1
|
Anderson RP, Mughal S, Wedlake GO. Proterozoic microfossils continue to provide new insights into the rise of complex eukaryotic life. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240154. [PMID: 39170929 PMCID: PMC11336685 DOI: 10.1098/rsos.240154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/23/2024]
Abstract
Eukaryotes have evolved to dominate the biosphere today, accounting for most documented living species and the vast majority of the Earth's biomass. Consequently, understanding how these biologically complex organisms initially diversified in the Proterozoic Eon over 539 million years ago is a foundational question in evolutionary biology. Over the last 70 years, palaeontologists have sought to document the rise of eukaryotes with fossil evidence. However, the delicate and microscopic nature of their sub-cellular features affords early eukaryotes diminished preservation potential. Chemical biomarker signatures of eukaryotes and the genetics of living eukaryotes have emerged as complementary tools for reconstructing eukaryote ancestry. In this review, we argue that exceptionally preserved Proterozoic microfossils are critical to interpreting these complementary tools, providing crucial calibrations to molecular clocks and testing hypotheses of palaeoecology. We highlight recent research on their preservation and biomolecular composition that offers new ways to enhance their utility.
Collapse
Affiliation(s)
- Ross P. Anderson
- Museum of Natural History, University of Oxford, OxfordOX1 3PW, UK
- All Souls College, University of Oxford, OxfordOX1 4AL, UK
| | - Sanaa Mughal
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AlbertaT6G 2E3, Canada
| | - George O. Wedlake
- Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK
| |
Collapse
|
2
|
Motomura K, Bekker A, Ikehara M, Sano T, Lin Y, Kiyokawa S. Lateral redox variability in ca. 1.9 Ga marine environments indicated by organic carbon and nitrogen isotope compositions. GEOBIOLOGY 2024; 22:e12614. [PMID: 39129173 DOI: 10.1111/gbi.12614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 08/13/2024]
Abstract
The stepwise oxygenation of Earth's surficial environment is thought to have shaped the evolutionary history of life. Microfossil records and molecular clocks suggest eukaryotes appeared during the Paleoproterozoic, perhaps shortly after the Great Oxidation Episode at ca. 2.43 Ga. The mildly oxygenated atmosphere and surface oceans likely contributed to the early evolution of eukaryotes. However, the principal trigger for the eukaryote appearance and a potential factor for their delayed expansion (i.e., intermediate ocean redox conditions until the Neoproterozoic) remain poorly understood, largely owing to a lack of constraints on marine and terrestrial nutrient cycling. Here, we analyzed redox-sensitive element contents and organic carbon and nitrogen isotope compositions of relatively low metamorphic-grade (greenschist facies) black shales preserved in the Flin Flon Belt of central Canada to examine open-marine redox conditions and biological activity around the ca. 1.9 Ga Flin Flon oceanic island arc. The black shale samples were collected from the Reed Lake area in the eastern part of the Flin Flon Belt, and the depositional site was likely distal from the Archean cratons. The black shales have low Al/Ti ratios and are slightly depleted in light rare-earth elements relative to the post-Archean average shale, which is consistent with a limited contribution from felsic igneous rocks in Archean upper continental crust. Redox conditions have likely varied between suboxic and euxinic at the depositional site of the studied section, as suggested by variable U/Al and Mo/Al ratios. Organic carbon and nitrogen isotope compositions of the black shales are approximately -23‰ and +13.7‰, respectively, and these values are systematically higher than those of broadly coeval continental margin deposits (approximately -30‰ for δ13Corg and +5‰ for δ15Nbulk). These elevated values are indicative of high productivity that led to enhanced denitrification (i.e., a high denitrification rate relative to nitrogen influx at the depositional site). Similar geochemical patterns have also been observed in the modern Peruvian oxygen minimum zone where dissolved nitrogen compounds are actively lost from the reservoir via denitrification and anammox, but the large nitrate reservoir of the deep ocean prevents exhaustion of the surface nitrate pool. Nitrogen must have been widely bioavailable in the ca. 1.9 Ga oceans, and its supply to upwelling zones must have supported habitable environments for eukaryotes, even in the middle of oceans around island arcs.
