1
|
Wang H, Wang L, Li D, Fan K, Yang Y, Cao H, Sun J, Ren J, Liu Y, Xiang L, Li W, Pan M, Hu H, Chen Y, Xu Z, Huang Y, Wang W, Pan G. Uncovering the Molecular Landscape of Tetracycline Family Natural Products through Bacterial Genome Mining. J Am Chem Soc 2025; 147:15100-15114. [PMID: 40285718 DOI: 10.1021/jacs.4c17551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Tetracycline (TC) family natural products have attracted significant attention due to their diverse chemical structures and important role in drug development. As one of the most successful classes of drugs, TC antibiotics have been used clinically for over 70 years and remain crucial in treating infections. Despite their importance, systematic exploration of novel TC natural products has been limited, leaving the molecular landscape of the TC family poorly understood and hindering further development of these compounds for therapeutic applications. Here, we developed a targeted strategy to identify TC biosynthetic gene clusters (BGCs) based on specific cyclase signatures involved in assembling the TC scaffold. This led to the discovery of 82 representative BGCs with the potential to produce structurally diverse TCs. Among them, we uncovered three groups of novel natural products─misiomycins, varsomycins, and hibarimicins J-L─and identified their biosynthetic pathways. These compounds display distinctive structural features, with misiomycin A and hibarimicin L among the most highly modified TCs identified to date. Misiomycin A biosynthesis involves extensive glycosylation, while biosynthesis of varsomycin A, featuring a unique six-membered lactone ring structure, requires the coordinated action of two TC BGCs. The biosynthesis of hibarimicins J-L, derived from TC monomer dimerization, undergoes complex oxidative modifications involving seven oxygenases. Several TCs exhibited potent activity against drug-resistant Gram-positive pathogens. Our work further expands the structural diversity within the TC family and underscores the potential of these BGCs for generating new TC structures, providing valuable insights for the discovery and development of novel TC-based therapeutics.
Collapse
Affiliation(s)
- Haiyan Wang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lijun Wang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dong Li
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Keqiang Fan
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingzhe Yang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Haolan Cao
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Jianing Sun
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jinwei Ren
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yao Liu
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Lijun Xiang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Weishu Li
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Minghui Pan
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huitao Hu
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yihua Chen
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhengren Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ying Huang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Weishan Wang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Guohui Pan
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
2
|
Miele M, Smajić A, Pace V. The Versatility of the Roskamp Homologation in Synthesis. Molecules 2025; 30:1192. [PMID: 40141968 PMCID: PMC11944290 DOI: 10.3390/molecules30061192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Modern organic synthesis continues to benefit from the flexibility of α-diazo carbonyl intermediates. In the context of homologation processes, the Roskamp reaction-first introduced in 1989-has become a valuable tool due to its selectivity and mild condition reactions for accessing important synthons amenable to further functionalization as β-keto esters. The fine-tuning of reaction parameters-including the nature of Lewis acids, solvents, and temperature-has enabled the development of catalyzed continuous-flow methodologies, as well as a series of asymmetric variants characterized by high transformation rates, excellent stereocontrol, and formidable chemoselectivity. This review aims to emphasize the attractive features of the Roskamp reaction and its applicability for addressing challenging homologation processes.
Collapse
Affiliation(s)
- Margherita Miele
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Turin, Italy;
| | - Aljoša Smajić
- Division of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, A-1090 Vienna, Austria;
| | - Vittorio Pace
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Turin, Italy;
- Division of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, A-1090 Vienna, Austria;
| |
Collapse
|
3
|
Zhao Y, Zhang W, Liu W, Tang Z. Noncanonical Functions of Ketosynthase Domains in Type I Polyketide Synthases. Chembiochem 2025; 26:e202400751. [PMID: 39429091 DOI: 10.1002/cbic.202400751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
Modular type I polyketide synthases (PKSs) are remarkable molecular machines that can synthesize structurally complex polyketide natural products with a wide range of biological activities. In these molecular machines, ketosynthase (KS) domains play a central role, typically by catalyzing decarboxylative Claisen condensation for polyketide chain extension. Noncanonical KS domains with catalytic functions rather than Claisen condensation have increasingly been evidenced, further demonstrating the capability of type I PKSs for structural diversity. This review provides an overview of the reactions involving unusual KS activities, including PKS priming, acyl transfer, Dieckmann condensation, Michael addition, aldol-lactonization bicyclization, C-N bond formation and decarbonylation. Insights into these reactions can deepen the understanding of PKS-based assembly line chemistry and guide the efforts for rational engineering of polyketide-related molecules.
Collapse
Affiliation(s)
- Yuqiong Zhao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Wenyu Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Wen Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zhijun Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
4
|
Zhang D, Wang Y, Tang Q, Zhang Q, Ji X, Qiu X, Chen D, Liu W. An NADH/NAD +-favored aldo-keto reductase facilitates avilamycin A biosynthesis by primarily catalyzing oxidation of avilamycin C. Appl Environ Microbiol 2024; 90:e0015024. [PMID: 38551341 PMCID: PMC11022570 DOI: 10.1128/aem.00150-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/06/2024] [Indexed: 04/18/2024] Open
Abstract
Avilamycins, which possess potent inhibitory activity against Gram-positive bacteria, are a group of oligosaccharide antibiotics produced by Streptomyces viridochromogenes. Among these structurally related oligosaccharide antibiotics, avilamycin A serves as the main bioactive component in veterinary drugs and animal feed additives, which differs from avilamycin C only in the redox state of the two-carbon branched-chain of the terminal octose moiety. However, the mechanisms underlying assembly and modification of the oligosaccharide chain to diversify individual avilamycins remain poorly understood. Here, we report that AviZ1, an aldo-keto reductase in the avilamycin pathway, can catalyze the redox conversion between avilamycins A and C. Remarkably, the ratio of these two components produced by AviZ1 depends on the utilization of specific redox cofactors, namely NADH/NAD+ or NADPH/NADP+. These findings are inspired by gene disruption and complementation experiments and are further supported by in vitro enzymatic activity assays, kinetic analyses, and cofactor affinity studies on AviZ1-catalyzed redox reactions. Additionally, the results from sequence analysis, structure prediction, and site-directed mutagenesis of AviZ1 validate it as an NADH/NAD+-favored aldo-keto reductase that primarily oxidizes avilamycin C to form avilamycin A by utilizing abundant NAD+ in vivo. Building upon the biological function and catalytic activity of AviZ1, overexpressing AviZ1 in S. viridochromogenes is thus effective to improve the yield and proportion of avilamycin A in the fermentation profile of avilamycins. This study represents, to our knowledge, the first characterization of biochemical reactions involved in avilamycin biosynthesis and contributes to the construction of high-performance strains with industrial value.IMPORTANCEAvilamycins are a group of oligosaccharide antibiotics produced by Streptomyces viridochromogenes, which can be used as veterinary drugs and animal feed additives. Avilamycin A is the most bioactive component, differing from avilamycin C only in the redox state of the two-carbon branched-chain of the terminal octose moiety. Currently, the biosynthetic pathway of avilamycins is not clear. Here, we report that AviZ1, an aldo-keto reductase in the avilamycin pathway, can catalyze the redox conversion between avilamycins A and C. More importantly, AviZ1 exhibits a unique NADH/NAD+ preference, allowing it to efficiently catalyze the oxidation of avilamycin C to form avilamycin A using abundant NAD+ in cells. Thus, overexpressing AviZ1 in S. viridochromogenes is effective to improve the yield and proportion of avilamycin A in the fermentation profile of avilamycins. This study serves as an enzymological guide for rational strain design, and the resulting high-performance strains have significant industrial value.
Collapse
Affiliation(s)
- Derundong Zhang
- State Key Laboratory of Chemical Biology, Center for Excellence on Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
- Huzhou Zhongke Center of Bio-Synthetic Innovation, Huzhou, China
| | - Yaotong Wang
- State Key Laboratory of Chemical Biology, Center for Excellence on Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | - Qunyan Tang
- State Key Laboratory of Chemical Biology, Center for Excellence on Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | - Qinglin Zhang
- State Key Laboratory of Chemical Biology, Center for Excellence on Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
- Huzhou Zhongke Center of Bio-Synthetic Innovation, Huzhou, China
| | - Xiaowei Ji
- Lifecome Biochemistry Co. Ltd., Pucheng, China
| | - Xiangqi Qiu
- Lifecome Biochemistry Co. Ltd., Pucheng, China
| | - Dandan Chen
- State Key Laboratory of Chemical Biology, Center for Excellence on Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
- Huzhou Zhongke Center of Bio-Synthetic Innovation, Huzhou, China
| | - Wen Liu
- State Key Laboratory of Chemical Biology, Center for Excellence on Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
5
|
Yñigez-Gutierrez AE, Wurm JE, Froese JT, Rosenthal NE, Bachmann BO. Characterization of Dichloroisoeverninic Acid Biosynthesis and Chemoenzymatic Synthesis of New Orthosomycins. ACS Chem Biol 2024; 19:526-535. [PMID: 38289021 DOI: 10.1021/acschembio.3c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The orthosomycins are highly modified oligosaccharide natural products with a broad spectrum and potent antimicrobial activities. These include everninomicins and avilamycins, which inhibit protein translation by binding a unique site on the bacterial ribosome. Notably, ribosomal bound structures reveal a network of interactions between the 50S subunit and dichloroisoeverninic acid (DCIE), the aromatic A1-ring conserved across orthosomycins, but the relationship of these interactions to their antimicrobial activity remains undetermined. Genetic functional analysis of three genes putatively associated with DCIE biosynthesis in the everninomicin producer Micromonospora carbonacea delineates the native biosynthetic pathway and provides previously unreported advanced biosynthetic intermediates. Subsequent in vitro biochemical analyses demonstrate the complete DCIE biosynthetic pathway and provide access to novel everninomicin analogs. In addition to the orsellinate synthase EvdD3 and a flavin-dependent halogenase EvdD2, our results identified a key acyltransferase, EvdD1, responsible for transferring orsellinate from the acyl carrier protein domain of EvdD3 to a heptasaccharide orthosomycin biosynthetic intermediate. We have also shown that EvdD1 is able to transfer unnatural aryl groups via their N-acyl cysteamine thioesters to the everninomicin scaffold and used this as a biocatalyst to generate a panel of unnatural aryl analogs. The impact of diverse aryl functional group substitution on both ribosome inhibition and antibacterial activities demonstrates the importance of the DCIE moiety in the pharmacology of orthosomycins, notably revealing an uncoupling between ribosomal engagement and antibiotic activity. Control of A1-ring functionality in this class of molecules provides a potential handle to explore and address pharmacological roles of the DCIE ring in this potent and unique class of antibiotics.
