- RIKEN, Fundamental Symmetries Laboratory, Saitama, Japan
- Institut für Quantenoptik, Leibniz Universität Hannover, Hannover, Germany
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
| | - J A Devlin
- RIKEN, Fundamental Symmetries Laboratory, Saitama, Japan
- CERN, Geneva, Switzerland
| | - S Erlewein
- RIKEN, Fundamental Symmetries Laboratory, Saitama, Japan
- CERN, Geneva, Switzerland
| | - M Fleck
- RIKEN, Fundamental Symmetries Laboratory, Saitama, Japan
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - S Gavranovic
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany
| | - J Harrington
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
- RIKEN, Fundamental Symmetries Laboratory, Saitama, Japan
| | - B Latacz
- RIKEN, Fundamental Symmetries Laboratory, Saitama, Japan
| | - A Mooser
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - D Popper
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany
| | - E Wursten
- RIKEN, Fundamental Symmetries Laboratory, Saitama, Japan
- CERN, Geneva, Switzerland
| | - K Blaum
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | - Y Matsuda
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - C Ospelkaus
- Institut für Quantenoptik, Leibniz Universität Hannover, Hannover, Germany
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
| | - W Quint
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - J Walz
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany
- Helmholtz-Institut Mainz, Mainz, Germany
| | - S Ulmer
- RIKEN, Fundamental Symmetries Laboratory, Saitama, Japan
| |
Collapse
|
18
|
Fan X, Fayer SE, Myers TG, Sukra BAD, Nahal G, Gabrielse G. Switchable damping for a one-particle oscillator. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:023201. [PMID: 33648086 DOI: 10.1063/5.0038005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
The possibility to switch the damping rate for a one-electron oscillator is demonstrated for an electron that oscillates along the magnetic field axis in a Penning trap. Strong axial damping can be switched on to allow this oscillation to be used for quantum nondemolition detection of the cyclotron and spin quantum state of the electron. Weak axial damping can be switched on to circumvent the backaction of the detection motion that has limited past measurements. The newly developed switch will reduce the linewidth of the cyclotron transition of one-electron by two orders of magnitude.
Collapse
Affiliation(s)
- X Fan
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - S E Fayer
- Center for Fundamental Physics, Northwestern University, Evanston, Illinois 60208, USA
| | - T G Myers
- Center for Fundamental Physics, Northwestern University, Evanston, Illinois 60208, USA
| | - B A D Sukra
- Center for Fundamental Physics, Northwestern University, Evanston, Illinois 60208, USA
| | - G Nahal
- Center for Fundamental Physics, Northwestern University, Evanston, Illinois 60208, USA
| | - G Gabrielse
- Center for Fundamental Physics, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
19
|
Devlin JA, Borchert MJ, Erlewein S, Fleck M, Harrington JA, Latacz B, Warncke J, Wursten E, Bohman MA, Mooser AH, Smorra C, Wiesinger M, Will C, Blaum K, Matsuda Y, Ospelkaus C, Quint W, Walz J, Yamazaki Y, Ulmer S. Constraints on the Coupling between Axionlike Dark Matter and Photons Using an Antiproton Superconducting Tuned Detection Circuit in a Cryogenic Penning Trap. PHYSICAL REVIEW LETTERS 2021; 126:041301. [PMID: 33576660 DOI: 10.1103/physrevlett.126.041301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
We constrain the coupling between axionlike particles (ALPs) and photons, measured with the superconducting resonant detection circuit of a cryogenic Penning trap. By searching the noise spectrum of our fixed-frequency resonant circuit for peaks caused by dark matter ALPs converting into photons in the strong magnetic field of the Penning-trap magnet, we are able to constrain the coupling of ALPs with masses around 2.7906-2.7914 neV/c^{2} to g_{aγ}<1×10^{-11} GeV^{-1}. This is more than one order of magnitude lower than the best laboratory haloscope and approximately 5 times lower than the CERN axion solar telescope (CAST), setting limits in a mass and coupling range which is not constrained by astrophysical observations. Our approach can be extended to many other Penning-trap experiments and has the potential to provide broad limits in the low ALP mass range.
