1
|
Hu Y, He C, Zhang L, Jin H. Development of a multiple reaction monitoring (MRM)-based LC-MS/MS method for the quantification of post-translational modifications on histone H3 variants in Arabidopsis thaliana. Analyst 2025; 150:1688-1697. [PMID: 40130344 DOI: 10.1039/d4an01563k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Background: although the canonical histone H3.1 and its variant H3.3 differ by only four amino acids, they exhibit distinct genome-wide binding patterns and regulate different biological pathways. Post-translational modifications (PTMs) on histone tails mediate diverse downstream regulatory processes, raising the question of whether H3.1 and H3.3 harbor variant-specific modifications. However, the minimal amino acid differences between H3.1 and H3.3 make it challenging to distinguish and quantify them using traditional methods. Results: in this study, we developed an integrated multiple reaction monitoring (MRM)-based LC-MS/MS method to accurately differentiate and quantify K27 and K36 modifications on H3.1 and H3.3 in Arabidopsis thaliana. Our findings show that H3.1 contains more K27 methylation marks, associated with gene silencing, whereas H3.3 is enriched in K36 methylation, a mark of active transcription. Additionally, we compared K36 methylation levels in wild-type and SDG8-depleted cells, revealing that the K36 methyltransferase SDG8 shows a strong preference for H3.3 in both in vitro and in vivo assays. By analyzing public datasets, we further identified a strong correlation between H3.3 and the regions where H3K36me3 levels were reduced in sdg8 knockout cells. Significance: the MRM-based LC-MS/MS method established in this study provides a reliable and robust tool for the quantification of histone H3.1 and H3.3 PTMs in Arabidopsis thaliana. We demonstrate that the methyltransferase SDG8 shows a strong substrate preference for H3.3. This discovery highlights the importance of histone variant-specific modifications and suggests new avenues for research into their regulatory roles.
Collapse
Affiliation(s)
- Yajun Hu
- Affiliated Stomatological Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.
| | - Chenxi He
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510100, China
| | - Lei Zhang
- Affiliated Stomatological Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.
| | - Hong Jin
- Affiliated Stomatological Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.
| |
Collapse
|
2
|
Yao Y, Zhou J, Wang J, Lei X, Jiang A, Sun Q. H3K36 methylation stamps transcription resistive to preserve development in plants. NATURE PLANTS 2025; 11:808-820. [PMID: 40164787 DOI: 10.1038/s41477-025-01962-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 02/27/2025] [Indexed: 04/02/2025]
Abstract
Eukaryotic euchromatin is the less-compact chromatin and is modified by many histone modifications such as H3 lysine 36 methylation (H3K36me). Here we report a new chromatin state, 'transcription resistive', which is differentiated from activation and silencing. Transcription resistive is stamped by H3K36me with almost undetectable transcription activity but open-chromatin state, and occupies most documented plant essential genes. Mutating SDG8, previously known as the major H3K36 methyltransferase in Arabidopsis, surprisingly elevates 78.7% of H3K36me3-marked resistive loci, which accounts for 39.4% of the coding genome. Genetically, SDG8 prevents H3K36me activity of SDG4 at short and intronless genes to secure plant fertility, while it collaborates with other H3K36me methyltransferases on long and intron-rich genes. Together, our results reveal that SDG8 is the primary sensor that suppresses excessive H3K36me, and uncovered that 'transcription resistive' is a conserved H3K36me-stamped novel transcription state in plants, highlighting the regulatory diversities and biological significance of H3K36 methylation in eukaryotes.
Collapse
Affiliation(s)
- Yao Yao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jincong Zhou
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jiacheng Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xue Lei
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Anjie Jiang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
3
|
Wang H, Yan S, Wang W, Chen Y, Hong J, He Q, Diao X, Lin Y, Chen Y, Cao Y, Guo W, Fang W. Cropformer: An interpretable deep learning framework for crop genomic prediction. PLANT COMMUNICATIONS 2025; 6:101223. [PMID: 39690739 PMCID: PMC11956090 DOI: 10.1016/j.xplc.2024.101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/15/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024]
Abstract
Machine learning and deep learning are extensively employed in genomic selection (GS) to expedite the identification of superior genotypes and accelerate breeding cycles. However, a significant challenge with current data-driven deep learning models in GS lies in their low robustness and poor interpretability. To address these challenges, we developed Cropformer, a deep learning framework for predicting crop phenotypes and exploring downstream tasks. This framework combines convolutional neural networks with multiple self-attention mechanisms to improve accuracy. The ability of Cropformer to predict complex phenotypic traits was extensively evaluated on more than 20 traits across five major crops: maize, rice, wheat, foxtail millet, and tomato. Evaluation results show that Cropformer outperforms other GS methods in both precision and robustness, achieving up to a 7.5% improvement in prediction accuracy compared to the runner-up model. Additionally, Cropformer enhances the analysis and mining of genes associated with traits. We identified numerous single nucleotide polymorphisms (SNPs) with potential effects on maize phenotypic traits and revealed key genetic variations underlying these differences. Cropformer represents a significant advancement in predictive performance and gene identification, providing a powerful general tool for improving genomic design in crop breeding. Cropformer is freely accessible at https://cgris.net/cropformer.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shen Yan
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenxi Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Jingpeng Hong
- College of Information and Management Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Qiang He
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianmin Diao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yunan Lin
- School of Engineering and Design, Technical University Munich, 85521 Munich, Germany
| | - Yanqing Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongsheng Cao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Wei Fang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
4
|
Singh AK, Chowdary KVSKA, Shen WH. SDG8 and HUB2 depositing euchromatin histone marks play important roles in meiosis and crossing-over regulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17241. [PMID: 39916632 DOI: 10.1111/tpj.17241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/02/2024] [Accepted: 12/19/2024] [Indexed: 05/08/2025]
Abstract
Histone modifications play critical roles in plant growth and development. Crossing-over (CO) during meiosis, which constitutes a fundamental process ensuring sexual transmission of genetic material to the next generation and, meanwhile, generating diversity within species by creating new chromosome/allele combinations, occurs predominantly in euchromatin, which is enriched in active histone marks such as H3K4me3, H3K36me3, and H2Bub1. In plants, it is known that CO hotspots are correlated with H3K4me3 but the role of H3K36me3 and H2Bub1 during meiosis remains elusive so far. Here, we studied the Arabidopsis (Arabidopsis thaliana) sdg8-1 and hub2-2 mutants impeded in depositing H3K36me3 and H2Bub1, respectively. Chromosome spreading using 4',6-diamidino-2-phenylindole (DAPI) staining indicated that male meiotic stages are defective in the sdg8-1 mutant, and the defect increases synergistically in the sdg8-1hub2-2 double mutant. Defects in meiosis, seed formation, and silique length were also observed by RNAi-knockdown of SDG8 using the meiosis-specific gene DMC1 promoter. This corroborates to support a bona fide role of active histone marks during meiosis and plant reproduction. Using the tetrad-based visual reporter lines and immunostaining with antibodies against HEI10 and ZYP1, it was found that synapsis and pairing of homologous chromosomes are abnormal and CO rate increases in sdg8 mutants, pointing to a repressive role of SDG8 in Arabidopsis male meiotic homologous recombination.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Institut de Biologie Moléculaire des Plantes, UPR2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg Cédex, 67084, France
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - K V S K Arjun Chowdary
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Wen-Hui Shen
- Institut de Biologie Moléculaire des Plantes, UPR2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg Cédex, 67084, France
| |
Collapse
|
5
|
Xue Y, Cao X, Chen X, Deng X, Deng XW, Ding Y, Dong A, Duan CG, Fang X, Gong L, Gong Z, Gu X, He C, He H, He S, He XJ, He Y, He Y, Jia G, Jiang D, Jiang J, Lai J, Lang Z, Li C, Li Q, Li X, Liu B, Liu B, Luo X, Qi Y, Qian W, Ren G, Song Q, Song X, Tian Z, Wang JW, Wang Y, Wu L, Wu Z, Xia R, Xiao J, Xu L, Xu ZY, Yan W, Yang H, Zhai J, Zhang Y, Zhao Y, Zhong X, Zhou DX, Zhou M, Zhou Y, Zhu B, Zhu JK, Liu Q. Epigenetics in the modern era of crop improvements. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2784-3. [PMID: 39808224 DOI: 10.1007/s11427-024-2784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/15/2024] [Indexed: 01/16/2025]
Abstract
Epigenetic mechanisms are integral to plant growth, development, and adaptation to environmental stimuli. Over the past two decades, our comprehension of these complex regulatory processes has expanded remarkably, producing a substantial body of knowledge on both locus-specific mechanisms and genome-wide regulatory patterns. Studies initially grounded in the model plant Arabidopsis have been broadened to encompass a diverse array of crop species, revealing the multifaceted roles of epigenetics in physiological and agronomic traits. With recent technological advancements, epigenetic regulations at the single-cell level and at the large-scale population level are emerging as new focuses. This review offers an in-depth synthesis of the diverse epigenetic regulations, detailing the catalytic machinery and regulatory functions. It delves into the intricate interplay among various epigenetic elements and their collective influence on the modulation of crop traits. Furthermore, it examines recent breakthroughs in technologies for epigenetic modifications and their integration into strategies for crop improvement. The review underscores the transformative potential of epigenetic strategies in bolstering crop performance, advocating for the development of efficient tools to fully exploit the agricultural benefits of epigenetic insights.
Collapse
Affiliation(s)
- Yan Xue
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiangsong Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xing Wang Deng
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
| | - Yong Ding
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Cheng-Guo Duan
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Chongsheng He
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan University, Changsha, 410082, China.
| | - Hang He
- Institute of Advanced Agricultural Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Shengbo He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, 102206, China.
| | - Yan He
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yuehui He
- School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Danhua Jiang
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianjun Jiang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Zhengzhou, 450046, China.
| | - Jinsheng Lai
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China.
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Zhaobo Lang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Chenlong Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Bing Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Xiao Luo
- Shandong Provincial Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Weiqiang Qian
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Guodong Ren
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Qingxin Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xianwei Song
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhixi Tian
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Yuan Wang
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Liang Wu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Zhe Wu
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510640, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hongchun Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Yijing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Yusheng Zhao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xuehua Zhong
- Department of Biology, Washington University in St. Louis, St. Louis, 63130, USA.
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay, 91405, France.
| | - Ming Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yue Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Bo Zhu
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China.
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Qikun Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
6
|
Yang X, Gao Y, Zhu C, Li X, Gao Y, Li K. Genome-Wide Identification of the SlSET Gene Family and the Function of SlSET6 Under Salt Stress. Int J Mol Sci 2024; 25:13461. [PMID: 39769225 PMCID: PMC11677135 DOI: 10.3390/ijms252413461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
A comprehensive genome-wide identification of SET-domain-containing genes in Solanum lycopersicum (tomato) has revealed 46 members. Phylogenetic analysis showed that these SET genes, along with those from Arabidopsis thaliana and Oryza sativa, are divided into five subfamilies, with Subfamilies II and V being the largest. Motif and domain analyses identified 15 conserved motifs and revealed the presence of pre-SET and post-SET domains in several genes, suggesting functional diversification. Gene structure analysis further demonstrated variation in exon-intron organization, likely contributing to differential gene regulation. Promoter analysis identified cis-acting elements related to light responsiveness, plant growth, hormones, and stress, implicating SET genes in various biological processes. RNA-seq and qRT-PCR data revealed distinct expression patterns of SlSET genes under salt stress, with several genes showing significant upregulation, indicating their potential role in stress tolerance. In particular, SlSET6 silencing using VIGS reduced tomato's tolerance to salt stress, leading to higher lipid peroxidation, reduced antioxidant enzyme activity, and decreased proline content, further confirming its critical role in salt stress response. These findings provide valuable insights into the functional diversity, evolutionary history, and stress-related roles of SET domain genes in tomato, with potential applications for crop improvement strategies.