Collapse
Affiliation(s)
- Kento Motomura
- Department of Earth and Planetary Sciences, University of California, Riverside, California, USA
- Department of Earth and Planetary Sciences, Kyushu University, Fukuoka, Japan
| | - Andrey Bekker
- Department of Earth and Planetary Sciences, University of California, Riverside, California, USA
- Department of Geology, University of Johannesburg, Johannesburg, South Africa
| | - Minoru Ikehara
- Marine Core Research Institute, Kochi University, Nankoku, Kochi, Japan
| | - Takashi Sano
- Department of Geology and Paleontology, National Museum of Nature and Science, Tsukuba, Ibaraki, Japan
| | - Ying Lin
- Department of Earth and Planetary Sciences, University of California, Riverside, California, USA
| | - Shoichi Kiyokawa
- Department of Earth and Planetary Sciences, Kyushu University, Fukuoka, Japan
- Department of Geology, University of Johannesburg, Johannesburg, South Africa
- Marine Core Research Institute, Kochi University, Nankoku, Kochi, Japan
| |
Collapse
|
3
|
Miao L, Yin Z, Knoll AH, Qu Y, Zhu M. 1.63-billion-year-old multicellular eukaryotes from the Chuanlinggou Formation in North China. SCIENCE ADVANCES 2024; 10:eadk3208. [PMID: 38266082 PMCID: PMC10807817 DOI: 10.1126/sciadv.adk3208] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024]
Abstract
Multicellularity is key to the functional and ecological success of the Eukarya, underpinning much of their modern diversity in both terrestrial and marine ecosystems. Despite the widespread occurrence of simple multicellular organisms among eukaryotes, when this innovation arose remains an open question. Here, we report cellularly preserved multicellular microfossils (Qingshania magnifica) from the ~1635-million-year-old Chuanlinggou Formation, North China. The fossils consist of large uniseriate, unbranched filaments with cell diameters up to 190 micrometers; spheroidal structures, possibly spores, occur within some cells. In combination with spectroscopic characteristics, the large size and morphological complexity of these fossils support their interpretation as eukaryotes, likely photosynthetic, based on comparisons with extant organisms. The occurrence of multicellular eukaryotes in Paleoproterozoic rocks not much younger than those containing the oldest unambiguous evidence of eukaryotes as a whole supports the hypothesis that simple multicellularity arose early in eukaryotic history, as much as a billion years before complex multicellular organisms diversified in the oceans.
Collapse
Affiliation(s)
- Lanyun Miao
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zongjun Yin
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Andrew H. Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Yuangao Qu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Maoyan Zhu
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Abstract
The origin of modern eukaryotes is one of the key transitions in life's history, and also one of the least understood. Although the fossil record provides the most direct view of this process, interpreting the fossils of early eukaryotes and eukaryote-grade organisms is not straightforward. We present two end-member models for the evolution of modern (i.e., crown) eukaryotes-one in which modern eukaryotes evolved early, and another in which they evolved late-and interpret key fossils within these frameworks, including where they might fit in eukaryote phylogeny and what they may tell us about the evolution of eukaryotic cell biology and ecology. Each model has different implications for understanding the rise of complex life on Earth, including different roles of Earth surface oxygenation, and makes different predictions that future paleontological studies can test.
Collapse
Affiliation(s)
- Susannah M Porter
- Department of Earth Science, University of California at Santa Barbara, Santa Barbara, California, USA;
| | - Leigh Anne Riedman
- Department of Earth Science, University of California at Santa Barbara, Santa Barbara, California, USA;
- Earth Research Institute, University of California at Santa Barbara, Santa Barbara, California, USA;
| |
Collapse
|
5
|
Li G, Chen L, Pang K, Tang Q, Wu C, Yuan X, Zhou C, Xiao S. Tonian carbonaceous compressions indicate that Horodyskia is one of the oldest multicellular and coenocytic macro-organisms. Commun Biol 2023; 6:399. [PMID: 37046079 PMCID: PMC10097871 DOI: 10.1038/s42003-023-04740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Macrofossils with unambiguous biogenic origin and predating the one-billion-year-old multicellular fossils Bangiomorpha and Proterocladus interpreted as crown-group eukaryotes are quite rare. Horodyskia is one of these few macrofossils, and it extends from the early Mesoproterozoic Era to the terminal Ediacaran Period. The biological interpretation of this enigmatic fossil, however, has been a matter of controversy since its discovery in 1982, largely because there was no evidence for the preservation of organic walls. Here we report new carbonaceous compressions of Horodyskia from the Tonian successions (~950-720 Ma) in North China. The macrofossils herein with bona fide organic walls reinforce the biogenicity of Horodyskia. Aided by the new material, we reconstruct Horodyskia as a colonial organism composed of a chain of organic-walled vesicles that likely represent multinucleated (coenocytic) cells of early eukaryotes. Two species of Horodyskia are differentiated on the basis of vesicle sizes, and their co-existence in the Tonian assemblage provides a link between the Mesoproterozoic (H. moniliformis) and the Ediacaran (H. minor) species. Our study thus provides evidence that eukaryotes have acquired macroscopic size through the combination of coenocytism and colonial multicellularity at least ~1.48 Ga, and highlights an exceptionally long range and morphological stasis of this Proterozoic macrofossils.