Collapse
Affiliation(s)
- Jack A Devlin
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- CERN, Esplanade des Particules 1, CH-1211 Geneva 23, Switzerland
| | - Matthias J Borchert
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, D-38116 Braunschweig, Germany
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - Stefan Erlewein
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- CERN, Esplanade des Particules 1, CH-1211 Geneva 23, Switzerland
| | - Markus Fleck
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Tokyo 153-8902, Japan
| | - James A Harrington
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - Barbara Latacz
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jan Warncke
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Elise Wursten
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- CERN, Esplanade des Particules 1, CH-1211 Geneva 23, Switzerland
| | - Matthew A Bohman
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - Andreas H Mooser
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - Christian Smorra
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55128 Mainz, Germany
| | - Markus Wiesinger
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - Christian Will
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - Klaus Blaum
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - Yasuyuki Matsuda
- Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Tokyo 153-8902, Japan
| | - Christian Ospelkaus
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, D-38116 Braunschweig, Germany
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - Wolfgang Quint
- GSI-Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291 Darmstadt, Germany
| | - Jochen Walz
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, D-55128 Mainz, Germany
- Helmholtz-Institut Mainz, Johannes Gutenberg-Universität, Staudinger Weg 18, D-55128 Mainz, Germany
| | - Yasunori Yamazaki
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Stefan Ulmer
- RIKEN, Ulmer Fundamental Symmetries Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
20
|
Farooq M, Chupp T, Grange J, Tewsley-Booth A, Flay D, Kawall D, Sachdeva N, Winter P. Absolute Magnetometry with ^{3}He. PHYSICAL REVIEW LETTERS 2020; 124:223001. [PMID: 32567926 DOI: 10.1103/physrevlett.124.223001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
We report development of a highly accurate (parts per billion) absolute magnetometer based on ^{3}He NMR. Optical pumping polarizes the spins, long coherence times provide high sensitivity, and the ^{3}He electron shell effectively isolates the nuclear spin providing accuracy limited only by corrections including materials, sample shape, and magnetization. Our magnetometer was used to confirm calibration, to 32 ppb, of the magnetic-field sensors used in recent measurements of the muon magnetic moment anomaly (g_{μ}-2), which differs from the standard model by 2.4 ppm. With independent determination of the magnetic moment of ^{3}He, this work will lead the way to a new absolute magnetometry standard.
Collapse
Affiliation(s)
- Midhat Farooq
- Physics Department, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Timothy Chupp
- Physics Department, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Joe Grange
- Physics Department, University of Michigan, Ann Arbor, Michigan 48109, USA
- Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Alec Tewsley-Booth
- Physics Department, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - David Flay
- Physics Department, University of Massachussetts, Amherst, Massachussetts 01003, USA
| | - David Kawall
- Physics Department, University of Massachussetts, Amherst, Massachussetts 01003, USA
| | - Natasha Sachdeva
- Physics Department, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Peter Winter
- Argonne National Laboratory, Lemont, Illinois 60439, USA
| |
Collapse
|
21
|
Detection of metastable electronic states by Penning trap mass spectrometry. Nature 2020; 581:42-46. [PMID: 32376960 DOI: 10.1038/s41586-020-2221-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/11/2020] [Indexed: 11/08/2022]
Abstract
State-of-the-art optical clocks1 achieve precisions of 10-18 or better using ensembles of atoms in optical lattices2,3 or individual ions in radio-frequency traps4,5. Promising candidates for use in atomic clocks are highly charged ions6 (HCIs) and nuclear transitions7, which are largely insensitive to external perturbations and reach wavelengths beyond the optical range8 that are accessible to frequency combs9. However, insufficiently accurate atomic structure calculations hinder the identification of suitable transitions in HCIs. Here we report the observation of a long-lived metastable electronic state in an HCI by measuring the mass difference between the ground and excited states in rhenium, providing a non-destructive, direct determination of an electronic excitation energy. The result is in agreement with advanced calculations. We use the high-precision Penning trap mass spectrometer PENTATRAP to measure the cyclotron frequency ratio of the ground state to the metastable state of the ion with a precision of 10-11-an improvement by a factor of ten compared with previous measurements10,11. With a lifetime of about 130 days, the potential soft-X-ray frequency reference at 4.96 × 1016 hertz (corresponding to a transition energy of 202 electronvolts) has a linewidth of only 5 × 10-8 hertz and one of the highest electronic quality factors (1024) measured experimentally so far. The low uncertainty of our method will enable searches for further soft-X-ray clock transitions8,12 in HCIs, which are required for precision studies of fundamental physics6.
Collapse
|
22
|
Fundamental symmetry tested using antihydrogen. Nature 2020; 578:369-370. [DOI: 10.1038/d41586-020-00384-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Bars HPL, Guerlin C, Hees A, Peaucelle R, Tasson JD, Bailey QG, Mo G, Delva P, Meynadier F, Touboul P, Métris G, Rodrigues M, Bergé J, Wolf P. New Test of Lorentz Invariance Using the MICROSCOPE Space Mission. PHYSICAL REVIEW LETTERS 2019; 123:231102. [PMID: 31868496 DOI: 10.1103/physrevlett.123.231102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Indexed: 06/10/2023]
Abstract
We use data from the T-SAGE instrument on board the MICROSCOPE space mission to search for Lorentz violation in matter-gravity couplings as described by the Lorentz violating standard model extension (SME) coefficients (a[over ¯]_{eff})_{μ}^{w}, where (μ=T, X, Y, Z) and (w=e, p, n) for the electron, proton, and neutron. One of the phenomenological consequences of a nonzero value of those coefficients is that test bodies of different composition fall differently in an external gravitational field. This is similar to "standard" tests of the universality of free fall, but with a specific signature that depends on the orbital velocity and rotation of Earth. We analyze data from five measurement sessions of MICROSCOPE spread over a year finding no evidence for such a signature, but setting constraints on linear combinations of the SME coefficients that improve on best previous results by 1 to 2 orders of magnitude. Additionally, our independent linear combinations are different from previous ones, which increases the diversity of available constraints, paving the way towards a full decorrelation of the individual coefficients.