Collapse
Affiliation(s)
- Xueying Yang
- Agricultural College, Yanbian University, Yanji 133002, China
| | - Yan Gao
- Agricultural College, Yanbian University, Yanji 133002, China
| | - Chengyu Zhu
- Agricultural College, Yanbian University, Yanji 133002, China
| | - Xin Li
- Agricultural College, Yanbian University, Yanji 133002, China
| | - Yuliang Gao
- Yanbian Agricultural Sciences Academy, Longjing 133400, China
| | - Kuihua Li
- Agricultural College, Yanbian University, Yanji 133002, China
| |
Collapse
|
7
|
Ji X, Liu W, Zhang F, Su Y, Ding Y, Li H. H3K36me3 and H2A.Z coordinately modulate flowering time in Arabidopsis. J Genet Genomics 2024; 51:1135-1138. [PMID: 37302474 DOI: 10.1016/j.jgg.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Affiliation(s)
- Xiaoru Ji
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Wenqian Liu
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Fei Zhang
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yanhua Su
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yong Ding
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
8
|
Wu T, Su B, Zhang H, Li D, Zhang H, Xiao G, Sun A, Zhao T, Xu X. SlJMJ14, identified via QTL‑seq and fine mapping, controls flowering time in tomatoes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:228. [PMID: 39304588 DOI: 10.1007/s00122-024-04737-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
KEY MESSAGE A major QTL, qLF2.1, for flowering time in tomatoes, was fine mapped to chromosome 2 within a 51.37-kb interval, and the SlJMJ14 gene was verified as the causal gene by knockout. Tomato flowering time is an important agronomic trait that affects yield, fruit quality, and environmental adaptation. In this study, the high-generation inbred line 19108 with a late-flowering phenotype was selected for the mapping of the gene that causes late flowering. In the F2 population derived from 19108 (late flowering) × MM (early flowering), we identified a major late-flowering time quantitative trait locus (QTL) using QTL-seq, designated qLF2.1. This QTL was fine mapped to a 51.37-kb genomic interval using recombinant analysis. Through functional analysis of homologous genes, Solyc02g082400 (SlJMJ14), encoding a histone demethylase, was determined to be the most promising candidate gene. Knocking out SlJMJ14 in MM resulted in a flowering time approximately 5-6 days later than that in the wild-type plants. These results suggest that mutational SlJMJ14 is the major QTL for the late-flowering phenotype of the 19108 parental line.
Collapse
Affiliation(s)
- Tairu Wu
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Baohang Su
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - He Zhang
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Dalong Li
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Hanqiao Zhang
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Guanglong Xiao
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Ao Sun
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Tingting Zhao
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiangyang Xu
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
9
|
Xu S, He X, Trinh DC, Zhang X, Wu X, Qiu D, Zhou M, Xiang D, Roeder AHK, Hamant O, Hong L. A 3-component module maintains sepal flatness in Arabidopsis. Curr Biol 2024; 34:4007-4020.e4. [PMID: 39146940 DOI: 10.1016/j.cub.2024.07.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/05/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
As in origami, morphogenesis in living systems heavily relies on tissue curving and folding through the interplay between biochemical and biomechanical cues. By contrast, certain organs maintain their flat posture over several days. Here, we identified a pathway that is required for the maintenance of organ flatness, taking the sepal, the outermost floral organ, in Arabidopsis as a model system. Through genetic, cellular, and mechanical approaches, our results demonstrate that the global gene expression regulator VERNALIZATION INDEPENDENCE 4 (VIP4) fine-tunes the mechanical properties of sepal cell walls and maintains balanced growth on both sides of the sepals, mainly by orchestrating the distribution pattern of AUXIN RESPONSE FACTOR 3 (ARF3). vip4 mutation results in softer cell walls and faster cell growth on the adaxial sepal side, which eventually cause sepals to bend outward. Downstream of VIP4, ARF3 works through modulating auxin to downregulate pectin methylesterase VANGUARD1, resulting in decreased cell wall stiffness. Thus, our work unravels a 3-component module that relates hormonal patterns to organ curvature and actively maintains sepal flatness during its growth.
Collapse
Affiliation(s)
- Shouling Xu
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xi He
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Duy-Chi Trinh
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, CNRS, 46 Allee d'Italie, 69364 Lyon Cedex 07, France; University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Ha Noi 11355, Vietnam
| | - Xinyu Zhang
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, CNRS, 46 Allee d'Italie, 69364 Lyon Cedex 07, France; Cell and Developmental Biology Department, John Innes Centre, Norwich NR4 7UH, UK
| | - Xiaojiang Wu
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; The Advanced Seed Institute, National Key Laboratory of Rice Breeding and Biology, Zhejiang Provincial Key Laboratory of Crop Germplasm, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Dengying Qiu
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ming Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dan Xiang
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, CNRS, 46 Allee d'Italie, 69364 Lyon Cedex 07, France.
| | - Lilan Hong
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Han T, Khan MA, Wang Y, Tan W, Li C, Ai P, Zhao W, Li Z, Wang Z. Identification of SDG gene family members and exploration of flowering related genes in different cultivars of chrysanthemums and their wild ancestors. BMC PLANT BIOLOGY 2024; 24:813. [PMID: 39210253 PMCID: PMC11360836 DOI: 10.1186/s12870-024-05465-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
The SET domain genes (SDGs) are significant contributors to various aspects of plant growth and development, mainly includes flowering, pollen development, root growth, regulation of the biological clock and branching patterns. To clarify the biological functions of the chrysanthemum SDG family, the SDG family members of four chrysanthemum cultivars and three related wild species were identified; their physical and chemical properties, protein domains and conserved motifs were predicted and analyzed. The results showed that 59, 67, 67, 102, 106, 114, and 123 SDGs were identified from Chrysanthemum nankingense, Chrysanthemum lavandulifolium, Chrysanthemum seticuspe, Chrysanthemum × morifolium cv. 'Hechengxinghuo', 'Zhongshanzigui', 'Quanxiangshuichang' and 'Jinbeidahong', respectively. The SDGs were divided into 5-7 subfamilies by cluster analysis; different conserved motifs were observed in particular families. The SDGs of C. lavandulifolium and C. seticuspe were distributed unevenly on 9 chromosomes. SDG promoters of different species include growth and development, photo-response, stress response and hormone responsive elements, among them, the cis-acting elements related to MeJA response had the largest proportion. The expression of chrysanthemum SDG genes was observed for most variable selected genes which has close association with important Arabidopsis thaliana genes related to flowering regulation. The qPCR results showed that the expression trend of SDG genes varied in different tissues at different growth stages with high expression in the flowering period. The ClSDG29 showed higher expression in the flower and bud tissues, which indicate that ClSDG29 might be associated with flowering regulation in chrysanthemum. In summary, the results of this study can provide a basis for subsequent research on chrysanthemum flowering time regulation.
Collapse
Affiliation(s)
- Ting Han
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Muhammad Ayoub Khan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Yiming Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Wenchao Tan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Chenran Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Penghui Ai
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Wenqian Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Zhongai Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Zicheng Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China.
| |
Collapse
|
11
|
Ju J, Li Y, Ling P, Luo J, Wei W, Yuan W, Wang C, Su J. H3K36 methyltransferase GhKMT3;1a and GhKMT3;2a promote flowering in upland cotton. BMC PLANT BIOLOGY 2024; 24:739. [PMID: 39095699 PMCID: PMC11295449 DOI: 10.1186/s12870-024-05457-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND The SET domain group (SDG) genes encode histone lysine methyltransferases, which regulate gene transcription by altering chromatin structure and play pivotal roles in plant flowering determination. However, few studies have investigated their role in the regulation of flowering in upland cotton. RESULTS A total of 86 SDG genes were identified through genome-wide analysis in upland cotton (Gossypium hirsutum). These genes were unevenly distributed across 25 chromosomes. Cluster analysis revealed that the 86 GhSDGs were divided into seven main branches. RNA-seq data and qRT‒PCR analysis revealed that lysine methyltransferase 3 (KMT3) genes were expressed at high levels in stamens, pistils and other floral organs. Using virus-induced gene silencing (VIGS), functional characterization of GhKMT3;1a and GhKMT3;2a revealed that, compared with those of the controls, the GhKMT3;1a- and GhKMT3;2a-silenced plants exhibited later budding and flowering and lower plant heightwere shorter. In addition, the expression of flowering-related genes (GhAP1, GhSOC1 and GhFT) significantly decreased and the expression level of GhSVP significantly increased in the GhKMT3;1a- and GhKMT3;2a-silenced plants compared with the control plants. CONCLUSION A total of 86 SDG genes were identified in upland cotton, among which GhKMT3;1a and GhKMT3;2a might regulate flowering by affecting the expression of GhAP1, GhSOC1, GhFT and GhSVP. These findings will provide genetic resources for advanced molecular breeding in the future.
Collapse
Affiliation(s)
- Jisheng Ju
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ying Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Pingjie Ling
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jin Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wei Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wenmin Yuan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Caixiang Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Junji Su
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
12
|
Omondi EO, Lin CY, Huang SM, Liao CA, Lin YP, Oliva R, van Zonneveld M. Landscape genomics reveals genetic signals of environmental adaptation of African wild eggplants. Ecol Evol 2024; 14:e11662. [PMID: 38983700 PMCID: PMC11232056 DOI: 10.1002/ece3.11662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 07/11/2024] Open
Abstract
Crop wild relatives (CWR) provide a valuable resource for improving crops. They possess desirable traits that confer resilience to various environmental stresses. To fully utilize crop wild relatives in breeding and conservation programs, it is important to understand the genetic basis of their adaptation. Landscape genomics associates environments with genomic variation and allows for examining the genetic basis of adaptation. Our study examined the differences in allele frequency of 15,416 single nucleotide polymorphisms (SNPs) generated through genotyping by sequencing approach among 153 accessions of 15 wild eggplant relatives and two cultivated species from Africa, the principal hotspot of these wild relatives. We also explored the correlation between these variations and the bioclimatic and soil conditions at their collection sites, providing a comprehensive understanding of the genetic signals of environmental adaptation in African wild eggplant. Redundancy analysis (RDA) results showed that the environmental variation explained 6% while the geographical distances among the collection sites explained 15% of the genomic variation in the eggplant wild relative populations when controlling for population structure. Our findings indicate that even though environmental factors are not the main driver of selection in eggplant wild relatives, it is influential in shaping the genomic variation over time. The selected environmental variables and candidate SNPs effectively revealed grouping patterns according to the environmental characteristics of sampling sites. Using four genotype-environment association methods, we detected 396 candidate SNPs (2.5% of the initial SNPs) associated with eight environmental factors. Some of these SNPs signal genes involved in pathways that help adapt to environmental stresses such as drought, heat, cold, salinity, pests, and diseases. These candidate SNPs will be useful for marker-assisted improvement and characterizing the germplasm of this crop for developing climate-resilient eggplant varieties. The study provides a model for applying landscape genomics to other crops' wild relatives.
Collapse
Affiliation(s)
- Emmanuel O Omondi
- Genetic Resources and Seed Unit World Vegetable Center Tainan Taiwan
| | - Chen-Yu Lin
- Biotechnology, World Vegetable Center Tainan Taiwan
| | | | - Cheng-An Liao
- Department of Horticulture National Taiwan University Taipei Taiwan
| | - Ya-Ping Lin
- Biotechnology, World Vegetable Center Tainan Taiwan
| | - Ricardo Oliva
- Plant Pathology World Vegetable Center Tainan Taiwan
| | | |
Collapse
|
13
|
Yabe K, Kamio A, Oya S, Kakutani T, Hirayama M, Tanaka Y, Inagaki S. H3K9 methylation regulates heterochromatin silencing through incoherent feedforward loops. SCIENCE ADVANCES 2024; 10:eadn4149. [PMID: 38924413 PMCID: PMC11204290 DOI: 10.1126/sciadv.adn4149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/22/2024] [Indexed: 06/28/2024]
Abstract
Histone H3 lysine-9 methylation (H3K9me) is a hallmark of the condensed and transcriptionally silent heterochromatin. It remains unclear how H3K9me controls transcription silencing and how cells delimit H3K9me domains to avoid silencing essential genes. Here, using Arabidopsis genetic systems that induce H3K9me2 in genes and transposons de novo, we show that H3K9me2 accumulation paradoxically also causes the deposition of the euchromatic mark H3K36me3 by a SET domain methyltransferase, ASHH3. ASHH3-induced H3K36me3 confers anti-silencing by preventing the demethylation of H3K4me1 by LDL2, which mediates transcriptional silencing downstream of H3K9me2. These results demonstrate that H3K9me2 not only facilitates but orchestrates silencing by actuating antagonistic silencing and anti-silencing pathways, providing insights into the molecular basis underlying proper partitioning of chromatin domains and the creation of metastable epigenetic variation.
