1
|
Liu C, Qu D, Li C, Pu W, Li J, Cai L. miR-448-3p/miR-1264-3p Participates in Intermittent Hypoxic Response in Hippocampus by Regulating Fam76b/hnRNPA2B1. CNS Neurosci Ther 2025; 31:e70239. [PMID: 39912396 PMCID: PMC11799915 DOI: 10.1111/cns.70239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/10/2024] [Accepted: 01/02/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Intermittent hypoxia (IH), as a key pathogenic factor of obstructive sleep apnea syndrome (OSAS), can cause many diseases, such as increased inflammation and oxidative stress, diabetes, cardiovascular disease, and Alzheimer's disease (AD). The response of cells to hypoxia involves multiple levels of regulatory mechanisms, including transcriptional regulation of gene expression, regulation of mRNA stability, post-transcriptional regulation, and post-translational modification regulation. AIMS The regulation of miRNA and alternative splicing (AS) in neuronal response to intermittent hypoxia deserve further study. MATERIALS & METHODS By establishing a mouse model of intermittent hypoxia, we conducted functional studies on key miRNAs and splicing factor using methods such as miRNA sequencing, bioinformatics, and molecular biology. RESULTS In the mouse hippocampus, intermittent hypoxia altered the expression of many miRNAs, with miR-448-3p and miR-1264-3p changing over the course of more than three time periods. Interestingly, the expression of Fam76b, the common target gene of these two miRNAs, also changed under intermittent hypoxia. Further studies showed that Fam76b may regulate the ratio of Nbr1 and Dph3 transcripts in response to hypoxia by affecting the localization of hnRNPA2B1 protein within cells. DISCUSSION Research into intermittent hypoxia-induced disorders, including Alzheimer's disease and other neurodegenerative diseases, might benefit from a better understanding of the regulatory mechanisms of miRNA and alternative splicing in hypoxic response at the animal and cell levels. CONCLUSION This study demonstrates that intermittent hypoxia alters the expression of miR-448-3p and miR-1264-3p, as well as the localization of the splicing factor hnRNPA2B1 in the cell nucleus. These findings enhance our understanding of the molecular mechanisms of neuronal responses to hypoxia and hold potential implications for treating hypoxia-related diseases like Alzheimer's disease.
Collapse
Affiliation(s)
- Chuncheng Liu
- School of Life Science and TechnologyInner Mongolia University of Science & TechnologyBaotouChina
- Inner Mongolia Key Laboratory of Life Health and BioinformaticsBaotouChina
| | - Donghui Qu
- School of Life Science and TechnologyInner Mongolia University of Science & TechnologyBaotouChina
- Inner Mongolia Key Laboratory of Life Health and BioinformaticsBaotouChina
| | - Chaoxun Li
- School of Life Science and TechnologyInner Mongolia University of Science & TechnologyBaotouChina
| | - Wenhua Pu
- School of Life Science and TechnologyInner Mongolia University of Science & TechnologyBaotouChina
- Inner Mongolia Key Laboratory of Life Health and BioinformaticsBaotouChina
| | - Jun Li
- School of Life Science and TechnologyInner Mongolia University of Science & TechnologyBaotouChina
- Inner Mongolia Key Laboratory of Life Health and BioinformaticsBaotouChina
| | - Lu Cai
- School of Life Science and TechnologyInner Mongolia University of Science & TechnologyBaotouChina
- Inner Mongolia Key Laboratory of Life Health and BioinformaticsBaotouChina
| |
Collapse
|
2
|
Kilz LM, Zimmermann S, Marchand V, Bourguignon V, Sudol C, Brégeon D, Hamdane D, Motorin Y, Helm M. Differential redox sensitivity of tRNA dihydrouridylation. Nucleic Acids Res 2024; 52:12784-12797. [PMID: 39460624 PMCID: PMC11602153 DOI: 10.1093/nar/gkae964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Various transfer RNA (tRNA) modifications have recently been shown to regulate stress-dependent gene expression by modulating messenger RNA translation. Among these modifications, dihydrouridine stands out for its increase of tRNA structural flexibility. However, whether and how dihydrouridine synthesis reacts to environmental stimuli is largely unknown. In this study, we manipulated the intracellular redox state of Escherichia coli using paraquat, revealing differential sensitivities of the three tRNA-dihydrouridine synthases towards oxidative stress. Using liquid chromatography-mass spectrometry quantification of dihydrouridine in various knockout strains, we validated the use of a specific RNA sequencing method, namely AlkAnilineSeq, for the precise mapping of dihydrouridines throughout E. coli tRNAs. We found DusA showing high activity, followed by DusB and DusC, whose activity was decreased under paraquat treatment. The relative sensitivity is most plausibly explained by a paraquat-dependent drop of NADPH availability. These findings are substantiated by in vitro kinetics, revealing DusA as the most active enzyme, followed by DusB, while DusC showed little activity, likely related to the efficacy of the redox reaction of the flavin coenzyme with NADPH. Overall, our study underscores the intricate interplay between redox dynamics and tRNA modification processes, revealing a new facet of the regulatory mechanisms influencing cellular responses to oxidative stress.