Collapse
Affiliation(s)
- Hélène Pihan-le Bars
- SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, LNE, 75014 Paris, France
| | - Christine Guerlin
- SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, LNE, 75014 Paris, France
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 75005 Paris, France
| | - Aurélien Hees
- SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, LNE, 75014 Paris, France
| | - Romain Peaucelle
- SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, LNE, 75014 Paris, France
- Ecole Supérieure des Techniques Aéronautiques et de Construction Automobile (ESTACA), 78066 Saint-Quentin-en-Yvelines, France
| | - Jay D Tasson
- Department of Physics and Astronomy, Carleton College, Northfield, Minnesota 55057, USA
| | - Quentin G Bailey
- Department of Physics and Astronomy, Embry-Riddle Aeronautical University, Prescott, Arizona 86301, USA
| | - Geoffrey Mo
- Department of Physics and Astronomy, Carleton College, Northfield, Minnesota 55057, USA
| | - Pacôme Delva
- SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, LNE, 75014 Paris, France
| | - Frédéric Meynadier
- SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, LNE, 75014 Paris, France
- Bureau International des Poids et Mesures, Pavillon de Breteuil, 92312 Sèvres, France
| | - Pierre Touboul
- DPHY, ONERA, Université Paris Saclay, 92322 Châtillon, France
| | - Gilles Métris
- Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, IRD, Géoazur, 06560 Valbonne, France
| | | | - Joël Bergé
- DPHY, ONERA, Université Paris Saclay, 92322 Châtillon, France
| | - Peter Wolf
- SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, LNE, 75014 Paris, France
| |
Collapse
|
24
|
Smorra C, Stadnik YV, Blessing PE, Bohman M, Borchert MJ, Devlin JA, Erlewein S, Harrington JA, Higuchi T, Mooser A, Schneider G, Wiesinger M, Wursten E, Blaum K, Matsuda Y, Ospelkaus C, Quint W, Walz J, Yamazaki Y, Budker D, Ulmer S. Direct limits on the interaction of antiprotons with axion-like dark matter. Nature 2019; 575:310-314. [DOI: 10.1038/s41586-019-1727-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/20/2019] [Indexed: 11/09/2022]
|
25
|
|
26
|
Abstract
The theoretical prospects for quantum electrodynamics with Lorentz-violating operators of mass dimensions up to six are revisited in this work. The dominant effects due to Lorentz and CPT violation are studied in measurements of magnetic moments of particles confined in Penning traps. Using recently reported experimental results, new coefficients for Lorentz violation are constrained and existing bounds of various coefficients are improved.
Collapse
|
27
|
Lohse S, Berrocal J, Block M, Chenmarev S, Cornejo JM, Ramírez JG, Rodríguez D. A quartz amplifier for high-sensitivity Fourier-transform ion-cyclotron-resonance measurements with trapped ions. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:063202. [PMID: 31254986 DOI: 10.1063/1.5094428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Single-ion sensitivity is obtained in precision Penning-trap experiments devoted to light (anti)particles or ions with low mass-to-charge ratios, by adding an inductance coil to an amplifier connected to the trap, both operated at 4 K. However, single-ion sensitivity has not been reached on heavy singly or doubly charged ions. In this publication, we present a new system to reach this point, based on the use of a quartz crystal as an inductance, together with a newly developed broad-band (BB) amplifier. We detect the reduced-cyclotron frequency of 40Ca+ ions stored in a 7-tesla open-ring Penning trap. By comparing the detected electric signal obtained with the BB amplifier and the fluorescence signal obtained by collecting the photons emitted by a trapped ion cloud, we show a detection limit below 110 ions. Adding the crystal, the electrical signal increases by a factor of about 30 at room temperature, which combined with the measured equivalent resistance and voltage noise, proves the feasibility of the system to reach single-ion sensitivity at 4 K.
