1
|
Une R, Uegaki R, Maega S, Ono M, Bito T, Iwasaki T, Shiraishi A, Satake H, Kawano T. FRPR-1, a G protein-coupled receptor in the FMRFamide-related peptide receptor family, modulates larval development as a receptor candidate of the FMRFamide-like peptide FLP-1 in Caenorhabditis elegans. Biosci Biotechnol Biochem 2025; 89:586-593. [PMID: 39814567 DOI: 10.1093/bbb/zbaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
FMRFamide-like peptides (FLPs) and their receptors, FMRFamide-related peptide receptors (FRPRs) are widely conserved in free-living and parasitic nematodes. Herein, we identified FRPR-1 as an FLP-1 receptor candidate involved in larval development and diapause in the model nematode Caenorhabditis elegans. Our molecular genetic study, supported by in silico research, revealed the following: (1) frpr-1 loss-of-function completely suppresses the promotion of larval diapause caused by flp-1 overexpression; (2) AlphaFold2 analysis revealed the binding of FLP-1 to FRPR-1; (3) FRPR-1 as well as FLP-1 modulates the production and secretion of the predominant insulin-like peptide DAF-28, which is produced in ASI neurons; and (4) the suppression of larval diapause by frpr-1 loss-of-function is completely suppressed by a daf-28 defect. Thus, FRPR-1 regulates larval development and diapause by modulating DAF-28 production and secretion. This study may provide new insights into the development of novel nematicides targeting parasitic nematodes using FRPR-1 inhibitors.
Collapse
Affiliation(s)
- Risako Une
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, 680-8553 Tottori, Japan
| | - Riko Uegaki
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, 680-8553 Tottori, Japan
| | - Sho Maega
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, 680-8553 Tottori, Japan
| | - Masahiro Ono
- Department of Bioresources Science, The United Graduate School of Agriculture, Tottori University, 680-8553 Tottori, Japan
| | - Tomohiro Bito
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, 680-8553 Tottori, Japan
- Department of Bioresources Science, The United Graduate School of Agriculture, Tottori University, 680-8553 Tottori, Japan
| | - Takashi Iwasaki
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, 680-8553 Tottori, Japan
- Department of Bioresources Science, The United Graduate School of Agriculture, Tottori University, 680-8553 Tottori, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 619-0284 Kyoto, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 619-0284 Kyoto, Japan
| | - Tsuyoshi Kawano
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, 680-8553 Tottori, Japan
- Department of Bioresources Science, The United Graduate School of Agriculture, Tottori University, 680-8553 Tottori, Japan
| |
Collapse
|
2
|
Sakamoto K, Kawano T. Adapting Caenorhabditis elegans to evaluating functional foods and ingredients for cholesterol absorption. Biosci Biotechnol Biochem 2025; 89:342-346. [PMID: 39663215 DOI: 10.1093/bbb/zbae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
The nematode Caenorhabditis elegans is an excellent model organism for elucidating higher life phenomena. C. elegans and humans are common in many aspects. During our research on development and life span regulation, we identified RAB-18, a small guanosine triphosphatase (GTPase) involved in the membrane trafficking of NCR-1, a cholesterol transporter mainly expressed in the intestine. We expressed the human NPC1L1, an intestinal cholesterol transporter, in mutant C. elegans lacking NCR-1. NPC1L1-expressing animals revealed almost the same larval diapause in the presence of a diapause-inducing pheromone and lipid droplets containing cholesterol as in wild-type C. elegans. This result indicates that C. elegans NCR-1 and human NPC1L1 are exchangeable and that C. elegans RAB-18 transports human NPC1L1 to the apical membrane in the C. elegans intestine. This transgenic C. elegans could be adapted to evaluate functional foods and ingredients regarding cholesterol absorption.
Collapse
Affiliation(s)
- Kanato Sakamoto
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, Minami 4-101, Koyama-cho, Tottori 680-8553, Japan
| | - Tsuyoshi Kawano
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, Minami 4-101, Koyama-cho, Tottori 680-8553, Japan
| |
Collapse
|
3
|
Veuthey T, Florman JT, Giunti S, Romussi S, De Rosa MJ, Alkema MJ, Rayes D. The neurohormone tyramine stimulates the secretion of an insulin-like peptide from the Caenorhabditis elegans intestine to modulate the systemic stress response. PLoS Biol 2025; 23:e3002997. [PMID: 39874242 PMCID: PMC11774402 DOI: 10.1371/journal.pbio.3002997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025] Open
Abstract
The DAF-2/insulin/insulin-like growth factor signaling (IIS) pathway plays an evolutionarily conserved role in regulating reproductive development, life span, and stress resistance. In Caenorhabditis elegans, DAF-2/IIS signaling is modulated by an extensive array of insulin-like peptides (ILPs) with diverse spatial and temporal expression patterns. However, the release dynamics and specific functions of these ILPs in adapting to different environmental conditions remain poorly understood. Here, we show that the ILP, insulin-3 (INS-3), plays a crucial role in modulating the response to various environmental stressors in C. elegans. ins-3 mutants display increased resistance to heat, oxidative stress, and starvation; however, this advantage is countered by slower reproductive development under favorable conditions. We find that ins-3 expression is downregulated in response to environmental stressors, whereas, the neurohormone tyramine, which is released during the acute flight response, increases ins-3 expression. We show that tyramine induces intestinal calcium (Ca2+) transients through the activation of the TYRA-3 receptor. Our data support a model in which tyramine negatively impacts environmental stress resistance by stimulating the release of INS-3 from the intestine via the activation of a TYRA-3-Gαq-IP3 pathway. The release of INS-3 systemically activates the DAF-2 pathway, resulting in the inhibition of cytoprotective mechanisms mediated by DAF-16/FOXO. These studies offer mechanistic insights into a brain-gut communication pathway that weighs adaptive strategies to respond to acute and long-term stressors.