Collapse
Affiliation(s)
| | | | - Satoyo Oya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | | | - Mami Hirayama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yuriko Tanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
14
|
Shi Z, Zhao W, Li C, Tan W, Zhu Y, Han Y, Ai P, Li Z, Wang Z. Overexpression of the Chrysanthemum lavandulifolium ROS1 gene promotes flowering in Arabidopsis thaliana by reducing the methylation level of CONSTANS. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112019. [PMID: 38346563 DOI: 10.1016/j.plantsci.2024.112019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024]
Abstract
DNA demethylation is involved in the regulation of flowering in plants, yet the underlying molecular mechanisms remain largely unexplored. The RELEASE OF SILENCING 1 (ROS1) gene, encoding a DNA demethyltransferase, plays key roles in many developmental processes. In this study, the ROS1 gene was isolated from Chrysanthemum lavandulifolium, where it was strongly expressed in the leaves, buds and flowers. Overexpression of the ClROS1 gene caused an early flowering phenotype in Arabidopsis thaliana. RNA-seq analysis of the transgenic plants revealed that differentially expressed genes (DEGs) were significantly enriched in the circadian rhythm pathway and that the positive regulator of flowering, CONSTANS (CO), was up-regulated. Additionally, whole-genome bisulphite sequencing (WGBS), PCR following methylation-dependent digestion with the enzyme McrBC, and bisulfite sequencing PCR (BSP) confirmed that the methylation level of the AtCO promoter was reduced, specifically in CG context. Overall, our results demonstrated that ClROS1 accelerates flowering by reducing the methylation level of the AtCO promoter. These findings clarify the epigenetic mechanism by which ClROS1-mediated DNA demethylation regulates flowering.
Collapse
Affiliation(s)
- Zhongya Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, Henan, China
| | - Wenqian Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, Henan, China
| | - Chenran Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, Henan, China
| | - Wenchao Tan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, Henan, China
| | - Yifei Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, Henan, China
| | - Yanchao Han
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, Henan, China
| | - Penghui Ai
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, Henan, China
| | - Zhongai Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, Henan, China
| | - Zicheng Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, Henan, China.
| |
Collapse
|
15
|
Nishio H, Kawakatsu T, Yamaguchi N. Beyond heat waves: Unlocking epigenetic heat stress memory in Arabidopsis. PLANT PHYSIOLOGY 2024; 194:1934-1951. [PMID: 37878744 DOI: 10.1093/plphys/kiad558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023]
Abstract
Plants remember their exposure to environmental changes and respond more effectively the next time they encounter a similar change by flexibly altering gene expression. Epigenetic mechanisms play a crucial role in establishing such memory of environmental changes and fine-tuning gene expression. With the recent advancements in biochemistry and sequencing technologies, it has become possible to characterize the dynamics of epigenetic changes on scales ranging from short term (minutes) to long term (generations). Here, our main focus is on describing the current understanding of the temporal regulation of histone modifications and chromatin changes during exposure to short-term recurring high temperatures and reevaluating them in the context of natural environments. Investigations of the dynamics of histone modifications and chromatin structural changes in Arabidopsis after repeated exposure to heat at short intervals have revealed the detailed molecular mechanisms of short-term heat stress memory, which include histone modification enzymes, chromatin remodelers, and key transcription factors. In addition, we summarize the spatial regulation of heat responses. Based on the natural temperature patterns during summer, we discuss how plants cope with recurring heat stress occurring at various time intervals by utilizing 2 distinct types of heat stress memory mechanisms. We also explore future research directions to provide a more precise understanding of the epigenetic regulation of heat stress memory.
Collapse
Affiliation(s)
- Haruki Nishio
- Data Science and AI Innovation Research Promotion Center, Shiga University, Shiga 522-8522, Japan
- Center for Ecological Research, Kyoto University, Shiga 520-2113, Japan
| | - Taiji Kawakatsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8602, Japan
| | - Nobutoshi Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
16
|
Cheng YJ, Wang JW, Ye R. Histone dynamics responding to internal and external cues underlying plant development. PLANT PHYSIOLOGY 2024; 194:1980-1997. [PMID: 38124490 DOI: 10.1093/plphys/kiad676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Plants necessitate a refined coordination of growth and development to effectively respond to external triggers for survival and successful reproduction. This intricate harmonization of plant developmental processes and adaptability hinges on significant alterations within their epigenetic landscapes. In this review, we first delve into recent strides made in comprehending underpinning the dynamics of histones, driven by both internal and external cues. We encapsulate the prevailing working models through which cis/trans elements navigate the acquisition and removal of histone modifications, as well as the substitution of histone variants. As we look ahead, we anticipate that delving deeper into the dynamics of epigenetic regulation at the level of individual cells or specific cell types will significantly enrich our comprehension of how plant development unfolds under the influence of internal and external cues. Such exploration holds the potential to provide unprecedented resolution in understanding the orchestration of plant growth and development.
Collapse
Affiliation(s)
- Ying-Juan Cheng
- College of Horticulture, Nanjing Agriculture University, Nanjing 210095, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- New Cornerstone Science Laboratory, Shanghai 200032, China
| | - Ruiqiang Ye
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| |
Collapse
|
17
|
Vivek Hari Sundar G, Madhu A, Archana A, Shivaprasad PV. Plant histone variants at the nexus of chromatin readouts, stress and development. Biochim Biophys Acta Gen Subj 2024; 1868:130539. [PMID: 38072208 DOI: 10.1016/j.bbagen.2023.130539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Histones are crucial proteins that are involved in packaging the DNA as condensed chromatin inside the eukaryotic cell nucleus. Rather than being static packaging units, these molecules undergo drastic variations spatially and temporally to facilitate accessibility of DNA to replication, transcription as well as wide range of gene regulatory machineries. In addition, incorporation of paralogous variants of canonical histones in the chromatin is ascribed to specific functions. Given the peculiar requirement of plants to rapidly modulate gene expression levels on account of their sessile nature, histones and their variants serve as additional layers of gene regulation. This review summarizes the mechanisms and implications of distribution, modifications and differential incorporation of histones and their variants across plant genomes, and outlines emerging themes.
Collapse
Affiliation(s)
- G Vivek Hari Sundar
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bangalore, India
| | - Aravind Madhu
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bangalore, India; SASTRA University, Thirumalaisamudram, Thanjavur 613 401, India
| | - A Archana
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bangalore, India; SASTRA University, Thirumalaisamudram, Thanjavur 613 401, India
| | - P V Shivaprasad
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bangalore, India.
| |
Collapse
|
18
|
Huang P, Zhang X, Cheng Z, Wang X, Miao Y, Huang G, Fu YF, Feng X. The nuclear pore Y-complex functions as a platform for transcriptional regulation of FLOWERING LOCUS C in Arabidopsis. THE PLANT CELL 2024; 36:346-366. [PMID: 37877462 PMCID: PMC10827314 DOI: 10.1093/plcell/koad271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023]
Abstract
The nuclear pore complex (NPC) has multiple functions beyond the nucleo-cytoplasmic transport of large molecules. Subnuclear compartmentalization of chromatin is critical for gene expression in animals and yeast. However, the mechanism by which the NPC regulates gene expression is poorly understood in plants. Here we report that the Y-complex (Nup107-160 complex, a subcomplex of the NPC) self-maintains its nucleoporin homeostasis and modulates FLOWERING LOCUS C (FLC) transcription via changing histone modifications at this locus. We show that Y-complex nucleoporins are intimately associated with FLC chromatin through their interactions with histone H2A at the nuclear membrane. Fluorescence in situ hybridization assays revealed that Nup96, a Y-complex nucleoporin, enhances FLC positioning at the nuclear periphery. Nup96 interacted with HISTONE DEACETYLASE 6 (HDA6), a key repressor of FLC expression via histone modification, at the nuclear membrane to attenuate HDA6-catalyzed deposition at the FLC locus and change histone modifications. Moreover, we demonstrate that Y-complex nucleoporins interact with RNA polymerase II to increase its occupancy at the FLC locus, facilitating transcription. Collectively, our findings identify an attractive mechanism for the Y-complex in regulating FLC expression via tethering the locus at the nuclear periphery and altering its histone modification.
Collapse
Affiliation(s)
- Penghui Huang
- Zhejiang Lab, Research Institute of Intelligent Computing, Hangzhou 310012, China
- MARA Key Laboratory of Soybean Biology (Beijing), State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaomei Zhang
- MARA Key Laboratory of Soybean Biology (Beijing), State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiyuan Cheng
- CAS Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xu Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261325, China
| | - Yuchen Miao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Guowen Huang
- Department of Biological Sciences and Chemical Engineering, Hunan University of Science and Engineering, Yongzhou 425100, Hunan, China
| | - Yong-Fu Fu
- MARA Key Laboratory of Soybean Biology (Beijing), State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianzhong Feng
- Zhejiang Lab, Research Institute of Intelligent Computing, Hangzhou 310012, China
- CAS Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
19
|
Jin Y, Luo X, Li Y, Peng X, Wu L, Yang G, Xu X, Pei Y, Li W, Zhang W. Fine mapping and analysis of candidate genes for qBT2 and qBT7.2 locus controlling bolting time in radish (Raphanus sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 137:4. [PMID: 38085292 DOI: 10.1007/s00122-023-04503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023]
Abstract
KEY MESSAGE Two major QTLs for bolting time in radish were mapped to chromosome 02 and 07 in a 0.37 Mb and 0. 52 Mb interval, RsFLC1 and RsFLC2 is the critical genes. Radish (Raphanus sativus L.) is an important vegetable crop of Cruciferae. The premature bolting and flowering reduces the yield and quality of the fleshy root of radish. However, the molecular mechanism underlying bolting and flowering in radish remains unknown. In YZH (early bolting) × XHT (late bolting) F2 population, a high-density genetic linkage map was constructed with genetic distance of 2497.74 cM and an average interval of 2.31 cM. A total of nine QTLs for bolting time and two QTLs for flowering time were detected. Three QTLs associated with bolting time in radish were identified by QTL-seq using radish GDE (early bolting) × GDL (late bolting) F2 population. Fine mapping narrowed down qBT2 and qBT7.2 to an 0.37 Mb and 0.52 Mb region on chromosome 02 and 07, respectively. RNA-seq and qRT-PCR analysis showed that RsFLC1 and RsFLC2 were the candidate gene for qBT7.2 and qBT2 locus, respectively. Subcellular localization exhibited that RsFLC1 and RsFLC2 were mainly expressed in the nucleus. A 1856-bp insertion in the first intron of RsFLC1 was responsible for bolting time. Overexpression of RsFLC2 in Arabidopsis was significantly delayed flowering. These findings will provide new insights into the exploring the molecular mechanism of late bolting and promote the marker-assisted selection for breeding late-bolting varieties in radish.
Collapse
Affiliation(s)
- Yueyue Jin
- College of Agriculture, Guizhou University, Guiyang, 550003, Guizhou, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, 550003, Guizhou, China
| | - Xiaobo Luo
- Guizhou Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, 550003, Guizhou, China
| | - Yadong Li
- College of Agriculture, Guizhou University, Guiyang, 550003, Guizhou, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, 550003, Guizhou, China
| | - Xiao Peng
- College of Agriculture, Guizhou University, Guiyang, 550003, Guizhou, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, 550003, Guizhou, China
| | - Linjun Wu
- College of Agriculture, Guizhou University, Guiyang, 550003, Guizhou, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, 550003, Guizhou, China
| | - Guangqian Yang
- College of Agriculture, Guizhou University, Guiyang, 550003, Guizhou, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, 550003, Guizhou, China
| | - Xiuhong Xu
- College of Agriculture, Guizhou University, Guiyang, 550003, Guizhou, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, 550003, Guizhou, China
| | - Yun Pei
- College of Agriculture, Guizhou University, Guiyang, 550003, Guizhou, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, 550003, Guizhou, China
| | - Wei Li
- College of Agriculture, Guizhou University, Guiyang, 550003, Guizhou, China
- Guizhou Higher Education Facility Vegetable Engineering Reseach Centre, Guizhou University, Guiyang, 550003, Guizhou, China
| | - Wanping Zhang
- College of Agriculture, Guizhou University, Guiyang, 550003, Guizhou, China.