Collapse
Affiliation(s)
- Lea-Marie Kilz
- Institute of Pharmaceutical and Biomedical Sciences, Staudingerweg 5, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Simone Zimmermann
- Institute of Pharmaceutical and Biomedical Sciences, Staudingerweg 5, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Virginie Marchand
- Université de Lorraine, CNRS, INSERM, UAR2008/US40 IBSLor, EpiRNA-Seq Core Facility, 9 Av. De la Forêt de Haye, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, CNRS, UMR7365 IMoPA, 9 Av. De la Forêtde Haye, 54500 Vandoeuvre-lès-Nancy, France
| | - Valérie Bourguignon
- Université de Lorraine, CNRS, INSERM, UAR2008/US40 IBSLor, EpiRNA-Seq Core Facility, 9 Av. De la Forêt de Haye, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, CNRS, UMR7365 IMoPA, 9 Av. De la Forêtde Haye, 54500 Vandoeuvre-lès-Nancy, France
| | - Claudia Sudol
- Sorbonne University, CNRS, Institute of Biology Paris Seine, Biology of Aging and Adaptation, 7 quai Saint Bernard, 75252 Paris, France
- Collège de France, Sorbonne Université, CNRS, Laboratoire de Chimie des Processus Biologiques (LCPB), 11place Marcelin Berthelot, 75231 Paris France
| | - Damien Brégeon
- Sorbonne University, CNRS, Institute of Biology Paris Seine, Biology of Aging and Adaptation, 7 quai Saint Bernard, 75252 Paris, France
| | - Djemel Hamdane
- Collège de France, Sorbonne Université, CNRS, Laboratoire de Chimie des Processus Biologiques (LCPB), 11place Marcelin Berthelot, 75231 Paris France
| | - Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UAR2008/US40 IBSLor, EpiRNA-Seq Core Facility, 9 Av. De la Forêt de Haye, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, CNRS, UMR7365 IMoPA, 9 Av. De la Forêtde Haye, 54500 Vandoeuvre-lès-Nancy, France
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Staudingerweg 5, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| |
Collapse
|
3
|
Ütkür K, Mayer K, Liu S, Brinkmann U, Schaffrath R. Functional Integrity of Radical SAM Enzyme Dph1•Dph2 Requires Non-Canonical Cofactor Motifs with Tandem Cysteines. Biomolecules 2024; 14:470. [PMID: 38672486 PMCID: PMC11048331 DOI: 10.3390/biom14040470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The Dph1•Dph2 heterodimer from yeast is a radical SAM (RS) enzyme that generates the 3-amino-3-carboxy-propyl (ACP) precursor for diphthamide, a clinically relevant modification on eukaryotic elongation factor 2 (eEF2). ACP formation requires SAM cleavage and atypical Cys-bound Fe-S clusters in each Dph1 and Dph2 subunit. Intriguingly, the first Cys residue in each motif is found next to another ill-defined cysteine that we show is conserved across eukaryotes. As judged from structural modeling, the orientation of these tandem cysteine motifs (TCMs) suggests a candidate Fe-S cluster ligand role. Hence, we generated, by site-directed DPH1 and DPH2 mutagenesis, Dph1•Dph2 variants with cysteines from each TCM replaced individually or in combination by serines. Assays diagnostic for diphthamide formation in vivo reveal that while single substitutions in the TCM of Dph2 cause mild defects, double mutations almost entirely inactivate the RS enzyme. Based on enhanced Dph1 and Dph2 subunit instability in response to cycloheximide chases, the variants with Cys substitutions in their cofactor motifs are particularly prone to protein degradation. In sum, we identify a fourth functionally cooperative Cys residue within the Fe-S motif of Dph2 and show that the Cys-based cofactor binding motifs in Dph1 and Dph2 are critical for the structural integrity of the dimeric RS enzyme in vivo.