Collapse
Affiliation(s)
- Tania Veuthey
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - Jeremy T. Florman
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Sebastián Giunti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - Stefano Romussi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - María José De Rosa
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - Mark J. Alkema
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Diego Rayes
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| |
Collapse
|
4
|
Awazu T, Sakamoto K, Minagi Y, Ohnishi M, Bito T, Matsunaga Y, Iwasaki T, Kawano T. The small GTPase RAB-18 is involved in regulating development/diapause by recruiting the intestinal cholesterol transporter NCR-1 onto the apical side in Caenorhabditis elegans. Biochem Biophys Res Commun 2024; 734:150609. [PMID: 39232459 DOI: 10.1016/j.bbrc.2024.150609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
RAB family proteins, which are small GTPases, are integral to the process of eukaryotic membrane trafficking. In the nematode, Caenorhabditis elegans, 31 RAB proteins have been identified through genome sequencing. Using an RNAi screen specifically targeting C. elegans rab genes, we identified multiple genes that are involved in the regulation of larval development, in particular, the rab-18 gene. Our molecular genetic studies resulted in several findings. First, RAB-18 predominantly functions in the intestine to regulate larval development by modulating steroid hormone signaling. Second, the C. elegans cholesterol transporter NCR-1 is a target of RAB-18 in the intestine. Third, the membrane trafficking of NCR-1 to the apical side in intestinal cells is particularly influenced by RAB-18. Finally, RAB-18 and NCR-1 possibly co-localize on membrane vesicles. Our study is the first to demonstrate the relationship between a RAB protein and a cholesterol transporter, in which the RAB protein probably drives the transporter to the apical membrane in the intestine to regulate cholesterol uptake. This study provides insight into the molecular mechanisms underlying human disease stemming from a transport defect of cholesterol and its derivative.
Collapse
Affiliation(s)
- Toshikuni Awazu
- Department of Bioscience, Biotechnology, and Agrochemistry, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Kanato Sakamoto
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| | - Yuka Minagi
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| | - Masumi Ohnishi
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| | - Tomohiro Bito
- Department of Bioscience, Biotechnology, and Agrochemistry, Faculty of Agriculture, Tottori University, Tottori, Japan; Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| | | | - Takashi Iwasaki
- Department of Bioscience, Biotechnology, and Agrochemistry, Faculty of Agriculture, Tottori University, Tottori, Japan; Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| | - Tsuyoshi Kawano
- Department of Bioscience, Biotechnology, and Agrochemistry, Faculty of Agriculture, Tottori University, Tottori, Japan; Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, Tottori, Japan.
| |
Collapse
|
5
|
Veuthey T, Giunti S, De Rosa MJ, Alkema M, Rayes D. The neurohormone tyramine stimulates the secretion of an Insulin-Like Peptide from the intestine to modulate the systemic stress response in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579207. [PMID: 38370834 PMCID: PMC10871264 DOI: 10.1101/2024.02.06.579207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The DAF-2/insulin/insulin-like growth factor signaling (IIS) pathway plays an evolutionarily conserved role in regulating reproductive development, lifespan, and stress resistance. In C. elegans , DAF-2/IIS signaling is modulated by an extensive array of insulin-like peptides (ILPs) with diverse spatial and temporal expression patterns. However, the release dynamics and specific functions of these ILPs in adapting to different environmental conditions remain poorly understood. Here, we show that the ILP, INS-3, plays a crucial role in modulating the response to different types of stressors in C. elegans . ins-3 mutants display increased resistance to both heat and oxidative stress; however, under favorable conditions, this advantage is countered by slower reproductive development. ins-3 expression in both neurons and the intestine is downregulated in response to environmental stressors. Conversely, the neurohormone tyramine, which is released during the acute flight response, triggers an upregulation in ins-3 expression. Moreover, we found that tyramine negatively impacts environmental stress resistance by stimulating the release of INS-3 from the intestine. The subsequent release of INS-3 systemically activates the DAF-2 pathway, resulting in the inhibition of cytoprotective mechanisms mediated by DAF-16/FOXO and HSF-1. These studies offer mechanistic insights into the brain-gut communication pathway that weighs adaptive strategies to respond to acute and long-term stress scenarios.