Collapse
Affiliation(s)
- S Lohse
- Institut für Kernchemie, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - J Berrocal
- Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, 18071 Granada, Spain
| | - M Block
- Institut für Kernchemie, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - S Chenmarev
- Institut für Kernchemie, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - J M Cornejo
- Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, 18071 Granada, Spain
| | | | - D Rodríguez
- Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
28
|
Ball H, Marciniak CD, Wolf RN, Hung ATH, Pyka K, Biercuk MJ. Site-resolved imaging of beryllium ion crystals in a high-optical-access Penning trap with inbore optomechanics. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:053103. [PMID: 31153278 DOI: 10.1063/1.5049506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
We present the design, construction, and characterization of an experimental system capable of supporting a broad class of quantum simulation experiments with hundreds of spin qubits using 9Be+ ions in a Penning trap. This article provides a detailed overview of the core optical and trapping subsystems and their integration. We begin with a description of a dual-trap design separating loading and experimental zones and associated vacuum infrastructure design. The experimental-zone trap electrodes are designed for wide-angle optical access (e.g., for lasers used to engineer spin-motional coupling across large ion crystals) while simultaneously providing a harmonic trapping potential. We describe a near-zero-loss liquid-cryogen-based superconducting magnet, employed in both trapping and establishing a quantization field for ion spin-states and equipped with a dual-stage remote-motor LN2/LHe recondenser. Experimental measurements using a nuclear magnetic resonance (NMR) probe demonstrate part-per-million homogeneity over 7 mm-diameter cylindrical volume, with no discernible effect on the measured NMR linewidth from pulse-tube operation. Next, we describe a custom-engineered inbore optomechanical system which delivers ultraviolet (UV) laser light to the trap and supports multiple aligned optical objectives for topview and sideview imaging in the experimental trap region. We describe design choices including the use of nonmagnetic goniometers and translation stages for precision alignment. Furthermore, the optomechanical system integrates UV-compatible fiber optics which decouple the system's alignment from remote light sources. Using this system, we present site-resolved images of ion crystals and demonstrate the ability to realize both planar and three-dimensional ion arrays via control of rotating wall electrodes and radial laser beams. Looking to future work, we include interferometric vibration measurements demonstrating root-mean-square trap motion of ∼33 nm (∼117 nm) in the axial (transverse) direction; both values can be reduced when operating the magnet in free-running mode. The paper concludes with an outlook toward extensions of the experimental setup, areas for improvement, and future experimental studies.
Collapse
Affiliation(s)
- H Ball
- ARC Centre for Engineered Quantum Systems, School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ch D Marciniak
- ARC Centre for Engineered Quantum Systems, School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
| | - R N Wolf
- ARC Centre for Engineered Quantum Systems, School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
| | - A T-H Hung
- ARC Centre for Engineered Quantum Systems, School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
| | - K Pyka
- ARC Centre for Engineered Quantum Systems, School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
| | - M J Biercuk
- ARC Centre for Engineered Quantum Systems, School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
29
|
Borchert MJ, Blessing PE, Devlin JA, Harrington JA, Higuchi T, Morgner J, Smorra C, Wursten E, Bohman M, Wiesinger M, Mooser A, Blaum K, Matsuda Y, Ospelkaus C, Quint W, Walz J, Yamazaki Y, Ulmer S. Measurement of Ultralow Heating Rates of a Single Antiproton in a Cryogenic Penning Trap. PHYSICAL REVIEW LETTERS 2019; 122:043201. [PMID: 30768304 DOI: 10.1103/physrevlett.122.043201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Indexed: 06/09/2023]
Abstract
We report on the first detailed study of motional heating in a cryogenic Penning trap using a single antiproton. Employing the continuous Stern-Gerlach effect we observe cyclotron quantum transition rates of 6(1) quanta/h and an electric-field noise spectral density below 7.5(3.4)×10^{-20} V^{2} m^{-2} Hz^{-1}, which corresponds to a scaled noise spectral density below 8.8(4.0)×10^{-12} V^{2} m^{-2}, results which are more than 2 orders of magnitude smaller than those reported by other ion-trap experiments.
Collapse
Affiliation(s)
- M J Borchert
- RIKEN, Ulmer Fundamental Symmetries Laboratory, Wako, Saitama 351-0198, Japan
- Institut für Quantenoptik, Leibniz Universität Hannover, 30167 Hannover, Germany
| | - P E Blessing
- RIKEN, Ulmer Fundamental Symmetries Laboratory, Wako, Saitama 351-0198, Japan
- GSI-Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| | - J A Devlin
- RIKEN, Ulmer Fundamental Symmetries Laboratory, Wako, Saitama 351-0198, Japan
| | - J A Harrington
- RIKEN, Ulmer Fundamental Symmetries Laboratory, Wako, Saitama 351-0198, Japan
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - T Higuchi
- RIKEN, Ulmer Fundamental Symmetries Laboratory, Wako, Saitama 351-0198, Japan