Collapse
Affiliation(s)
| | - Jennifer E Wurm
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Chemical and Physical Biology Graduate Program, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jordan T Froese
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Nicholas E Rosenthal
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Brian O Bachmann
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
6
|
Liao Y, Wang XJ, Ma GL, Candra H, Qiu En SL, Khandelwal S, Liang ZX. Biosynthesis of Octacosamicin A: Uncommon Starter/extender Units and Product Releasing via Intermolecular Amidation. Chembiochem 2024; 25:e202300590. [PMID: 37908177 DOI: 10.1002/cbic.202300590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Octacosamicin A is an antifungal metabolite featuring a linear polyene-polyol chain flanked by N-hydroxyguanidine and glycine moieties. We report here that sub-inhibitory concentrations of streptomycin elicited the production of octacosamicin A in Amycolatopsis azurea DSM 43854T . We identified the biosynthetic gene cluster (oca BGC) that encodes a modular polyketide synthase (PKS) system for assembling the polyene-polyol chain of octacosamicin A. Our analysis suggested that the N-hydroxyguanidine unit originates from a 4-guanidinobutyryl-CoA starter unit, while the PKS incorporates an α-hydroxyketone moiety using a (2R)-hydroxymalonyl-CoA extender unit. The modular PKS system contains a non-canonical terminal module that lacks thioesterase (TE) and acyl carrier protein (ACP) domains, indicating the biosynthesis is likely to employ an unconventional and cryptic off-loading mechanism that attaches glycine to the polyene-polyol chain via an intermolecular amidation reaction.
Collapse
Affiliation(s)
- Yanghui Liao
- School of Biological Sciences, Nanyang Technological University, Singapore, 67551, Singapore
| | - Xue-Jiao Wang
- School of Biological Sciences, Nanyang Technological University, Singapore, 67551, Singapore
| | - Guang-Lei Ma
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China
| | - Hartono Candra
- School of Biological Sciences, Nanyang Technological University, Singapore, 67551, Singapore
| | - Sean Lee Qiu En
- School of Biological Sciences, Nanyang Technological University, Singapore, 67551, Singapore
| | - Srashti Khandelwal
- School of Biological Sciences, Nanyang Technological University, Singapore, 67551, Singapore
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, Singapore, 67551, Singapore
| |
Collapse
|
7
|
Fang Z, Zhang Q, Xiong W, Sun L, Tan B, Zhu M, Ma L, Zhang L, Zhu Y, Zhang C. Discovery of Tetronate-Containing Kongjuemycins from a Coral-Associated Actinomycete and Elucidation of Their Biosynthetic Origin. Org Lett 2023; 25:6346-6351. [PMID: 37606755 DOI: 10.1021/acs.orglett.3c02231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Tetronate antibiotics make up a growing family of natural products with a wide variety of biological activities. Herein, we report four new tetronates kongjuemycins (KJMs, 5-8) from a coral-associated actinomycete Pseudonocardia kongjuensis SCSIO 11457, and the identification and characterization of the KJM biosynthetic gene cluster (kjm) by heterologous expression, comparative genomic analysis, isotope labeling, and gene knockout studies. The biosynthesis of KJMs is demonstrated to harness diverse precursors from primary metabolism for building secondary metabolites.
Collapse
Affiliation(s)
- Zhuangjie Fang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Weiliang Xiong
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Lili Sun
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Tan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Mengyi Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Liang Ma
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| |
Collapse
|
8
|
Sun Z, Tang Y. No job too small for a giant enzyme. Nat Chem Biol 2023:10.1038/s41589-023-01386-3. [PMID: 37474758 DOI: 10.1038/s41589-023-01386-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Affiliation(s)
- Zuodong Sun
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Wang J, Wang X, Li X, Kong L, Du Z, Li D, Gou L, Wu H, Cao W, Wang X, Lin S, Shi T, Deng Z, Wang Z, Liang J. C-N bond formation by a polyketide synthase. Nat Commun 2023; 14:1319. [PMID: 36899013 PMCID: PMC10006239 DOI: 10.1038/s41467-023-36989-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Assembly-line polyketide synthases (PKSs) are molecular factories that produce diverse metabolites with wide-ranging biological activities. PKSs usually work by constructing and modifying the polyketide backbone successively. Here, we present the cryo-EM structure of CalA3, a chain release PKS module without an ACP domain, and its structures with amidation or hydrolysis products. The domain organization reveals a unique "∞"-shaped dimeric architecture with five connected domains. The catalytic region tightly contacts the structural region, resulting in two stabilized chambers with nearly perfect symmetry while the N-terminal docking domain is flexible. The structures of the ketosynthase (KS) domain illustrate how the conserved key residues that canonically catalyze C-C bond formation can be tweaked to mediate C-N bond formation, revealing the engineering adaptability of assembly-line polyketide synthases for the production of novel pharmaceutical agents.
Collapse
Affiliation(s)
- Jialiang Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojie Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Department of Molecular Biology, Shanghai Jikaixing Biotech Inc., Shanghai, 200131, China
| | - Xixi Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - LiangLiang Kong
- National Facility for Protein Science in Shanghai, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Zeqian Du
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dandan Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lixia Gou
- School of Life Science, North China University of Science and Technology, Tangshan, Hebei, China
| | - Hao Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Cao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaozheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhijun Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jingdan Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
10
|
Winter AJ, Rowe MT, Weir ANM, Akter N, Mbatha SZ, Walker PD, Williams C, Song Z, Race PR, Willis CL, Crump MP. Programmed Iteration Controls the Assembly of the Nonanoic Acid Side Chain of the Antibiotic Mupirocin. Angew Chem Int Ed Engl 2022; 61:e202212393. [PMID: 36227272 PMCID: PMC10098928 DOI: 10.1002/anie.202212393] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 11/12/2022]
Abstract
Mupirocin is a clinically important antibiotic produced by Pseudomonas fluorescens NCIMB 10586 that is assembled by a complex trans-AT polyketide synthase. The polyketide fragment, monic acid, is esterified by a 9-hydroxynonanoic acid (9HN) side chain which is essential for biological activity. The ester side chain assembly is initialised from a 3-hydroxypropionate (3HP) starter unit attached to the acyl carrier protein (ACP) MacpD, but the fate of this species is unknown. Herein we report the application of NMR spectroscopy, mass spectrometry, chemical probes and in vitro assays to establish the remaining steps of 9HN biosynthesis. These investigations reveal a complex interplay between a novel iterative or "stuttering" KS-AT didomain (MmpF), the multidomain module MmpB and multiple ACPs. This work has important implications for understanding the late-stage biosynthetic steps of mupirocin and will be important for future engineering of related trans-AT biosynthetic pathways (e.g. thiomarinol).
Collapse
Affiliation(s)
- Ashley J Winter
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Matthew T Rowe
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Angus N M Weir
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Nahida Akter
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | | | - Paul D Walker
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | | | - Zhongshu Song
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Paul R Race
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | | | - Matthew P Crump
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| |
Collapse
|
11
|
Winter AJ, Rowe MT, Weir ANM, Akter N, Mbatha SZ, Walker PD, Williams C, Song Z, Race PR, Willis CL, Crump MP. Programmed Iteration Controls the Assembly of the Nonanoic Acid Side Chain of the Antibiotic Mupirocin. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202212393. [PMID: 38505625 PMCID: PMC10947060 DOI: 10.1002/ange.202212393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 11/11/2022]
Abstract
Mupirocin is a clinically important antibiotic produced by Pseudomonas fluorescens NCIMB 10586 that is assembled by a complex trans-AT polyketide synthase. The polyketide fragment, monic acid, is esterified by a 9-hydroxynonanoic acid (9HN) side chain which is essential for biological activity. The ester side chain assembly is initialised from a 3-hydroxypropionate (3HP) starter unit attached to the acyl carrier protein (ACP) MacpD, but the fate of this species is unknown. Herein we report the application of NMR spectroscopy, mass spectrometry, chemical probes and in vitro assays to establish the remaining steps of 9HN biosynthesis. These investigations reveal a complex interplay between a novel iterative or "stuttering" KS-AT didomain (MmpF), the multidomain module MmpB and multiple ACPs. This work has important implications for understanding the late-stage biosynthetic steps of mupirocin and will be important for future engineering of related trans-AT biosynthetic pathways (e.g. thiomarinol).