Collapse
Affiliation(s)
- Koray Ütkür
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, 34132 Kassel, Germany;
| | - Klaus Mayer
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, 82377 Penzberg, Germany; (K.M.); (U.B.)
| | - Shihui Liu
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, 82377 Penzberg, Germany; (K.M.); (U.B.)
| | - Raffael Schaffrath
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, 34132 Kassel, Germany;
| |
Collapse
|
4
|
Schaffrath R, Brinkmann U. Diphthamide - a conserved modification of eEF2 with clinical relevance. Trends Mol Med 2024; 30:164-177. [PMID: 38097404 DOI: 10.1016/j.molmed.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 02/17/2024]
Abstract
Diphthamide, a complex modification on eukaryotic translation elongation factor 2 (eEF2), assures reading-frame fidelity during translation. Diphthamide and enzymes for its synthesis are conserved in eukaryotes and archaea. Originally identified as target for diphtheria toxin (DT) in humans, its clinical relevance now proves to be broader than the link to pathogenic bacteria. Diphthamide synthesis enzymes (DPH1 and DPH3) are associated with cancer, and DPH gene mutations can cause diphthamide deficiency syndrome (DDS). Finally, new analyses provide evidence that diphthamide may restrict propagation of viruses including SARS-CoV-2 and HIV-1, and that DPH enzymes are targeted by viruses for degradation to overcome this restriction. This review describes how diphthamide is synthesized and functions in translation, and covers its clinical relevance in human development, cancer, and infectious diseases.
Collapse
Affiliation(s)
- Raffael Schaffrath
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany.
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany.
| |
Collapse
|
5
|
Ütkür K, Schmidt S, Mayer K, Klassen R, Brinkmann U, Schaffrath R. DPH1 Gene Mutations Identify a Candidate SAM Pocket in Radical Enzyme Dph1•Dph2 for Diphthamide Synthesis on EF2. Biomolecules 2023; 13:1655. [PMID: 38002337 PMCID: PMC10669111 DOI: 10.3390/biom13111655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
In eukaryotes, the Dph1•Dph2 dimer is a non-canonical radical SAM enzyme. Using iron-sulfur (FeS) clusters, it cleaves the cosubstrate S-adenosyl-methionine (SAM) to form a 3-amino-3-carboxy-propyl (ACP) radical for the synthesis of diphthamide. The latter decorates a histidine residue on elongation factor 2 (EF2) conserved from archaea to yeast and humans and is important for accurate mRNA translation and protein synthesis. Guided by evidence from archaeal orthologues, we searched for a putative SAM-binding pocket in Dph1•Dph2 from Saccharomyces cerevisiae. We predict an SAM-binding pocket near the FeS cluster domain that is conserved across eukaryotes in Dph1 but not Dph2. Site-directed DPH1 mutagenesis and functional characterization through assay diagnostics for the loss of diphthamide reveal that the SAM pocket is essential for synthesis of the décor on EF2 in vivo. Further evidence from structural modeling suggests particularly critical residues close to the methionine moiety of SAM. Presumably, they facilitate a geometry specific for SAM cleavage and ACP radical formation that distinguishes Dph1•Dph2 from classical radical SAM enzymes, which generate canonical 5'-deoxyadenosyl (dAdo) radicals.
Collapse
Affiliation(s)
- Koray Ütkür
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, 34132 Kassel, Germany; (K.Ü.); (S.S.); (R.K.)
| | - Sarina Schmidt
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, 34132 Kassel, Germany; (K.Ü.); (S.S.); (R.K.)
| | - Klaus Mayer
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, 82377 Penzberg, Germany; (K.M.); (U.B.)
| | - Roland Klassen
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, 34132 Kassel, Germany; (K.Ü.); (S.S.); (R.K.)
