1
|
Gao S, Oden P, Ryan B, Yang H, Freudenthal B, Greenberg M. Biochemical and structural characterization of Fapy•dG replication by Human DNA polymerase β. Nucleic Acids Res 2024; 52:5392-5405. [PMID: 38634780 PMCID: PMC11109955 DOI: 10.1093/nar/gkae277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
N6-(2-deoxy-α,β-d-erythro-pentofuranosyl)-2,6-diamino-4-hydroxy-5-formamido-pyrimidine (Fapy•dG) is formed from a common intermediate and in comparable amounts to the well-studied mutagenic DNA lesion 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodGuo). Fapy•dG preferentially gives rise to G → T transversions and G → A transitions. However, the molecular basis by which Fapy•dG is processed by DNA polymerases during this mutagenic process remains poorly understood. To address this we investigated how DNA polymerase β (Pol β), a model mammalian polymerase, bypasses a templating Fapy•dG, inserts Fapy•dGTP, and extends from Fapy•dG at the primer terminus. When Fapy•dG is present in the template, Pol β incorporates TMP less efficiently than either dCMP or dAMP. Kinetic analysis revealed that Fapy•dGTP is a poor substrate but is incorporated ∼3-times more efficiently opposite dA than dC. Extension from Fapy•dG at the 3'-terminus of a nascent primer is inefficient due to the primer terminus being poorly positioned for catalysis. Together these data indicate that mutagenic bypass of Fapy•dG is likely to be the source of the mutagenic effects of the lesion and not Fapy•dGTP. These experiments increase our understanding of the promutagenic effects of Fapy•dG.
Collapse
Affiliation(s)
- Shijun Gao
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Peyton N Oden
- Department of Biochemistry and Molecular Biology, and Department of Cancer Biology, University of Kansas Medical Center, KS City, KS 66160, USA
| | - Benjamin J Ryan
- Department of Biochemistry and Molecular Biology, and Department of Cancer Biology, University of Kansas Medical Center, KS City, KS 66160, USA
| | - Haozhe Yang
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, and Department of Cancer Biology, University of Kansas Medical Center, KS City, KS 66160, USA
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| |
Collapse
|
2
|
Gao S, Oden PN, Ryan BJ, Yang H, Freudenthal BD, Greenberg MM. Biochemical and Structural Characterization of Fapy•dG Replication by Human DNA Polymerase β. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575758. [PMID: 38293220 PMCID: PMC10827042 DOI: 10.1101/2024.01.15.575758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
N6-(2-deoxy-α,β-D-erythro-pentofuranosyl)-2,6-diamino-4-hydroxy-5-formamido-pyrimidine (Fapy•dG) is formed from a common intermediate and in comparable amounts to the well-studied mutagenic DNA lesion 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodGuo). Fapy•dG preferentially gives rise to G → T transversions and G → A transitions. However, the molecular basis by which Fapy•dG is processed by DNA polymerases during this mutagenic process remains poorly understood. To address this we investigated how DNA polymerase β (Pol β), a model mammalian polymerase, bypasses a templating Fapy•dG, inserts Fapy•dGTP, and extends from Fapy•dG at the primer terminus. When Fapy•dG is present in the template, Pol β incorporates TMP less efficiently than either dCMP or dAMP. Kinetic analysis revealed that Fapy•dGTP is a poor substrate but is incorporated ∼3-times more efficiently opposite dA than dC. Extension from Fapy•dG at the 3'-terminus of a nascent primer is inefficient due to the primer terminus being poorly positioned for catalysis. Together these data indicate that mutagenic bypass of Fapy•dG is likely to be the source of the mutagenic effects of the lesion and not Fapy•dGTP. These experiments increase our understanding of the promutagenic effects of Fapy•dG.
Collapse
|
3
|
Sabbatinelli J, Matacchione G, Giuliani A, Ramini D, Rippo MR, Procopio AD, Bonafè M, Olivieri F. Circulating biomarkers of inflammaging as potential predictors of COVID-19 severe outcomes. Mech Ageing Dev 2022; 204:111667. [PMID: 35341896 PMCID: PMC8949647 DOI: 10.1016/j.mad.2022.111667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 01/10/2023]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 infection has been of unprecedented clinical and socio-economic worldwide relevance. The case fatality rate for COVID-19 grows exponentially with age and the presence of comorbidities. In the older patients, COVID-19 manifests predominantly as a systemic disease associated with immunological, inflammatory, and procoagulant responses. Timely diagnosis and risk stratification are crucial steps to define appropriate therapies and reduce mortality, especially in the older patients. Chronically and systemically activated innate immune responses and impaired antiviral responses have been recognized as the results of a progressive remodeling of the immune system during aging, which can be described by the words 'immunosenescence' and 'inflammaging'. These age-related features of the immune system were highlighted in patients affected by COVID-19 with the poorest clinical outcomes, suggesting that the mechanisms underpinning immunosenescence and inflammaging could be relevant for COVID-19 pathogenesis and progression. Increasing evidence suggests that senescent myeloid and endothelial cells are characterized by the acquisition of a senescence-associated pro-inflammatory phenotype (SASP), which is considered as the main culprit of both immunosenescence and inflammaging. Here, we reviewed this evidence and highlighted several circulating biomarkers of inflammaging that could provide additional prognostic information to stratify COVID-19 patients based on the risk of severe outcomes.