Collapse
Affiliation(s)
- Guangjin Li
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Lei Chen
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Ke Pang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- University of Chinese Academy of Sciences, Nanjing, 211135, China.
| | - Qing Tang
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
- Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chengxi Wu
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xunlai Yuan
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanming Zhou
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Shuhai Xiao
- Department of Geosciences and Global Change Center, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
6
|
Little JC, Kaaronen RO, Hukkinen JI, Xiao S, Sharpee T, Farid AM, Nilchiani R, Barton CM. Earth Systems to Anthropocene Systems: An Evolutionary, System-of-Systems, Convergence Paradigm for Interdependent Societal Challenges. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5504-5520. [PMID: 37000909 DOI: 10.1021/acs.est.2c06203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Humans have made profound changes to the Earth. The resulting societal challenges of the Anthropocene (e.g., climate change and impacts, renewable energy, adaptive infrastructure, disasters, pandemics, food insecurity, and biodiversity loss) are complex and systemic, with causes, interactions, and consequences that cascade across a globally connected system of systems. In this Critical Review, we turn to our "origin story" for insight, briefly tracing the formation of the Universe and the Earth, the emergence of life, the evolution of multicellular organisms, mammals, primates, and humans, as well as the more recent societal transitions involving agriculture, urbanization, industrialization, and computerization. Focusing on the evolution of the Earth, genetic evolution, the evolution of the brain, and cultural evolution, which includes technological evolution, we identify a nested evolutionary sequence of geophysical, biophysical, sociocultural, and sociotechnical systems, emphasizing the causal mechanisms that first formed, and then transformed, Earth systems into Anthropocene systems. Describing how the Anthropocene systems coevolved, and briefly illustrating how the ensuing societal challenges became tightly integrated across multiple spatial, temporal, and organizational scales, we conclude by proposing an evolutionary, system-of-systems, convergence paradigm for the entire family of interdependent societal challenges of the Anthropocene.
Collapse
Affiliation(s)
- John C Little
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Roope O Kaaronen
- Sustainability Research Unit, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00014, Finland
| | - Janne I Hukkinen
- Environmental Policy Research Group, Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki 00014, Finland
| | - Shuhai Xiao
- Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Tatyana Sharpee
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Amro M Farid
- School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Roshanak Nilchiani
- School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - C Michael Barton
- School of Human Evolution and Social Change, and School of Complex Adaptive Systems, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
7
|
Bowles AMC, Williamson CJ, Williams TA, Lenton TM, Donoghue PCJ. The origin and early evolution of plants. TRENDS IN PLANT SCIENCE 2023; 28:312-329. [PMID: 36328872 DOI: 10.1016/j.tplants.2022.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Plant (archaeplastid) evolution has transformed the biosphere, but we are only now beginning to learn how this took place through comparative genomics, phylogenetics, and the fossil record. This has illuminated the phylogeny of Archaeplastida, Viridiplantae, and Streptophyta, and has resolved the evolution of key characters, genes, and genomes - revealing that many key innovations evolved long before the clades with which they have been casually associated. Molecular clock analyses estimate that Streptophyta and Viridiplantae emerged in the late Mesoproterozoic to late Neoproterozoic, whereas Archaeplastida emerged in the late-mid Palaeoproterozoic. Together, these insights inform on the coevolution of plants and the Earth system that transformed ecology and global biogeochemical cycles, increased weathering, and precipitated snowball Earth events, during which they would have been key to oxygen production and net primary productivity (NPP).
Collapse
Affiliation(s)
- Alexander M C Bowles
- School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK; Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK.
| | | | - Tom A Williams
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK
| | - Timothy M Lenton
- Global Systems Institute, University of Exeter, Laver Building, North Park Road, Exeter EX4 4QE, UK
| | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK.
| |
Collapse
|
8
|
Moore KR, Daye M, Gong J, Williford K, Konhauser K, Bosak T. A review of microbial-environmental interactions recorded in Proterozoic carbonate-hosted chert. GEOBIOLOGY 2023; 21:3-27. [PMID: 36268586 PMCID: PMC10092529 DOI: 10.1111/gbi.12527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The record of life during the Proterozoic is preserved by several different lithologies, but two in particular are linked both spatially and temporally: chert and carbonate. These lithologies capture a snapshot of dominantly peritidal environments during the Proterozoic. Early diagenetic chert preserves some of the most exceptional Proterozoic biosignatures in the form of microbial body fossils and mat textures. This fossiliferous and kerogenous chert formed in shallow marine environments, where chert nodules, layers, and lenses are often surrounded by and encased within carbonate deposits that themselves often contain kerogen and evidence of former microbial mats. Here, we review the record of biosignatures preserved in peritidal Proterozoic chert and chert-hosting carbonate and discuss this record in the context of experimental and environmental studies that have begun to shed light on the roles that microbes and organic compounds may have played in the formation of these deposits. Insights gained from these studies suggest temporal trends in microbial-environmental interactions and place new constraints on past environmental conditions, such as the concentration of silica in Proterozoic seawater, interactions among organic compounds and cations in seawater, and the influence of microbial physiology and biochemistry on selective preservation by silicification.