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | - J Morgner
- RIKEN, Ulmer Fundamental Symmetries Laboratory, Wako, Saitama 351-0198, Japan
- Institut für Quantenoptik, Leibniz Universität Hannover, 30167 Hannover, Germany
| | - C Smorra
- RIKEN, Ulmer Fundamental Symmetries Laboratory, Wako, Saitama 351-0198, Japan
| | - E Wursten
- RIKEN, Ulmer Fundamental Symmetries Laboratory, Wako, Saitama 351-0198, Japan
- CERN, 1211 Geneva 23, Switzerland
| | - M Bohman
- RIKEN, Ulmer Fundamental Symmetries Laboratory, Wako, Saitama 351-0198, Japan
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - M Wiesinger
- RIKEN, Ulmer Fundamental Symmetries Laboratory, Wako, Saitama 351-0198, Japan
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - A Mooser
- RIKEN, Ulmer Fundamental Symmetries Laboratory, Wako, Saitama 351-0198, Japan
| | - K Blaum
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - Y Matsuda
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | - C Ospelkaus
- Institut für Quantenoptik, Leibniz Universität Hannover, 30167 Hannover, Germany
- Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
| | - W Quint
- GSI-Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
- Ruprecht-Karls-Universität Heidelberg, 69047 Heidelberg, Germany
| | - J Walz
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
- Helmholtz-Institut Mainz, 55099 Mainz, Germany
| | - Y Yamazaki
- Atomic Physics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - S Ulmer
- RIKEN, Ulmer Fundamental Symmetries Laboratory, Wako, Saitama 351-0198, Japan
| |
Collapse
|
30
|
Ahmadi M, Alves BXR, Baker CJ, Bertsche W, Capra A, Carruth C, Cesar CL, Charlton M, Cohen S, Collister R, Eriksson S, Evans A, Evetts N, Fajans J, Friesen T, Fujiwara MC, Gill DR, Hangst JS, Hardy WN, Hayden ME, Hunter ED, Isaac CA, Johnson MA, Jones JM, Jones SA, Jonsell S, Khramov A, Knapp P, Kurchaninov L, Madsen N, Maxwell D, McKenna JTK, Menary S, Michan JM, Momose T, Munich JJ, Olchanski K, Olin A, Pusa P, Rasmussen CØ, Robicheaux F, Sacramento RL, Sameed M, Sarid E, Silveira DM, Starko DM, Stutter G, So C, Tharp TD, Thompson RI, van der Werf DP, Wurtele JS. Observation of the 1S-2P Lyman-α transition in antihydrogen. Nature 2018; 561:211-215. [PMID: 30135588 PMCID: PMC6786973 DOI: 10.1038/s41586-018-0435-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/05/2018] [Indexed: 11/09/2022]
Abstract
In 1906, Theodore Lyman discovered his eponymous series of transitions in the extreme-ultraviolet region of the atomic hydrogen spectrum1,2. The patterns in the hydrogen spectrum helped to establish the emerging theory of quantum mechanics, which we now know governs the world at the atomic scale. Since then, studies involving the Lyman-α line-the 1S-2P transition at a wavelength of 121.6 nanometres-have played an important part in physics and astronomy, as one of the most fundamental atomic transitions in the Universe. For example, this transition has long been used by astronomers studying the intergalactic medium and testing cosmological models via the so-called 'Lyman-α forest'3 of absorption lines at different redshifts. Here we report the observation of the Lyman-α transition in the antihydrogen atom, the antimatter counterpart of hydrogen. Using narrow-line-width, nanosecond-pulsed laser radiation, the 1S-2P transition was excited in magnetically trapped antihydrogen. The transition frequency at a field of 1.033 tesla was determined to be 2,466,051.7 ± 0.12 gigahertz (1σ uncertainty) and agrees with the prediction for hydrogen to a precision of 5 × 10-8. Comparisons of the properties of antihydrogen with those of its well-studied matter equivalent allow precision tests of fundamental symmetries between matter and antimatter. Alongside the ground-state hyperfine4,5 and 1S-2S transitions6,7 recently observed in antihydrogen, the Lyman-α transition will permit laser cooling of antihydrogen8,9, thus providing a cold and dense sample of anti-atoms for precision spectroscopy and gravity measurements10. In addition to the observation of this fundamental transition, this work represents both a decisive technological step towards laser cooling of antihydrogen, and the extension of antimatter spectroscopy to quantum states possessing orbital angular momentum.
Collapse
Affiliation(s)
- M Ahmadi
- Department of Physics, University of Liverpool, Liverpool, UK
| | - B X R Alves
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - C J Baker
- Department of Physics, College of Science, Swansea University, Swansea, UK
| | - W Bertsche
- School of Physics and Astronomy, University of Manchester, Manchester, UK
- Cockcroft Institute, Sci-Tech Daresbury, Warrington, UK
| | - A Capra
- TRIUMF, Vancouver, British Columbia, Canada
| | - C Carruth
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| | - C L Cesar
- Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M Charlton
- Department of Physics, College of Science, Swansea University, Swansea, UK
| | - S Cohen
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - S Eriksson
- Department of Physics, College of Science, Swansea University, Swansea, UK
| | - A Evans
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| | - N Evetts
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - J Fajans
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| | - T Friesen
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| | | | - D R Gill
- TRIUMF, Vancouver, British Columbia, Canada
| | - J S Hangst
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark.