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, 550003, Guizhou, China.
| |
Collapse
|
20
|
Xu S, He X, Trinh DC, Zhang X, Wu X, Qiu D, Zhou M, Xiang D, Roeder AHK, Hamant O, Hong L. A 3-component module maintains sepal flatness in Arabidopsis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570430. [PMID: 38106021 PMCID: PMC10723459 DOI: 10.1101/2023.12.06.570430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
As in origami, morphogenesis in living systems heavily relies on tissue curving and folding, through the interplay between biochemical and biomechanical cues. In contrast, certain organs maintain their flat posture over several days. Here we identified a pathway, which is required for the maintenance of organ flatness, taking the sepal, the outermost floral organ, in Arabidopsis as a model system. Through genetic, cellular and mechanical approaches, our results demonstrate that global gene expression regulator VERNALIZATION INDEPENDENCE 4 (VIP4) fine-tunes the mechanical properties of sepal cell walls and maintains balanced growth on both sides of the sepals, mainly by orchestrating the distribution pattern of AUXIN RESPONSE FACTOR 3 (ARF3). vip4 mutation results in softer cell walls and faster cell growth on the adaxial sepal side, which eventually cause sepals to bend outward. Downstream of VIP4, ARF3 works through modulating auxin signaling to down-regulate pectin methylesterase VANGUARD1, resulting in decreased cell wall stiffness. Our work unravels a 3-component module, which relates hormonal patterns to organ curvature, and actively maintains sepal flatness during its growth.
Collapse
|
21
|
Paull RE, Ksouri N, Kantar M, Zerpa‐Catanho D, Chen NJ, Uruu G, Yue J, Guo S, Zheng Y, Wai CMJ, Ming R. Differential gene expression during floral transition in pineapple. PLANT DIRECT 2023; 7:e541. [PMID: 38028646 PMCID: PMC10644199 DOI: 10.1002/pld3.541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023]
Abstract
Pineapple (Ananas comosus var. comosus) and ornamental bromeliads are commercially induced to flower by treatment with ethylene or its analogs. The apex is transformed from a vegetative to a floral meristem and shows morphological changes in 8 to 10 days, with flowers developing 8 to 10 weeks later. During eight sampling stages ranging from 6 h to 8 days after treatment, 7961 genes were found to exhibit differential expression (DE) after the application of ethylene. In the first 3 days after treatment, there was little change in ethylene synthesis or in the early stages of the ethylene response. Subsequently, three ethylene response transcription factors (ERTF) were up-regulated and the potential gene targets were predicted to be the positive flowering regulator CONSTANS-like 3 (CO), a WUSCHEL gene, two APETALA1/FRUITFULL (AP1/FUL) genes, an epidermal patterning gene, and a jasmonic acid synthesis gene. We confirm that pineapple has lost the flowering repressor FLOWERING LOCUS C. At the initial stages, the SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) was not significantly involved in this transition. Another WUSCHEL gene and a PHD homeobox transcription factor, though not apparent direct targets of ERTF, were up-regulated within a day of treatment, their predicted targets being the up-regulated CO, auxin response factors, SQUAMOSA, and histone H3 genes with suppression of abscisic acid response genes. The FLOWERING LOCUS T (FT), TERMINAL FLOWER (TFL), AGAMOUS-like APETELAR (AP2), and SEPETALA (SEP) increased rapidly within 2 to 3 days after ethylene treatment. Two FT genes were up-regulated at the apex and not at the leaf bases after treatment, suggesting that transport did not occur. These results indicated that the ethylene response in pineapple and possibly most bromeliads act directly to promote the vegetative to flower transition via APETALA1/FRUITFULL (AP1/FUL) and its interaction with SPL, FT, TFL, SEP, and AP2. A model based on AP2/ERTF DE and predicted DE target genes was developed to give focus to future research. The identified candidate genes are potential targets for genetic manipulation to determine their molecular role in flower transition.
Collapse
Affiliation(s)
- Robert E. Paull
- Tropical Plant & Soil SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Najla Ksouri
- Laboratory of Genomics, Genetics and Breeding of Fruits and Grapevine, Experimental Aula Dei‐CSICZaragozaSpain
| | - Michael Kantar
- Tropical Plant & Soil SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | | | - Nancy Jung Chen
- Tropical Plant & Soil SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Gail Uruu
- Tropical Plant & Soil SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Jingjing Yue
- Center for Genomics and BiotechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Shiyong Guo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
| | - Yun Zheng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
| | | | - Ray Ming
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Center for Genomics and BiotechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
22
|
Seni S, Singh RK, Prasad M. Dynamics of epigenetic control in plants via SET domain containing proteins: Structural and functional insights. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194966. [PMID: 37532097 DOI: 10.1016/j.bbagrm.2023.194966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
Plants control expression of their genes in a way that involves manipulating the chromatin structural dynamics in order to adapt to environmental changes and carry out developmental processes. Histone modifications like histone methylation are significant epigenetic marks which profoundly and globally modify chromatin, potentially affecting the expression of several genes. Methylation of histones is catalyzed by histone lysine methyltransferases (HKMTs), that features an evolutionary conserved domain known as SET [Su(var)3-9, E(Z), Trithorax]. This methylation is directed at particular lysine (K) residues on H3 or H4 histone. Plant SET domain group (SDG) proteins are categorized into different classes that have been conserved through evolution, and each class have specificity that influences how the chromatin structure operates. The domains discovered in plant SET domain proteins have typically been linked to protein-protein interactions, suggesting that majority of the SDGs function in complexes. Additionally, SDG-mediated histone mark deposition also affects alternative splicing events. In present review, we discussed the diversity of SDGs in plants including their structural properties. Additionally, we have provided comprehensive summary of the functions of the SDG-domain containing proteins in plant developmental processes and response to environmental stimuli have also been highlighted.
Collapse
Affiliation(s)
- Sushmita Seni
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Roshan Kumar Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India; Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India.
| |
Collapse
|
23
|
Zhang Y, Toivainen T, Mackenzie K, Yakovlev I, Krokene P, Hytönen T, Grini PE, Fossdal CG. Methylome, transcriptome, and phenotype changes induced by temperature conditions experienced during sexual reproduction in Fragaria vesca. PHYSIOLOGIA PLANTARUM 2023; 175:e13963. [PMID: 37340851 DOI: 10.1111/ppl.13963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/29/2023] [Accepted: 06/19/2023] [Indexed: 06/22/2023]
Abstract
Temperature conditions experienced during embryogenesis and seed development may induce epigenetic changes that increase phenotypic variation in plants. Here we investigate if embryogenesis and seed development at two different temperatures (28 vs. 18°C) result in lasting phenotypic effects and DNA methylation changes in woodland strawberry (Fragaria vesca). Using five European ecotypes from Spain (ES12), Iceland (ICE2), Italy (IT4), and Norway (NOR2 and NOR29), we found statistically significant differences between plants from seeds produced at 18 or 28°C in three of four phenotypic features investigated under common garden conditions. This indicates the establishment of a temperature-induced epigenetic memory-like response during embryogenesis and seed development. The memory effect was significant in two ecotypes: in NOR2 flowering time, number of growth points and petiole length were affected, and in ES12 number of growth points was affected. This indicates that genetic differences between ecotypes in their epigenetic machinery, or other allelic differences, impact this type of plasticity. We observed statistically significant differences between ecotypes in DNA methylation marks in repetitive elements, pseudogenes, and genic elements. Leaf transcriptomes were also affected by embryonic temperature in an ecotype-specific manner. Although we observed significant and lasting phenotypic change in at least some ecotypes, there was considerable variation in DNA methylation between individual plants within each temperature treatment. This within-treatment variability in DNA methylation marks in F. vesca progeny may partly be a result of allelic redistribution from recombination during meiosis and subsequent epigenetic reprogramming during embryogenesis.
Collapse
Affiliation(s)
- Yupeng Zhang
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, Norway
- EVOGENE, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Tuomas Toivainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Kathryn Mackenzie
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Igor Yakovlev
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Paal Krokene
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Paul E Grini
- EVOGENE, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Carl Gunnar Fossdal
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, Norway
| |
Collapse
|
24
|
Zeng J, Yang L, Tian M, Xie X, Liu C, Ruan Y. SDG26 Is Involved in Trichome Control in Arabidopsis thaliana: Affecting Phytohormones and Adjusting Accumulation of H3K27me3 on Genes Related to Trichome Growth and Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12081651. [PMID: 37111875 PMCID: PMC10143075 DOI: 10.3390/plants12081651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 06/12/2023]
Abstract
Plant trichomes formed by specialized epidermal cells play a role in protecting plants from biotic and abiotic stresses and can also influence the economic and ornamental value of plant products. Therefore, further studies on the molecular mechanisms of plant trichome growth and development are important for understanding trichome formation and agricultural production. SET Domain Group 26 (SDG26) is a histone lysine methyltransferase. Currently, the molecular mechanism by which SDG26 regulates the growth and development of Arabidopsis leaf trichomes is still unclear. We found that the mutant of Arabidopsis (sdg26) possessed more trichomes on its rosette leaves compared to the wild type (Col-0), and the trichome density per unit area of sdg26 is significantly higher than that of Col-0. The content of cytokinins and jasmonic acid was higher in sdg26 than in Col-0, while the content of salicylic acid was lower in sdg26 than in Col-0, which is conducive to trichome growth. By measuring the expression levels of trichome-related genes, we found that the expression of genes that positively regulate trichome growth and development were up-regulated, while the negatively regulated genes were down-regulated in sdg26. Through chromatin immunoprecipitation sequencing (ChIP-seq) analysis, we found that SDG26 can directly regulate the expression of genes related to trichome growth and development such as ZFP1, ZFP5, ZFP6, GL3, MYB23, MYC1, TT8, GL1, GIS2, IPT1, IPT3, and IPT5 by increasing the accumulation of H3K27me3 on these genes, which further affects the growth and development of trichomes. This study reveals the mechanism by which SDG26 affects the growth and development of trichomes through histone methylation. The current study provides a theoretical basis for studying the molecular mechanism of histone methylation in regulating leaf trichome growth and development and perhaps guiding the development of new crop varieties.
Collapse
Affiliation(s)
- Jing Zeng
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Crop Physiology and Molecular Biology of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Lanpeng Yang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Minyu Tian
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Crop Physiology and Molecular Biology of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Xiang Xie
- Key Laboratory of Crop Physiology and Molecular Biology of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Chunlin Liu
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Crop Physiology and Molecular Biology of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Ying Ruan
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Crop Physiology and Molecular Biology of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
25
|
Brůna T, Aryal R, Dudchenko O, Sargent DJ, Mead D, Buti M, Cavallini A, Hytönen T, Andrés J, Pham M, Weisz D, Mascagni F, Usai G, Natali L, Bassil N, Fernandez GE, Lomsadze A, Armour M, Olukolu B, Poorten T, Britton C, Davik J, Ashrafi H, Aiden EL, Borodovsky M, Worthington M. A chromosome-length genome assembly and annotation of blackberry (Rubus argutus, cv. "Hillquist"). G3 (BETHESDA, MD.) 2023; 13:jkac289. [PMID: 36331334 PMCID: PMC9911083 DOI: 10.1093/g3journal/jkac289] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Blackberries (Rubus spp.) are the fourth most economically important berry crop worldwide. Genome assemblies and annotations have been developed for Rubus species in subgenus Idaeobatus, including black raspberry (R. occidentalis), red raspberry (R. idaeus), and R. chingii, but very few genomic resources exist for blackberries and their relatives in subgenus Rubus. Here we present a chromosome-length assembly and annotation of the diploid blackberry germplasm accession "Hillquist" (R. argutus). "Hillquist" is the only known source of primocane-fruiting (annual-fruiting) in tetraploid fresh-market blackberry breeding programs and is represented in the pedigree of many important cultivars worldwide. The "Hillquist" assembly, generated using Pacific Biosciences long reads scaffolded with high-throughput chromosome conformation capture sequencing, consisted of 298 Mb, of which 270 Mb (90%) was placed on 7 chromosome-length scaffolds with an average length of 38.6 Mb. Approximately 52.8% of the genome was composed of repetitive elements. The genome sequence was highly collinear with a novel maternal haplotype-resolved linkage map of the tetraploid blackberry selection A-2551TN and genome assemblies of R. chingii and red raspberry. A total of 38,503 protein-coding genes were predicted, of which 72% were functionally annotated. Eighteen flowering gene homologs within a previously mapped locus aligning to an 11.2 Mb region on chromosome Ra02 were identified as potential candidate genes for primocane-fruiting. The utility of the "Hillquist" genome has been demonstrated here by the development of the first genotyping-by-sequencing-based linkage map of tetraploid blackberry and the identification of possible candidate genes for primocane-fruiting. This chromosome-length assembly will facilitate future studies in Rubus biology, genetics, and genomics and strengthen applied breeding programs.