Collapse
Affiliation(s)
- Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Laboratory Medicine, AOU Ospedali Riuniti, Ancona, Italy
| | - Giulia Matacchione
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Deborah Ramini
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic and Specialty Medicine, Università di Bologna, Bologna, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy.
| |
Collapse
|
4
|
Ryan BJ, Yang H, Bacurio JHT, Smith MR, Basu AK, Greenberg MM, Freudenthal BD. Structural Dynamics of a Common Mutagenic Oxidative DNA Lesion in Duplex DNA and during DNA Replication. J Am Chem Soc 2022; 144:8054-8065. [PMID: 35499923 PMCID: PMC9097547 DOI: 10.1021/jacs.2c00193] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
N6-(2-Deoxy-α,β-d-erythro-pentofuranosyl)-2,6-diamino-4-hydroxy-5-formamido pyrimidine (Fapy•dG) is a prevalent form of genomic DNA damage. Fapy•dG is formed in greater amounts under anoxic conditions than the well-studied, chemically related 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodGuo). Fapy•dG is more mutagenic in mammalian cells than 8-oxodGuo. A distinctive property of Fapy•dG is facile epimerization, but prior works with Fapy•dG analogues have precluded determining its effect on chemistry. We present crystallographic characterization of natural Fapy•dG in duplex DNA and as the template base for DNA polymerase β (Pol β). Fapy•dG adopts the β-anomer when base paired with cytosine but exists as a mixture of α- and β-anomers when promutagenically base paired with adenine. Rotation about the bond between the glycosidic nitrogen atom and the pyrimidine ring is also affected by the opposing nucleotide. Sodium cyanoborohydride soaking experiments trap the ring-opened Fapy•dG, demonstrating that ring opening and epimerization occur in the crystalline state. Ring opening and epimerization are facilitated by propitious water molecules that are observed in the structures. Determination of Fapy•dG mutagenicity in wild type and Pol β knockdown HEK 293T cells indicates that Pol β contributes to G → T transversions but also suppresses G → A transitions. Complementary kinetic studies have determined that Fapy•dG promotes mutagenesis by decreasing the catalytic efficiency of dCMP insertion opposite Fapy•dG, thus reducing polymerase fidelity. Kinetic studies have determined that dCMP incorporation opposite the β-anomer is ∼90 times faster than the α-anomer. This research identifies the importance of anomer dynamics, a feature unique to formamidopyrimidines, when considering the incorporation of nucleotides opposite Fapy•dG and potentially the repair of this structurally unusual lesion.
Collapse
Affiliation(s)
- Benjamin J Ryan
- Department of Biochemistry and Molecular Biology, and Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Haozhe Yang
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Jan Henric T Bacurio
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Mallory R Smith
- Department of Biochemistry and Molecular Biology, and Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Ashis K Basu
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, and Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| |
Collapse
|
5
|
Niu Y, Zhu Q, Zong C. Single-cell Damagenome Profiling by Linear Copying and Splitting based Whole Genome Amplification (LCS-WGA). Bio Protoc 2022; 12:e4357. [PMID: 35434195 PMCID: PMC8983167 DOI: 10.21769/bioprotoc.4357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 10/19/2021] [Accepted: 02/01/2022] [Indexed: 02/08/2024] Open
Abstract
Spontaneous DNA damage frequently occurs on the human genome, and it could alter gene expression by inducing mutagenesis or epigenetic changes. Therefore, it is highly desired to profile DNA damage distribution on the human genome and identify the genes that are prone to DNA damage. Here, we present a novel single-cell whole-genome amplification method which employs linear-copying followed by a split-amplification scheme, to efficiently remove amplification errors and achieve accurate detection of DNA damage in individual cells. In comparison to previous methods that measure DNA damage, our method uses a next-generation sequencing platform to detect misincorporated bases derived from spontaneous DNA damage with single-cell resolution.
Collapse
Affiliation(s)
- Yichi Niu
- Department of Molecular and Human Genetics, Baylor College of Medicine, TX, USA
- Genetics & Genomics Program, Baylor College of Medicine, TX, USA
| | - Qiangyuan Zhu
- Department of Molecular and Human Genetics, Baylor College of Medicine, TX, USA
| | - Chenghang Zong
- Department of Molecular and Human Genetics, Baylor College of Medicine, TX, USA
- Genetics & Genomics Program, Baylor College of Medicine, TX, USA
- Cancer and Cell Biology Program, Baylor College of Medicine, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, TX, USA
- McNair Medical Institute, Baylor College of Medicine, TX, USA
| |
Collapse
|
6
|
Bacurio JHT, Yang H, Naldiga S, Powell BV, Ryan BJ, Freudenthal BD, Greenberg MM, Basu AK. Sequence context effects of replication of Fapy•dG in three mutational hot spot sequences of the p53 gene in human cells. DNA Repair (Amst) 2021; 108:103213. [PMID: 34464900 DOI: 10.1016/j.dnarep.2021.103213] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 01/01/2023]
Abstract
Fapy•dG and 8-OxodGuo are formed in DNA from a common N7-dG radical intermediate by reaction with hydroxyl radical. Although cellular levels of Fapy•dG are often greater, its effects on replication are less well understood than those of 8-OxodGuo. In this study plasmid DNA containing Fapy•dG in three mutational hotspots of human cancers, codons 248, 249, and 273 of the p53 tumor suppressor gene, was replicated in HEK 293T cells. TLS efficiencies for the Fapy•dG containing plasmids varied from 72 to 89%, and were further reduced in polymerase-deficient cells. The mutation frequency (MF) of Fapy•dG ranged from 7.3 to 11.6%, with G→T and G→A as major mutations in codons 248 and 249 compared to primarily G→T in codon 273. Increased MF in hPol ι-, hPol κ-, and hPol ζ-deficient cells suggested that these polymerases more frequently insert the correct nucleotide dC opposite Fapy•dG, whereas decreased G→A in codons 248 and 249 and reduction of all mutations in codon 273 in hPol λ-deficient cells indicated hPol λ's involvement in Fapy•dG mutagenesis. In vitro kinetic analysis using isolated translesion synthesis polymerases and hPol λ incompletely corroborated the mutagenesis experiments, indicating codependence on other proteins in the cellular milieu. In conclusion, Fapy•dG mutagenesis is dependent on the DNA sequence context, but its bypass by the TLS polymerases is largely error-free.