Collapse
Affiliation(s)
- Kelsey R. Moore
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Mirna Daye
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Jian Gong
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | | | - Kurt Konhauser
- Department of Earth and Atmospheric SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Tanja Bosak
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
9
|
Tihelka E, Howard RJ, Cai C, Lozano-Fernandez J. Was There a Cambrian Explosion on Land? The Case of Arthropod Terrestrialization. BIOLOGY 2022; 11:biology11101516. [PMID: 36290419 PMCID: PMC9598930 DOI: 10.3390/biology11101516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 01/24/2023]
Abstract
Arthropods, the most diverse form of macroscopic life in the history of the Earth, originated in the sea. Since the early Cambrian, at least ~518 million years ago, these animals have dominated the oceans of the world. By the Silurian-Devonian, the fossil record attests to arthropods becoming the first animals to colonize land, However, a growing body of molecular dating and palaeontological evidence suggests that the three major terrestrial arthropod groups (myriapods, hexapods, and arachnids), as well as vascular plants, may have invaded land as early as the Cambrian-Ordovician. These dates precede the oldest fossil evidence of those groups and suggest an unrecorded continental "Cambrian explosion" a hundred million years prior to the formation of early complex terrestrial ecosystems in the Silurian-Devonian. We review the palaeontological, phylogenomic, and molecular clock evidence pertaining to the proposed Cambrian terrestrialization of the arthropods. We argue that despite the challenges posed by incomplete preservation and the scarcity of early Palaeozoic terrestrial deposits, the discrepancy between molecular clock estimates and the fossil record is narrower than is often claimed. We discuss strategies for closing the gap between molecular clock estimates and fossil data in the evolution of early ecosystems on land.
Collapse
Affiliation(s)
- Erik Tihelka
- School of Earth and Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Richard J. Howard
- Department of Earth Sciences, The Natural History Museum, London SW7 5BD, UK
| | - Chenyang Cai
- School of Earth and Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jesus Lozano-Fernandez
- School of Earth and Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
- Department of Genetics, Microbiology and Statistics & Biodiversity Research Institute (IRBio), University of Barcelona, 08028 Barcelona, Spain
- Correspondence:
| |
Collapse
|
10
|
A case for an active eukaryotic marine biosphere during the Proterozoic era. Proc Natl Acad Sci U S A 2022; 119:e2122042119. [PMID: 36191216 PMCID: PMC9564328 DOI: 10.1073/pnas.2122042119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The microfossil record demonstrates the presence of eukaryotic organisms in the marine ecosystem by about 1,700 million years ago (Ma). Despite this, steranes, a biomarker indicator of eukaryotic organisms, do not appear in the rock record until about 780 Ma in what is known as the "rise of algae." Before this, it is argued that eukaryotes were minor ecosystem members, with prokaryotes dominating both primary production and ecosystem dynamics. In this view, the rise of algae was possibly sparked by increased nutrient availability supplying the higher nutrient requirements of eukaryotic algae. Here, we challenge this view. We use a size-based ecosystem model to show that the size distribution of preserved eukaryotic microfossils from 1,700 Ma and onward required an active eukaryote ecosystem complete with phototrophy, osmotrophy, phagotrophy, and mixotrophy. Model results suggest that eukaryotes accounted for one-half or more of the living biomass, with eukaryotic algae contributing to about one-half of total marine primary production. These ecosystems lived with deep-water phosphate levels of at least 10% of modern levels. The general lack of steranes in the pre-780-Ma rock record could be a result of poor preservation.
Collapse
|
11
|
|
12
|
Zhao M, Zhao Y, Lin W, Xiao KQ. An overview of experimental simulations of microbial activity in early Earth. Front Microbiol 2022; 13:1052831. [PMID: 36713221 PMCID: PMC9878457 DOI: 10.3389/fmicb.2022.1052831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
Microbial activity has shaped the evolution of the ocean and atmosphere throughout the Earth history. Thus, experimental simulations of microbial metabolism under the environment conditions of the early Earth can provide vital information regarding biogeochemical cycles and the interaction and coevolution between life and environment, with important implications for extraterrestrial exploration. In this review, we discuss the current scope and knowledge of experimental simulations of microbial activity in environments representative of those of early Earth, with perspectives on future studies. Inclusive experimental simulations involving multiple species, and cultivation experiments with more constraints on environmental conditions similar to early Earth would significantly advance our understanding of the biogeochemical cycles of the geological past.