Collapse
Affiliation(s)
| | | | | | - Nahida Akter
- School of ChemistryUniversity of BristolBristolBS8 1TSUK
| | | | - Paul D. Walker
- School of ChemistryUniversity of BristolBristolBS8 1TSUK
| | | | - Zhongshu Song
- School of ChemistryUniversity of BristolBristolBS8 1TSUK
| | - Paul R. Race
- School of BiochemistryUniversity of BristolBristolBS8 1TDUK
| | | | | |
Collapse
|
12
|
Cervimycin-Resistant Staphylococcus aureus Strains Display Vancomycin-Intermediate Resistant Phenotypes. Microbiol Spectr 2022; 10:e0256722. [PMID: 36173303 PMCID: PMC9603734 DOI: 10.1128/spectrum.02567-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Resistance to antibiotics is an increasing problem and necessitates novel antibacterial therapies. The polyketide antibiotics cervimycin A to D are natural products of Streptomyces tendae HKI 0179 with promising activity against multidrug-resistant staphylococci and vancomycin-resistant enterococci. To initiate mode of action studies, we selected cervimycin C- and D-resistant (CmR) Staphylococcus aureus strains. Genome sequencing of CmR mutants revealed amino acid exchanges in the essential histidine kinase WalK, the Clp protease proteolytic subunit ClpP or the Clp ATPase ClpC, and the heat shock protein DnaK. Interestingly, all characterized CmR mutants harbored a combination of mutations in walK and clpP or clpC. In vitro and in vivo analyses showed that the mutations in the Clp proteins abolished ClpP or ClpC activity, and the deletion of clpP rendered S. aureus but not all Bacillus subtilis strains cervimycin-resistant. The essential gene walK was the second mutational hotspot in the CmR S. aureus strains, which decreased WalK activity in vitro and generated a vancomycin-intermediate resistant phenotype, with a thickened cell wall, a lower growth rate, and reduced cell lysis. Transcriptomic and proteomic analyses revealed massive alterations in the CmR strains compared to the parent strain S. aureus SG511, with major shifts in the heat shock regulon, the metal ion homeostasis, and the carbohydrate metabolism. Taken together, mutations in the heat shock genes clpP, clpC, and dnaK, and the walK kinase gene in CmR mutants induced a vancomycin-intermediate resistant phenotype in S. aureus, suggesting cell wall metabolism or the Clp protease system as primary target of cervimycin. IMPORTANCE Staphylococcus aureus is a frequent cause of infections in both the community and hospital setting. Resistance development of S. aureus to various antibiotics is a severe problem for the treatment of this pathogen worldwide. New powerful antimicrobial agents against Gram-positives are needed, since antibiotics like vancomycin fail to cure vancomycin-intermediate resistant S. aureus (VISA) and vancomycin-resistant enterococci (VRE) infections. One candidate substance with promising activity against these organisms is cervimycin, which is an antibiotic complex with a yet unknown mode of action. In our study, we provide first insights into the mode of action of cervimycins. By characterizing cervimycin-resistant S. aureus strains, we revealed the Clp system and the essential kinase WalK as mutational hotspots for cervimycin resistance in S. aureus. It further emerged that cervimycin-resistant S. aureus strains show a VISA phenotype, indicating a role of cervimycin in perturbing the bacterial cell envelope.
Collapse
|
13
|
WANG H, WANG L, FAN K, PAN G. Tetracycline natural products: discovery, biosynthesis and engineering. Chin J Nat Med 2022; 20:773-794. [DOI: 10.1016/s1875-5364(22)60224-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Indexed: 11/03/2022]
|
14
|
Saeed AU, Rahman MU, Chen HF, Zheng J. Structural Insight of KSIII (β-Ketoacyl-ACP Synthase)-like Acyltransferase ChlB3 in the Biosynthesis of Chlorothricin. Molecules 2022; 27:molecules27196405. [PMID: 36234941 PMCID: PMC9573744 DOI: 10.3390/molecules27196405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/07/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Chlorothricin (CHL) belongs to a spirotetronate antibiotic family produced by Streptomyces antibioticus that inhibits pyruvate carboxylase and malate dehydrogenase. For the biosynthesis of CHL, ChlB3 plays a crucial role by introducing the 6-methylsalicylic acid (6MSA) moiety to ChlB2, an acyl carrier protein (ACP). However, the structural insight and catalytic mechanism of ChlB3 was unclear. In the current study, the crystal structure of ChlB3 was solved at 3.1 Å-resolution and a catalytic mechanism was proposed on the basis of conserved residues of structurally related enzymes. ChlB3 is a dimer having the same active sites as CerJ (a structural homologous enzyme) and uses a KSIII-like fold to work as an acyltransferase. The relaxed substrate specificity of ChlB3 was defined by its catalytic efficiencies (kcat/Km) for non-ACP tethered synthetic substrates such as 6MSA-SNAC, acetyl-SNAC, and cyclohexonyl-SNAC. ChlB3 successfully detached the 6MSA moiety from 6MSA-SNAC substrate and this hydrolytic activity demonstrated that ChlB3 has the potential to catalyze non-ACP tethered substrates. Structural comparison indicated that ChlB3 belongs to FabH family and showed 0.6–2.5 Å root mean square deviation (RMSD) with structural homologous enzymes. Molecular docking and dynamics simulations were implemented to understand substrate active site and structural behavior such as the open and closed conformation of the ChlB3 protein. The resultant catalytic and substrate recognition mechanism suggested that ChlB3 has the potential to use non-native substrates and minimize the labor of expressing ACP protein. This versatile acyltransferase activity may pave the way for manufacturing CHL variants and may help to hydrolyze several thioester-based compounds.
Collapse
Affiliation(s)
- Asad Ullah Saeed
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mueed Ur Rahman
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Center for Bioinformation Technology, Shanghai 200235, China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence:
| |
Collapse
|
15
|
Yan X, Zhang J, Tan H, Liu Z, Jiang K, Tian W, Zheng M, Lin Z, Deng Z, Qu X. A Pair of Atypical KAS III Homologues with Initiation and Elongation Functions Program the Polyketide Biosynthesis in Asukamycin. Angew Chem Int Ed Engl 2022; 61:e202200879. [DOI: 10.1002/anie.202200879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoli Yan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Jun Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Hongqun Tan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Zhihao Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Kai Jiang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Wenya Tian
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Mengmeng Zheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Zhi Lin
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Xudong Qu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| |
Collapse
|
16
|
Yan X, Zhang J, Tan H, Liu Z, Jiang K, Tian W, Zheng M, Lin Z, Deng Z, Qu X. A Pair of Atypical KAS III Homologues with Initiation and Elongation Functions Program the Polyketide Biosynthesis in Asukamycin. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaoli Yan
- Wuhan University School of pharmaceutical Sciences CHINA
| | - Jun Zhang
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Hongqun Tan
- Wuhan University School of Pharmaceutical Sciences CHINA
| | - Zhihao Liu
- Wuhan University School of pharmaceutical Sciences CHINA
| | - Kai Jiang
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Wenya Tian
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Mengmeng Zheng
- Wuhan University School of Pharmaceutical Sciences CHINA
| | - Zhi Lin
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Zixin Deng
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Xudong Qu
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology 800 Dongchuan Rd. 200240 Shanghai CHINA
| |
Collapse
|
17
|
Li LY, Hu YL, Sun JL, Yu LB, Shi J, Wang ZR, Guo ZK, Zhang B, Guo WJ, Tan RX, Ge HM. Resistance and phylogeny guided discovery reveals structural novelty of tetracycline antibiotics. Chem Sci 2022; 13:12892-12898. [DOI: 10.1039/d2sc03965f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
Using resistance gene genome mining strategy and refinement with chain length factor, we obtained 25 distinct tetracycline biosynthetic gene clusters and a novel tetracycline. The biosynthesis of the highly modified tetracycline was investigated.
Collapse
Affiliation(s)
- Ling Yu Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yi Ling Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Jia Lin Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Long Bo Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Jing Shi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Zi Ru Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Zhi Kai Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Bio-technology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Wen Jie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
18
|
Abstract
A new synthetic approach toward oligosaccharides consisting only of 2,3,6-trideoxypyranoglycosides is reported. The key feature is highlighted by the convergent approach that allows the introduction of the aglycon moiety in the late stage of the synthesis. As an illustrative example, the tetrasaccharide portion of cervimycin K was prepared as cyclohexyl glycoside.
Collapse
Affiliation(s)
- Jihun Kang
- Department of Chemistry, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Kyungbuk, Republic of Korea
| | - Young Ho Rhee
- Department of Chemistry, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Kyungbuk, Republic of Korea
| |
Collapse
|
19
|
Development of a growth coupled and multi-layered dynamic regulation network balancing malonyl-CoA node to enhance (2S)-naringenin biosynthesis in Escherichia coli. Metab Eng 2021; 67:41-52. [PMID: 34052445 DOI: 10.1016/j.ymben.2021.05.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/29/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023]
Abstract
Metabolic heterogeneity and dynamic changes in metabolic fluxes are two inherent characteristics of microbial fermentation that limit the precise control of metabolisms, often leading to impaired cell growth and low productivity. Dynamic metabolic engineering addresses these challenges through the design of multi-layered and multi-genetic dynamic regulation network (DRN) that allow a single cell to autonomously adjust metabolic flux in response to its growth and metabolite accumulation conditions. Here, we developed a growth coupled NCOMB (Naringenin-Coumaric acid-Malonyl-CoA-Balanced) DRN with systematic optimization of (2S)-naringenin and p-coumaric acid-responsive regulation pathways for real-time control of intracellular supply of malonyl-CoA. In this scenario, the acyl carrier protein was used as a novel critical node for fine-tuning malonyl-CoA consumption instead of direct repression of fatty acid synthase commonly employed in previous studies. To do so, we first engineered a multi-layered DRN enabling single cells to concurrently regulate acpH, acpS, acpT, acs, and ACC in malonyl-CoA catabolic and anabolic pathways. Next, the NCOMB DRN was optimized to enhance the synergies between different dynamic regulation layers via a biosensor-based directed evolution strategy. Finally, a high producer obtained from NCOMB DRN approach yielded a 8.7-fold improvement in (2S)-naringenin production (523.7 ± 51.8 mg/L) with a concomitant 20% increase in cell growth compared to the base strain using static strain engineering approach, thus demonstrating the high efficiency of this system for improving pathway production.