Collapse
|
6
|
Une R, Kageyama N, Ono M, Matsunaga Y, Iwasaki T, Kawano T. The FMRFamide-like peptide FLP-1 modulates larval development by regulating the production and secretion of the insulin-like peptide DAF-28 in Caenorhabditis elegans. Biosci Biotechnol Biochem 2023; 87:171-178. [PMID: 36507740 DOI: 10.1093/bbb/zbac187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/12/2022] [Indexed: 12/14/2022]
Abstract
The FMRFamide-like peptides (FLPs) are conserved in both free-living and parasitic nematodes. This molecular genetic study verified the relevance of the flp-1 gene, which is conserved in many nematode species, to the larval development of the free-living soil nematode Caenorhabditis elegans. Using C. elegans as a model, we found that: (1) FLP-1 suppressed larval development, resulting in diapause; (2) the secretion of FLP-1, which is produced in AVK head neurons, was suppressed by the presence of food (Escherichia coli) as an environmental factor to continue larval development; (3) the FLP-1 reduced the production and secretion of DAF-28, which is produced in ASI head neurons and is the predominant insulin-like peptide (INS) present. FLP-1 is conserved in many species of plant-parasitic root-knot nematodes that cause severe damage to crops. Therefore, our findings may provide insight into the development of new nematicides that can disturb their infection and development.
Collapse
Affiliation(s)
- Risako Une
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori, Tottori 680-8553, Japan
| | - Natsumi Kageyama
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori, Tottori 680-8553, Japan
| | - Masahiro Ono
- Department of Bioresources Science, The United Graduate School of Agriculture, Tottori University, Tottori, Japan
| | | | - Takashi Iwasaki
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori, Tottori 680-8553, Japan
- Department of Bioresources Science, The United Graduate School of Agriculture, Tottori University, Tottori, Japan
| | - Tsuyoshi Kawano
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori, Tottori 680-8553, Japan
- Department of Bioresources Science, The United Graduate School of Agriculture, Tottori University, Tottori, Japan
| |
Collapse
|
7
|
Kageyama N, Nose M, Ono M, Matsunaga Y, Iwasaki T, Kawano T. The FMRFamide-like peptide FLP-2 is involved in the modulation of larval development and adult lifespan by regulating the secretion of the insulin-like peptide INS-35 in Caenorhabditis elegans. Biosci Biotechnol Biochem 2022; 86:1231-1239. [PMID: 35786701 DOI: 10.1093/bbb/zbac108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/05/2022] [Indexed: 11/12/2022]
Abstract
In the animal kingdom, neuropeptides regulate diverse physiological functions. In invertebrates, FMRFamide and its related peptides, a family of neuropeptides, play an important role as neurotransmitters. The FMRFamide-like peptides (FLPs) are one of the most diverse neuropeptide families and are conserved in nematodes. Our screen for flp genes of the free-living soil nematode Caenorhabditis elegans revealed that the flp-2 gene is involved in larval development. The gene is also conserved in plant-parasitic root-knot nematodes. Our molecular genetic analyses of the C. elegans flp-2 gene demonstrated as follows: 1) the production and secretion of FLP-2, produced in the head neurons, are controlled by environmental factors (growth density and food); 2) the FLP-2 is involved in not only larval development but also adult lifespan by regulating the secretion of one of the insulin-like peptides INS-35, produced in the intestine. These findings provide new insight into the development of new nematicides.
Collapse
Affiliation(s)
- Natsumi Kageyama
- Department of Agricultural Science, Graduate School of Sustainability Science
| | - Masayo Nose
- Department of Agricultural Science, Graduate School of Sustainability Science
| | - Masahiro Ono
- Department of Bioresources Science, The United Graduate School of Agriculture, Tottori University, Tottori, Japan
| | | | - Takashi Iwasaki
- Department of Agricultural Science, Graduate School of Sustainability Science.,Department of Bioresources Science, The United Graduate School of Agriculture, Tottori University, Tottori, Japan
| | - Tsuyoshi Kawano
- Department of Agricultural Science, Graduate School of Sustainability Science.,Department of Bioresources Science, The United Graduate School of Agriculture, Tottori University, Tottori, Japan
| |
Collapse
|
8
|
Cambron-Kopco LD, Yocum GD, Yeater KM, Greenlee KJ. Timing of Diapause Initiation and Overwintering Conditions Alter Gene Expression Profiles in Megachile rotundata. Front Physiol 2022; 13:844820. [PMID: 35350686 PMCID: PMC8957994 DOI: 10.3389/fphys.2022.844820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/31/2022] [Indexed: 11/25/2022] Open
Abstract
Within the United States and Canada, the primary pollinator of alfalfa is the alfalfa leafcutting bee (ALCB), Megachile rotundata. Our previous findings showed that overwintering conditions impacted gene expression profile in ALCB prepupae that entered diapause early in the season. However, ALCB are a bivoltine species, which begs the question of whether bees entering diapause later in the season also show this trend. To better understand the effects of the timing of diapause initiation, we analyzed mRNA copy number of genes known to be involved in diapause regulation in early and late season diapausing ALCB that were overwintered in field conditions or using current agricultural management conditions. We hypothesized that overwintering conditions for late diapausing bees also affects gene expression profiles. Our results showed that expression profiles were altered by both overwintering condition and timing of diapause initiation, with bees that entered diapause earlier in the season showing different expression patterns than those that entered diapause later in the season. This trend was seen in expression of members of the cyclin family and several targets of the insulin signaling pathway, including forkhead box protein O (FOXO), which is known to be important for diapause regulation and stress responses. But, of the genes screened, the proto-oncogene, Myc, was the most impacted by the timing of diapause initiation. Under field conditions, there were significant differences in Myc expression between the early and late season samples in all months except for November and February. This same general trend in Myc expression was also seen in the laboratory-maintained bees with significant difference in expression in all months except for November, February, and May. These results support previous conclusions from our research showing that the molecular regulation of diapause development in ALCB is not a simple singular cascade of gene expression but a highly plastic response that varies between bees depending upon their environmental history.