Collapse
Affiliation(s)
- Mingyu Zhao
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Yao Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Ke-Qing Xiao
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Schopf JW. Precambrian Paleobiology: Precedents, Progress, and Prospects. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.707072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In 1859, C. R. Darwin highlighted the “inexplicable” absence of evidence of life prior to the beginning of the Cambrian. Given this lack of evidence and the natural rather than theological unfolding of life’s development Darwin espoused, over the following 50 years his newly minted theory was disputed. At the turn of the 19th century, beginning with the discoveries of C. D. Walcott, glimmerings of the previously “unknown and unknowable” early fossil record came to light – but Walcott’s Precambrian finds were also discounted. It was not until the breakthrough advances of the 1950’s and the identification of modern stromatolites (1956), Precambrian phytoplankton in shales (1950’s), stromatolitic microbes in cherts (1953), and terminal-Precambrian soft-bodied animal fossils (1950’s) that the field was placed on firm footing. Over the following half-century, the development and application of new analytical techniques coupled with the groundbreaking contributions of the Precambrian Paleobiology Research Group spurred the field to its international and distinctly interdisciplinary status. Significant progress has been made worldwide. Among these advances, the known fossil record has been extended sevenfold (from ∼0.5 to ∼3.5 Ga); the fossil record has been shown consistent with rRNA phylogenies (adding credence to both); and the timing and evolutionary significance of an increase of environmental oxygen (∼2.3 Ga), of eukaryotic organisms (∼2.0 Ga), and of evolution-speeding and biota-diversifying eukaryotic sexual reproduction (∼1.2 Ga) have been identified. Nevertheless, much remains to be learned. Such major unsolved problems include the absence of definitive evidence of the widely assumed life-generating “primordial soup”; the timing of the origin of oxygenic photosynthesis; the veracity of postulated changes in global photic-zone temperature from 3.5 Ga to the present; the bases of the advent of eukaryotic sexuality-requiring gametogenesis and syngamy; and the timing of origin and affinities of the small soft-bodied precursors of the Ediacaran Fauna.
Collapse
|
14
|
Lyons TW, Diamond CW, Planavsky NJ, Reinhard CT, Li C. Oxygenation, Life, and the Planetary System during Earth's Middle History: An Overview. ASTROBIOLOGY 2021; 21:906-923. [PMID: 34314605 PMCID: PMC8403206 DOI: 10.1089/ast.2020.2418] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The long history of life on Earth has unfolded as a cause-and-effect relationship with the evolving amount of oxygen (O2) in the oceans and atmosphere. Oxygen deficiency characterized our planet's first 2 billion years, yet evidence for biological O2 production and local enrichments in the surface ocean appear long before the first accumulations of O2 in the atmosphere roughly 2.4 to 2.3 billion years ago. Much has been written about this fundamental transition and the related balance between biological O2 production and sinks coupled to deep Earth processes that could buffer against the accumulation of biogenic O2. However, the relationship between complex life (eukaryotes, including animals) and later oxygenation is less clear. Some data suggest O2 was higher but still mostly low for another billion and a half years before increasing again around 800 million years ago, potentially setting a challenging course for complex life during its initial development and ecological expansion. The apparent rise in O2 around 800 million years ago is coincident with major developments in complex life. Multiple geochemical and paleontological records point to a major biogeochemical transition at that time, but whether rising and still dynamic biospheric oxygen triggered or merely followed from innovations in eukaryotic ecology, including the emergence of animals, is still debated. This paper focuses on the geochemical records of Earth's middle history, roughly 1.8 to 0.5 billion years ago, as a backdrop for exploring possible cause-and-effect relationships with biological evolution and the primary controls that may have set its pace, including solid Earth/tectonic processes, nutrient limitation, and their possible linkages. A richer mechanistic understanding of the interplay between coevolving life and Earth surface environments can provide a template for understanding and remotely searching for sustained habitability and even life on distant exoplanets.