Collapse
|
20
|
Beedessee G, Kubota T, Arimoto A, Nishitsuji K, Waller RF, Hisata K, Yamasaki S, Satoh N, Kobayashi J, Shoguchi E. Integrated omics unveil the secondary metabolic landscape of a basal dinoflagellate. BMC Biol 2020; 18:139. [PMID: 33050904 PMCID: PMC7557087 DOI: 10.1186/s12915-020-00873-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/18/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Some dinoflagellates cause harmful algal blooms, releasing toxic secondary metabolites, to the detriment of marine ecosystems and human health. Our understanding of dinoflagellate toxin biosynthesis has been hampered by their unusually large genomes. To overcome this challenge, for the first time, we sequenced the genome, microRNAs, and mRNA isoforms of a basal dinoflagellate, Amphidinium gibbosum, and employed an integrated omics approach to understand its secondary metabolite biosynthesis. RESULTS We assembled the ~ 6.4-Gb A. gibbosum genome, and by probing decoded dinoflagellate genomes and transcriptomes, we identified the non-ribosomal peptide synthetase adenylation domain as essential for generation of specialized metabolites. Upon starving the cells of phosphate and nitrogen, we observed pronounced shifts in metabolite biosynthesis, suggestive of post-transcriptional regulation by microRNAs. Using Iso-Seq and RNA-seq data, we found that alternative splicing and polycistronic expression generate different transcripts for secondary metabolism. CONCLUSIONS Our genomic findings suggest intricate integration of various metabolic enzymes that function iteratively to synthesize metabolites, providing mechanistic insights into how dinoflagellates synthesize secondary metabolites, depending upon nutrient availability. This study provides insights into toxin production associated with dinoflagellate blooms. The genome of this basal dinoflagellate provides important clues about dinoflagellate evolution and overcomes the large genome size, which has been a challenge previously.
Collapse
Affiliation(s)
- Girish Beedessee
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan.
- Present address: Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK.
| | - Takaaki Kubota
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Asuka Arimoto
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
- Marine Biological Laboratory, Graduate School of Integrated Sciences for Life, Hiroshima University, Onomichi, Hiroshima, 722-0073, Japan
| | - Koki Nishitsuji
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Shinichi Yamasaki
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Jun'ichi Kobayashi
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| |
Collapse
|
21
|
Kobayashi M, Kuzuyama T. Recent Advances in the Biosynthesis of Carbazoles Produced by Actinomycetes. Biomolecules 2020; 10:biom10081147. [PMID: 32764478 PMCID: PMC7466098 DOI: 10.3390/biom10081147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Structurally diverse carbazole alkaloids are valuable due to their pharmaceutical properties and have been isolated from nature. Experimental knowledge on carbazole biosynthesis is limited. The latest development of in silico analysis of the biosynthetic gene clusters for bacterial carbazoles has allowed studies on the biosynthesis of a carbazole skeleton, which was established by sequential enzyme-coupling reactions associated with an unprecedented carbazole synthase, a thiamine-dependent enzyme, and a ketosynthase-like enzyme. This review describes the carbazole biosynthetic mechanism, which includes a key step in enzymatic formation of a tricyclic carbazole skeleton, followed by modifications such as prenylation and hydroxylation in the skeleton.
Collapse
Affiliation(s)
- Masaya Kobayashi
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan;
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Correspondence: ; Fax: +81-3-5841-3080
| |
Collapse
|
22
|
Zhou S, Hao T, Xu S, Deng Y. Coenzyme A thioester-mediated carbon chain elongation as a paintbrush to draw colorful chemical compounds. Biotechnol Adv 2020; 43:107575. [PMID: 32512221 DOI: 10.1016/j.biotechadv.2020.107575] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/23/2022]
Abstract
The biosynthesis of various useful chemicals from simple substrates using industrial microorganisms is becoming increasingly crucial to address the challenge of dwindling non-renewable resources. As the most common intermediate substrates in organisms, Coenzyme A (CoA) thioesters play a central role in the carbon chain elongation process of their products. As a result, numerous of chemicals can be synthesized by the iterative addition of various CoA thioester extender units at a given CoA thioester primer backbone. However, these elongation reactions and the product yields are still restricted due to the low enzymatic performance and supply of CoA thioesters. This review highlights the current protein and metabolic engineering strategies used to enhance the diversity and product yield by coupling different primers, extender units, enzymes, and termination pathways, in an attempt to provide a road map for producing a more diverse range of industrial chemicals.
Collapse
Affiliation(s)
- Shenghu Zhou
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Tingting Hao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shumin Xu
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
23
|
Kobayashi M, Tomita T, Shin‐ya K, Nishiyama M, Kuzuyama T. An Unprecedented Cyclization Mechanism in the Biosynthesis of Carbazole Alkaloids in
Streptomyces. Angew Chem Int Ed Engl 2019; 58:13349-13353. [DOI: 10.1002/anie.201906864] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/20/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Masaya Kobayashi
- Biotechnology Research CentreThe University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Takeo Tomita
- Biotechnology Research CentreThe University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM)The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Kazuo Shin‐ya
- Biotechnology Research CentreThe University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- National Institute of Advanced Industrial Science and Technology 2-4-7 Aomi, Koto-ku Tokyo 135-0064 Japan
| | - Makoto Nishiyama
- Biotechnology Research CentreThe University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM)The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Tomohisa Kuzuyama
- Collaborative Research Institute for Innovative Microbiology (CRIIM)The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Graduate School of Agricultural and Life SciencesThe University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| |
Collapse
|
24
|
Kobayashi M, Tomita T, Shin‐ya K, Nishiyama M, Kuzuyama T. An Unprecedented Cyclization Mechanism in the Biosynthesis of Carbazole Alkaloids in
Streptomyces. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Masaya Kobayashi
- Biotechnology Research CentreThe University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Takeo Tomita
- Biotechnology Research CentreThe University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM)The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Kazuo Shin‐ya
- Biotechnology Research CentreThe University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- National Institute of Advanced Industrial Science and Technology 2-4-7 Aomi, Koto-ku Tokyo 135-0064 Japan
| | - Makoto Nishiyama
- Biotechnology Research CentreThe University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM)The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Tomohisa Kuzuyama
- Collaborative Research Institute for Innovative Microbiology (CRIIM)The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Graduate School of Agricultural and Life SciencesThe University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| |
Collapse
|
25
|
Shi YM, Bode HB. Chemical language and warfare of bacterial natural products in bacteria-nematode-insect interactions. Nat Prod Rep 2019; 35:309-335. [PMID: 29359226 DOI: 10.1039/c7np00054e] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: up to November 2017 Organismic interaction is one of the fundamental principles for survival in any ecosystem. Today, numerous examples show the interaction between microorganisms like bacteria and higher eukaryotes that can be anything between mutualistic to parasitic/pathogenic symbioses. There is also increasing evidence that microorganisms are used by higher eukaryotes not only for the supply of essential factors like vitamins but also as biological weapons to protect themselves or to kill other organisms. Excellent examples for such systems are entomopathogenic nematodes of the genera Heterorhabditis and Steinernema that live in mutualistic symbiosis with bacteria of the genera Photorhabdus and Xenorhabdus, respectively. Although these systems have been used successfully in organic farming on an industrial scale, it was only shown during the last 15 years that several different natural products (NPs) produced by the bacteria play key roles in the complex life cycle of the bacterial symbionts, the nematode host and the insect prey that is killed by and provides nutrients for the nematode-bacteria pair. Since the bacteria can switch from mutualistic to pathogenic lifestyle, interacting with two different types of higher eukaryotes, and since the full system with all players can be established in the lab, they are promising model systems to elucidate the natural function of microbial NPs. This review summarizes the current knowledge as well as open questions for NPs from Photorhabdus and Xenorhabdus and tries to assign their roles in the tritrophic relationship.
Collapse
Affiliation(s)
- Yi-Ming Shi
- Merck-Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Frankfurt am Main 60438, Germany
| | | |
Collapse
|
26
|
Yi X, Zhao Q, Tian Z, Jia X, Cao W, Liu W, He Q. Insights into the Functionalization of the Methylsalicyclic Moiety during the Biosynthesis of Chlorothricin by Comparative Kinetic Assays of the Activities of Two KAS III‐like Acyltransferases. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xuan Yi
- Department of Chemistry, Innovative Drug Research CenterShanghai University 99 Shangda Road, Shanghai 200444 China
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence on Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences 345 Lingling Road, Shanghai 200032 China
| | - Qunfei Zhao
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence on Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences 345 Lingling Road, Shanghai 200032 China
| | - Zhenhua Tian
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence on Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences 345 Lingling Road, Shanghai 200032 China
| | - Xinying Jia
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence on Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences 345 Lingling Road, Shanghai 200032 China
| | - Weiguo Cao
- Department of Chemistry, Innovative Drug Research CenterShanghai University 99 Shangda Road, Shanghai 200444 China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence on Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences 345 Lingling Road, Shanghai 200032 China
- Huzhou Center of Bio‐Synthetic Innovation 1366 Hongfeng Road, Huzhou, Zhejiang 313000 China
| | - Qing‐Li He
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine 1200 Cai Lun Road, Shanghai 201203 China
| |
Collapse
|
27
|
Biosynthesis of Polyketides in Streptomyces. Microorganisms 2019; 7:microorganisms7050124. [PMID: 31064143 PMCID: PMC6560455 DOI: 10.3390/microorganisms7050124] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/24/2019] [Accepted: 04/27/2019] [Indexed: 12/12/2022] Open
Abstract
Polyketides are a large group of secondary metabolites that have notable variety in their structure and function. Polyketides exhibit a wide range of bioactivities such as antibacterial, antifungal, anticancer, antiviral, immune-suppressing, anti-cholesterol, and anti-inflammatory activity. Naturally, they are found in bacteria, fungi, plants, protists, insects, mollusks, and sponges. Streptomyces is a genus of Gram-positive bacteria that has a filamentous form like fungi. This genus is best known as one of the polyketides producers. Some examples of polyketides produced by Streptomyces are rapamycin, oleandomycin, actinorhodin, daunorubicin, and caprazamycin. Biosynthesis of polyketides involves a group of enzyme activities called polyketide synthases (PKSs). There are three types of PKSs (type I, type II, and type III) in Streptomyces responsible for producing polyketides. This paper focuses on the biosynthesis of polyketides in Streptomyces with three structurally-different types of PKSs.