Collapse
Affiliation(s)
- Lizzette D. Cambron-Kopco
- Greenlee Laboratory, Department of Biological Sciences, North Dakota State University, Fargo, ND, United States
- *Correspondence: Lizzette D. Cambron-Kopco,
| | - George D. Yocum
- Insect Genetics and Biochemistry Research Unit, Edward T. Schaefer Agricultural Research Center, USDA-ARS, Fargo, ND, United States
| | - Kathleen M. Yeater
- Plains Area Office of The Area Director, USDA-ARS, Fort Collins, CO, United States
| | - Kendra J. Greenlee
- Greenlee Laboratory, Department of Biological Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
9
|
Guo S, Tian Z, Wu QW, King-Jones K, Liu W, Zhu F, Wang XP. Steroid hormone ecdysone deficiency stimulates preparation for photoperiodic reproductive diapause. PLoS Genet 2021; 17:e1009352. [PMID: 33529191 PMCID: PMC7880476 DOI: 10.1371/journal.pgen.1009352] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 02/12/2021] [Accepted: 01/09/2021] [Indexed: 01/21/2023] Open
Abstract
Diapause, a programmed developmental arrest primarily induced by seasonal environmental changes, is very common in the animal kingdom, and found in vertebrates and invertebrates alike. Diapause provides an adaptive advantage to animals, as it increases the odds of surviving adverse conditions. In insects, individuals perceive photoperiodic cues and modify endocrine signaling to direct reproductive diapause traits, such as ovary arrest and increased fat accumulation. However, it remains unclear as to which endocrine factors are involved in this process and how they regulate the onset of reproductive diapause. Here, we found that the long day-mediated drop in the concentration of the steroid hormone ecdysone is essential for the preparation of photoperiodic reproductive diapause in Colaphellus bowringi, an economically important cabbage beetle. The diapause-inducing long-day condition reduced the expression of ecdysone biosynthetic genes, explaining the drop in the titer of 20-hydroxyecdysone (20E, the active form of ecdysone) in female adults. Application of exogenous 20E induced vitellogenesis and ovarian development but reduced fat accumulation in the diapause-destined females. Knocking down the ecdysone receptor (EcR) in females destined for reproduction blocked reproductive development and induced diapause traits. RNA-seq and hormone measurements indicated that 20E stimulates the production of juvenile hormone (JH), a key endocrine factor in reproductive diapause. To verify this, we depleted three ecdysone biosynthetic enzymes via RNAi, which confirmed that 20E is critical for JH biosynthesis and reproductive diapause. Importantly, impairing Met function, a component of the JH intracellular receptor, partially blocked the 20E-regulated reproductive diapause preparation, indicating that 20E regulates reproductive diapause in both JH-dependent and -independent manners. Finally, we found that 20E deficiency decreased ecdysis-triggering hormone signaling and reduced JH production, thereby inducing diapause. Together, these results suggest that 20E signaling is a pivotal regulator that coordinates reproductive plasticity in response to environmental inputs. Developmental arrest pervades organismal development and physiology where it facilitates an enormous range of adaptive responses to stressful conditions. Many animals exhibit various forms of developmental arrest that ensures survival under the most adverse environments. Reproductive diapause occurs when adults temporarily suspend reproduction in response to environmental stress and has been documented for a variety of invertebrates, particularly insects. Endocrine signals play a central role in translating environmental cues such as photoperiod into reproductive diapause-related physiology and behavior. However, it has been an unresolved issue as to which endocrine factors can respond to photoperiodic inputs and regulate diapause outputs. In this study, we found that a decrease in ecdysone levels is critical for reproductive diapause to occur. Also, ecdysone could interact with juvenile hormone to regulate the occurrence of reproductive diapause in response to photoperiodic cues. Our findings provide new insight into endocrine mechanisms of photoperiodic reproductive diapause and an example of phenotypic plasticity in animals.