Collapse
Affiliation(s)
| | - Haozhe Yang
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Spandana Naldiga
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Brent V Powell
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Benjamin J Ryan
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Ashis K Basu
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
7
|
Zhu Q, Niu Y, Gundry M, Zong C. Single-cell damagenome profiling unveils vulnerable genes and functional pathways in human genome toward DNA damage. SCIENCE ADVANCES 2021; 7:eabf3329. [PMID: 34215579 PMCID: PMC11060043 DOI: 10.1126/sciadv.abf3329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
We report a novel single-cell whole-genome amplification method (LCS-WGA) that can efficiently capture spontaneous DNA damage existing in single cells. We refer to these damage-associated single-nucleotide variants as "damSNVs," and the whole-genome distribution of damSNVs as the damagenome. We observed that in single human neurons, the damagenome distribution was significantly correlated with three-dimensional genome structures. This nonuniform distribution indicates different degrees of DNA damage effects on different genes. Next, we identified the functionals that were significantly enriched in the high-damage genes. Similar functionals were also enriched in the differentially expressed genes (DEGs) detected by single-cell transcriptome of both Alzheimer's disease (AD) and autism spectrum disorder (ASD). This result can be explained by the significant enrichment of high-damage genes in the DEGs of neurons for both AD and ASD. The discovery of high-damage genes sheds new lights on the important roles of DNA damage in human diseases and disorders.
Collapse
Affiliation(s)
- Qiangyuan Zhu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yichi Niu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Michael Gundry
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Chenghang Zong
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- McNair Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
8
|
Ullmann R, Becker BV, Rothmiller S, Schmidt A, Thiermann H, Kaatsch HL, Schrock G, Müller J, Jakobi J, Obermair R, Port M, Scherthan H. Genomic Adaption and Mutational Patterns in a HaCaT Subline Resistant to Alkylating Agents and Ionizing Radiation. Int J Mol Sci 2021; 22:ijms22031146. [PMID: 33498964 PMCID: PMC7865644 DOI: 10.3390/ijms22031146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 11/16/2022] Open
Abstract
Sulfur mustard (SM) is a chemical warfare agent that can damage DNA via alkylation and oxidative stress. Because of its genotoxicity, SM is cancerogenic and the progenitor of many chemotherapeutics. Previously, we developed an SM-resistant cell line via chronic exposure of the popular keratinocyte cell line HaCaT to increasing doses of SM over a period of 40 months. In this study, we compared the genomic landscape of the SM-resistant cell line HaCaT/SM to its sensitive parental line HaCaT in order to gain insights into genetic changes associated with continuous alkylation and oxidative stress. We established chromosome numbers by cytogenetics, analyzed DNA copy number changes by means of array Comparative Genomic Hybridization (array CGH), employed the genome-wide chromosome conformation capture technique Hi-C to detect chromosomal translocations, and derived mutational signatures by whole-genome sequencing. We observed that chronic SM exposure eliminated the initially prevailing hypotetraploid cell population in favor of a hyperdiploid one, which contrasts with previous observations that link polyploidization to increased tolerance and adaptability toward genotoxic stress. Furthermore, we observed an accumulation of chromosomal translocations, frequently flanked by DNA copy number changes, which indicates a high rate of DNA double-strand breaks and their misrepair. HaCaT/SM-specific single-nucleotide variants showed enrichment of C > A and T > A transversions and a lower rate of deaminated cytosines in the CpG dinucleotide context. Given the frequent use of HaCaT in toxicology, this study provides a valuable data source with respect to the original genotype of HaCaT and the mutational signatures associated with chronic alkylation and oxidative stress.
Collapse
Affiliation(s)
- Reinhard Ullmann
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 Munich, Germany; (H.L.K.); (G.S.); (J.M.); (J.J.); (R.O.); (M.P.); (H.S.)
- Correspondence:
| | - Benjamin Valentin Becker
- Bundeswehr Central Hospital, Department of Radiology and Neuroradiology, Rübenacherstrasse 170, D-56072 Koblenz, Germany;
| | - Simone Rothmiller
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, D-80937 Munich, Germany; (S.R.); (A.S.); (H.T.)
| | - Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, D-80937 Munich, Germany; (S.R.); (A.S.); (H.T.)
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, D-80937 Munich, Germany; (S.R.); (A.S.); (H.T.)
| | - Hanns Leonhard Kaatsch
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 Munich, Germany; (H.L.K.); (G.S.); (J.M.); (J.J.); (R.O.); (M.P.); (H.S.)
| | - Gerrit Schrock
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 Munich, Germany; (H.L.K.); (G.S.); (J.M.); (J.J.); (R.O.); (M.P.); (H.S.)
| | - Jessica Müller
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 Munich, Germany; (H.L.K.); (G.S.); (J.M.); (J.J.); (R.O.); (M.P.); (H.S.)
| | - Julia Jakobi
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 Munich, Germany; (H.L.K.); (G.S.); (J.M.); (J.J.); (R.O.); (M.P.); (H.S.)
| | - Richard Obermair
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 Munich, Germany; (H.L.K.); (G.S.); (J.M.); (J.J.); (R.O.); (M.P.); (H.S.)
| | - Matthias Port
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 Munich, Germany; (H.L.K.); (G.S.); (J.M.); (J.J.); (R.O.); (M.P.); (H.S.)
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 Munich, Germany; (H.L.K.); (G.S.); (J.M.); (J.J.); (R.O.); (M.P.); (H.S.)
| |
Collapse
|
9
|
Bacolla A, Sengupta S, Ye Z, Yang C, Mitra J, De-Paula R, Hegde ML, Ahmed Z, Mort M, Cooper D, Mitra S, Tainer JA. Heritable pattern of oxidized DNA base repair coincides with pre-targeting of repair complexes to open chromatin. Nucleic Acids Res 2021; 49:221-243. [PMID: 33300026 PMCID: PMC7797072 DOI: 10.1093/nar/gkaa1120] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/12/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
Human genome stability requires efficient repair of oxidized bases, which is initiated via damage recognition and excision by NEIL1 and other base excision repair (BER) pathway DNA glycosylases (DGs). However, the biological mechanisms underlying detection of damaged bases among the million-fold excess of undamaged bases remain enigmatic. Indeed, mutation rates vary greatly within individual genomes, and lesion recognition by purified DGs in the chromatin context is inefficient. Employing super-resolution microscopy and co-immunoprecipitation assays, we find that acetylated NEIL1 (AcNEIL1), but not its non-acetylated form, is predominantly localized in the nucleus in association with epigenetic marks of uncondensed chromatin. Furthermore, chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) revealed non-random AcNEIL1 binding near transcription start sites of weakly transcribed genes and along highly transcribed chromatin domains. Bioinformatic analyses revealed a striking correspondence between AcNEIL1 occupancy along the genome and mutation rates, with AcNEIL1-occupied sites exhibiting fewer mutations compared to AcNEIL1-free domains, both in cancer genomes and in population variation. Intriguingly, from the evolutionarily conserved unstructured domain that targets NEIL1 to open chromatin, its damage surveillance of highly oxidation-susceptible sites to preserve essential gene function and to limit instability and cancer likely originated ∼500 million years ago during the buildup of free atmospheric oxygen.