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, 82377 Penzberg, Germany; (K.M.); (U.B.)
| | - Raffael Schaffrath
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, 82377 Penzberg, Germany; (K.M.); (U.B.)
| |
Collapse
|
6
|
Arend M, Ütkür K, Hawer H, Mayer K, Ranjan N, Adrian L, Brinkmann U, Schaffrath R. Yeast gene KTI13 (alias DPH8) operates in the initiation step of diphthamide synthesis on elongation factor 2. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:195-203. [PMID: 37662670 PMCID: PMC10468694 DOI: 10.15698/mic2023.09.804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023]
Abstract
In yeast, Elongator-dependent tRNA modifications are regulated by the Kti11•Kti13 dimer and hijacked for cell killing by zymocin, a tRNase ribotoxin. Kti11 (alias Dph3) also controls modification of elongation factor 2 (EF2) with diphthamide, the target for lethal ADP-ribosylation by diphtheria toxin (DT). Diphthamide formation on EF2 involves four biosynthetic steps encoded by the DPH1-DPH7 network and an ill-defined KTI13 function. On further examining the latter gene in yeast, we found that kti13Δ null-mutants maintain unmodified EF2 able to escape ADP-ribosylation by DT and to survive EF2 inhibition by sordarin, a diphthamide-dependent antifungal. Consistently, mass spectrometry shows kti13Δ cells are blocked in proper formation of amino-carboxyl-propyl-EF2, the first diphthamide pathway intermediate. Thus, apart from their common function in tRNA modification, both Kti11/Dph3 and Kti13 share roles in the initiation step of EF2 modification. We suggest an alias KTI13/DPH8 nomenclature indicating dual-functionality analogous to KTI11/DPH3.
Collapse
Affiliation(s)
- Meike Arend
- Institute of Biology, Division of Microbiology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Koray Ütkür
- Institute of Biology, Division of Microbiology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Harmen Hawer
- Institute of Biology, Division of Microbiology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Klaus Mayer
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center München, Nonnenwald 2, 82377 Penzberg, Germany
| | - Namit Ranjan
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Lorenz Adrian
- Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center München, Nonnenwald 2, 82377 Penzberg, Germany
| | - Raffael Schaffrath
- Institute of Biology, Division of Microbiology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| |
Collapse
|
7
|
Yokoyama K, Li D, Pang H. Resolving the Multidecade-Long Mystery in MoaA Radical SAM Enzyme Reveals New Opportunities to Tackle Human Health Problems. ACS BIO & MED CHEM AU 2022; 2:94-108. [PMID: 35480226 PMCID: PMC9026282 DOI: 10.1021/acsbiomedchemau.1c00046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 01/31/2023]
Abstract
![]()
MoaA is one of the
most conserved radical S-adenosyl-l-methionine
(SAM) enzymes, and is found in most organisms in
all three kingdoms of life. MoaA contributes to the biosynthesis of
molybdenum cofactor (Moco), a redox enzyme cofactor used in various
enzymes such as purine and sulfur catabolism in humans and anaerobic
respiration in bacteria. Unlike many other cofactors, in most organisms,
Moco cannot be taken up as a nutrient and requires de novo biosynthesis.
Consequently, Moco biosynthesis has been linked to several human health
problems, such as human Moco deficiency disease and bacterial infections.
Despite
the medical and biological significance, the biosynthetic mechanism
of Moco’s characteristic pyranopterin structure remained elusive
for more than two decades. This transformation requires the actions
of the MoaA radical SAM enzyme and another protein, MoaC. Recently,
MoaA and MoaC functions were elucidated as a radical SAM GTP 3′,8-cyclase
and cyclic pyranopterin monophosphate (cPMP) synthase, respectively.
This finding resolved the key mystery in the field and revealed new
opportunities in studying the enzymology and chemical biology of MoaA
and MoaC to elucidate novel mechanisms in enzyme catalysis or to address
unsolved questions in Moco-related human health problems. Here, we
summarize the recent progress in the functional and mechanistic studies
of MoaA and MoaC and discuss the field’s future directions.