Collapse
Affiliation(s)
- Shuang Guo
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Zhong Tian
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Qing-Wen Wu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Wen Liu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
- * E-mail: (WL); (X-PW)
| | - Fen Zhu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
- * E-mail: (WL); (X-PW)
| |
Collapse
|
10
|
Yabuta Y, Nagata R, Aoki Y, Kariya A, Wada K, Yanagimoto A, Hara H, Bito T, Okamoto N, Yoshida S, Ishihara A, Watanabe F. L-Ascorbate Biosynthesis Involves Carbon Skeleton Rearrangement in the Nematode Caenorhabditis elegans. Metabolites 2020; 10:metabo10080334. [PMID: 32824560 PMCID: PMC7463950 DOI: 10.3390/metabo10080334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 11/16/2022] Open
Abstract
Ascorbate (AsA) is required as a cofactor and is widely distributed in plants and animals. Recently, it has been suggested that the nematode Caenorhabditis elegans also synthesizes AsA. However, its biosynthetic pathway is still unknown. To further understand AsA biosynthesis in C. elegans, we analyzed the incorporation of the 13C atom into AsA using gas chromatography-mass spectrometry (GC-MS) in worms fed with D-Glc (1-13C)-labeled Escherichia coli. GC-MS analysis revealed that AsA biosynthesis in C. elegans, similarly to that in mammalian systems, involves carbon skeleton rearrangement. The addition of L-gulono-1,4-lactone, an AsA precursor in the mammalian pathway, significantly increased AsA level in C. elegans, whereas the addition of L-galactono-1,4-lactone, an AsA precursor in the plant and Euglena pathway, did not affect AsA level. The suppression of E03H4.3 (an ortholog of gluconolactonase) or the deficiency of F54D5.12 (an ortholog of L-gulono-1,4-lactone oxidase) significantly decreased AsA level in C. elegans. Although N2- and AsA-deficient F54D5.12 knockout mutant worm (tm6671) morphologies and the ratio of collagen to non-collagen protein did not show any significant differences, the mutant worms exhibited increased malondialdehyde levels and reduced lifespan compared with the N2 worms. In conclusion, our findings indicate that the AsA biosynthetic pathway is similar in C. elegans and mammals.
Collapse
Affiliation(s)
- Yukinori Yabuta
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan; (R.N.); (Y.A.); (A.K.); (K.W.); (A.Y.); (H.H.); (T.B.); (A.I.); (F.W.)
- Correspondence: ; Tel.: +81-857-31-5382
| | - Ryuta Nagata
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan; (R.N.); (Y.A.); (A.K.); (K.W.); (A.Y.); (H.H.); (T.B.); (A.I.); (F.W.)
| | - Yuka Aoki
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan; (R.N.); (Y.A.); (A.K.); (K.W.); (A.Y.); (H.H.); (T.B.); (A.I.); (F.W.)
| | - Ayumi Kariya
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan; (R.N.); (Y.A.); (A.K.); (K.W.); (A.Y.); (H.H.); (T.B.); (A.I.); (F.W.)
| | - Kousuke Wada
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan; (R.N.); (Y.A.); (A.K.); (K.W.); (A.Y.); (H.H.); (T.B.); (A.I.); (F.W.)
| | - Ayako Yanagimoto
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan; (R.N.); (Y.A.); (A.K.); (K.W.); (A.Y.); (H.H.); (T.B.); (A.I.); (F.W.)
| | - Hiroka Hara
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan; (R.N.); (Y.A.); (A.K.); (K.W.); (A.Y.); (H.H.); (T.B.); (A.I.); (F.W.)
| | - Tomohiro Bito
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan; (R.N.); (Y.A.); (A.K.); (K.W.); (A.Y.); (H.H.); (T.B.); (A.I.); (F.W.)
| | - Naho Okamoto
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan;
| | - Shinichi Yoshida
- Electronic and Organic Material Laboratory, Tottori Institute of Industrial Technology, 7-1-1 Wakabadai-minami, Tottori 689-1112, Japan;
| | - Atsushi Ishihara
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan; (R.N.); (Y.A.); (A.K.); (K.W.); (A.Y.); (H.H.); (T.B.); (A.I.); (F.W.)
| | - Fumio Watanabe
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan; (R.N.); (Y.A.); (A.K.); (K.W.); (A.Y.); (H.H.); (T.B.); (A.I.); (F.W.)