Collapse
Affiliation(s)
- Albino Bacolla
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shiladitya Sengupta
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
- Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Zu Ye
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chunying Yang
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Joy Mitra
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Ruth B De-Paula
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Muralidhar L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
- Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Zamal Ahmed
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matthew Mort
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Sankar Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
- Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
- Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - John A Tainer
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
10
|
Yang H, Tang JA, Greenberg MM. Synthesis of Oligonucleotides Containing the N 6 -(2-Deoxy-α,β-d-erythropentofuranosyl)-2,6-diamino-4-hydroxy-5-formamidopyrimidine (Fapy⋅dG) Oxidative Damage Product Derived from 2'-Deoxyguanosine. Chemistry 2020; 26:5441-5448. [PMID: 32271495 DOI: 10.1002/chem.201905795] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Indexed: 12/19/2022]
Abstract
N6 -(2-Deoxy-α,β-d-erythropentofuranosyl)-2,6-diamino-4-hydroxy-5-formamidopyrimidine (Fapy⋅dG) is a major DNA lesion produced from 2'-deoxyguanosine under oxidizing conditions. Fapy⋅dG is produced from a common intermediate that leads to 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-OxodGuo), and in greater quantities in cells. The impact of Fapy⋅dG on DNA structure and function is much less well understood than that of 8-OxodGuo. This is largely due to the significantly greater difficulty in synthesizing oligonucleotides containing Fapy⋅dG than 8-OxodGuo. We describe a synthetic approach for preparing oligonucleotides containing Fapy⋅dG that will facilitate intensive studies of this lesion in DNA. A variety of oligonucleotides as long as 30 nucleotides are synthesized. We anticipate that the chemistry described herein will provide an impetus for a wide range of studies involving Fapy⋅dG.
Collapse
Affiliation(s)
- Haozhe Yang
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Joel A Tang
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| |
Collapse
|
11
|
Wildenhof TM, Schiffers S, Traube FR, Mayer P, Carell T. Influencing Epigenetic Information with a Hydrolytically Stable Carbocyclic 5‐Aza‐2′‐deoxycytidine. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Thomas M. Wildenhof
- Department of Chemistry Ludwig-Maximilians-Universität Butenandtstrasse 5–13 Munich Germany
| | - Sarah Schiffers
- Department of Chemistry Ludwig-Maximilians-Universität Butenandtstrasse 5–13 Munich Germany
| | - Franziska R. Traube
- Department of Chemistry Ludwig-Maximilians-Universität Butenandtstrasse 5–13 Munich Germany
| | - Peter Mayer
- Department of Chemistry Ludwig-Maximilians-Universität Butenandtstrasse 5–13 Munich Germany
| | - Thomas Carell
- Department of Chemistry Ludwig-Maximilians-Universität Butenandtstrasse 5–13 Munich Germany
| |
Collapse
|
12
|
Wildenhof TM, Schiffers S, Traube FR, Mayer P, Carell T. Influencing Epigenetic Information with a Hydrolytically Stable Carbocyclic 5‐Aza‐2′‐deoxycytidine. Angew Chem Int Ed Engl 2019; 58:12984-12987. [DOI: 10.1002/anie.201904794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/31/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Thomas M. Wildenhof
- Department of Chemistry Ludwig-Maximilians-Universität Butenandtstrasse 5–13 Munich Germany
| | - Sarah Schiffers
- Department of Chemistry Ludwig-Maximilians-Universität Butenandtstrasse 5–13 Munich Germany
| | - Franziska R. Traube
- Department of Chemistry Ludwig-Maximilians-Universität Butenandtstrasse 5–13 Munich Germany
| | - Peter Mayer
- Department of Chemistry Ludwig-Maximilians-Universität Butenandtstrasse 5–13 Munich Germany
| | - Thomas Carell
- Department of Chemistry Ludwig-Maximilians-Universität Butenandtstrasse 5–13 Munich Germany
| |
Collapse
|
13
|
Behera B, Das P, Jena NR. Accurate Base Pair Energies of Artificially Expanded Genetic Information Systems (AEGIS): Clues for Their Mutagenic Characteristics. J Phys Chem B 2019; 123:6728-6739. [PMID: 31290661 DOI: 10.1021/acs.jpcb.9b04653] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, several artificial nucleobases, such as B, S, J, V, X, K, P, and Z, have been proposed to help in the expansion of the genetic information system and diagnosis of diseases. Among these bases, P and Z were identified to form stable DNA and to participate in the replication. However, the stabilities of P:Z and other artificial base pairs are not fully understood. The abilities of these unnatural nucleobases in mispairing with themselves and with natural bases are also not known. Here, the ωB97X-D dispersion-corrected density functional theoretical and complete basis set (CBS-QB3) methods are used to obtain accurate structural and energetic data related to base pair interactions involving these unnatural nucleobases. The roles of protonation and deprotonation of certain artificial bases in inducing mutations are also studied. It is found that each artificial purine has a complementary artificial pyrimidine, the base pair interactions between which are similar to those of the natural Watson-Crick base pairs. Hence, these base pairs will function naturally and would not impart mutagenicity. Among these base pairs, the J:V complex is found to be the most stable and promising artificial base pair. Remarkably, the noncomplementary artificial nucleobases are found to form stable mispairs, which may generate mutagenic products in DNA. Similarly, the misinsertions of natural bases opposite artificial bases are also found to be mutagenic. The mechanisms of these mutations are explained in detail. These results are in agreement with earlier biochemical studies. It is thus expected that this study would aid in the advancement of the synthetic biology to design more robust artificial nucleotides.