Collapse
Affiliation(s)
- Tomáš Brůna
- School of Biological Sciences, Center for Bioinformatics and Computational Genomics, Georgia Tech, Atlanta, GA 30332, USA
| | - Rishi Aryal
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Olga Dudchenko
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Computer Science, Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
| | - Daniel James Sargent
- Department of Genetics, Genomics and Breeding, NIAB-EMR, East Malling, Kent, UK
- Natural Resources Institute, University of Greenwich, Medway Campus, Chatham Maritime, Kent, UK
| | - Daniel Mead
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- Owlstone Medical Ltd, Cambridge CB4 0GJ, UK
| | - Matteo Buti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Andrea Cavallini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00790 Helsinki, Finland
| | - Javier Andrés
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00790 Helsinki, Finland
| | - Melanie Pham
- Department of Molecular and Human Genetics, Baylor College of Medicine, The Center for Genome Architecture, Houston, TX 77030, USA
| | - David Weisz
- Department of Molecular and Human Genetics, Baylor College of Medicine, The Center for Genome Architecture, Houston, TX 77030, USA
| | - Flavia Mascagni
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Gabriele Usai
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Lucia Natali
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Nahla Bassil
- USDA-ARS, National Clonal Germplasm Repository, Corvallis, OR 97333, USA
| | - Gina E Fernandez
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Alexandre Lomsadze
- Department of Biomedical Engineering, Center for Bioinformatics and Computational Genomics, Georgia Tech, Atlanta, GA 30332, USA
| | - Mitchell Armour
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Bode Olukolu
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | - Jahn Davik
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, N-1431 Ås, Norway
| | - Hamid Ashrafi
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Erez Lieberman Aiden
- Department of Computer Science, Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, The Center for Genome Architecture, Houston, TX 77030, USA
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA 6009, Australia
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech, Pudong 201210, China
| | - Mark Borodovsky
- Department of Biomedical Engineering, School of Computational Science and Engineering, Center for Bioinformatics and Computational Genomics, Georgia Tech, Atlanta, GA 30332USA
| | | |
Collapse
|
26
|
Huang LJ, Wang Y, Lin Z, Jiang D, Luo Y, Li N. The role of corepressor HOS15-mediated epigenetic regulation of flowering. FRONTIERS IN PLANT SCIENCE 2023; 13:1101912. [PMID: 36704168 PMCID: PMC9871556 DOI: 10.3389/fpls.2022.1101912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Regulation of gene expression underpins gene function and is essential for regulation of physiological roles. Epigenetic modifications regulate gene transcription by physically facilitating relaxation or condensation of target loci in chromatin. Transcriptional corepressors are involved in chromatin remodeling and regulate gene expression by establishing repressive complexes. Genetic and biochemical studies reveal that a member of the Groucho/Thymidine uptake 1 (Gro/Tup1) corepressor family, HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 15 (HOS15), is recruited via the evening complex (EC) to the GIGANTEA (GI) promoter to repress gene expression, and modulating flowering time. Therefore, HOS15 connects photoperiodic pathway and epigenetic mechanism to control flowering time in plants. In addition, growing body of evidence support a diverse roles of the epigenetic regulator HOS15 in fine-tuning plant development and growth by integrating intrinsic genetic components and various environmental signals.
Collapse
Affiliation(s)
- Li-Jun Huang
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Yukun Wang
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Zeng Lin
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Dong Jiang
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Yong Luo
- School of Chemistry and Environmental Science, Xiangnan University, Chenzhou, China
| | - Ning Li
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
27
|
Yu Y, Wang Y, Yao Z, Wang Z, Xia Z, Lee J. Comprehensive Survey of ChIP-Seq Datasets to Identify Candidate Iron Homeostasis Genes Regulated by Chromatin Modifications. Methods Mol Biol 2023; 2665:95-111. [PMID: 37166596 DOI: 10.1007/978-1-0716-3183-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Vital biochemical reactions including photosynthesis to respiration require iron, which should be tightly regulated. Although increasing evidence reveals the importance of epigenetic regulation in gene expression and signaling, the role of histone modifications and chromatin remodeling in plant iron homeostasis is not well understood. In this study, we surveyed publicly available ChIP-seq datasets of Arabidopsis wild-type and mutants defective in key enzymes of histone modification and chromatin remodeling and compared the deposition of epigenetic marks on loci of genes involved in iron regulation. Based on the analysis, we compiled a comprehensive list of iron homeostasis genes with differential enrichment of various histone modifications. This report will provide a resource for future studies to investigate epigenetic regulatory mechanisms of iron homeostasis in plants.
Collapse
Affiliation(s)
- Yang Yu
- Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, China
| | - Yuxin Wang
- Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, China
| | - Zhujun Yao
- Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, China
| | - Ziqin Wang
- Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, China
| | - Zijun Xia
- Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, China
| | - Joohyun Lee
- Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, China.
| |
Collapse
|
28
|
Ma J, Li Q, Zhang L, Cai S, Liu Y, Lin J, Huang R, Yu Y, Wen M, Xu T. High auxin stimulates callus through SDG8-mediated histone H3K36 methylation in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2425-2437. [PMID: 36250442 DOI: 10.1111/jipb.13387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Callus induction, which results in fate transition in plant cells, is considered as the first and key step for plant regeneration. This process can be stimulated in different tissues by a callus-inducing medium (CIM), which contains a high concentration of phytohormone auxin. Although a few key regulators for callus induction have been identified, the multiple aspects of the regulatory mechanism driven by high levels of auxin still need further investigation. Here, we find that high auxin induces callus through a H3K36 histone methylation-dependent mechanism, which requires the methyltransferase SET DOMAIN GROUP 8 (SDG8). During callus induction, the increased auxin accumulates SDG8 expression through a TIR1/AFBs-based transcriptional regulation. SDG8 then deposits H3K36me3 modifications on the loci of callus-related genes, including a master regulator WOX5 and the cell proliferation-related genes, such as CYCB1.1. This epigenetic regulation in turn is required for the transcriptional activation of these genes during callus formation. These findings suggest that the massive transcriptional reprogramming for cell fate transition by auxin during callus formation requires epigenetic modifications including SDG8-mediated histone H3K36 methylation. Our results provide insight into the coordination between auxin signaling and epigenetic regulation during fundamental processes in plant development.
Collapse
Affiliation(s)
- Jun Ma
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Plant Synthetic Biology Center, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiang Li
- Plant Synthetic Biology Center, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Lei Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Plant Synthetic Biology Center, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Sen Cai
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuanyuan Liu
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Juncheng Lin
- Plant Synthetic Biology Center, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rongfeng Huang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Plant Synthetic Biology Center, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongqiang Yu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Plant Synthetic Biology Center, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mingzhang Wen
- Plant Synthetic Biology Center, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Tongda Xu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Plant Synthetic Biology Center, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
29
|
Liang N, Cheng D, Zhao L, Lu H, Xu L, Bi Y. Identification of the Genes Encoding B3 Domain-Containing Proteins Related to Vernalization of Beta vulgaris. Genes (Basel) 2022; 13:genes13122217. [PMID: 36553484 PMCID: PMC9778101 DOI: 10.3390/genes13122217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Vernalization is the process of exposure to low temperatures, which is crucial for the transition from vegetative to reproductive growth of plants. In this study, the global landscape vernalization-related mRNAs and long noncoding RNAs (lncRNAs) were identified in Beta vulgaris. A total of 22,159 differentially expressed mRNAs and 4418 differentially expressed lncRNAs were uncovered between the vernalized and nonvernalized samples. Various regulatory proteins, such as zinc finger CCCH domain-containing proteins, F-box proteins, flowering-time-related proteins FY and FPA, PHD finger protein EHD3 and B3 domain proteins were identified. Intriguingly, a novel vernalization-related lncRNA-mRNA target-gene co-expression regulatory network and the candidate vernalization genes, VRN1, VRN1-like, VAL1 and VAL2, encoding B3 domain-containing proteins were also unveiled. The results of this study pave the way for further illumination of the molecular mechanisms underlying the vernalization of B. vulgaris.
Collapse
Affiliation(s)
- Naiguo Liang
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huaian 223001, China
- Correspondence:
| | - Dayou Cheng
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Li Zhao
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huaian 223001, China
| | - Hedong Lu
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huaian 223001, China
| | - Lei Xu
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huaian 223001, China
| | - Yanhong Bi
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huaian 223001, China
| |
Collapse
|
30
|
Bvindi C, Tang L, Lee S, Patrick RM, Yee ZR, Mengiste T, Li Y. Histone methyltransferases SDG33 and SDG34 regulate organ-specific nitrogen responses in tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:1005077. [PMID: 36311072 PMCID: PMC9606235 DOI: 10.3389/fpls.2022.1005077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Histone posttranslational modifications shape the chromatin landscape of the plant genome and affect gene expression in response to developmental and environmental cues. To date, the role of histone modifications in regulating plant responses to environmental nutrient availability, especially in agriculturally important species, remains largely unknown. We describe the functions of two histone lysine methyltransferases, SET Domain Group 33 (SDG33) and SDG34, in mediating nitrogen (N) responses of shoots and roots in tomato. By comparing the transcriptomes of CRISPR edited tomato lines sdg33 and sdg34 with wild-type plants under N-supplied and N-starved conditions, we uncovered that SDG33 and SDG34 regulate overlapping yet distinct downstream gene targets. In response to N level changes, both SDG33 and SDG34 mediate gene regulation in an organ-specific manner: in roots, SDG33 and SDG34 regulate a gene network including Nitrate Transporter 1.1 (NRT1.1) and Small Auxin Up-regulated RNA (SAUR) genes. In agreement with this, mutations in sdg33 or sdg34 abolish the root growth response triggered by an N-supply; In shoots, SDG33 and SDG34 affect the expression of photosynthesis genes and photosynthetic parameters in response to N. Our analysis thus revealed that SDG33 and SDG34 regulate N-responsive gene expression and physiological changes in an organ-specific manner, thus presenting previously unknown candidate genes as targets for selection and engineering to improve N uptake and usage in crop plants.
Collapse
Affiliation(s)
- Carol Bvindi
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Liang Tang
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Sanghun Lee
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Ryan M. Patrick
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Zheng Rong Yee
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Ying Li
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
31
|
Bhatia G, Prall W, Sharma B, Gregory BD. Covalent RNA modifications and their budding crosstalk with plant epigenetic processes. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102287. [PMID: 35988352 DOI: 10.1016/j.pbi.2022.102287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/29/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Our recent cognizance of diverse RNA classes undergoing dynamic covalent chemical modifications (or epitranscriptomic marks) in plants has provided fresh insight into the underlying molecular mechanisms of gene expression regulation. Comparatively, epigenetic marks comprising heritable modifications of DNA and histones have been extensively studied in plants and their impact on plant gene expression is quite established. Based on our growing knowledge of the plant epitranscriptome and epigenome, it is logical to explore how the two regulatory layers intermingle to intricately determine gene expression levels underlying key biological processes such as development and response to stress. Herein, we focus on the emerging evidence of crosstalk between the plant epitranscriptome with epigenetic regulation involving DNA modification, histone modification, and non-coding RNAs.