| |
Collapse
|
11
|
Elucidating the molecular and developmental biology of parasitic nematodes: Moving to a multiomics paradigm. ADVANCES IN PARASITOLOGY 2020; 108:175-229. [PMID: 32291085 DOI: 10.1016/bs.apar.2019.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the past two decades, significant progress has been made in the sequencing, assembly, annotation and analyses of genomes and transcriptomes of parasitic worms of socioeconomic importance. This progress has somewhat improved our knowledge and understanding of these pathogens at the molecular level. However, compared with the free-living nematode Caenorhabditis elegans, the areas of functional genomics, transcriptomics, proteomics and metabolomics of parasitic nematodes are still in their infancy, and there are major gaps in our knowledge and understanding of the molecular biology of parasitic nematodes. The information on signalling molecules, molecular pathways and microRNAs (miRNAs) that are known to be involved in developmental processes in C. elegans and the availability of some molecular resources (draft genomes, transcriptomes and some proteomes) for selected parasitic nematodes provide a basis to start exploring the developmental biology of parasitic nematodes. Indeed, some studies have identified molecules and pathways that might associate with developmental processes in related, parasitic nematodes, such as Haemonchus contortus (barber's pole worm). However, detailed information is often scant and 'omics resources are limited, preventing a proper integration of 'omic data sets and comprehensive analyses. Moreover, little is known about the functional roles of pheromones, hormones, signalling pathways and post-transcriptional/post-translational regulations in the development of key parasitic nematodes throughout their entire life cycles. Although C. elegans is an excellent model to assist molecular studies of parasitic nematodes, its use is limited when it comes to explorations of processes that are specific to parasitism within host animals. A deep understanding of parasitic nematodes, such as H. contortus, requires substantially enhanced resources and the use of integrative 'omics approaches for analyses. The improved genome and well-established in vitro larval culture system for H. contortus provide unprecedented opportunities for comprehensive studies of the transcriptomes (mRNA and miRNA), proteomes (somatic, excretory/secretory and phosphorylated proteins) and lipidomes (e.g., polar and neutral lipids) of this nematode. Such resources should enable in-depth explorations of its developmental biology at a level, not previously possible. The main aims of this review are (i) to provide a background on the development of nematodes, with a particular emphasis on the molecular aspects involved in the dauer formation and exit in C. elegans; (ii) to critically appraise the current state of knowledge of the developmental biology of parasitic nematodes and identify key knowledge gaps; (iii) to cover salient aspects of H. contortus, with a focus on the recent advances in genomics, transcriptomics, proteomics and lipidomics as well as in vitro culturing systems; (iv) to review recent advances in our knowledge and understanding of the molecular and developmental biology of H. contortus using an integrative multiomics approach, and discuss the implications of this approach for detailed explorations of signalling molecules, molecular processes and pathways likely associated with nematode development, adaptation and parasitism, and for the identification of novel intervention targets against these pathogens. Clearly, the multiomics approach established recently is readily applicable to exploring a wide range of interesting and socioeconomically significant parasitic worms (including also trematodes and cestodes) at the molecular level, and to elucidate host-parasite interactions and disease processes.
Collapse
|
12
|
Barberà M, Cañas-Cañas R, Martínez-Torres D. Insulin-like peptides involved in photoperiodism in the aphid Acyrthosiphon pisum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 112:103185. [PMID: 31291597 DOI: 10.1016/j.ibmb.2019.103185] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/28/2019] [Accepted: 07/06/2019] [Indexed: 06/09/2023]
Abstract
Aphids were the first animals reported as photoperiodic as their life cycles are strongly determined by the photoperiod. During the favourable seasons (characterised by long days) aphid populations consist exclusively of viviparous parthenogenetic females (known as virginoparae). Shortening of the photoperiod in autumn is perceived by aphids as the signal that anticipates the harsh season, leading to a switch in the reproductive mode giving place to the sexual morphs (oviparae females and males) that mate and lay winter-resistant (diapause-like) eggs. The molecular and cellular basis governing the switch between the two reproductive modes are far from being understood. Classical experiments identified a group of neurosecretory cells in the pars intercerebralis of the aphid brain (the so called group I of neurosecretory cells) that were essential for the development of embryos as parthenogenetic females and were thus proposed to synthesise a parthenogenesis promoting substance that was termed "virginoparin". Since insulin-like peptides (ILPs) have been implicated in the control of diapause in other insects, we investigated their involvement in aphid photoperiodism. We compared the expression of two ILPs (ILP1 and ILP4) and an Insulin receptor coding genes in A. pisum aphids reared under long- and short-day conditions. The three genes showed higher expression in long-day reared aphids. In addition, we localised the site of expression of the two ILP genes in the aphid brain. Both genes were found to be expressed in the group I of neurosecretory cells. Altogether, our results suggest that ILP1 and ILP4 play an important role in the control of the aphid life-cycle by promoting the parthenogenetic development during long-day seasons while their repression by short days would activate the sexual development. Thus we propose these ILPs correspond to the so called "virginoparin" by early bibliography. A possible connection with the circadian system is also discussed.
Collapse
Affiliation(s)
- Miquel Barberà
- Institut de Biologia Integrativa de Sistemes, Parc Cientific Universitat de València, C/ Catedrático José Beltrán nº 2, 46980, Paterna, València, Spain
| | - Rubén Cañas-Cañas
- Institut de Biologia Integrativa de Sistemes, Parc Cientific Universitat de València, C/ Catedrático José Beltrán nº 2, 46980, Paterna, València, Spain
| | - David Martínez-Torres
- Institut de Biologia Integrativa de Sistemes, Parc Cientific Universitat de València, C/ Catedrático José Beltrán nº 2, 46980, Paterna, València, Spain.