Collapse
Affiliation(s)
- Timothy W. Lyons
- Department of Earth and Planetary Sciences, University of California, Riverside, California, USA
- Address correspondence to: Timothy W. Lyons, Department of Earth and Planetary Sciences, University of California, Riverside, CA 92521, USA
| | - Charles W. Diamond
- Department of Earth and Planetary Sciences, University of California, Riverside, California, USA
| | - Noah J. Planavsky
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
| | - Christopher T. Reinhard
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Chao Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
15
|
Abstract
Phagocytosis, or 'cell eating', is a eukaryote-specific process where particulate matter is engulfed via invaginations of the plasma membrane. The origin of phagocytosis has been central to discussions on eukaryogenesis for decades-, where it is argued as being either a prerequisite for, or consequence of, the acquisition of the ancestral mitochondrion. Recently, genomic and cytological evidence has increasingly supported the view that the pre-mitochondrial host cell-a bona fide archaeon branching within the 'Asgard' archaea-was incapable of phagocytosis and used alternative mechanisms to incorporate the alphaproteobacterial ancestor of mitochondria. Indeed, the diversity and variability of proteins associated with phagosomes across the eukaryotic tree suggest that phagocytosis, as seen in a variety of extant eukaryotes, may have evolved independently several times within the eukaryotic crown-group. Since phagocytosis is critical to the functioning of modern marine food webs (without it, there would be no microbial loop or animal life), multiple late origins of phagocytosis could help explain why many of the ecological and evolutionary innovations of the Neoproterozoic Era (e.g. the advent of eukaryotic biomineralization, the 'Rise of Algae' and the origin of animals) happened when they did.
Collapse
Affiliation(s)
- Daniel B. Mills
- Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
16
|
Cole DB, Mills DB, Erwin DH, Sperling EA, Porter SM, Reinhard CT, Planavsky NJ. On the co-evolution of surface oxygen levels and animals. GEOBIOLOGY 2020; 18:260-281. [PMID: 32175670 DOI: 10.1111/gbi.12382] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/04/2020] [Accepted: 01/22/2020] [Indexed: 05/22/2023]
Abstract
Few topics in geobiology have been as extensively debated as the role of Earth's oxygenation in controlling when and why animals emerged and diversified. All currently described animals require oxygen for at least a portion of their life cycle. Therefore, the transition to an oxygenated planet was a prerequisite for the emergence of animals. Yet, our understanding of Earth's oxygenation and the environmental requirements of animal habitability and ecological success is currently limited; estimates for the timing of the appearance of environments sufficiently oxygenated to support ecologically stable populations of animals span a wide range, from billions of years to only a few million years before animals appear in the fossil record. In this light, the extent to which oxygen played an important role in controlling when animals appeared remains a topic of debate. When animals originated and when they diversified are separate questions, meaning either one or both of these phenomena could have been decoupled from oxygenation. Here, we present views from across this interpretive spectrum-in a point-counterpoint format-regarding crucial aspects of the potential links between animals and surface oxygen levels. We highlight areas where the standard discourse on this topic requires a change of course and note that several traditional arguments in this "life versus environment" debate are poorly founded. We also identify a clear need for basic research across a range of fields to disentangle the relationships between oxygen availability and emergence and diversification of animal life.
Collapse
Affiliation(s)
- Devon B Cole
- School of Earth and Atmospheric Science, Georgia Institute of Technology, Atlanta, Georgia
| | - Daniel B Mills
- Department of Geological Sciences, Stanford University, Stanford, California
| | - Douglas H Erwin
- Department of Paleobiology, National Museum of Natural History, Washington, District of Columbia
- Santa Fe Institute, Santa Fe, New Mexico
| | - Erik A Sperling
- Department of Geological Sciences, Stanford University, Stanford, California
| | - Susannah M Porter
- Department of Earth Science, University of California Santa Barbara, Santa Barbara, California
| | - Christopher T Reinhard
- School of Earth and Atmospheric Science, Georgia Institute of Technology, Atlanta, Georgia
| | - Noah J Planavsky
- Department of Geology and Geophysics, Yale University, New Haven, Connecticut
| |
Collapse
|
17
|
Organically-preserved multicellular eukaryote from the early Ediacaran Nyborg Formation, Arctic Norway. Sci Rep 2019; 9:14659. [PMID: 31601898 PMCID: PMC6787099 DOI: 10.1038/s41598-019-50650-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 09/12/2019] [Indexed: 02/04/2023] Open
Abstract
Eukaryotic multicellularity originated in the Mesoproterozoic Era and evolved multiple times since, yet early multicellular fossils are scarce until the terminal Neoproterozoic and often restricted to cases of exceptional preservation. Here we describe unusual organically-preserved fossils from mudrocks, that provide support for the presence of organisms with differentiated cells (potentially an epithelial layer) in the late Neoproterozoic. Cyathinema digermulense gen. et sp. nov. from the Nyborg Formation, Vestertana Group, Digermulen Peninsula in Arctic Norway, is a new carbonaceous organ-taxon which consists of stacked tubes with cup-shaped ends. It represents parts of a larger organism (multicellular eukaryote or a colony), likely with greater preservation potential than its other elements. Arrangement of open-ended tubes invites comparison with cells of an epithelial layer present in a variety of eukaryotic clades. This tissue may have benefitted the organism in: avoiding overgrowth, limiting fouling, reproduction, or water filtration. C. digermulense shares characteristics with extant and fossil groups including red algae and their fossils, demosponge larvae and putative sponge fossils, colonial protists, and nematophytes. Regardless of its precise affinity, C. digermulense was a complex and likely benthic marine eukaryote exhibiting cellular differentiation, and a rare occurrence of early multicellularity outside of Konservat-Lagerstätten.