Collapse
Affiliation(s)
- Garima Bhatia
- Department of Biology, University of Pennsylvania, School of Arts and Sciences, Philadelphia, PA 19104, USA
| | - Wil Prall
- Department of Biology, University of Pennsylvania, School of Arts and Sciences, Philadelphia, PA 19104, USA
| | - Bishwas Sharma
- Department of Biology, University of Pennsylvania, School of Arts and Sciences, Philadelphia, PA 19104, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, School of Arts and Sciences, Philadelphia, PA 19104, USA.
| |
Collapse
|
32
|
Bvindi C, Lee S, Tang L, Mickelbart MV, Li Y, Mengiste T. Improved pathogen and stress tolerance in tomato mutants of SET domain histone 3 lysine methyltransferases. THE NEW PHYTOLOGIST 2022; 235:1957-1976. [PMID: 35633111 DOI: 10.1111/nph.18277] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Histone lysine methylations (HLMs) are implicated in control of gene expression in different eukaryotes. However, the role of HLMs in regulating desirable crop traits and the enzymes involved in these modifications are poorly understood. We studied the functions of tomato histone H3 lysine methyltransferases SET Domain Group 33 (SDG33) and SDG34 in biotic and abiotic stress responses. SDG33 and SDG34 gene edited mutants were altered in H3K36 and H3K4 methylations, and expression of genes involved in diverse processes and responses to biotic and abiotic stimuli. The double but not the single mutants show resistance to the fungal pathogen Botrytis cinerea. Interestingly, single mutants were tolerant to drought and the double mutant showed superior tolerance and plant growth consistent with independent and additive functions. Mutants maintained higher water status during drought and improved recovery and survival after lapse of drought. Notably, diminution of H3K4 and H3K36 trimethylation and expression of negative regulators in challenged plants contributes to stress tolerance of the mutants. Mutations in SDG33 and SDG34 are likely to remove predisposition to biotic and abiotic stress by disrupting permissive transcriptional context promoting expression of negative regulatory factors. These allows improvement of stress and pathogen tolerance, without growth trade-offs, through modification of histone epigenetic marks.
Collapse
Affiliation(s)
- Carol Bvindi
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Sanghun Lee
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Liang Tang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Michael V Mickelbart
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Ying Li
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| |
Collapse
|
33
|
Qi PL, Zhou HR, Zhao QQ, Feng C, Ning YQ, Su YN, Cai XW, Yuan DY, Zhang ZC, Su XM, Chen SS, Li L, Chen S, He XJ. Characterization of an autonomous pathway complex that promotes flowering in Arabidopsis. Nucleic Acids Res 2022; 50:7380-7395. [PMID: 35766439 PMCID: PMC9303297 DOI: 10.1093/nar/gkac551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/24/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Although previous studies have identified several autonomous pathway components that are required for the promotion of flowering, little is known about how these components cooperate. Here, we identified an autonomous pathway complex (AuPC) containing both known components (FLD, LD and SDG26) and previously unknown components (EFL2, EFL4 and APRF1). Loss-of-function mutations of all of these components result in increased FLC expression and delayed flowering. The delayed-flowering phenotype is independent of photoperiod and can be overcome by vernalization, confirming that the complex specifically functions in the autonomous pathway. Chromatin immunoprecipitation combined with sequencing indicated that, in the AuPC mutants, the histone modifications (H3Ac, H3K4me3 and H3K36me3) associated with transcriptional activation are increased, and the histone modification (H3K27me3) associated with transcriptional repression is reduced, suggesting that the AuPC suppresses FLC expression at least partially by regulating these histone modifications. Moreover, we found that the AuPC component SDG26 associates with FLC chromatin via a previously uncharacterized DNA-binding domain and regulates FLC expression and flowering time independently of its histone methyltransferase activity. Together, these results provide a framework for understanding the molecular mechanism by which the autonomous pathway regulates flowering time.
Collapse
Affiliation(s)
- Pei-Lin Qi
- National Institute of Biological Sciences, Beijing 102206, China.,PTN Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hao-Ran Zhou
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qiang-Qiang Zhao
- National Institute of Biological Sciences, Beijing 102206, China.,Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Chao Feng
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yong-Qiang Ning
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yin-Na Su
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xue-Wei Cai
- National Institute of Biological Sciences, Beijing 102206, China
| | - Dan-Yang Yuan
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhao-Chen Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xiao-Min Su
- National Institute of Biological Sciences, Beijing 102206, China
| | - Shan-Shan Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
34
|
Li Y, Sun W, Wang Z, Wan C, Zhang J, Qi X, Zhang J. SDG102, a H3K36-Methyltransferase-Encoding Gene, Plays Pleiotropic Roles in Growth and Development of Maize ( Zea mays L.). Int J Mol Sci 2022; 23:ijms23137458. [PMID: 35806471 PMCID: PMC9267571 DOI: 10.3390/ijms23137458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 02/01/2023] Open
Abstract
Although histone lysine methylation has been studied in thale cress (Arabidopsis thaliana (L.) Heynh.) and rice (Oryza sativa L.) in recent years, its function in maize (Zea mays L.) remains poorly characterized. To better understand the function of histone lysine methylation in maize, SDG102, a H3 lysine 36 (H3K36) methylase, was chosen for functional characterization using overexpressed and knockout transgenic plants. SDG102-deficiency in maize caused multiple phenotypes including yellow leaves in seedlings, late-flowering, and increased adult plant height, while the overexpression of SDG102 led to reduced adult plant height. The key flowering genes, ZCN8/ZCN7 and MADS4/MADA67, were downregulated in SDG102-deficient plants. Chromatin immunoprecipitation (ChIP) experiments showed that H3 lysine 36 trimethylation (H3K36me3) levels were reduced at these loci. Perturbation of SDG102 expression caused the misexpression of multiple genes. Interestingly, the overexpression or knockout of SDG102 also led to genome-wide decreases and increases in the H3K36me3 levels, respectively. Together, our results suggest that SDG102 is a methyltransferase that catalyzes the trimethylation of H3K36 of many genes across the maize genome, which are involved in multiple biological processes including those controlling flowering time.
Collapse
Affiliation(s)
- Yongjian Li
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (W.S.); (C.W.); (Z.W.); (J.Z.)
| | - Weifeng Sun
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (W.S.); (C.W.); (Z.W.); (J.Z.)
| | - Zhenhui Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (W.S.); (C.W.); (Z.W.); (J.Z.)
| | - Chang Wan
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (W.S.); (C.W.); (Z.W.); (J.Z.)
| | - Jun Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (W.S.); (C.W.); (Z.W.); (J.Z.)
| | - Xin Qi
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (W.S.); (C.W.); (Z.W.); (J.Z.)
- Correspondence: (X.Q.); (J.Z.)
| | - Jian Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (W.S.); (C.W.); (Z.W.); (J.Z.)
- Department of Biology, University of British Columbia, Okanagan, Kelowna, BC V1V 1V7, Canada
- Correspondence: (X.Q.); (J.Z.)
| |
Collapse
|
35
|
Gardiner J, Ghoshal B, Wang M, Jacobsen SE. CRISPR-Cas-mediated transcriptional control and epi-mutagenesis. PLANT PHYSIOLOGY 2022; 188:1811-1824. [PMID: 35134247 PMCID: PMC8968285 DOI: 10.1093/plphys/kiac033] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/13/2022] [Indexed: 05/24/2023]
Abstract
Tools for sequence-specific DNA binding have opened the door to new approaches in investigating fundamental questions in biology and crop development. While there are several platforms to choose from, many of the recent advances in sequence-specific targeting tools are focused on developing Clustered Regularly Interspaced Short Palindromic Repeats- CRISPR Associated (CRISPR-Cas)-based systems. Using a catalytically inactive Cas protein (dCas), this system can act as a vector for different modular catalytic domains (effector domains) to control a gene's expression or alter epigenetic marks such as DNA methylation. Recent trends in developing CRISPR-dCas systems include creating versions that can target multiple copies of effector domains to a single site, targeting epigenetic changes that, in some cases, can be inherited to the next generation in the absence of the targeting construct, and combining effector domains and targeting strategies to create synergies that increase the functionality or efficiency of the system. This review summarizes and compares DNA targeting technologies, the effector domains used to target transcriptional control and epi-mutagenesis, and the different CRISPR-dCas systems used in plants.
Collapse
Affiliation(s)
| | | | - Ming Wang
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California, USA
| | | |
Collapse
|
36
|
Yamaguchi N. The epigenetic mechanisms regulating floral hub genes and their potential for manipulation. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1277-1287. [PMID: 34752611 DOI: 10.1093/jxb/erab490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Gene regulatory networks formed by transcription factors play essential roles in the regulation of gene expression during plant reproductive development. These networks integrate endogenous, phytohormonal, and environmental cues. Molecular genetic, biochemical, and chemical analyses performed mainly in Arabidopsis have identified network hub genes and revealed the contributions of individual components to these networks. Here, I outline current understanding of key epigenetic regulatory circuits identified by research on plant reproduction, and highlight significant recent examples of genetic engineering and chemical applications to modulate the epigenetic regulation of gene expression. Furthermore, I discuss future prospects for applying basic plant science to engineer useful floral traits in a predictable manner as well as the potential side effects.
Collapse
Affiliation(s)
- Nobutoshi Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
37
|
Hou Y, Yan Y, Cao X. Epigenetic regulation of thermomorphogenesis in Arabidopsis thaliana. ABIOTECH 2022; 3:12-24. [PMID: 36304197 PMCID: PMC9590556 DOI: 10.1007/s42994-022-00070-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/24/2022] [Indexed: 11/25/2022]
Abstract
Temperature is a key factor in determining plant growth and development, geographical distribution, and seasonal behavior. Plants accurately sense subtle changes in ambient temperature and alter their growth and development accordingly to improve their chances of survival and successful propagation. Thermomorphogenesis encompasses a variety of morphological changes that help plants acclimate to warm environmental temperatures. Revealing the molecular mechanism of thermomorphogenesis is important for breeding thermo-tolerant crops and ensuring food security under global climate change. Plant adaptation to elevated ambient temperature is regulated by multiple signaling pathways and epigenetic mechanisms such as histone modifications, histone variants, and non-coding RNAs. In this review, we summarize recent advances in the mechanism of epigenetic regulation during thermomorphogenesis with a focus on the model plant Arabidopsis thaliana and briefly discuss future prospects for this field.
Collapse
Affiliation(s)
- Yifeng Hou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yan Yan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
38
|
Sehrish S, Sumbal W, Xie M, Zhao C, Zuo R, Gao F, Liu S. Genome-Wide Identification and Characterization of SET Domain Family Genes in Brassica napus L. Int J Mol Sci 2022; 23:ijms23041936. [PMID: 35216050 PMCID: PMC8879272 DOI: 10.3390/ijms23041936] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/23/2022] Open
Abstract
SET domain group encoding proteins function as histone lysine methyltransferases. These proteins are involved in various biological processes, including plant development and adaption to the environment by modifying the chromatin structures. So far, the SET domain genes (SDGs) have not been systematically investigated in Brassica napus (B. napus). In the current study, through genome-wide analysis, a total of 122 SDGs were identified in the B. napus genome. These BnSDGs were subdivided into seven (I-VII) classes based on phylogeny analysis, domain configurations, and motif distribution. Segmental duplication was involved in the evolution of this family, and the duplicated genes were under strong purifying selection. The promoter sequence of BnSDGs consisted of various growth, hormones, and stress-related cis-acting elements along with transcription factor binding sites (TFBSs) for 20 TF families in 59 of the 122 BnSDGs. The gene ontology (GO) analysis revealed that BnSDGs were closely associated with histone and non-histone methylation and metal binding capacity localized mostly in the nucleus. The in silico expression analysis at four developmental stages in leaf, stem root, floral organ, silique, and seed tissues showed a broad range of tissue and stage-specific expression pattern. The expression analysis under four abiotic stresses (dehydration, cold, ABA, and salinity) also provided evidence for the importance of BnSDGs in stress environments. Based on expression analysis, we performed reverse transcription-quantitative PCR for 15 target BnSDGs in eight tissues (young leaf, mature leaf, root, stem, carpel, stamen, sepal, and petals). Our results were in accordance with the in silico expression data, suggesting the importance of these genes in plant development. In conclusion, this study lays a foundation for future functional studies on SDGs in B. napus.