| |
Collapse
|
13
|
Ma G, Wang T, Korhonen PK, Young ND, Nie S, Ang CS, Williamson NA, Reid GE, Gasser RB. Dafachronic acid promotes larval development in Haemonchus contortus by modulating dauer signalling and lipid metabolism. PLoS Pathog 2019; 15:e1007960. [PMID: 31335899 PMCID: PMC6677322 DOI: 10.1371/journal.ppat.1007960] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/02/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023] Open
Abstract
Here, we discovered an endogenous dafachronic acid (DA) in the socioeconomically important parasitic nematode Haemonchus contortus. We demonstrate that DA promotes larval exsheathment and development in this nematode via a relatively conserved nuclear hormone receptor (DAF-12). This stimulatory effect is dose- and time-dependent, and relates to a modulation of dauer-like signalling, and glycerolipid and glycerophospholipid metabolism, likely via a negative feedback loop. Specific chemical inhibition of DAF-9 (cytochrome P450) was shown to significantly reduce the amount of endogenous DA in H. contortus; compromise both larval exsheathment and development in vitro; and modulate lipid metabolism. Taken together, this evidence shows that DA plays a key functional role in the developmental transition from the free-living to the parasitic stage of H. contortus by modulating the dauer-like signalling pathway and lipid metabolism. Understanding the intricacies of the DA-DAF-12 system and associated networks in H. contortus and related parasitic nematodes could pave the way to new, nematode-specific treatments. In the present study, using an integrative multi-omics approach, we show that dafachronic acid (DA) plays a critical functional role in the developmental transition in larvae of the parasitic nematode Haemonchus contortus (barber’s pole worm) by modulating the dauer-like signalling pathway and lipid metabolism. The DA-DAF-12 signalling module in H. contortus provides a paradigm to explore its developmental and reproductive biology at the molecular level, to study physiochemical cross-talk between the parasite and its hosts, and to discover novel anthelmintic targets.
Collapse
Affiliation(s)
- Guangxu Ma
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Pasi K. Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Neil D. Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Shuai Nie
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria, Australia
| | - Ching-Seng Ang
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas A. Williamson
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria, Australia
| | - Gavin E. Reid
- School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
14
|
O’Donnell MP, Chao PH, Kammenga JE, Sengupta P. Rictor/TORC2 mediates gut-to-brain signaling in the regulation of phenotypic plasticity in C. elegans. PLoS Genet 2018; 14:e1007213. [PMID: 29415022 PMCID: PMC5819832 DOI: 10.1371/journal.pgen.1007213] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/20/2018] [Accepted: 01/22/2018] [Indexed: 01/03/2023] Open
Abstract
Animals integrate external cues with information about internal conditions such as metabolic state to execute the appropriate behavioral and developmental decisions. Information about food quality and quantity is assessed by the intestine and transmitted to modulate neuronal functions via mechanisms that are not fully understood. The conserved Target of Rapamycin complex 2 (TORC2) controls multiple processes in response to cellular stressors and growth factors. Here we show that TORC2 coordinates larval development and adult behaviors in response to environmental cues and feeding state in the bacterivorous nematode C. elegans. During development, pheromone, bacterial food, and temperature regulate expression of the daf-7 TGF-β and daf-28 insulin-like peptide in sensory neurons to promote a binary decision between reproductive growth and entry into the alternate dauer larval stage. We find that TORC2 acts in the intestine to regulate neuronal expression of both daf-7 and daf-28, which together reflect bacterial-diet dependent feeding status, thus providing a mechanism for integration of food signals with external cues in the regulation of neuroendocrine gene expression. In the adult, TORC2 similarly acts in the intestine to modulate food-regulated foraging behaviors via a PDF-2/PDFR-1 neuropeptide signaling-dependent pathway. We also demonstrate that genetic variation affects food-dependent larval and adult phenotypes, and identify quantitative trait loci (QTL) associated with these traits. Together, these results suggest that TORC2 acts as a hub for communication of feeding state information from the gut to the brain, thereby contributing to modulation of neuronal function by internal state. Decision-making in all animals, including humans, involves weighing available information about the external environment as well as the animals’ internal conditions. Information about the environment is obtained via the sensory nervous system, whereas internal state can be assessed via cues such as levels of hormones or nutrients. How multiple external and internal inputs are processed in the nervous system to drive behavior or development is not fully understood. In this study, we examine how the nematode C. elegans integrates dietary information received by the gut with environmental signals to alter nervous system function. We have found that a signaling complex, called TORC2, acts in the gut to relay nutrition signals to alter hormonal signaling by the nervous system in C. elegans. Altered neuronal signaling in turn affects a food-dependent binary developmental decision in larvae, as well as food-dependent foraging behaviors in adults. Our results provide a mechanism by which animals prioritize specific signals such as feeding status to appropriately alter their development and/or behavior.
Collapse
Affiliation(s)
- Michael P. O’Donnell
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, United States of America
- * E-mail: (MPO); (PS)
| | - Pin-Hao Chao
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, United States of America
| | - Jan E. Kammenga
- Laboratory of Nematology, Wageningen University and Research, Wageningen, The Netherlands
| | - Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, United States of America
- * E-mail: (MPO); (PS)
| |
Collapse
|
15
|
Matsunaga Y, Matsukawa T, Iwasaki T, Nagata K, Kawano T. Comparison of physiological functions of antagonistic insulin-like peptides, INS-23 and INS-18, in Caenorhabditis elegans. Biosci Biotechnol Biochem 2018; 82:90-96. [DOI: 10.1080/09168451.2017.1415749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
In Caenorhabditis elgans, insulin-like peptides have significant roles in modulating larval diapause and adult lifespan via the insulin/IGF-1 signaling (IIS) pathway. Although 40 insulin-like peptides (ILPs) have been identified, it remains unknown how ILPs act as either agonists or antagonists for their sole receptor, DAF-2. Here we found 1) INS-23 functions as an antagonistic ILP to promote larval diapause through the IIS pathway like a DAF-2 antagonist, INS-18, 2) INS-23 and INS-18 have similar biochemical functions. In addition, our molecular modeling suggests that INS-23 and INS-18 have characteristic insertions in the B-domain, which are crucial for the recognition of the insulin receptor, when compared with DAF-2 agonists. These characteristic insertions in the B-domain of INS-23 and INS-18 would modulate their intermolecular interactions with the DAF-2 receptor, which may lead these molecules to act as antagonistic ligands. Our study provides new insight into the function and structure of ILPs.