Collapse
Affiliation(s)
- B Behera
- Discipline of Natural Sciences , Indian Institute of Information Technology, Design and Manufacturing , Jabalpur 482005 , India
| | - P Das
- Discipline of Natural Sciences , Indian Institute of Information Technology, Design and Manufacturing , Jabalpur 482005 , India
| | - N R Jena
- Discipline of Natural Sciences , Indian Institute of Information Technology, Design and Manufacturing , Jabalpur 482005 , India
| |
Collapse
|
14
|
Smith MR, Shock DD, Beard WA, Greenberg MM, Freudenthal BD, Wilson SH. A guardian residue hinders insertion of a Fapy•dGTP analog by modulating the open-closed DNA polymerase transition. Nucleic Acids Res 2019; 47:3197-3207. [PMID: 30649431 PMCID: PMC6451102 DOI: 10.1093/nar/gkz002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/17/2018] [Accepted: 01/03/2019] [Indexed: 01/07/2023] Open
Abstract
4,6-Diamino-5-formamidopyrimidine (Fapy•dG) is an abundant form of oxidative DNA damage that is mutagenic and contributes to the pathogenesis of human disease. When Fapy•dG is in its nucleotide triphosphate form, Fapy•dGTP, it is inefficiently cleansed from the nucleotide pool by the responsible enzyme in Escherichia coli MutT and its mammalian homolog MTH1. Therefore, under oxidative stress conditions, Fapy•dGTP could become a pro-mutagenic substrate for insertion into the genome by DNA polymerases. Here, we evaluated insertion kinetics and high-resolution ternary complex crystal structures of a configurationally stable Fapy•dGTP analog, β-C-Fapy•dGTP, with DNA polymerase β. The crystallographic snapshots and kinetic data indicate that binding of β-C-Fapy•dGTP impedes enzyme closure, thus hindering insertion. The structures reveal that an active site residue, Asp276, positions β-C-Fapy•dGTP so that it distorts the geometry of critical catalytic atoms. Removal of this guardian side chain permits enzyme closure and increases the efficiency of β-C-Fapy•dG insertion opposite dC. These results highlight the stringent requirements necessary to achieve a closed DNA polymerase active site poised for efficient nucleotide incorporation and illustrate how DNA polymerase β has evolved to hinder Fapy•dGTP insertion.
Collapse
Affiliation(s)
- Mallory R Smith
- Department of Biochemistry and Molecular Biology, and Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd Mail Stop #3030, Kansas City, KS 66160, USA
| | - David D Shock
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, P.O. Box 12233, Research Triangle Park, NC 27709-2233, USA
| | - William A Beard
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, P.O. Box 12233, Research Triangle Park, NC 27709-2233, USA
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, and Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd Mail Stop #3030, Kansas City, KS 66160, USA,Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, P.O. Box 12233, Research Triangle Park, NC 27709-2233, USA,To whom correspondence should be addressed. Tel: +1 913 588 5560;
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, P.O. Box 12233, Research Triangle Park, NC 27709-2233, USA,Correspondence may also be addressed to Samuel H. Wilson. Tel: +1 984 287 3451;
| |
Collapse
|
15
|
Chim N, Jackson LN, Trinh AM, Chaput JC. Crystal structures of DNA polymerase I capture novel intermediates in the DNA synthesis pathway. eLife 2018; 7:40444. [PMID: 30338759 PMCID: PMC6231770 DOI: 10.7554/elife.40444] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/18/2018] [Indexed: 11/13/2022] Open
Abstract
High resolution crystal structures of DNA polymerase intermediates are needed to study the mechanism of DNA synthesis in cells. Here we report five crystal structures of DNA polymerase I that capture new conformations for the polymerase translocation and nucleotide pre-insertion steps in the DNA synthesis pathway. We suggest that these new structures, along with previously solved structures, highlight the dynamic nature of the finger subdomain in the enzyme active site. DNA molecules consist of two separate strands that spiral around each other to form a structure called the double helix. Each strand contains repeating units, with every unit consisting of a phosphate group and a sugar molecule bound to one of four bases. The two strands are held together by bonds between the bases. When a cell divides, it needs to make a copy of the DNA, so that each new cell will have an exact replica from the old cell. During this process, the helix unwinds and enzymes called polymerases produce new strands (using the old ones as a template). Each strand is copied by adding new bases one at a time. Every time a new base is added, the polymerases must modify their structures several times. If this process becomes faulty, it can lead to various diseases, including cancer. Scientist often use a technique called X-ray crystallography to study intermediate structures of frozen polymerase crystals as the enzyme constructs DNA. Yet, to fully understand the mechanisms of DNA synthesis all intermediate structures need to be identified. Now, Chim, Jackson et al. used a particular method for making frozen polymerase crytals by allowing the enzyme to add new bases in liquid form. The reaction was then frozen and X-ray crystallography was used to take images. This modified method captured different steps in the process and detailed how the enzyme adjusts its structure as it moves along the template strand. The intermediate structures that Chim, Jackson et al. uncovered may help scientists develop new biotechnologies and medicines. Understanding how polymerases modify their form while making DNA copies could lead to better therapies for diseases in which this process has become faulty, like cancer.