Collapse
|
28
|
Nofiani R, Philmus B, Nindita Y, Mahmud T. 3-Ketoacyl-ACP synthase (KAS) III homologues and their roles in natural product biosynthesis. MEDCHEMCOMM 2019; 10:1517-1530. [PMID: 31673313 DOI: 10.1039/c9md00162j] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/29/2019] [Indexed: 11/21/2022]
Abstract
The 3-ketoacyl-ACP synthase (KAS) III proteins are one of the most abundant enzymes in nature, as they are involved in the biosynthesis of fatty acids and natural products. KAS III enzymes catalyse a carbon-carbon bond formation reaction that involves the α-carbon of a thioester and the carbonyl carbon of another thioester. In addition to the typical KAS III enzymes involved in fatty acid and polyketide biosynthesis, there are proteins homologous to KAS III enzymes that catalyse reactions that are different from that of the traditional KAS III enzymes. Those include enzymes that are responsible for a head-to-head condensation reaction, the formation of acetoacetyl-CoA in mevalonate biosynthesis, tailoring processes via C-O bond formation or esterification, as well as amide formation. This review article highlights the diverse reactions catalysed by this class of enzymes and their role in natural product biosynthesis.
Collapse
Affiliation(s)
- Risa Nofiani
- Department of Pharmaceutical Sciences , Oregon State University , Corvallis , OR 97333 , USA . .,Department of Chemistry , Universitas Tanjungpura , Pontianak , Indonesia
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences , Oregon State University , Corvallis , OR 97333 , USA .
| | - Yosi Nindita
- Department of Pharmaceutical Sciences , Oregon State University , Corvallis , OR 97333 , USA .
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences , Oregon State University , Corvallis , OR 97333 , USA .
| |
Collapse
|
29
|
Shi YM, Brachmann AO, Westphalen MA, Neubacher N, Tobias NJ, Bode HB. Dual phenazine gene clusters enable diversification during biosynthesis. Nat Chem Biol 2019; 15:331-339. [PMID: 30886436 DOI: 10.1038/s41589-019-0246-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 02/13/2019] [Indexed: 11/10/2022]
Abstract
Biosynthetic gene clusters (BGCs) bridging genotype and phenotype continuously evolve through gene mutations and recombinations to generate chemical diversity. Phenazine BGCs are widespread in bacteria, and the biosynthetic mechanisms of the formation of the phenazine structural core have been illuminated in the last decade. However, little is known about the complex phenazine core-modification machinery. Here, we report the diversity-oriented modifications of the phenazine core through two distinct BGCs in the entomopathogenic bacterium Xenorhabdus szentirmaii, which lives in symbiosis with nematodes. A previously unidentified aldehyde intermediate, which can be modified by multiple enzymatic and non-enzymatic reactions, is a common intermediate bridging the pathways encoded by these BGCs. Evaluation of the antibiotic activity of the resulting phenazine derivatives suggests a highly effective strategy to convert Gram-positive specific phenazines into broad-spectrum antibiotics, which might help the bacteria-nematode complex to maintain its special environmental niche.
Collapse
Affiliation(s)
- Yi-Ming Shi
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Alexander O Brachmann
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Frankfurt am Main, Germany.,Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Margaretha A Westphalen
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Nick Neubacher
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Nicholas J Tobias
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Helge B Bode
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Frankfurt am Main, Germany. .,Buchmann Institute for Molecular Life Sciences, Goethe Universität Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
30
|
Zhang D, Zhang F, Liu W. A KAS-III Heterodimer in Lipstatin Biosynthesis Nondecarboxylatively Condenses C 8 and C 14 Fatty Acyl-CoA Substrates by a Variable Mechanism during the Establishment of a C 22 Aliphatic Skeleton. J Am Chem Soc 2019; 141:3993-4001. [PMID: 30763089 DOI: 10.1021/jacs.8b12843] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
β-Ketoacyl-acyl carrier protein synthase-III (KAS-III) and its homologues are thiolase-fold proteins that typically behave as homodimers functioning in diverse thioester-based reactions for C-C, C-O, or C-N bond formation. Here, we report an exception observed in the biosynthesis of lipstatin. During the establishment of the C22 aliphatic skeleton of this β-lactone lipase inhibitor, LstA and LstB, which both are KAS-III homologues but phylogenetically distinct from each other, function together by forming an unusual heterodimer to catalyze a nondecarboxylating Claisen condensation of C8 and C14 fatty acyl-CoA substrates. The resulting C22 α-alkyl β-ketoacid, which is unstable and tends to be spontaneously decarboxylated to a shunt C21 hydrocarbon product, is transformed by the stereoselective β-ketoreductase LstD into a relatively stable C22 α-alkyl β-hydroxyacid for further transformation. LstAB activity tolerates changes in the stereochemistry, saturation degree, and thioester form of both long-chain fatty acyl-CoA substrates. This flexibility, along with the characterization of catalytic residues, benefits our investigations into the individual roles of the two KAS-III homologues in the heterodimer-catalyzed reactions. The large subunit LstA contains a characteristic Cys-His-Asn triad and likely reacts with C8 acyl-CoA to form an acyl-Cys enzyme intermediate. In contrast, the small subunit LstB lacks this triad but possesses a catalytic Glu residue, which can act on the C8 acyl-Cys enzyme intermediate in a substrate-dependent manner, either as a base for Cα deprotonation or as a nucleophile for a Michael-type addition-initiated cascade reaction, to produce an enolate anion for head-to-head assembly with C14 acyl-CoA through a unidirectional nucleophilic substitution. Uncovering LstAB catalysis draws attention to thiolase-fold proteins that are noncanonical in both active form and catalytic reaction/mechanism. LstAB homologues are widespread in bacteria and remain to be functionally assigned, generating great interest in their corresponding products and associated biological functions.
Collapse
Affiliation(s)
- Daozhong Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Fang Zhang
- Innovation Research Institute of Traditional Chinese Medicine , Shanghai University of Traditional Chinese Medicine , 1200 Cailun Road , Shanghai 201203 , China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China.,Huzhou Center of Bio-Synthetic Innovation , 1366 Hongfeng Road , Huzhou 313000 , China
| |
Collapse
|
31
|
Pan HX, Chen Z, Zeng T, Jin WB, Geng Y, Lin GM, Zhao J, Li WT, Xiong Z, Huang SX, Zhai X, Liu HW, Tang GL. Elucidation of the Herbicidin Tailoring Pathway Offers Insights into Its Structural Diversity. Org Lett 2019; 21:1374-1378. [PMID: 30763106 DOI: 10.1021/acs.orglett.9b00066] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biosynthetic gene clusters for herbicidins ( hbc) and aureonuclemycin ( anm) were identified in Streptomyces sp. KIB-027 and Streptomyces aureus, respectively. The roles of genes possibly involved in post-core-assembly steps in herbicidin biosynthesis in these clusters and a related her cluster were studied. Through systematic gene deletions, structural elucidation of the accumulated intermediates in the mutants, and in vitro verification of the encoded enzymes, the peripheral modification pathway for herbicidin biosynthesis is now fully established.
Collapse
Affiliation(s)
- Hai-Xue Pan
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences (CAS), CAS, Shanghai 200032 , China
| | | | - Tianfang Zeng
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Wen-Bing Jin
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences (CAS), CAS, Shanghai 200032 , China
| | | | | | - Juan Zhao
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences (CAS), CAS, Shanghai 200032 , China
| | - Wei-Tao Li
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences (CAS), CAS, Shanghai 200032 , China
| | - Zijun Xiong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Center for Excellence in Molecular Plant Sciences , Kunming Institute of Botany , CAS, Kunming 650201 , China
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Center for Excellence in Molecular Plant Sciences , Kunming Institute of Botany , CAS, Kunming 650201 , China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | | | - Gong-Li Tang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences (CAS), CAS, Shanghai 200032 , China
| |
Collapse
|
32
|
Abstract
Covering: up to mid of 2018 Type I fatty acid synthases (FASs) are giant multienzymes catalyzing all steps of the biosynthesis of fatty acids from acetyl- and malonyl-CoA by iterative precursor extension. Two strikingly different architectures of FAS evolved in yeast (as well as in other fungi and some bacteria) and metazoans. Yeast-type FAS (yFAS) assembles into a barrel-shaped structure of more than 2 MDa molecular weight. Catalytic domains of yFAS are embedded in an extensive scaffolding matrix and arranged around two enclosed reaction chambers. Metazoan FAS (mFAS) is a 540 kDa X-shaped dimer, with lateral reaction clefts, minimal scaffolding and pronounced conformational variability. All naturally occurring yFAS are strictly specialized for the production of saturated fatty acids. The yFAS architecture is not used for the biosynthesis of any other secondary metabolite. On the contrary, mFAS is related at the domain organization level to major classes of polyketide synthases (PKSs). PKSs produce a variety of complex and potent secondary metabolites; they either act iteratively (iPKS), or are linked via directed substrate transfer into modular assembly lines (modPKSs). Here, we review the architectures of yFAS, mFAS, and iPKSs. We rationalize the evolution of the yFAS assembly, and provide examples for re-engineering of yFAS. Recent studies have provided novel insights into the organization of iPKS. A hybrid crystallographic model of a mycocerosic acid synthase-like Pks5 yielded a comprehensive visualization of the organization and dynamics of fully-reducing iPKS. Deconstruction experiments, structural and functional studies of specialized enzymatic domains, such as the product template (PT) and the starter-unit acyltransferase (SAT) domain have revealed functional principles of non-reducing iterative PKS (NR-PKSs). Most recently, a six-domain loading region of an NR-PKS has been visualized at high-resolution together with cryo-EM studies of a trapped loading intermediate. Altogether, these data reveal the related, yet divergent architectures of mFAS, iPKS and also modPKSs. The new insights highlight extensive dynamics, and conformational coupling as key features of mFAS and iPKS and are an important step towards collection of a comprehensive series of snapshots of PKS action.