Collapse
|
18
|
Caetano-Anollés G, Aziz MF, Mughal F, Gräter F, Koç I, Caetano-Anollés K, Caetano-Anollés D. Emergence of Hierarchical Modularity in Evolving Networks Uncovered by Phylogenomic Analysis. Evol Bioinform Online 2019; 15:1176934319872980. [PMID: 31523127 PMCID: PMC6728656 DOI: 10.1177/1176934319872980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 01/15/2023] Open
Abstract
Networks describe how parts associate with each other to form integrated systems which often have modular and hierarchical structure. In biology, network growth involves two processes, one that unifies and the other that diversifies. Here, we propose a biphasic (bow-tie) theory of module emergence. In the first phase, parts are at first weakly linked and associate variously. As they diversify, they compete with each other and are often selected for performance. The emerging interactions constrain their structure and associations. This causes parts to self-organize into modules with tight linkage. In the second phase, variants of the modules diversify and become new parts for a new generative cycle of higher level organization. The paradigm predicts the rise of hierarchical modularity in evolving networks at different timescales and complexity levels. Remarkably, phylogenomic analyses uncover this emergence in the rewiring of metabolomic and transcriptome-informed metabolic networks, the nanosecond dynamics of proteins, and evolving networks of metabolism, elementary functionomes, and protein domain organization.
Collapse
Affiliation(s)
- Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory,
Department of Crop Sciences, C.R. Woese Institute for Genomic Biology, and Illinois
Informatics Institute, University of Illinois, Urbana, IL, USA
| | - M Fayez Aziz
- Evolutionary Bioinformatics Laboratory,
Department of Crop Sciences, C.R. Woese Institute for Genomic Biology, and Illinois
Informatics Institute, University of Illinois, Urbana, IL, USA
| | - Fizza Mughal
- Evolutionary Bioinformatics Laboratory,
Department of Crop Sciences, C.R. Woese Institute for Genomic Biology, and Illinois
Informatics Institute, University of Illinois, Urbana, IL, USA
| | - Frauke Gräter
- Heidelberg Institute for Theoretical
Studies, Heidelberg, Germany
| | - Ibrahim Koç
- Department of Molecular Biology and
Genetics, Gebze Technical University, Gebze, Turkey
| | - Kelsey Caetano-Anollés
- Division of Biomedical Informatics,
College of Medicine, Seoul National University, Seoul, Republic of Korea
| | | |
Collapse
|
19
|
Ward LM, Shih PM. The evolution and productivity of carbon fixation pathways in response to changes in oxygen concentration over geological time. Free Radic Biol Med 2019; 140:188-199. [PMID: 30790657 DOI: 10.1016/j.freeradbiomed.2019.01.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/12/2019] [Accepted: 01/31/2019] [Indexed: 12/25/2022]
Abstract
The fixation of inorganic carbon species like CO2 to more reduced organic forms is one of the most fundamental processes of life as we know it. Although several carbon fixation pathways are known to exist, on Earth today nearly all global carbon fixation is driven by the Calvin cycle in oxygenic photosynthetic plants, algae, and Cyanobacteria. At other times in Earth history, other organisms utilizing different carbon fixation pathways may have played relatively larger roles, with this balance shifting over geological time as the environmental context of life has changed and evolutionary innovations accumulated. Among the most dramatic changes that our planet and the biosphere have undergone are those surrounding the rise of O2 in our atmosphere-first during the Great Oxygenation Event at ∼2.3 Ga, and perhaps again during Neoproterozoic or Paleozoic time. These oxygenation events likely represent major step changes in the tempo and mode of biological productivity as a result of the increased productivity of oxygenic photosynthesis and the introduction of O2 into geochemical and biological systems, and likely involved shifts in the relative contribution of different carbon fixation pathways. Here, we review what is known from both the rock record and comparative biology about the evolution of carbon fixation pathways, their contributions to primary productivity through time, and their relationship to the evolving oxygenation state of the fluid Earth following the evolution and expansion of oxygenic photosynthesis.