| | - W N Hardy
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - M E Hayden
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
| | - E D Hunter
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| | - C A Isaac
- Department of Physics, College of Science, Swansea University, Swansea, UK
| | - M A Johnson
- School of Physics and Astronomy, University of Manchester, Manchester, UK
- Cockcroft Institute, Sci-Tech Daresbury, Warrington, UK
| | - J M Jones
- Department of Physics, College of Science, Swansea University, Swansea, UK
| | - S A Jones
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
- Department of Physics, College of Science, Swansea University, Swansea, UK
| | - S Jonsell
- Department of Physics, Stockholm University, Stockholm, Sweden
| | - A Khramov
- TRIUMF, Vancouver, British Columbia, Canada
| | - P Knapp
- Department of Physics, College of Science, Swansea University, Swansea, UK
| | | | - N Madsen
- Department of Physics, College of Science, Swansea University, Swansea, UK
| | - D Maxwell
- Department of Physics, College of Science, Swansea University, Swansea, UK
| | | | - S Menary
- Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
| | - J M Michan
- TRIUMF, Vancouver, British Columbia, Canada
- École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), Lausanne, Switzerland
| | - T Momose
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada.
| | - J J Munich
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - A Olin
- TRIUMF, Vancouver, British Columbia, Canada
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada
| | - P Pusa
- Department of Physics, University of Liverpool, Liverpool, UK
| | - C Ø Rasmussen
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - F Robicheaux
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
| | - R L Sacramento
- Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M Sameed
- School of Physics and Astronomy, University of Manchester, Manchester, UK
| | | | - D M Silveira
- Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - D M Starko
- Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
| | - G Stutter
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - C So
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| | - T D Tharp
- Physics Department, Marquette University, Milwaukee, WI, USA
| | - R I Thompson
- TRIUMF, Vancouver, British Columbia, Canada
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| | - D P van der Werf
- Department of Physics, College of Science, Swansea University, Swansea, UK
- IRFU, CEA/Saclay, Gif-sur-Yvette Cedex, France
| | - J S Wurtele
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| |
Collapse
|
31
|
|
32
|
Ficek F, Fadeev P, Flambaum VV, Jackson Kimball DF, Kozlov MG, Stadnik YV, Budker D. Constraints on Exotic Spin-Dependent Interactions Between Matter and Antimatter from Antiprotonic Helium Spectroscopy. PHYSICAL REVIEW LETTERS 2018; 120:183002. [PMID: 29775329 DOI: 10.1103/physrevlett.120.183002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Indexed: 06/08/2023]
Abstract
Heretofore undiscovered spin-0 or spin-1 bosons can mediate exotic spin-dependent interactions between standard model particles. Here, we carry out the first search for semileptonic spin-dependent interactions between matter and antimatter. We compare theoretical calculations and spectroscopic measurements of the hyperfine structure of antiprotonic helium to constrain exotic spin- and velocity-dependent interactions between electrons and antiprotons.
Collapse
Affiliation(s)
- Filip Ficek
- Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Pavel Fadeev
- Helmholtz Institute Mainz, Johannes Gutenberg University, 55099 Mainz, Germany
- Ludwig-Maximilians-Universität, München, Fakultät für Physik, Arnold Sommerfeld Center for Theoretical Physics, 80333 München, Germany
| | - Victor V Flambaum
- Helmholtz Institute Mainz, Johannes Gutenberg University, 55099 Mainz, Germany
- School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Derek F Jackson Kimball
- Department of Physics, California State University-East Bay, Hayward, California 94542-3084, USA
| | - Mikhail G Kozlov
- Petersburg Nuclear Physics Institute of NRC "Kurchatov Institute", Gatchina 188300, Russia
- St. Petersburg Electrotechnical University LETI, Prof. Popov Str. 5, 197376 St. Petersburg, Russia
| | - Yevgeny V Stadnik
- Helmholtz Institute Mainz, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Dmitry Budker
- Helmholtz Institute Mainz, Johannes Gutenberg University, 55099 Mainz, Germany
- Department of Physics, University of California at Berkeley, Berkeley, California 94720-7300, USA
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
33
|
Ahmadi M, Alves BXR, Baker CJ, Bertsche W, Capra A, Carruth C, Cesar CL, Charlton M, Cohen S, Collister R, Eriksson S, Evans A, Evetts N, Fajans J, Friesen T, Fujiwara MC, Gill DR, Hangst JS, Hardy WN, Hayden ME, Isaac CA, Johnson MA, Jones JM, Jones SA, Jonsell S, Khramov A, Knapp P, Kurchaninov L, Madsen N, Maxwell D, McKenna JTK, Menary S, Momose T, Munich JJ, Olchanski K, Olin A, Pusa P, Rasmussen CØ, Robicheaux F, Sacramento RL, Sameed M, Sarid E, Silveira DM, Stutter G, So C, Tharp TD, Thompson RI, van der Werf DP, Wurtele JS. Characterization of the 1S-2S transition in antihydrogen. Nature 2018; 557:71-75. [PMID: 29618820 PMCID: PMC6784861 DOI: 10.1038/s41586-018-0017-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/06/2018] [Indexed: 11/09/2022]
Abstract
In 1928, Dirac published an equation 1 that combined quantum mechanics and special relativity. Negative-energy solutions to this equation, rather than being unphysical as initially thought, represented a class of hitherto unobserved and unimagined particles-antimatter. The existence of particles of antimatter was confirmed with the discovery of the positron 2 (or anti-electron) by Anderson in 1932, but it is still unknown why matter, rather than antimatter, survived after the Big Bang. As a result, experimental studies of antimatter3-7, including tests of fundamental symmetries such as charge-parity and charge-parity-time, and searches for evidence of primordial antimatter, such as antihelium nuclei, have high priority in contemporary physics research. The fundamental role of the hydrogen atom in the evolution of the Universe and in the historical development of our understanding of quantum physics makes its antimatter counterpart-the antihydrogen atom-of particular interest. Current standard-model physics requires that hydrogen and antihydrogen have the same energy levels and spectral lines. The laser-driven 1S-2S transition was recently observed 8 in antihydrogen. Here we characterize one of the hyperfine components of this transition using magnetically trapped atoms of antihydrogen and compare it to model calculations for hydrogen in our apparatus. We find that the shape of the spectral line agrees very well with that expected for hydrogen and that the resonance frequency agrees with that in hydrogen to about 5 kilohertz out of 2.5 × 1015 hertz. This is consistent with charge-parity-time invariance at a relative precision of 2 × 10-12-two orders of magnitude more precise than the previous determination 8 -corresponding to an absolute energy sensitivity of 2 × 10-20 GeV.