Collapse
Affiliation(s)
- Dominik A Herbst
- Department Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
| | | | | |
Collapse
|
33
|
Malmierca MG, González-Montes L, Pérez-Victoria I, Sialer C, Braña AF, García Salcedo R, Martín J, Reyes F, Méndez C, Olano C, Salas JA. Searching for Glycosylated Natural Products in Actinomycetes and Identification of Novel Macrolactams and Angucyclines. Front Microbiol 2018; 9:39. [PMID: 29441046 PMCID: PMC5797532 DOI: 10.3389/fmicb.2018.00039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/09/2018] [Indexed: 11/13/2022] Open
Abstract
Many bioactive natural products are glycosylated compounds in which the sugar components usually participate in interaction and molecular recognition of the cellular target. Therefore, the presence of sugar moieties is important, in some cases essential, for bioactivity. Searching for novel glycosylated bioactive compounds is an important aim in the field of the research for natural products from actinomycetes. A great majority of these sugar moieties belong to the 6-deoxyhexoses and share two common biosynthetic steps catalyzed by a NDP-D-glucose synthase (GS) and a NDP-D-glucose 4,6-dehydratase (DH). Based on this fact, seventy one Streptomyces strains isolated from the integument of ants of the Tribe Attini were screened for the presence of biosynthetic gene clusters (BGCs) for glycosylated compounds. Total DNAs were analyzed by PCR amplification using oligo primers for GSs and DHs and also for a NDP-D-glucose-2,3-dehydratases. Amplicons were used in gene disruption experiments to generate non-producing mutants in the corresponding clusters. Eleven mutants were obtained and comparative dereplication analyses between the wild type strains and the corresponding mutants allowed in some cases the identification of the compound coded by the corresponding cluster (lobophorins, vicenistatin, chromomycins and benzanthrins) and that of two novel macrolactams (sipanmycin A and B). Several strains did not show UPLC differential peaks between the wild type strain and mutant profiles. However, after genome sequencing of these strains, the activation of the expression of two clusters was achieved by using nutritional and genetic approaches leading to the identification of compounds of the cervimycins family and two novel members of the warkmycins family. Our work defines a useful strategy for the identification new glycosylated compounds by a combination of genome mining, gene inactivation experiments and the activation of silent biosynthetic clusters in Streptomyces strains.
Collapse
Affiliation(s)
- Mónica G Malmierca
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Lorena González-Montes
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | | | - Carlos Sialer
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Alfredo F Braña
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Raúl García Salcedo
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Jesús Martín
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Fernando Reyes
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Carlos Olano
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - José A Salas
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| |
Collapse
|
34
|
Jackson DR, Shakya G, Patel AB, Mohammed LY, Vasilakis K, Wattana-Amorn P, Valentic TR, Milligan JC, Crump MP, Crosby J, Tsai SC. Structural and Functional Studies of the Daunorubicin Priming Ketosynthase DpsC. ACS Chem Biol 2018; 13:141-151. [PMID: 29161022 DOI: 10.1021/acschembio.7b00551] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Daunorubicin is a type II polyketide, one of a large class of polyaromatic natural products with anticancer, antibiotic, and antiviral activity. Type II polyketides are formed by the assembly of malonyl-CoA building blocks, though in rare cases, biosynthesis is initiated by the incorporation of a nonmalonyl derived starter unit, which adds molecular diversity to the poly-β-ketone backbone. Priming mechanisms for the transfer of novel starter units onto polyketide synthases (PKS) are still poorly understood. Daunorubicin biosynthesis incorporates a unique propionyl starter unit thought to be selected for by a subclass ("DpsC type") of priming ketosynthases (KS III). To date, however, no structural information exists for this subclass of KS III enzymes. Although selectivity for self-acylation with propionyl-CoA has previously been implied, we demonstrate that DpsC shows no discrimination for self-acylation or acyl-transfer to the cognate acyl carrier protein, DpsG with short acyl-CoAs. We present five crystal structures of DpsC, including apo-DpsC, acetyl-DpsC, propionyl-DpsC, butyryl-DpsC, and a cocrystal of DpsC with a nonhydrolyzable phosphopantetheine (PPant) analogue. The DpsC crystal structures reveal the architecture of the active site, the molecular determinants for catalytic activity and homology to O-malonyl transferases, but also indicate distinct differences. These results provide a structural basis for rational engineering of starter unit selection in type II polyketide synthases.
Collapse
Affiliation(s)
- David R. Jackson
- Department
of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical
Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Gaurav Shakya
- Department
of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical
Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Avinash B. Patel
- Department
of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical
Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Lina Y. Mohammed
- School
of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Kostas Vasilakis
- School
of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Pakorn Wattana-Amorn
- School
of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Timothy R. Valentic
- Department
of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical
Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Jacob C. Milligan
- Department
of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical
Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Matthew P. Crump
- School
of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - John Crosby
- School
of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Shiou-Chuan Tsai
- Department
of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical
Sciences, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
35
|
Kumar Thota G, Tamilarasan D, Balamurugan R. Synthesis of Highly Functionalized Pyrrolidine Derivatives from Easily Accessible Diethyl (E
)-4-Oxohex-2-enedioate. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ganesh Kumar Thota
- School of Chemistry; University of Hyderabad; 500046 Gauchibowli, Hyderabad Telangana India
| | | | - Rengarajan Balamurugan
- School of Chemistry; University of Hyderabad; 500046 Gauchibowli, Hyderabad Telangana India
| |
Collapse
|
36
|
Hajiebrahimi A, Ghasemi Y, Sakhteman A. FLIP: An assisting software in structure based drug design using fingerprint of protein-ligand interaction profiles. J Mol Graph Model 2017; 78:234-244. [PMID: 29121561 DOI: 10.1016/j.jmgm.2017.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 11/29/2022]
Abstract
With the growing number of labor-intensive data in the pharmaceutical industries and public domain for protein-ligand complexes, a significant challenge is still remaining in managing and leveraging this vast information. Here, a standalone application is presented for analysis, organization, and illustration of structural data and molecular interactions for exploiting 3D-structures into simple 1D fingerprints. The utility of the approach was shown in unraveling a feasible solution for post-processing of docking results in parallel with providing fruitful analysis for users in order to investigate molecular interactions. Remarkably, all interaction possibilities including (hydrogen bond, water-bridged, electrostatic, and hydrophobic as well as π- π and cation-π interactions) are supported both in the form of fingerprints and compelling reports. These investigations are mainly considered based on right orientation, location, and geometry of the interacting pairs rather than the acquisition of the energy terms. The reasonable efficiency of our application in different models was comparable to recent methods It is clearly presented that FLIP provides a faster way to generate usable fingerprints for ligand and protein binding modes. FLIP is free for academic use and is available at: http://zistrayan.com/development/download/flip/package.zip.
Collapse
Affiliation(s)
- Ali Hajiebrahimi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amirhossein Sakhteman
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
37
|
Dunbar KL, Scharf DH, Litomska A, Hertweck C. Enzymatic Carbon-Sulfur Bond Formation in Natural Product Biosynthesis. Chem Rev 2017; 117:5521-5577. [PMID: 28418240 DOI: 10.1021/acs.chemrev.6b00697] [Citation(s) in RCA: 391] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sulfur plays a critical role for the development and maintenance of life on earth, which is reflected by the wealth of primary metabolites, macromolecules, and cofactors bearing this element. Whereas a large body of knowledge has existed for sulfur trafficking in primary metabolism, the secondary metabolism involving sulfur has long been neglected. Yet, diverse sulfur functionalities have a major impact on the biological activities of natural products. Recent research at the genetic, biochemical, and chemical levels has unearthed a broad range of enzymes, sulfur shuttles, and chemical mechanisms for generating carbon-sulfur bonds. This Review will give the first systematic overview on enzymes catalyzing the formation of organosulfur natural products.
Collapse
Affiliation(s)
- Kyle L Dunbar
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Daniel H Scharf
- Life Sciences Institute, University of Michigan , 210 Washtenaw Avenue, Ann Arbor, Michigan 48109-2216, United States
| | - Agnieszka Litomska
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany.,Friedrich Schiller University , 07743 Jena, Germany
| |
Collapse
|
38
|
Abugrain ME, Brumsted CJ, Osborn AR, Philmus B, Mahmud T. A Highly Promiscuous ß-Ketoacyl-ACP Synthase (KAS) III-like Protein Is Involved in Pactamycin Biosynthesis. ACS Chem Biol 2017; 12:362-366. [PMID: 28060484 DOI: 10.1021/acschembio.6b01043] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
β-Ketoacyl-acyl carrier protein (β-Ketoacyl-ACP) synthase (KAS) III catalyzes the first step in fatty acid biosynthesis, involving a Claisen condensation of the acetyl-CoA starter unit with the first extender unit, malonyl-ACP, to form acetoacetyl-ACP. KAS III-like proteins have also been reported to catalyze acyltransferase reactions using coenzyme A esters or discrete ACP-bound substrates. Here, we report the in vivo and in vitro characterizations of a KAS III-like protein (PtmR), which directly transfers a 6-methylsalicylyl moiety from an iterative type I polyketide synthase to an aminocyclopentitol unit in pactamycin biosynthesis. PtmR is highly promiscuous, recognizing a wide array of S-acyl-N-acetylcysteamines as substrates to produce a suite of pactamycin derivatives with diverse alkyl and aromatic features. The results suggest that KAS III-like proteins may be used as versatile tools for modifications of complex natural products.