Collapse
Affiliation(s)
- Yohei Matsunaga
- Department of Bioresources Science, The United Graduate School of Agriculture, Tottori University, Tottori, Japan
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Toshiya Matsukawa
- Department of Bioresource Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
- Department of Molecular Metabolic Regulation, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Takashi Iwasaki
- Department of Bioresources Science, The United Graduate School of Agriculture, Tottori University, Tottori, Japan
- Department of Bioresource Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Kawano
- Department of Bioresources Science, The United Graduate School of Agriculture, Tottori University, Tottori, Japan
- Department of Bioresource Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
| |
Collapse
|
16
|
|
17
|
Abstract
The last two years of insulin-like growth factor (IGF) research has yielded a vast literature highlighting the central role IGFs factors play in processes such as development, growth, aging and neurological function. It also provides our latest understanding of how IGF system perturbation is linked to diseases including growth deficiency, cancer, and neurological and cardiovascular diseases. A snapshot of the highlights is presented in this review, focussing on the topics of IGFs and growth, comparative and structural biology to understand insulin-like peptide function, IGFs and cancer, and IGFs and neurological function. New revelations in the IGF field include the unexpected discovery that the gut microbiome has a remarkable influence on the GH/IGF axis to influence growth, that the insulin of cone snails provides novel insight into the mechanism of receptor binding, and that macrophages in the tumour microenvironment can provide IGF-I to promote drug resistance. These advances and many others provide the exciting basis for future development of disease treatments and for biomarkers of disease.
Collapse
Affiliation(s)
- Briony E Forbes
- Department of Medical Biochemistry, School of Medicine, Flinders University of South Australia, Bedford Park 5042, South Australia, Australia.
| |
Collapse
|
18
|
Gravato-Nobre MJ, Vaz F, Filipe S, Chalmers R, Hodgkin J. The Invertebrate Lysozyme Effector ILYS-3 Is Systemically Activated in Response to Danger Signals and Confers Antimicrobial Protection in C. elegans. PLoS Pathog 2016; 12:e1005826. [PMID: 27525822 PMCID: PMC4985157 DOI: 10.1371/journal.ppat.1005826] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/25/2016] [Indexed: 12/17/2022] Open
Abstract
Little is known about the relative contributions and importance of antibacterial effectors in the nematode C. elegans, despite extensive work on the innate immune responses in this organism. We report an investigation of the expression, function and regulation of the six ilys (invertebrate-type lysozyme) genes of C. elegans. These genes exhibited a surprising variety of tissue-specific expression patterns and responses to starvation or bacterial infection. The most strongly expressed, ilys-3, was investigated in detail. ILYS-3 protein was expressed constitutively in the pharynx and coelomocytes, and dynamically in the intestine. Analysis of mutants showed that ILYS-3 was required for pharyngeal grinding (disruption of bacterial cells) during normal growth and consequently it contributes to longevity, as well as being protective against bacterial pathogens. Both starvation and challenge with Gram-positive pathogens resulted in ERK-MAPK-dependent up-regulation of ilys-3 in the intestine. The intestinal induction by pathogens, but not starvation, was found to be dependent on MPK-1 activity in the pharynx rather than in the intestine, demonstrating unexpected communication between these two tissues. The coelomocyte expression appeared to contribute little to normal growth or immunity. Recombinant ILYS-3 protein was found to exhibit appropriate lytic activity against Gram-positive cell wall material. Innate immune defenses against bacterial pathogenesis depend on the activation of antibacterial factors. We examined the expression and relative importance of a gene family encoding six invertebrate-type lysozymes in the much-studied nematode C. elegans. The ilys genes exhibit distinct patterns of tissue-specific expression and response to pathogenic challenge and/or starvation. The most abundantly expressed, ilys-3, exhibits constitutive pharyngeal expression, which we show is essential for efficient disruption of bacteria under non-pathogenic growth conditions, and consequently it contributes to normal longevity. ilys-3 is also strongly up-regulated in intestinal cells after starvation or exposure to Gram-positive pathogens such as Microbacterium nematophilum and acts as a ‘slow-effector’ in limiting pathogenic damage from intestinal infections. We show that this induction by pathogens depends on the action of an ERK-MAPK cascade, which acts in pharyngeal rather than intestinal cells; this implies communication between pharynx and intestine. Tagged ILYS-3 protein was detected mainly in recycling endosomes of intestinal cells and in the intestinal lumen after starvation. ILYS-3 was also expressed in coelomocytes (scavenger cells) but we found that these cells make little or no contribution to defense. We examined the enzymatic properties of recombinant ILYS-3 protein, finding that it has lytic activity against M. nematophilum cell-walls.
Collapse
Affiliation(s)
| | - Filipa Vaz
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Sergio Filipe
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Ronald Chalmers
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica and Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Jonathan Hodgkin
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|