Collapse
Affiliation(s)
- Kenichi Yokoyama
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27710, United States
| | - Di Li
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Haoran Pang
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| |
Collapse
|
8
|
Zhang Y, Su D, Dzikovski B, Majer SH, Coleman R, Chandrasekaran S, Fenwick MK, Crane BR, Lancaster KM, Freed JH, Lin H. Dph3 Enables Aerobic Diphthamide Biosynthesis by Donating One Iron Atom to Transform a [3Fe-4S] to a [4Fe-4S] Cluster in Dph1-Dph2. J Am Chem Soc 2021; 143:9314-9319. [PMID: 34154323 PMCID: PMC8251694 DOI: 10.1021/jacs.1c03956] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
All radical S-adenosylmethionine (radical-SAM) enzymes, including the noncanonical radical-SAM enzyme diphthamide biosynthetic enzyme Dph1-Dph2, require at least one [4Fe-4S](Cys)3 cluster for activity. It is well-known in the radical-SAM enzyme community that the [4Fe-4S](Cys)3 cluster is extremely air-sensitive and requires strict anaerobic conditions to reconstitute activity in vitro. Thus, how such enzymes function in vivo in the presence of oxygen in aerobic organisms is an interesting question. Working on yeast Dph1-Dph2, we found that consistent with the known oxygen sensitivity, the [4Fe-4S] cluster is easily degraded into a [3Fe-4S] cluster. Remarkably, the small iron-containing protein Dph3 donates one Fe atom to convert the [3Fe-4S] cluster in Dph1-Dph2 to a functional [4Fe-4S] cluster during the radical-SAM enzyme catalytic cycle. This mechanism to maintain radical-SAM enzyme activity in aerobic environments is likely general, and Dph3-like proteins may exist to keep other radical-SAM enzymes functional in aerobic environments.
Collapse
Affiliation(s)
- Yugang Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Dan Su
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Boris Dzikovski
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Sean H Majer
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rachael Coleman
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Siddarth Chandrasekaran
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Michael K Fenwick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Howard Hughes Medical Institute, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
9
|
Iron in Translation: From the Beginning to the End. Microorganisms 2021; 9:microorganisms9051058. [PMID: 34068342 PMCID: PMC8153317 DOI: 10.3390/microorganisms9051058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/16/2022] Open
Abstract
Iron is an essential element for all eukaryotes, since it acts as a cofactor for many enzymes involved in basic cellular functions, including translation. While the mammalian iron-regulatory protein/iron-responsive element (IRP/IRE) system arose as one of the first examples of translational regulation in higher eukaryotes, little is known about the contribution of iron itself to the different stages of eukaryotic translation. In the yeast Saccharomyces cerevisiae, iron deficiency provokes a global impairment of translation at the initiation step, which is mediated by the Gcn2-eIF2α pathway, while the post-transcriptional regulator Cth2 specifically represses the translation of a subgroup of iron-related transcripts. In addition, several steps of the translation process depend on iron-containing enzymes, including particular modifications of translation elongation factors and transfer RNAs (tRNAs), and translation termination by the ATP-binding cassette family member Rli1 (ABCE1 in humans) and the prolyl hydroxylase Tpa1. The influence of these modifications and their correlation with codon bias in the dynamic control of protein biosynthesis, mainly in response to stress, is emerging as an interesting focus of research. Taking S. cerevisiae as a model, we hereby discuss the relevance of iron in the control of global and specific translation steps.