Collapse
|
39
|
Zhang S, Deng L, Cheng R, Hu J, Wu CY. RID1 sets rice heading date by balancing its binding with SLR1 and SDG722. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:149-165. [PMID: 34845826 DOI: 10.1111/jipb.13196] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Rice (Oryza sativa) is a major crop that feeds billions of people, and its yield is strongly influenced by flowering time (heading date). Loss of RICE INDETERMINATE1 (RID1) function causes plants not to flower; thus, RID1 is considered a master switch among flowering-related genes. However, it remains unclear whether other proteins function together with RID1 to regulate rice floral transition. Here, we revealed that the chromatin accessibility and H3K9ac, H3K4me3, and H3K36me3 levels at Heading date 3a (Hd3a) and RICE FLOWERING LOCUS T1 (RFT1) loci were significantly reduced in rid1 mutants. Notably, RID1 interacted with SET DOMAIN GROUP PROTEIN 722 (SDG722), a methyltransferase. We determined that SDG722 affects the global level of H3K4me2/3 and H3K36me2/3, and promotes flowering primarily through the Early heading date1-Hd3a/RFT1 pathway. We further established that rice DELLA protein SLENDER RICE1 (SLR1) interacted with RID1 to inhibit its transactivation activity, that SLR1 suppresses rice flowering, and that messenger RNA and protein levels of SLR1 gradually decrease with plant growth. Furthermore, SLR1 competed with SDG722 for interaction with RID1. Overall, our results establish that interplay between RID1, SLR1, and SDG722 feeds into rice flowering-time control.
Collapse
Affiliation(s)
- Shuo Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li Deng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rui Cheng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Hu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Chang-Yin Wu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
40
|
Liu L, Chai M, Huang Y, Qi J, Zhu W, Xi X, Chen F, Qin Y, Cai H. SDG2 regulates Arabidopsis inflorescence architecture through SWR1-ERECTA signaling pathway. iScience 2021; 24:103236. [PMID: 34746701 PMCID: PMC8551540 DOI: 10.1016/j.isci.2021.103236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/30/2021] [Accepted: 10/04/2021] [Indexed: 12/21/2022] Open
Abstract
Inflorescence architecture is diverse in flowering plants, and two determinants of inflorescence architecture are the inflorescence meristem and pedicel length. Although the ERECTA (ER) signaling pathway, in coordination with the SWR1 chromatin remodeling complex, regulates inflorescence architecture with subsequent effects on pedicel elongation, the mechanism underlying SWR1-ER signaling pathway regulation of inflorescence architecture remains unclear. This study determined that SDG2 genetically interacts with the SWR1-ER signaling pathways in regulating inflorescence architecture. Transcriptome results showed that auxin might potentially influence inflorescence growth mediated by SDG2 and SWR1-ER pathways. SWR1 and ER signaling are required to enrich H2A.Z histone variant and SDG2 regulated SDG2-mediated H3K4me3 histone modification at auxin-related genes and H2A.Z histone variant enrichment. Our study shows how the regulation of inflorescence architecture is mediated by SDG2 and SWR1-ER, which affects auxin hormone signaling pathways.
Collapse
Affiliation(s)
- Liping Liu
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengnan Chai
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youmei Huang
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingang Qi
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenhui Zhu
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinpeng Xi
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fangqian Chen
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan Qin
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Hanyang Cai
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
41
|
Inagaki S. Silencing and anti-silencing mechanisms that shape the epigenome in plants. Genes Genet Syst 2021; 96:217-228. [PMID: 34719532 DOI: 10.1266/ggs.21-00041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Epigenome information mediates genome function and maintenance by regulating gene expression and chromatin organization. Because the epigenome pattern can change in response to internal and external environments, it may underlie an adaptive genome response that modulates phenotypes during development and in changing environments. Here I summarize recent progress in our understanding of how epigenome patterns are shaped and modulated by concerted actions of silencing and anti-silencing factors mainly in Arabidopsis thaliana. I discuss the dynamic nature of epigenome regulation, which is realized by cooperation and counteraction among silencing and anti-silencing factors, and how the dynamic epigenome mediates robust and plastic responses of plants to fluctuating environments.
Collapse
Affiliation(s)
- Soichi Inagaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo.,PRESTO, Japan Science and Technology Agency
| |
Collapse
|
42
|
Barrero-Gil J, Mouriz A, Piqueras R, Salinas J, Jarillo JA, Piñeiro M. A MRG-operated chromatin switch at SOC1 attenuates abiotic stress responses during the floral transition. PLANT PHYSIOLOGY 2021; 187:462-471. [PMID: 34618146 PMCID: PMC8418395 DOI: 10.1093/plphys/kiab275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
Plants react to environmental challenges by integrating external cues with endogenous signals to optimize survival and reproductive success. However, the mechanisms underlying this integration remain obscure. While stress conditions are known to impact plant development, how developmental transitions influence responses to adverse conditions has not been addressed. Here, we reveal a molecular mechanism of stress response attenuation during the onset of flowering in Arabidopsis (Arabidopsis thaliana). We show that Arabidopsis MORF-RELATED GENE (MRG) proteins, components of the NuA4 histone acetyltransferase complex that bind trimethylated-lysine 36 in histone H3 (H3K36me3), function as a chromatin switch on the floral integrator SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) to coordinate flowering initiation with plant responsiveness to hostile environments. MRG proteins are required to activate SOC1 expression during flowering induction by promoting histone H4 acetylation. In turn, SOC1 represses a broad array of genes that mediate abiotic stress responses. We propose that during the transition from vegetative to reproductive growth, the MRG-SOC1 module constitutes a central hub in a mechanism that tunes down stress responses to enhance the reproductive success and plant fitness at the expense of costly efforts for adaptation to challenging environments.
Collapse
Affiliation(s)
- Javier Barrero-Gil
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología Microbiana y de Plantas, Centro Investigaciones Biológicas “Margarita Salas”, CSIC, Madrid, Spain
| | - Alfonso Mouriz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Raquel Piqueras
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Julio Salinas
- Departamento de Biotecnología Microbiana y de Plantas, Centro Investigaciones Biológicas “Margarita Salas”, CSIC, Madrid, Spain
| | - José A. Jarillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain
| |
Collapse
|
43
|
Zhang S, Hao H, Liu X, Li Y, Ma X, Liu W, Zheng R, Liang S, Luan W. SDG712, a Putative H3K9-Specific Methyltransferase Encoding Gene, Delays Flowering through Repressing the Expression of Florigen Genes in Rice. RICE (NEW YORK, N.Y.) 2021; 14:73. [PMID: 34357443 PMCID: PMC8346621 DOI: 10.1186/s12284-021-00513-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 07/16/2021] [Indexed: 05/30/2023]
Abstract
SET domain group (SDG) proteins have been identified to be involved in histone modification and participate in diverse biological processes. Rice contains 41 SDG genes, however, most of which have not been functionally characterized. Here, we report the identification and functional investigation of rice SDG712 gene. Phylogenic analysis revealed that SDG712 belongs to the H3K9-specific SDG subclade. SDG712 is highly expressed in leaves during reproductive growth stage with obvious circadian rhythmic pattern. Mutation of SDG712 promotes rice flowering, while overexpression of SDG712 delays rice flowering. Gene expression analysis suggested that SDG712 acts downstream of Hd1, while acts upstream of Ehd1, Hd3a and RFT1. Subcellular localization assay demonstrated that SDG712 is localized in the nucleus. Chromatin immunoprecipitation (ChIP) assay showed that the H3K9me2 levels at Hd3a and RFT1 loci were increased in SDG712 overexpression transgenic plants, indicating that SDG712 may mediate the H3K9 di-methylation on these loci to repress rice flowering. Taken together, our findings demonstrated that SDG712 is a negative flowering regulatory gene in rice, and it delays flowering through repressing key flowering regulator gene Ehd1 and the florigen genes Hd3a and RFT1.
Collapse
Affiliation(s)
- Siju Zhang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 China
| | - Hongjiao Hao
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 China
| | - Xiaonan Liu
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 China
| | - Yingying Li
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 China
| | - Xuan Ma
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 China
| | - Weiyin Liu
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 China
| | - Rui Zheng
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 China
| | - Shanshan Liang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 China
| | - Weijiang Luan
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 China
| |
Collapse
|
44
|
Islam MT, Wang LC, Chen IJ, Lo KL, Lo WS. Arabidopsis JMJ17 promotes cotyledon greening during de-etiolation by repressing genes involved in tetrapyrrole biosynthesis in etiolated seedlings. THE NEW PHYTOLOGIST 2021; 231:1023-1039. [PMID: 33666236 DOI: 10.1111/nph.17327] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Arabidopsis histone H3 lysine 4 (H3K4) demethylases play crucial roles in several developmental processes, but their involvement in seedling establishment remain unexplored. Here, we show that Arabidopsis JUMONJI DOMAIN-CONTAINING PROTEIN17 (JMJ17), an H3K4me3 demethylase, is involved in cotyledon greening during seedling establishment. Dark-grown seedlings of jmj17 accumulated a high concentration of protochlorophyllide, an intermediate metabolite in the tetrapyrrole biosynthesis (TPB) pathway that generates chlorophyll (Chl) during photomorphogenesis. Upon light irradiation, jmj17 mutants displayed decreased cotyledon greening and reduced Chl level compared with the wild-type; overexpression of JMJ17 completely rescued the jmj17-5 phenotype. Transcriptomics analysis uncovered that several genes encoding key enzymes involved in TPB were upregulated in etiolated jmj17 seedlings. Consistently, chromatin immunoprecipitation-quantitative PCR revealed elevated H3K4me3 level at the promoters of target genes. Chromatin association of JMJ17 was diminished upon light exposure. Furthermore, JMJ17 interacted with PHYTOCHROME INTERACTING FACTOR1 in the yeast two-hybrid assay. JMJ17 binds directly to gene promoters to demethylate H3K4me3 to suppress PROTOCHLOROPHYLLIDE OXIDOREDUCTASE C expression and TPB in the dark. Light results in de-repression of gene expression to modulate seedling greening during de-etiolation. Our study reveals a new role for histone demethylase JMJ17 in controlling cotyledon greening in etiolated seedlings during the dark-to-light transition.
Collapse
Affiliation(s)
- Md Torikul Islam
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Long-Chi Wang
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, 11529, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - I-Ju Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Kuan-Lin Lo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Wan-Sheng Lo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, 11529, Taiwan
| |
Collapse
|
45
|
Chen K, Du K, Shi Y, Yin L, Shen WH, Yu Y, Liu B, Dong A. H3K36 methyltransferase SDG708 enhances drought tolerance by promoting abscisic acid biosynthesis in rice. THE NEW PHYTOLOGIST 2021; 230:1967-1984. [PMID: 33606283 DOI: 10.1111/nph.17290] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Chromatin modifications play important roles in plant adaptation to abiotic stresses, but the precise function of histone H3 lysine 36 (H3K36) methylation in drought tolerance remains poorly evaluated. Here, we report that SDG708, a specific H3K36 methyltransferase, functions as a positive regulator of drought tolerance in rice. SDG708 promoted abscisic acid (ABA) biosynthesis by directly targeting and activating the crucial ABA biosynthesis genes NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (OsNCED3) and NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 5 (OsNCED5). Additionally, SDG708 induced hydrogen peroxide accumulation in the guard cells and promoted stomatal closure to reduce water loss. Overexpression of SDG708 concomitantly enhanced rice drought tolerance and increased grain yield under normal and drought stress conditions. Thus, SDG708 is potentially useful as an epigenetic regulator in breeding for grain yield improvement.