Collapse
Affiliation(s)
- Nicholas Chim
- Departments of Pharmaceutical Sciences, University of California, Irvine, California
| | - Lynnette N Jackson
- Departments of Pharmaceutical Sciences, University of California, Irvine, California
| | - Anh M Trinh
- Departments of Pharmaceutical Sciences, University of California, Irvine, California
| | - John C Chaput
- Departments of Pharmaceutical Sciences, University of California, Irvine, California.,Department of Chemistry, University of California, Irvine, California.,Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| |
Collapse
|
16
|
Groehler AS, Najjar D, Pujari SS, Sangaraju D, Tretyakova NY. N 6-(2-Deoxy-d- erythro-pentofuranosyl)-2,6-diamino-3,4-dihydro-4-oxo-5- N-(2-hydroxy-3-buten-1-yl)-formamidopyrimidine Adducts of 1,3-Butadiene: Synthesis, Structural Identification, and Detection in Human Cells. Chem Res Toxicol 2018; 31:885-897. [PMID: 30016111 DOI: 10.1021/acs.chemrestox.8b00123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
1,3-Butadiene (BD) is an environmental and occupational toxicant classified as a human carcinogen. BD is metabolically activated by cytochrome P450 monooxygenases to 3,4-epoxy-1-butene (EB), which alkylates DNA to form a range of nucleobase adducts. Among these, the most abundant are the hydrolytically labile N7-guanine adducts such as N7-(2-hydroxy-3-buten-1-yl)-guanine (N7-EB-dG). We now report that N7-EB-dG can be converted to the corresponding ring open N6-(2-deoxy-d- erythro-pentofuranosyl)-2,6-diamino-3,4-dihydro-4-oxo-5- N-(2-hydroxy-3-buten-1-yl)-formamidopyrimidine (EB-Fapy-dG) adducts. EB-Fapy-dG lesions were detected in EB-treated calf thymus DNA and in EB-treated mammalian cells using quantitative isotope dilution nanoLC-ESI+-MS/MS. EB-Fapy-dG adduct formation in EB-treated calf thymus DNA was concentration dependent and was greatly accelerated at an increased pH. EB-FAPy-dG adduct amounts were 2-fold higher in base excision repair-deficient NEIL1-/- mouse embryonic fibroblasts (MEF) as compared to isogenic controls (NEIL1+/+), suggesting that this lesion may be a substrate for NEIL1. Furthermore, NEIL1-/- cells were sensitized to EB treatment as compared to NEIL1+/+ fibroblasts. Overall, our results indicate that ring-opened EB-FAPy-dG adducts form under physiological conditions, prompting future studies to determine their contributions to genotoxicity and mutagenicity of BD.
Collapse
Affiliation(s)
- Arnold S Groehler
- Department of Medicinal Chemistry and Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Dominic Najjar
- Department of Medicinal Chemistry and Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Suresh S Pujari
- Department of Medicinal Chemistry and Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Dewakar Sangaraju
- Department of Medicinal Chemistry and Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Natalia Y Tretyakova
- Department of Medicinal Chemistry and Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
17
|
Bamberger SN, Malik CK, Voehler MW, Brown SK, Pan H, Johnson-Salyard TL, Rizzo CJ, Stone MP. Configurational and Conformational Equilibria of N 6-(2-Deoxy-d-erythro-pentofuranosyl)-2,6-diamino-3,4-dihydro-4-oxo-5- N-methylformamidopyrimidine (MeFapy-dG) Lesion in DNA. Chem Res Toxicol 2018; 31:924-935. [PMID: 30169026 DOI: 10.1021/acs.chemrestox.8b00135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The most common lesion in DNA occurring due to clinical treatment with Temozolomide or cellular exposures to other methylating agents is 7-methylguanine (N7-Me-dG). It can undergo a secondary reaction to form N6-(2-deoxy-d-erythro-pentofuranosyl)-2,6-diamino-3,4-dihydro-4-oxo-5- N-methylformamidopyrimidine (MeFapy-dG). MeFapy-dG undergoes epimerization in DNA to produce either α or β deoxyribose anomers. Additionally, conformational rotation around the formyl bond, C5- N5 bond, and glycosidic bond may occur. To characterize and quantitate the mixture of these isomers in DNA, a 13C-MeFapy-dG lesion, in which the CH3 group of the MeFapy-dG was isotopically labeled, was incorporated into the trimer 5'-TXT-3' and the dodecamer 5'-CATXATGACGCT-3' (X = 13C-MeFapy-dG). NMR spectroscopy of both the trimer and dodecamer revealed that the MeFapy-dG lesion exists in single strand DNA as ten configurationally and conformationally discrete species, eight of which may be unequivocally assigned. In the duplex dodecamer, the MeFapy-dG lesion exists as six configurationally and conformationally discrete species. Analyses of NMR data in the single strand trimer confirm that for each deoxyribose anomer, atropisomerism occurs around the C5- N5 bond to produce R a and S a atropisomers. Each atropisomer exhibits geometrical isomerism about the formyl bond yielding E and Z conformations. 1H NMR experiments allow the relative abundances of the species to be determined. For the single strand trimer, the α and β anomers exist in a 3:7 ratio, favoring the β anomer. For the β anomer, with respect to the C5- N5 bond, the R a and S a atropisomers are equally populated. However, the Z geometrical isomer of the formyl moiety is preferred. For the α anomer, the E- S a isomer is present at 12%, whereas all other isomers are present at 5-7%. DNA processing enzymes may differentially recognize different isomers of the MeFapy-dG lesion. Moreover, DNA sequence-specific differences in the populations of configurational and conformational species may modulate biological responses to the MeFapy-dG lesion.