Collapse
Affiliation(s)
- Mostafa E. Abugrain
- Department
of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97333, United States
| | - Corey J. Brumsted
- Department
of Chemistry, Oregon State University, Corvallis, Oregon 97333, United States
| | - Andrew R. Osborn
- Department
of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97333, United States
| | - Benjamin Philmus
- Department
of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97333, United States
| | - Taifo Mahmud
- Department
of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97333, United States
- Department
of Chemistry, Oregon State University, Corvallis, Oregon 97333, United States
| |
Collapse
|
39
|
Mori T, Awakawa T, Shimomura K, Saito Y, Yang D, Morita H, Abe I. Structural Insight into the Enzymatic Formation of Bacterial Stilbene. Cell Chem Biol 2016; 23:1468-1479. [DOI: 10.1016/j.chembiol.2016.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 09/26/2016] [Accepted: 10/21/2016] [Indexed: 02/07/2023]
|
40
|
Ghosh S, Kuisiene N, Cheeptham N. The cave microbiome as a source for drug discovery: Reality or pipe dream? Biochem Pharmacol 2016; 134:18-34. [PMID: 27867014 DOI: 10.1016/j.bcp.2016.11.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/15/2016] [Indexed: 01/04/2023]
Abstract
This review highlights cave habitats, cave microbiomes and their potential for drug discovery. Such studies face many challenges, including access to remote and pristine caves, and sample collection and transport. Inappropriate physical and chemical growth conditions in the laboratory for the isolation and cultivation of cave microorganisms pose many complications including length of cultivation; some cave microorganisms can take weeks and even months to grow. Additionally, DNA extraction from cave environmental samples may be difficult due to the high concentration of various minerals that are natural DNA blocking agents. Once cave microorganisms are grown in the lab, other problems often arise, such as maintenance of pure culture, consistency of antimicrobial activity and fermentation conditions for antimicrobial production. In this review, we suggest that, although based on what has been done in the field, there is potential in using cave microorganisms to produce antimicrobial agents, one needs to be highly committed and prepared.
Collapse
Affiliation(s)
- Soumya Ghosh
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, Canada
| | - Nomeda Kuisiene
- Department of Microbiology and Biotechnology, Vilnius University, Lithuania
| | - Naowarat Cheeptham
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, Canada.
| |
Collapse
|
41
|
Govender T, Arvidsson PI, Maguire GEM, Kruger HG, Naicker T. Enantioselective Organocatalyzed Transformations of β-Ketoesters. Chem Rev 2016; 116:9375-437. [PMID: 27463615 DOI: 10.1021/acs.chemrev.6b00156] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The β-ketoester structural motif continues to intrigue chemists with its electrophilic and nucleophilic sites. Proven to be a valuable tool within organic synthesis, natural product, and medicinal chemistry, reports on chiral β-ketoester molecular skeletons display a steady increase. With the reignition of organocatalysis in the past decade, asymmetric methods available for the synthesis of this structural unit has significantly expanded, making it one of the most exploited substrates for organocatalytic transformations. This review provides comprehensive information on the plethora of organocatalysts used in stereoselective organocatalyzed construction of β-ketoester-containing compounds.
Collapse
Affiliation(s)
- Thavendran Govender
- Catalysis and Peptide Research Unit, University of KwaZulu Natal , Durban, 4001, South Africa
| | - Per I Arvidsson
- Catalysis and Peptide Research Unit, University of KwaZulu Natal , Durban, 4001, South Africa.,P. I. Arvidsson, Science for Life Laboratory, Drug Discovery and Development Platform and Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet SE-171 77 Stockholm, Sweden
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, University of KwaZulu Natal , Durban, 4001, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu Natal , Durban, 4001, South Africa
| | - Tricia Naicker
- Catalysis and Peptide Research Unit, University of KwaZulu Natal , Durban, 4001, South Africa
| |
Collapse
|
42
|
Sun L, Wang S, Zhang S, Shao L, Zhang Q, Skidmore C, Chang CWT, Yu D, Zhan J. Characterization of Three Tailoring Enzymes in Dutomycin Biosynthesis and Generation of a Potent Antibacterial Analogue. ACS Chem Biol 2016; 11:1992-2001. [PMID: 27195476 DOI: 10.1021/acschembio.6b00245] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The anthracycline natural product dutomycin and its precursor POK-MD1 were isolated from Streptomyces minoensis NRRL B-5482. The dutomycin biosynthetic gene cluster was identified by genome sequencing and disruption of the ketosynthase gene. Two polyketide synthase (PKS) systems are present in the gene cluster, including a type II PKS and a rare highly reducing iterative type I PKS. The type I PKS DutG repeatedly uses its active sites to create a nine-carbon triketide chain that is subsequently transferred to the α-l-axenose moiety of POK-MD1 at 4″-OH to yield dutomycin. Using a heterologous recombination approach, we disrupted a putative methyltransferase gene (dutMT1) and two glycosyltransferase genes (dutGT1 and dutGT2). Analysis of the metabolites of these mutants revealed the functions of these genes and yielded three dutomycin analogues SW140, SW91, and SW75. The major product SW91 in Streptomyces minoensis NRRL B-5482-ΔDutMT1 was identified as 12-desmethyl-dutomycin, suggesting that DutMT1 is the dedicated 12-methyltransferase. This was confirmed by the in vitro enzymatic assay. DutGT1 and DutGT2 were found to be responsible for the introduction of β-d-amicetose and α-l-axenose, respectively. Dutomycin and SW91 showed strong antibacterial activity against Staphylococcus aureus and methicillin-resistant S. aureus, whereas POK-MD1 and SW75 had no obvious inhibition, which revealed the essential role of the C-4″ triketide chain in antibacterial activity. The minimal inhibitory concentration of SW91 against the two strains was 0.125 μg mL(-1), lower than that of dutomycin (0.25 μg mL(-1)), indicating that the antibacterial activity of dutomycin can be improved through biosynthetic structural modification.
Collapse
Affiliation(s)
- Lei Sun
- Department
of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, Utah 84322-4105, United States
| | - Siyuan Wang
- Department
of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, Utah 84322-4105, United States
| | - Shuwei Zhang
- Department
of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, Utah 84322-4105, United States
| | - Lei Shao
- Department
of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, Utah 84322-4105, United States
| | - Qian Zhang
- Department
of Chemistry and Biochemistry, Utah State University, 0300 Old
Main Hill, Logan, Utah 84322-0300, United States
| | - Chad Skidmore
- Department
of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, Utah 84322-4105, United States
| | - Cheng-Wei Tom Chang
- Department
of Chemistry and Biochemistry, Utah State University, 0300 Old
Main Hill, Logan, Utah 84322-0300, United States
| | - Dayu Yu
- Department
of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, Utah 84322-4105, United States
- Department
of Applied Chemistry and Biological Engineering, College of Chemical
Engineering, Northeast Dianli University, Jilin, Jilin 132012, China
| | - Jixun Zhan
- Department
of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, Utah 84322-4105, United States
- TCM and Ethnomedicine Innovation & Development Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
43
|
Lv M, Zhao J, Deng Z, Yu Y. Characterization of the Biosynthetic Gene Cluster for Benzoxazole Antibiotics A33853 Reveals Unusual Assembly Logic. ACTA ACUST UNITED AC 2016; 22:1313-24. [PMID: 26496684 DOI: 10.1016/j.chembiol.2015.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 08/26/2015] [Accepted: 09/10/2015] [Indexed: 10/22/2022]
Abstract
A33853, which shows excellent bioactivity against Leishmania, is a benzoxazole-family compound formed from two moieties of 3-hydroxyanthranilic acid and one 3-hydroxypicolinic acid. In this study, we have identified the gene cluster responsible for the biosynthesis of A33853 in Streptomyces sp. NRRL12068 through genome mining and heterologous expression. Bioinformatics analysis and functional characterization of the orfs contained in the gene cluster revealed that the biosynthesis of A33853 is directed by a group of unusual enzymes. In particular, BomK, annotated as a ketosynthase, was found to catalyze the amide bond formation between 3-hydroxypicolinic and 3-hydroxyanthranilic acid during the assembly of A33853. BomJ, a putative ATP-dependent coenzyme A ligase, and BomN, a putative amidohydrolase, were further proposed to be involved in the benzoxazole formation in A33853 according to gene deletion experiments. Finally, we have successfully utilized mutasynthesis to generate two analogs of A33853, which were reported previously to possess excellent anti-leishmanial activity.
Collapse
Affiliation(s)
- Meinan Lv
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071, P. R. China
| | - Junfeng Zhao
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071, P. R. China
| | - Zixin Deng
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071, P. R. China
| | - Yi Yu
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071, P. R. China.