Collapse
|
10
|
Dong M, Dando EE, Kotliar I, Su X, Dzikovski B, Freed JH, Lin H. The asymmetric function of Dph1-Dph2 heterodimer in diphthamide biosynthesis. J Biol Inorg Chem 2019; 24:777-782. [PMID: 31463593 DOI: 10.1007/s00775-019-01702-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/06/2019] [Indexed: 01/12/2023]
Abstract
Diphthamide, the target of diphtheria toxin, is a post-translationally modified histidine residue found in archaeal and eukaryotic translation elongation factor 2 (EF2). In the first step of diphthamide biosynthesis, a [4Fe-4S] cluster-containing radical SAM enzyme, Dph1-Dph2 heterodimer in eukaryotes or Dph2 homodimer in archaea, cleaves S-adenosylmethionine and transfers the 3-amino-3-carboxypropyl group to EF2. It was demonstrated previously that for the archaeal Dph2 homodimer, only one [4Fe-4S] cluster is necessary for the in vitro activity. Here, we demonstrate that for the eukaryotic Dph1-Dph2 heterodimer, the [4Fe-4S] cluster-binding cysteine residues in each subunit are required for diphthamide biosynthesis to occur in vivo. Furthermore, our in vitro reconstitution experiments with Dph1-Dph2 mutants suggested that the Dph1 cluster serves a catalytic role, while the Dph2 cluster facilitates the reduction of the Dph1 cluster by the physiological reducing system Dph3/Cbr1/NADH. Our results reveal the asymmetric functional roles of the Dph1-Dph2 heterodimer and may help to understand how the Fe-S clusters in radical SAM enzymes are reduced in biology.
Collapse
Affiliation(s)
- Min Dong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Emily E Dando
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Ilana Kotliar
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Xiaoyang Su
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Boris Dzikovski
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
11
|
Roles of Elongator Dependent tRNA Modification Pathways in Neurodegeneration and Cancer. Genes (Basel) 2018; 10:genes10010019. [PMID: 30597914 PMCID: PMC6356722 DOI: 10.3390/genes10010019] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
Transfer RNA (tRNA) is subject to a multitude of posttranscriptional modifications which can profoundly impact its functionality as the essential adaptor molecule in messenger RNA (mRNA) translation. Therefore, dynamic regulation of tRNA modification in response to environmental changes can tune the efficiency of gene expression in concert with the emerging epitranscriptomic mRNA regulators. Several of the tRNA modifications are required to prevent human diseases and are particularly important for proper development and generation of neurons. In addition to the positive role of different tRNA modifications in prevention of neurodegeneration, certain cancer types upregulate tRNA modification genes to sustain cancer cell gene expression and metastasis. Multiple associations of defects in genes encoding subunits of the tRNA modifier complex Elongator with human disease highlight the importance of proper anticodon wobble uridine modifications (xm⁵U34) for health. Elongator functionality requires communication with accessory proteins and dynamic phosphorylation, providing regulatory control of its function. Here, we summarized recent insights into molecular functions of the complex and the role of Elongator dependent tRNA modification in human disease.
Collapse
|
12
|
Dong M, Zhang Y, Lin H. Noncanonical Radical SAM Enzyme Chemistry Learned from Diphthamide Biosynthesis. Biochemistry 2018; 57:3454-3459. [PMID: 29708734 DOI: 10.1021/acs.biochem.8b00287] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Radical S-adenosylmethionine (SAM) enzymes are a superfamily of enzymes that use SAM and reduced [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical to catalyze numerous challenging reactions. We have reported a type of noncanonical radical SAM enzymes in the diphthamide biosynthesis pathway. These enzymes also use SAM and reduced [4Fe-4S] clusters, but generate a 3-amino-3-carboxypropyl (ACP) radical to modify the substrate protein, translation elongation factor 2. The regioselective cleavage of a different C-S bond of the sulfonium center of SAM in these enzymes comparing to canonical radical SAM enzymes is intriguing. Here, we highlight some recent findings in the mechanism of these types of enzymes, showing that the diphthamide biosynthetic radial SAM enzymes bound SAM with a distinct geometry. In this way, the unique iron of the [4Fe-4S] cluster in the enzyme can only attack the carbon on the ACP group to form an organometallic intermediate. The homolysis of the organometallic intermediate releases the ACP radical and generates the EF2 radial.