Collapse
Affiliation(s)
- Stephanie N Bamberger
- Department of Chemistry , Vanderbilt University Center for Structural Biology, Vanderbilt Center in Molecular Toxicology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University , Nashville , Tennessee 37235 , United States
| | - Chanchal K Malik
- Department of Chemistry , Vanderbilt University Center for Structural Biology, Vanderbilt Center in Molecular Toxicology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University , Nashville , Tennessee 37235 , United States
| | - Markus W Voehler
- Department of Chemistry , Vanderbilt University Center for Structural Biology, Vanderbilt Center in Molecular Toxicology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University , Nashville , Tennessee 37235 , United States
| | - Summer K Brown
- Department of Chemistry , Vanderbilt University Center for Structural Biology, Vanderbilt Center in Molecular Toxicology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University , Nashville , Tennessee 37235 , United States
| | - Hope Pan
- Department of Chemistry , Vanderbilt University Center for Structural Biology, Vanderbilt Center in Molecular Toxicology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University , Nashville , Tennessee 37235 , United States
| | - Tracy L Johnson-Salyard
- Department of Chemistry , Vanderbilt University Center for Structural Biology, Vanderbilt Center in Molecular Toxicology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University , Nashville , Tennessee 37235 , United States
| | - Carmelo J Rizzo
- Department of Chemistry , Vanderbilt University Center for Structural Biology, Vanderbilt Center in Molecular Toxicology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University , Nashville , Tennessee 37235 , United States
| | - Michael P Stone
- Department of Chemistry , Vanderbilt University Center for Structural Biology, Vanderbilt Center in Molecular Toxicology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University , Nashville , Tennessee 37235 , United States
| |
Collapse
|
18
|
Sha Y, Minko IG, Malik CK, Rizzo CJ, Lloyd RS. Error-prone replication bypass of the imidazole ring-opened formamidopyrimidine deoxyguanosine adduct. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:182-189. [PMID: 28436537 PMCID: PMC5476229 DOI: 10.1002/em.22089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Abstract
Addition of hydroxyl radicals to the C8 position of 2'-deoxyguanosine generates an 8-hydroxyguanyl radical that can be converted into either 8-oxo-7,8-dihydro-2'-deoxyguanosine or N-(2-deoxy-d-pentofuranosyl)-N-(2,6-diamino-4-hydroxy-5-formamidopyrimidine) (Fapy-dG). The Fapy-dG adduct can adopt different conformations and in particular, can exist in an unnatural α anomeric configuration in addition to canonical β configuration. Previous studies reported that in 5'-TGN-3' sequences, Fapy-dG predominantly induced G → T transversions in both mammalian cells and Escherichia coli, suggesting that mutations could be formed either via insertion of a dA opposite the 5' dT due to primer/template misalignment or as result of direct miscoding. To address this question, single-stranded vectors containing a site-specific Fapy-dG adduct were generated to vary the identity of the 5' nucleotide. Following vector replication in primate cells (COS7), complex mutation spectra were observed that included ∼3-5% G → T transversions and ∼14-21% G → A transitions. There was no correlation apparent between the identity of the 5' nucleotide and spectra of mutations. When conditions for vector preparation were modified to favor the β anomer, frequencies of both G → T and G → A substitutions were significantly reduced. Mutation frequencies in wild-type E. coli and a mutant deficient in damage-inducible DNA polymerases were significantly lower than detected in COS7 and spectra were dominated by deletions. Thus, mutagenic bypass of Fapy-dG can proceed via mechanisms that are different from the previously proposed primer/template misalignment or direct misinsertions of dA or dT opposite to the β anomer of Fapy-dG. Environ. Mol. Mutagen. 58:182-189, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yan Sha
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, USA
| | - Irina G. Minko
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, USA
| | - Chanchal K. Malik
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Carmelo J. Rizzo
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - R. Stephen Lloyd
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
19
|
Basu AK, Pande P, Bose A. Translesion Synthesis of 2'-Deoxyguanosine Lesions by Eukaryotic DNA Polymerases. Chem Res Toxicol 2016; 30:61-72. [PMID: 27760288 PMCID: PMC5241707 DOI: 10.1021/acs.chemrestox.6b00285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
With the discovery
of translesion synthesis DNA polymerases, great
strides have been made in the last two decades in understanding the
mode of replication of various DNA lesions in prokaryotes and eukaryotes.
A database search indicated that approximately 2000 articles on this
topic have been published in this period. This includes research involving
genetic and structural studies as well as in vitro experiments using purified DNA polymerases and accessory proteins.
It is a daunting task to comprehend this exciting and rapidly emerging
area of research. Even so, as the majority of DNA damage occurs at
2′-deoxyguanosine residues, this perspective attempts to summarize
a subset of this field, focusing on the most relevant eukaryotic DNA
polymerases responsible for their bypass.
Collapse
Affiliation(s)
- Ashis K Basu
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Paritosh Pande
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Arindam Bose
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269, United States
| |
Collapse
|
20
|
AbdulSalam SF, Thowfeik FS, Merino EJ. Excessive Reactive Oxygen Species and Exotic DNA Lesions as an Exploitable Liability. Biochemistry 2016; 55:5341-52. [PMID: 27582430 DOI: 10.1021/acs.biochem.6b00703] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although the terms "excessive reactive oxygen species (ROS)" and "oxidative stress" are widely used, the implications of oxidative stress are often misunderstood. ROS are not a single species but a variety of compounds, each with unique biochemical properties and abilities to react with biomolecules. ROS cause activation of growth signals through thiol oxidation and may lead to DNA damage at elevated levels. In this review, we first discuss a conceptual framework for the interplay of ROS and antioxidants. This review then describes ROS signaling using FLT3-mediated growth signaling as an example. We then focus on ROS-mediated DNA damage. High concentrations of ROS result in various DNA lesions, including 8-oxo-7,8-dihydro-guanine, oxazolone, DNA-protein cross-links, and hydantoins, that have unique biological impacts. Here we delve into the biochemistry of nine well-characterized DNA lesions. Within each lesion, the types of repair mechanisms, the mutations induced, and their effects on transcription and replication are discussed. Finally, this review will discuss biochemically inspired implications for cancer therapy. Several teams have put forward designs to harness the excessive ROS and the burdened DNA repair systems of tumor cells for treating cancer. We discuss inhibition of the antioxidant system, the targeting of DNA repair, and ROS-activated prodrugs.
Collapse
Affiliation(s)
- Safnas F AbdulSalam
- Department of Chemistry, University of Cincinnati , 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| | - Fathima Shazna Thowfeik
- Department of Chemistry, University of Cincinnati , 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| | - Edward J Merino
- Department of Chemistry, University of Cincinnati , 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
21
|
Tautomerization-dependent recognition and excision of oxidation damage in base-excision DNA repair. Proc Natl Acad Sci U S A 2016; 113:7792-7. [PMID: 27354518 DOI: 10.1073/pnas.1604591113] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
NEIL1 (Nei-like 1) is a DNA repair glycosylase guarding the mammalian genome against oxidized DNA bases. As the first enzymes in the base-excision repair pathway, glycosylases must recognize the cognate substrates and catalyze their excision. Here we present crystal structures of human NEIL1 bound to a range of duplex DNA. Together with computational and biochemical analyses, our results suggest that NEIL1 promotes tautomerization of thymine glycol (Tg)-a preferred substrate-for optimal binding in its active site. Moreover, this tautomerization event also facilitates NEIL1-catalyzed Tg excision. To our knowledge, the present example represents the first documented case of enzyme-promoted tautomerization for efficient substrate recognition and catalysis in an enzyme-catalyzed reaction.
Collapse
|
22
|
Jena NR, Bansal M, Mishra PC. Conformational stabilities of iminoallantoin and its base pairs in DNA: implications for mutagenicity. Phys Chem Chem Phys 2016; 18:12774-83. [DOI: 10.1039/c6cp02212j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Under acidic conditions, insertion of G opposite Ia may lead to G to C mutations in DNA.