| |
Collapse
|
44
|
Harijan RK, Mazet M, Kiema TR, Bouyssou G, Alexson SEH, Bergmann U, Moreau P, Michels PAM, Bringaud F, Wierenga RK. The SCP2-thiolase-like protein (SLP) of Trypanosoma brucei is an enzyme involved in lipid metabolism. Proteins 2016; 84:1075-96. [PMID: 27093562 DOI: 10.1002/prot.25054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 04/03/2016] [Accepted: 04/08/2016] [Indexed: 11/06/2022]
Abstract
Bioinformatics studies have shown that the genomes of trypanosomatid species each encode one SCP2-thiolase-like protein (SLP), which is characterized by having the YDCF thiolase sequence fingerprint of the Cβ2-Cα2 loop. SLPs are only encoded by the genomes of these parasitic protists and not by those of mammals, including human. Deletion of the Trypanosoma brucei SLP gene (TbSLP) increases the doubling time of procyclic T. brucei and causes a 5-fold reduction of de novo sterol biosynthesis from glucose- and acetate-derived acetyl-CoA. Fluorescence analyses of EGFP-tagged TbSLP expressed in the parasite located the TbSLP in the mitochondrion. The crystal structure of TbSLP (refined at 1.75 Å resolution) confirms that TbSLP has the canonical dimeric thiolase fold. In addition, the structures of the TbSLP-acetoacetyl-CoA (1.90 Å) and TbSLP-malonyl-CoA (2.30 Å) complexes reveal that the two oxyanion holes of the thiolase active site are preserved. TbSLP binds malonyl-CoA tightly (Kd 90 µM), acetoacetyl-CoA moderately (Kd 0.9 mM) and acetyl-CoA and CoA very weakly. TbSLP possesses low malonyl-CoA decarboxylase activity. Altogether, the data show that TbSLP is a mitochondrial enzyme involved in lipid metabolism. Proteins 2016; 84:1075-1096. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rajesh K Harijan
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, FIN-90014, Finland.,Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | - Muriel Mazet
- Centre De Résonance Magnétique Des Systèmes Biologiques (RMSB), UMR5536, Université De Bordeaux, CNRS, 146 Rue Léo Saignat, Bordeaux, 33076, France.,Laboratoire De Microbiologie Fondamentale Et Pathogénicité (MFP), UMR5234, Université De Bordeaux, CNRS, 146 Rue Léo Saignat, Bordeaux, 33076, France
| | - Tiila R Kiema
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, FIN-90014, Finland
| | - Guillaume Bouyssou
- Laboratoire De Biogenèse Membranaire, UMR-5200, Université De Bordeaux, CNRS, Bâtiment A3 - 1er Étage, INRA Bordeaux Aquitaine BP81, 71 Avenue Edouard Bourlaux, Villenave D'Ornon Cedex, 33883, France
| | - Stefan E H Alexson
- Karolinska Institutet, Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska University Hospital, Stockholm, SE 141 86, Sweden
| | - Ulrich Bergmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, FIN-90014, Finland
| | - Patrick Moreau
- Laboratoire De Biogenèse Membranaire, UMR-5200, Université De Bordeaux, CNRS, Bâtiment A3 - 1er Étage, INRA Bordeaux Aquitaine BP81, 71 Avenue Edouard Bourlaux, Villenave D'Ornon Cedex, 33883, France
| | - Paul A M Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, School of Biological Sciences, the King's Buildings, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, United Kingdom
| | - Frédéric Bringaud
- Centre De Résonance Magnétique Des Systèmes Biologiques (RMSB), UMR5536, Université De Bordeaux, CNRS, 146 Rue Léo Saignat, Bordeaux, 33076, France.,Laboratoire De Microbiologie Fondamentale Et Pathogénicité (MFP), UMR5234, Université De Bordeaux, CNRS, 146 Rue Léo Saignat, Bordeaux, 33076, France
| | - Rik K Wierenga
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, FIN-90014, Finland
| |
Collapse
|
45
|
Heine D, Sundaram S, Bretschneider T, Hertweck C. Twofold polyketide branching by a stereoselective enzymatic Michael addition. Chem Commun (Camb) 2016; 51:9872-5. [PMID: 25994388 DOI: 10.1039/c5cc03085d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The versatility of the branching module of the rhizoxin polyketide synthase was tested in an in vitro enzyme assay with a polyketide mimic and branched (di)methylmalonyl-CoA extender units. Comparison of the products with synthetic reference compounds revealed that the module is able to stereoselectively introduce two branches in one step by a Michael addition-lactonisation sequence, thus expanding the scope of previously studied PKS systems.
Collapse
Affiliation(s)
- Daniel Heine
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany.
| | | | | | | |
Collapse
|
46
|
Jackson DR, Tu SS, Nguyen M, Barajas JF, Schaub AJ, Krug D, Pistorius D, Luo R, Müller R, Tsai SC. Structural Insights into Anthranilate Priming during Type II Polyketide Biosynthesis. ACS Chem Biol 2016; 11:95-103. [PMID: 26473393 DOI: 10.1021/acschembio.5b00500] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The incorporation of nonacetate starter units during type II polyketide biosynthesis helps diversify natural products. Currently, there are few enzymatic strategies for the incorporation of nonacetate starter units in type II polyketide synthase (PKS) pathways. Here we report the crystal structure of AuaEII, the anthranilate:CoA ligase responsible for the generation of anthraniloyl-CoA, which is used as a starter unit by a type II PKS in aurachin biosynthesis. We present structural and protein sequence comparisons to other aryl:CoA ligases. We also compare the AuaEII crystal structure to a model of a CoA ligase homologue, AuaE, which is present in the same gene cluster. AuaE is predicted to have the same fold as AuaEII, but instead of CoA ligation, AuaE catalyzes acyl transfer of anthranilate from anthraniloyl-CoA to the acyl carrier protein (ACP). Together, this work provides insight into the molecular basis for starter unit selection of anthranilate in type II PKS biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel Krug
- Department
of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical
Research Saarland (HIPS), Helmholtz Centre for Infection Research
(HZI) and Pharmaceutical Biotechnology, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Dominik Pistorius
- Department
of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical
Research Saarland (HIPS), Helmholtz Centre for Infection Research
(HZI) and Pharmaceutical Biotechnology, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | | | - Rolf Müller
- Department
of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical
Research Saarland (HIPS), Helmholtz Centre for Infection Research
(HZI) and Pharmaceutical Biotechnology, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | | |
Collapse
|
47
|
Polyketide synthase chimeras reveal key role of ketosynthase domain in chain branching. Nat Chem Biol 2015; 11:949-51. [DOI: 10.1038/nchembio.1932] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/28/2015] [Indexed: 11/08/2022]
|
48
|
Biosynthesis and function of bacterial dialkylresorcinol compounds. Appl Microbiol Biotechnol 2015; 99:8323-8. [DOI: 10.1007/s00253-015-6905-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022]
|
49
|
Kresovic D, Schempp F, Cheikh-Ali Z, Bode HB. A novel and widespread class of ketosynthase is responsible for the head-to-head condensation of two acyl moieties in bacterial pyrone biosynthesis. Beilstein J Org Chem 2015; 11:1412-7. [PMID: 26425196 PMCID: PMC4578411 DOI: 10.3762/bjoc.11.152] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/22/2015] [Indexed: 01/22/2023] Open
Abstract
The biosynthesis of photopyrones, novel quorum sensing signals in Photorhabdus, has been studied by heterologous expression of the photopyrone synthase PpyS catalyzing the head-to-head condensation of two acyl moieties. The biochemical mechanism of pyrone formation has been investigated by amino acid exchange and bioinformatic analysis. Additionally, the evolutionary origin of PpyS has been studied by phylogenetic analyses also revealing homologous enzymes in Pseudomonas sp. GM30 responsible for the biosynthesis of pseudopyronines including a novel derivative. Moreover this novel class of ketosynthases is only distantly related to other pyrone-forming enzymes identified in the biosynthesis of the potent antibiotics myxopyronin and corallopyronin.
Collapse
Affiliation(s)
- Darko Kresovic
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Florence Schempp
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Zakaria Cheikh-Ali
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Helge B Bode
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany ; Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
50
|
Zocher G, Vilstrup J, Heine D, Hallab A, Goralski E, Hertweck C, Stahl M, Schäberle TF, Stehle T. Structural basis of head to head polyketide fusion by CorB. Chem Sci 2015; 6:6525-6536. [PMID: 28757960 PMCID: PMC5506619 DOI: 10.1039/c5sc02488a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/06/2015] [Indexed: 02/04/2023] Open
Abstract
Corallopyronin A is a polyketide derived from the myxobacterium Corallococcus coralloides with potent antibiotic features.
Corallopyronin A is a polyketide derived from the myxobacterium Corallococcus coralloides with potent antibiotic features. The gene cluster responsible for the biosynthesis of corallopyronin A has been described recently, and it was proposed that CorB acts as a ketosynthase to interconnect two polyketide chains in a rare head-to-head condensation reaction. We determined the structure of CorB, the interconnecting polyketide synthase, to high resolution and found that CorB displays a thiolase fold. Site-directed mutagenesis showed that the catalytic triad consisting of a cysteine, a histidine and an asparagine is crucial for catalysis, and that this triad shares similarities with the triad found in HMG-CoA synthases. We synthesized a substrate mimic to derivatize purified CorB and confirmed substrate attachment by ESI-MS. Structural analysis of the complex yielded an electron density-based model for the polyketide chain and showed that the unusually wide, T-shaped active site is able to accommodate two polyketides simultaneously. Our structural analysis provides a platform for understanding the unusual head-to-head polyketide-interconnecting reaction catalyzed by CorB.
Collapse
Affiliation(s)
- Georg Zocher
- Interfaculty Institute of Biochemistry , University Tübingen , Hoppe-Seyler-Str. 4 , 72076 Tübingen , Germany .
| | - Joachim Vilstrup
- Department of Molecular Biology and Genetics , Aarhus University , Gustav Wieds Vej 10C , DK 8000 Aarhus C , Denmark
| | - Daniel Heine
- Leibniz Institute for Natural Product Research and Infection Biology (HKI) , 07745 Jena , Germany
| | - Asis Hallab
- Max Planck Institute for Plant Breeding Research , Carl-von-Linné-Weg 10 , 50829 Köln , Germany
| | - Emilie Goralski
- Institute for Pharmaceutical Biology , University of Bonn , Nussallee 6 , 53115 Bonn , Germany .
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology (HKI) , 07745 Jena , Germany.,Chair for Natural Product Chemistry , Friedrich Schiller University , 07743 Jena , Germany
| | - Mark Stahl
- Center for Plant Molecular Biology , University Tübingen , Auf der Morgenstelle 32 , 72076 Tübingen , Germany
| | - Till F Schäberle
- Institute for Pharmaceutical Biology , University of Bonn , Nussallee 6 , 53115 Bonn , Germany .
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry , University Tübingen , Hoppe-Seyler-Str. 4 , 72076 Tübingen , Germany . .,Department of Pediatrics , Vanderbilt University School of Medicine , Nashville , TN 37232 , USA
| |
Collapse
|