Collapse
Affiliation(s)
- M Ahmadi
- Department of Physics, University of Liverpool, Liverpool, UK
| | - B X R Alves
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - C J Baker
- Department of Physics, College of Science, Swansea University, Swansea, UK
| | - W Bertsche
- School of Physics and Astronomy, University of Manchester, Manchester, UK
- Cockcroft Institute, Sci-Tech Daresbury, Warrington, UK
| | - A Capra
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada
| | - C Carruth
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| | - C L Cesar
- Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M Charlton
- Department of Physics, College of Science, Swansea University, Swansea, UK
| | - S Cohen
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - R Collister
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada
| | - S Eriksson
- Department of Physics, College of Science, Swansea University, Swansea, UK
| | - A Evans
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| | - N Evetts
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - J Fajans
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| | - T Friesen
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - M C Fujiwara
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada
| | - D R Gill
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada
| | - J S Hangst
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark.
| | - W N Hardy
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - M E Hayden
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
| | - C A Isaac
- Department of Physics, College of Science, Swansea University, Swansea, UK
| | - M A Johnson
- School of Physics and Astronomy, University of Manchester, Manchester, UK
- Cockcroft Institute, Sci-Tech Daresbury, Warrington, UK
| | - J M Jones
- Department of Physics, College of Science, Swansea University, Swansea, UK
| | - S A Jones
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
- Department of Physics, College of Science, Swansea University, Swansea, UK
| | - S Jonsell
- Department of Physics, Stockholm University, Stockholm, Sweden
| | - A Khramov
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada
| | - P Knapp
- Department of Physics, College of Science, Swansea University, Swansea, UK
| | - L Kurchaninov
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada
| | - N Madsen
- Department of Physics, College of Science, Swansea University, Swansea, UK
| | - D Maxwell
- Department of Physics, College of Science, Swansea University, Swansea, UK
| | - J T K McKenna
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada
| | - S Menary
- Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
| | - T Momose
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - J J Munich
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
| | - K Olchanski
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada
| | - A Olin
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada
| | - P Pusa
- Department of Physics, University of Liverpool, Liverpool, UK
| | - C Ø Rasmussen
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - F Robicheaux
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
| | - R L Sacramento
- Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M Sameed
- Department of Physics, College of Science, Swansea University, Swansea, UK
- School of Physics and Astronomy, University of Manchester, Manchester, UK
| | | | - D M Silveira
- Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - G Stutter
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - C So
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| | - T D Tharp
- Physics Department, Marquette University, Milwaukee, WI, USA
| | - R I Thompson
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| | - D P van der Werf
- Department of Physics, College of Science, Swansea University, Swansea, UK
- IRFU, CEA/Saclay, Gif-sur-Yvette Cedex, France
| | - J S Wurtele
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| |
Collapse
|
34
|
|
35
|
Malbrunot C, Amsler C, Arguedas Cuendis S, Breuker H, Dupre P, Fleck M, Higaki H, Kanai Y, Kolbinger B, Kuroda N, Leali M, Mäckel V, Mascagna V, Massiczek O, Matsuda Y, Nagata Y, Simon MC, Spitzer H, Tajima M, Ulmer S, Venturelli L, Widmann E, Wiesinger M, Yamazaki Y, Zmeskal J. The ASACUSA antihydrogen and hydrogen program: results and prospects. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:rsta.2017.0273. [PMID: 29459412 PMCID: PMC5829175 DOI: 10.1098/rsta.2017.0273] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/18/2017] [Indexed: 06/08/2023]
Abstract
The goal of the ASACUSA-CUSP collaboration at the Antiproton Decelerator of CERN is to measure the ground-state hyperfine splitting of antihydrogen using an atomic spectroscopy beamline. A milestone was achieved in 2012 through the detection of 80 antihydrogen atoms 2.7 m away from their production region. This was the first observation of 'cold' antihydrogen in a magnetic field free region. In parallel to the progress on the antihydrogen production, the spectroscopy beamline was tested with a source of hydrogen. This led to a measurement at a relative precision of 2.7×10-9 which constitutes the most precise measurement of the hydrogen hyperfine splitting in a beam. Further measurements with an upgraded hydrogen apparatus are motivated by CPT and Lorentz violation tests in the framework of the Standard Model Extension. Unlike for hydrogen, the antihydrogen experiment is complicated by the difficulty of synthesizing enough cold antiatoms in the ground state. The first antihydrogen quantum states scan at the entrance of the spectroscopy apparatus was realized in 2016 and is presented here. The prospects for a ppm measurement are also discussed.This article is part of the Theo Murphy meeting issue 'Antiproton physics in the ELENA era'.