Collapse
Affiliation(s)
- N. R. Jena
- Discipline of Natural Sciences
- Indian Institute of Information Technology
- Design and Manufacturing
- Jabalpur-482005
- India
| | - Manju Bansal
- Molecular Biophysics Unit
- Indian Institute of Science
- Bangalore-560012
- India
| | - P. C. Mishra
- Department of Physics
- Banaras Hindu University
- Varanasi-221005
- India
| |
Collapse
|
23
|
Jena NR, Mishra PC. Normal and reverse base pairing of Iz and Oz lesions in DNA: structural implications for mutagenesis. RSC Adv 2016. [DOI: 10.1039/c6ra14031a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
During replication, incorporation of G opposite Oz lesion is mainly responsible for G to C mutations in DNA.
Collapse
Affiliation(s)
- N. R. Jena
- Discipline of Natural Sciences
- Indian Institute of Information Technology
- Design and Manufacturing
- Jabalpur-482005
- India
| | - P. C. Mishra
- Department of Physics
- Banaras Hindu University
- Varanasi-221005
- India
| |
Collapse
|
24
|
Patra A, Banerjee S, Johnson Salyard TL, Malik CK, Christov PP, Rizzo CJ, Stone MP, Egli M. Structural Basis for Error-Free Bypass of the 5-N-Methylformamidopyrimidine-dG Lesion by Human DNA Polymerase η and Sulfolobus solfataricus P2 Polymerase IV. J Am Chem Soc 2015; 137:7011-4. [PMID: 25988947 DOI: 10.1021/jacs.5b02701] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
N(6)-(2-Deoxy-D-erythro-pentofuranosyl)-2,6-diamino-3,4-dihydro-4-oxo-5-N-methylformamidopyrimidine (MeFapy-dG) arises from N7-methylation of deoxyguanosine followed by imidazole ring opening. The lesion has been reported to persist in animal tissues. Previous in vitro replication bypass investigations of the MeFapy-dG adduct revealed predominant insertion of C opposite the lesion, dependent on the identity of the DNA polymerase (Pol) and the local sequence context. Here we report crystal structures of ternary Pol·DNA·dNTP complexes between MeFapy-dG-adducted DNA template:primer duplexes and the Y-family polymerases human Pol η and P2 Pol IV (Dpo4) from Sulfolobus solfataricus. The structures of the hPol η and Dpo4 complexes at the insertion and extension stages, respectively, are representative of error-free replication, with MeFapy-dG in the anti conformation and forming Watson-Crick pairs with dCTP or dC.
Collapse
Affiliation(s)
- Amritraj Patra
- †Department of Biochemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Surajit Banerjee
- ‡Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States.,§Northeastern Collaborative Access Team and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Building 436E, Argonne, Illinois 60439, United States
| | - Tracy L Johnson Salyard
- ‡Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Chanchal K Malik
- ‡Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Plamen P Christov
- ‡Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Carmelo J Rizzo
- ‡Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Michael P Stone
- ‡Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Martin Egli
- †Department of Biochemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
25
|
Pande P, Haraguchi K, Jiang YL, Greenberg MM, Basu AK. Unlike catalyzing error-free bypass of 8-oxodGuo, DNA polymerase λ is responsible for a significant part of Fapy·dG-induced G → T mutations in human cells. Biochemistry 2015; 54:1859-62. [PMID: 25741586 DOI: 10.1021/acs.biochem.5b00119] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
8-OxodGuo and Fapy·dG induced 10-22% mutations, predominantly G → T transversions, in human embryonic kidney 293T cells in four TG*N sequence contexts, where N = C, G, A, or T. siRNA knockdown of pol λ resulted in 34 and 55% increases in the level of mutations in the progeny from the 8-oxodGuo construct in the TG*T and TG*G sequences, respectively, suggesting that pol λ is involved in error-free bypass of 8-oxodGuo. For Fapy·dG, in contrast, the level of G → T mutations was reduced by 27 and 46% in the TG*T and TG*G sequences, respectively, suggesting that pol λ is responsible for a significant fraction of Fapy·dG-induced G → T mutations.
Collapse
Affiliation(s)
- Paritosh Pande
- †Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Kazuhiro Haraguchi
- ‡Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Yu-Lin Jiang
- ‡Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Marc M Greenberg
- ‡Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ashis K Basu
- †Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
26
|
Jena NR, Gaur V, Mishra PC. The R- and S-diastereoisomeric effects on the guanidinohydantoin-induced mutations in DNA. Phys Chem Chem Phys 2015; 17:18111-20. [DOI: 10.1039/c5cp02636a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Although, Gh (Gh1 or Gh2) in DNA would induce mainly G to C mutations, other mutations cannot be ignored.
Collapse
Affiliation(s)
- N. R. Jena
- Discipline of Natural Sciences
- Indian Institute of Information Technology
- Design and Manufacturing
- Jabalpur-482005
- India
| | - Vivek Gaur
- Discipline of Mechanical Engineering
- Indian Institute of Information Technology
- Design and Manufacturing
- Jabalpur-482005
- India
| | - P. C. Mishra
- NASI Senior Scientist
- Department of Physics
- Banaras Hindu University
- Varanasi-221005
- India
| |
Collapse
|
27
|
Møller P, Christophersen DV, Jensen DM, Kermanizadeh A, Roursgaard M, Jacobsen NR, Hemmingsen JG, Danielsen PH, Cao Y, Jantzen K, Klingberg H, Hersoug LG, Loft S. Role of oxidative stress in carbon nanotube-generated health effects. Arch Toxicol 2014; 88:1939-64. [DOI: 10.1007/s00204-014-1356-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 08/28/2014] [Indexed: 01/19/2023]
|
28
|
Jena NR, Mark AE, Mishra PC. Does Tautomerization of FapyG Influence Its Mutagenicity? Chemphyschem 2014; 15:1779-84. [DOI: 10.1002/cphc.201400045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 03/10/2014] [Indexed: 01/28/2023]
|
29
|
Affiliation(s)
- Kent S Gates
- Department of Chemistry, University of Missouri, Columbia, Missouri, USA.
| |
Collapse
|