Collapse
Affiliation(s)
- Min Dong
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Yugang Zhang
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Hening Lin
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States.,Howard Hughes Medical Institute; Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
13
|
Dong M, Zhang Y, Lin H. Methods for Studying the Radical SAM Enzymes in Diphthamide Biosynthesis. Methods Enzymol 2018; 606:421-438. [PMID: 30097101 DOI: 10.1016/bs.mie.2018.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diphthamide is a unique posttranslational modification on translation elongation factor 2 (EF2) in archaea and eukaryotes. Biosynthesis of diphthamide was proposed to involve four steps. The first step is a CC bond forming reaction catalyzed by unique radical S-adenosylmethionine (SAM) enzymes. Classical radical SAM enzymes use SAM and [4Fe-4S] clusters to generate a 5'-deoxyadenynal radical and catalyze numerous reactions. Radical SAM enzymes in diphthamide biosynthesis cleave a different CS bond in SAM to generate a 3-amino-3-carboxypropyl radical and modify a histidine residue of substrate protein EF2. Here, we describe our investigations on these unique radical SAM enzymes, including the preparation, characterization, and activity assays we have developed.
Collapse
Affiliation(s)
- Min Dong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Yugang Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Hening Lin
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
14
|
Johansson MJO, Xu F, Byström AS. Elongator-a tRNA modifying complex that promotes efficient translational decoding. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:401-408. [PMID: 29170010 DOI: 10.1016/j.bbagrm.2017.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/19/2017] [Indexed: 12/22/2022]
Abstract
Naturally occurring modifications of the nucleosides in the anticodon region of tRNAs influence their translational decoding properties. Uridines present at the wobble position in eukaryotic cytoplasmic tRNAs often contain a 5-carbamoylmethyl (ncm(5)) or 5-methoxycarbonylmethyl (mcm(5)) side-chain and sometimes also a 2-thio or 2'-O-methyl group. The first step in the formation of the ncm(5) and mcm(5) side-chains requires the conserved six-subunit Elongator complex. Although Elongator has been implicated in several different cellular processes, accumulating evidence suggests that its primary, and possibly only, cellular function is to promote modification of tRNAs. In this review, we discuss the biosynthesis and function of modified wobble uridines in eukaryotic cytoplasmic tRNAs, focusing on the in vivo role of Elongator-dependent modifications in Saccharomyces cerevisiae. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
| | - Fu Xu
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Anders S Byström
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
15
|
Dauden MI, Jaciuk M, Müller CW, Glatt S. Structural asymmetry in the eukaryotic Elongator complex. FEBS Lett 2017; 592:502-515. [DOI: 10.1002/1873-3468.12865] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/08/2017] [Accepted: 09/24/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Maria I. Dauden
- Structural and Computational Biology Unit European Molecular Biology Laboratory Heidelberg Germany
| | - Marcin Jaciuk
- Max Planck Research Group at the Malopolska Centre of Biotechnology Jagiellonian University Krakow Poland
| | - Christoph W. Müller
- Structural and Computational Biology Unit European Molecular Biology Laboratory Heidelberg Germany
| | - Sebastian Glatt
- Max Planck Research Group at the Malopolska Centre of Biotechnology Jagiellonian University Krakow Poland
| |
Collapse
|
16
|
Abstract
Wobble uridines (U34) are generally modified in all species. U34 modifications can be essential in metazoans but are not required for viability in fungi. In this review, we provide an overview on the types of modifications and how they affect the physico-chemical properties of wobble uridines. We describe the molecular machinery required to introduce these modifications into tRNA posttranscriptionally and discuss how posttranslational regulation may affect the activity of the modifying enzymes. We highlight the activity of anticodon specific RNases that target U34 containing tRNA. Finally, we discuss how defects in wobble uridine modifications lead to phenotypes in different species. Importantly, this review will mainly focus on the cytoplasmic tRNAs of eukaryotes. A recent review has extensively covered their bacterial and mitochondrial counterparts.1
Collapse
Affiliation(s)
- Raffael Schaffrath
- a Institut für Biologie, FG Mikrobiologie , Universität Kassel , Germany
| | - Sebastian A Leidel
- b Max Planck Institute for Molecular Biomedicine , Germany.,c Cells-in-Motion Cluster of Excellence , University of Münster , Münster , Germany.,d Medical Faculty , University of Münster , Albert-Schweitzer-Campus 1, Münster , Germany
| |
Collapse
|
17
|
Kolaj-Robin O, Séraphin B. Structures and Activities of the Elongator Complex and Its Cofactors. RNA MODIFICATION 2017; 41:117-149. [DOI: 10.1016/bs.enz.2017.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|