Collapse
Affiliation(s)
- Kai Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Kangxi Du
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yichen Shi
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Liufan Yin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wen-Hui Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Institut de Biologie Moléculaire des Plantes, UPR2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg Cédex, 67084, France
| | - Yu Yu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Bing Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
46
|
Ectopic Overexpression of Histone H3K4 Methyltransferase CsSDG36 from Tea Plant Decreases Hyperosmotic Stress Tolerance in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22105064. [PMID: 34064673 PMCID: PMC8150943 DOI: 10.3390/ijms22105064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 02/05/2023] Open
Abstract
Histone methylation plays an important regulatory role in the drought response of many plants, but its regulatory mechanism in the drought response of the tea plant remains poorly understood. Here, drought stress was shown to induce lower relative water content and significantly downregulate the methylations of histone H3K4 in the tea plant. Based on our previous analysis of the SET Domain Group (SDG) gene family, the full-length coding sequence (CDS) of CsSDG36 was cloned from the tea cultivar ‘Fuding Dabaicha’. Bioinformatics analysis showed that the open reading frame (ORF) of the CsSDG36 gene was 3138 bp, encoding 1045 amino acids and containing the conserved structural domains of PWWP, PHD, SET and PostSET. The CsSDG36 protein showed a close relationship to AtATX4 of the TRX subfamily, with a molecular weight of 118,249.89 Da, and a theoretical isoelectric point of 8.87, belonging to a hydrophilic protein without a transmembrane domain, probably located on the nucleus. The expression of CsSDG36 was not detected in the wild type, while it was clearly detected in the over-expression lines of Arabidopsis. Compared with the wild type, the over-expression lines exhibited lower hyperosmotic resistance by accelerating plant water loss, increasing reactive oxygen species (ROS) pressure, and increasing leaf stomatal density. RNA-seq analysis suggested that the CsSDG36 overexpression caused the differential expression of genes related to chromatin assembly, microtubule assembly, and leaf stomatal development pathways. qRT-PCR analysis revealed the significant down-regulation of stomatal development-related genes (BASL, SBT1.2(SDD1), EPF2, TCX3, CHAL, TMM, SPCH, ERL1, and EPFL9) in the overexpression lines. This study provides a novel sight on the function of histone methyltransferase CsSDG36 under drought stress.
Collapse
|
47
|
Dobrovolska O, Brilkov M, Madeleine N, Ødegård-Fougner Ø, Strømland Ø, Martin SR, De Marco V, Christodoulou E, Teigen K, Isaksson J, Underhaug J, Reuter N, Aalen RB, Aasland R, Halskau Ø. The Arabidopsis (ASHH2) CW domain binds monomethylated K4 of the histone H3 tail through conformational selection. FEBS J 2020; 287:4458-4480. [PMID: 32083791 DOI: 10.1111/febs.15256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/17/2019] [Accepted: 02/20/2020] [Indexed: 12/27/2022]
Abstract
Chromatin post-translational modifications are thought to be important for epigenetic effects on gene expression. Methylation of histone N-terminal tail lysine residues constitutes one of many such modifications, executed by families of histone lysine methyltransferase (HKMTase). One such protein is ASHH2 from the flowering plant Arabidopsis thaliana, equipped with the interaction domain, CW, and the HKMTase domain, SET. The CW domain of ASHH2 is a selective binder of monomethylation at lysine 4 on histone H3 (H3K4me1) and likely helps the enzyme dock correctly onto chromatin sites. The study of CW and related interaction domains has so far been emphasizing lock-key models, missing important aspects of histone-tail CW interactions. We here present an analysis of the ASHH2 CW-H3K4me1 complex using NMR and molecular dynamics, as well as mutation and affinity studies of flexible coils. β-augmentation and rearrangement of coils coincide with changes in the flexibility of the complex, in particular the η1, η3 and C-terminal coils, but also in the β1 and β2 strands and the C-terminal part of the ligand. Furthermore, we show that mutating residues with outlier dynamic behaviour affect the complex binding affinity despite these not being in direct contact with the ligand. Overall, the binding process is consistent with conformational selection. We propose that this binding mechanism presents an advantage when searching for the correct post-translational modification state among the highly modified and flexible histone tails, and also that the binding shifts the catalytic SET domain towards the nucleosome. DATABASES: Structural data are available in the PDB database under the accession code 6QXZ. Resonance assignments for CW42 in its apo- and holo-forms are available in the BMRB database under the accession code 27251.
Collapse
Affiliation(s)
- Olena Dobrovolska
- Department of Biological Sciences, University of Bergen, Norway, Bergen
| | - Maxim Brilkov
- Department of Biological Sciences, University of Bergen, Norway, Bergen
| | - Noelly Madeleine
- Department of Biological Sciences, University of Bergen, Norway, Bergen
- Department of Biomedicine, University of Bergen, Norway, Bergen
| | - Øyvind Ødegård-Fougner
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Stephen R Martin
- Structural Biology Science Technology Platform, Francis Crick Institute, London, UK
| | | | | | - Knut Teigen
- Department of Biomedicine, University of Bergen, Norway, Bergen
| | - Johan Isaksson
- Department of Chemistry, The Arctic University of Tromsø, Norway
| | - Jarl Underhaug
- Department of Chemistry, University of Bergen, Norway, Bergen
| | - Nathalie Reuter
- Department of Chemistry, University of Bergen, Norway, Bergen
| | | | - Rein Aasland
- Department of Biosciences, University of Oslo, Norway, Oslo
| | - Øyvind Halskau
- Department of Biological Sciences, University of Bergen, Norway, Bergen
| |
Collapse
|
48
|
Fu W, Huang S, Gao Y, Zhang M, Qu G, Wang N, Liu Z, Feng H. Role of BrSDG8 on bolting in Chinese cabbage (Brassica rapa). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2937-2948. [PMID: 32656681 DOI: 10.1007/s00122-020-03647-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/01/2020] [Indexed: 05/28/2023]
Abstract
Mapping and resequencing of two allelic early bolting mutants ebm5-1 and ebm5-2 revealed that the BrSDG8 gene is related to bolting in Chinese cabbage (Brassica rapa ssp. pekinensis). Bolting influences the leafy head formation and seed yield of Chinese cabbage therefore being an important agronomic trait. Herein, two allelic early bolting mutants, ebm5-1 and ebm5-2, stably inherited in Chinese cabbage were obtained from wild-type 'FT' seeds by ethyl methane sulfonate mutagenesis. Both mutants flowered significantly earlier than 'FT,' and genetic analysis revealed that the early bolting of the two mutants was controlled by one recessive nuclear gene. With BSR-seq, the mutations originating lines ebm5-1 and ebm5-2 were located to the same region in chromosome A07. Using the 1741 F2 individuals with the ebm5-1 phenotype as the mapping population, this region was narrowed to 56.24 kb between markers InDel18 and InDel45. A single-nucleotide polymorphism (SNP) was aligned to the BraA07g040740.3C (BrSDG8) region by whole-genome resequencing of ebm5-1 mutant and 'FT.' BrSDG8 is a homolog of Arabidopsis thaliana SDG8 encoding a histone methyltransferase affecting H3K4 trimethylation in FLOWERING LOCUS C chromatin. Comparative sequencing established that the SNP occurred on BrSDG8 17th exon in ebm5-1. Genotype analysis showed full co-segregation of the early bolting phenotype with this SNP. Cloning of allelic mutant ebm5-2 indicated that it harbors a deletion mutation on the 12th exon of BrSDG8. Quantitative real-time PCR analysis indicated that BrSDG8 expression level was observably lower in mutant ebm5-1 than in 'FT.' Overall, the present results provide strong evidence that BrSDG8 mutation leads to early bolting in Chinese cabbage, thereby providing a basis to understand the molecular mechanisms underlying this phenotype.
Collapse
Affiliation(s)
- Wei Fu
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China
| | - Shengnan Huang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China
| | - Yue Gao
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China
| | - Meidi Zhang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China
| | - Gaoyang Qu
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China
| | - Nan Wang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China
| | - Zhiyong Liu
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China.
| | - Hui Feng
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China.
| |
Collapse
|
49
|
Wang L, Ahmad B, Liang C, Shi X, Sun R, Zhang S, Du G. Bioinformatics and expression analysis of histone modification genes in grapevine predict their involvement in seed development, powdery mildew resistance, and hormonal signaling. BMC PLANT BIOLOGY 2020; 20:412. [PMID: 32887552 PMCID: PMC7473812 DOI: 10.1186/s12870-020-02618-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/23/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Histone modification genes (HMs) play potential roles in plant growth and development via influencing gene expression and chromatin structure. However, limited information is available about HMs genes in grapes (Vitis vinifera L.). RESULTS Here, we described detailed genome-wide identification of HMs gene families in grapevine. We identified 117 HMs genes in grapevine and classified these genes into 11 subfamilies based on conserved domains and phylogenetic relationships with Arabidopsis. We described the genes in terms of their chromosomal locations and exon-intron distribution. Further, we investigated the evolutionary history, gene ontology (GO) analysis, and syntenic relationships between grapes and Arabidopsis. According to results 21% HMs genes are the result of duplication (tandem and segmental) events and all the duplicated genes have negative mode of selection. GO analysis predicted the presence of HMs proteins in cytoplasm, nucleus, and intracellular organelles. According to seed development expression profiling, many HMs grapevine genes were differentially expressed in seeded and seedless cultivars, suggesting their roles in seed development. Moreover, we checked the response of HMs genes against powdery mildew infection at different time points. Results have suggested the involvement of some genes in disease resistance regulation mechanism. Furthermore, the expression profiles of HMs genes were analyzed in response to different plant hormones (Abscisic acid, Jasmonic acid, Salicylic acid, and Ethylene) at different time points. All of the genes showed differential expression against one or more hormones. CONCLUSION VvHMs genes might have potential roles in grapevine including seed development, disease resistance, and hormonal signaling pathways. Our study provides first detailed genome-wide identification and expression profiling of HMs genes in grapevine.
Collapse
Affiliation(s)
- Li Wang
- College of Horticulture, Hebei Agricultural University, Baoding, 071000 Hebei China
| | - Bilal Ahmad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Chen Liang
- College of Horticulture, Hebei Agricultural University, Baoding, 071000 Hebei China
| | - Xiaoxin Shi
- College of Horticulture, Hebei Agricultural University, Baoding, 071000 Hebei China
| | - Ruyi Sun
- College of Horticulture, Hebei Agricultural University, Baoding, 071000 Hebei China
| | - Songlin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Guoqiang Du
- College of Horticulture, Hebei Agricultural University, Baoding, 071000 Hebei China
| |
Collapse
|
50
|
Dhami N, Cazzonelli CI. Prolonged cold exposure to Arabidopsis juvenile seedlings extends vegetative growth and increases the number of shoot branches. PLANT SIGNALING & BEHAVIOR 2020; 15:1789320. [PMID: 32631114 PMCID: PMC8550187 DOI: 10.1080/15592324.2020.1789320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Environmental factors such as photoperiod, temperature, phytohormones, sugars, and soil nutrients can affect the development of axillary meristems and emergence of shoot branches in plants. We investigated how an extended period of cold exposure to Arabidopsis plants before and after inflorescence meristem differentiation would affect plant growth and shoot branching. The number of rosette leaves and shoot branches increased when wild type (WT) juvenile seedlings, but not adult plants, were subjected to a prolonged cold exposure (10/7°C day/night cycle). As the duration of cold exposure to WT juvenile seedlings increased, so too did the rosette area, number of leaves, and rosette branches revealing an extended period of vegetative growth. The prolonged cold treatment also increased the primary inflorescence stem height and number of cauline branches in WT plants revealing a delay in reproductive development that could be altered by early (set domain group 8; sdg8) and late (methyltransferase 1; met1) flowering mutants. The axillary buds/leaf and rosette branches/leaf ratios declined significantly in WT, yet were enhanced in the loss-of-function of carotenoid cleavage dioxygenase 7 (ccd7) and teosinte branched 1 (brc1) hyper-branched mutants. This indicated that axillary meristem differentiation continued during the cold exposure, which did not directly impact axillary bud formation or shoot branching. We conclude that a prolonged cold exposure to juvenile seedlings prior to inflorescence meristem development extended vegetative growth and delayed the reproductive phase to allow additional leaf primordia and axillary meristems to differentiate that enhanced the number of shoot branches in Arabidopsis.
Collapse
Affiliation(s)
- Namraj Dhami
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | | |
Collapse
|