Collapse
Affiliation(s)
- C Malbrunot
- Experimental Physics Department, CERN, Genève 23, 1211, Switzerland
- Stefan-Meyer-Institut für Subatomare Physik, Österreichische Akademie der Wissenschaften, Boltzmanngasse 3, 1090 Wien, Austria
| | - C Amsler
- Stefan-Meyer-Institut für Subatomare Physik, Österreichische Akademie der Wissenschaften, Boltzmanngasse 3, 1090 Wien, Austria
| | - S Arguedas Cuendis
- Stefan-Meyer-Institut für Subatomare Physik, Österreichische Akademie der Wissenschaften, Boltzmanngasse 3, 1090 Wien, Austria
| | - H Breuker
- Ulmer Fundamental Symmetries Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - P Dupre
- Ulmer Fundamental Symmetries Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - M Fleck
- Stefan-Meyer-Institut für Subatomare Physik, Österreichische Akademie der Wissenschaften, Boltzmanngasse 3, 1090 Wien, Austria
| | - H Higaki
- Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima 739-8530, Japan
| | - Y Kanai
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198, Japan
| | - B Kolbinger
- Stefan-Meyer-Institut für Subatomare Physik, Österreichische Akademie der Wissenschaften, Boltzmanngasse 3, 1090 Wien, Austria
| | - N Kuroda
- Institute of Physics, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - M Leali
- Dipartimento di Ingegneria dell'Informazione, Università di Brescia, Brescia 25133, Italy
- Istituto Nazionale di Fisica Nucleare, Sez. di Pavia, 27100 Pavia, Italy
| | - V Mäckel
- Stefan-Meyer-Institut für Subatomare Physik, Österreichische Akademie der Wissenschaften, Boltzmanngasse 3, 1090 Wien, Austria
| | - V Mascagna
- Dipartimento di Ingegneria dell'Informazione, Università di Brescia, Brescia 25133, Italy
- Istituto Nazionale di Fisica Nucleare, Sez. di Pavia, 27100 Pavia, Italy
| | - O Massiczek
- Stefan-Meyer-Institut für Subatomare Physik, Österreichische Akademie der Wissenschaften, Boltzmanngasse 3, 1090 Wien, Austria
| | - Y Matsuda
- Institute of Physics, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Y Nagata
- Department of Physics, Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan
| | - M C Simon
- Stefan-Meyer-Institut für Subatomare Physik, Österreichische Akademie der Wissenschaften, Boltzmanngasse 3, 1090 Wien, Austria
| | - H Spitzer
- Stefan-Meyer-Institut für Subatomare Physik, Österreichische Akademie der Wissenschaften, Boltzmanngasse 3, 1090 Wien, Austria
| | - M Tajima
- Institute of Physics, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - S Ulmer
- Ulmer Fundamental Symmetries Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - L Venturelli
- Dipartimento di Ingegneria dell'Informazione, Università di Brescia, Brescia 25133, Italy
- Istituto Nazionale di Fisica Nucleare, Sez. di Pavia, 27100 Pavia, Italy
| | - E Widmann
- Stefan-Meyer-Institut für Subatomare Physik, Österreichische Akademie der Wissenschaften, Boltzmanngasse 3, 1090 Wien, Austria
| | - M Wiesinger
- Stefan-Meyer-Institut für Subatomare Physik, Österreichische Akademie der Wissenschaften, Boltzmanngasse 3, 1090 Wien, Austria
| | - Y Yamazaki
- Ulmer Fundamental Symmetries Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - J Zmeskal
- Stefan-Meyer-Institut für Subatomare Physik, Österreichische Akademie der Wissenschaften, Boltzmanngasse 3, 1090 Wien, Austria
| |
Collapse
|