Collapse
Affiliation(s)
- Lewis M Ward
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, United States.
| | - Patrick M Shih
- Department of Plant Biology, University of California, Davis, Davis, CA, United States; Department of Energy, Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, United States; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
20
|
Lerosey-Aubril R, Pates S. New suspension-feeding radiodont suggests evolution of microplanktivory in Cambrian macronekton. Nat Commun 2018; 9:3774. [PMID: 30218075 PMCID: PMC6138677 DOI: 10.1038/s41467-018-06229-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/09/2018] [Indexed: 11/23/2022] Open
Abstract
The rapid diversification of metazoans and their organisation in modern-style marine ecosystems during the Cambrian profoundly transformed the biosphere. What initially sparked this Cambrian explosion remains passionately debated, but the establishment of a coupling between pelagic and benthic realms, a key characteristic of modern-day oceans, might represent a primary ecological cause. By allowing the transfer of biomass and energy from the euphotic zone-the locus of primary production-to the sea floor, this biological pump would have boosted diversification within the emerging metazoan-dominated benthic communities. However, little is known about Cambrian pelagic organisms and their trophic interactions. Here we describe a filter-feeding Cambrian radiodont exhibiting morphological characters that likely enabled the capture of microplankton-sized particles, including large phytoplankton. This description of a large free-swimming suspension-feeder potentially engaged in primary consumption suggests a more direct involvement of nekton in the establishment of an oceanic pelagic-benthic coupling in the Cambrian.
Collapse
Affiliation(s)
- Rudy Lerosey-Aubril
- Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia.
| | - Stephen Pates
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
- Institute of Earth Sciences, University of Lausanne, Lausanne, CH-1015, Switzerland
| |
Collapse
|
21
|
Wang X, Zhao W, Zhang S, Wang H, Su J, Canfield DE, Hammarlund EU. The aerobic diagenesis of Mesoproterozoic organic matter. Sci Rep 2018; 8:13324. [PMID: 30190572 PMCID: PMC6127340 DOI: 10.1038/s41598-018-31378-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/24/2018] [Indexed: 11/08/2022] Open
Abstract
The Xiamaling Formation in the North China Block contains a well-preserved 1400 Ma sedimentary sequence with a low degree of thermal maturity. Previous studies have confirmed the dynamic and complex nature of this evolving marine setting, including the existence of an oxygen-minimum zone, using multi-proxy approaches, including iron speciation, trace metal dynamics, and organic geochemistry. Here, we investigate the prevailing redox conditions during diagenesis via the biomarkers of rearranged hopanes from the finely laminated sediments of the organic-rich black shales in Units 2 and 3 of the Xiamaling Formation. We find that rearranged hopanes are prominent in the biomarker composition of the oxygen-minimum zone sediment, which is completely different from that of the sediment in the overlying anoxic strata. Since the transition process from hopanes to rearranged hopanes requires oxygen via oxidation at the C-l6 alkyl position of 17α(H)-hopanes, we infer that dissolved oxygen led to the transformation of hopane precursors into rearranged hopanes during the early stages of diagenesis. The use of hopanoid hydrocarbons as biomarkers of marine redox conditions has rarely been previously reported, and the hydrocarbon signatures point towards oxic bottom waters during the deposition of Unit 3 of the Xiamaling Formation, which is consistent with the earlier oxygen-minimum zone environmental interpretation of this Unit.
Collapse
Affiliation(s)
- Xiaomei Wang
- Key Laboratory of Petroleum Geochemistry, Research Institute of Petroleum Exploration and Development, China National Petroleum Corporation, Beijing, 100083, China
| | - Wenzhi Zhao
- Key Laboratory of Petroleum Geochemistry, Research Institute of Petroleum Exploration and Development, China National Petroleum Corporation, Beijing, 100083, China
| | - Shuichang Zhang
- Key Laboratory of Petroleum Geochemistry, Research Institute of Petroleum Exploration and Development, China National Petroleum Corporation, Beijing, 100083, China.
| | - Huajian Wang
- Key Laboratory of Petroleum Geochemistry, Research Institute of Petroleum Exploration and Development, China National Petroleum Corporation, Beijing, 100083, China
| | - Jin Su
- Key Laboratory of Petroleum Geochemistry, Research Institute of Petroleum Exploration and Development, China National Petroleum Corporation, Beijing, 100083, China
| | - Donald E Canfield
- Institute of Biology and Nordic Center for Earth Evolution (NordCEE), University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Emma U Hammarlund
- Institute of Biology and Nordic Center for Earth Evolution (NordCEE), University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| |
Collapse
|
22
|
Isson TT, Love GD, Dupont CL, Reinhard CT, Zumberge AJ, Asael D, Gueguen B, McCrow J, Gill BC, Owens J, Rainbird RH, Rooney AD, Zhao MY, Stueeken EE, Konhauser KO, John SG, Lyons TW, Planavsky NJ. Tracking the rise of eukaryotes to ecological dominance with zinc isotopes. GEOBIOLOGY 2018; 16:341-352. [PMID: 29869832 DOI: 10.1111/gbi.12289] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 03/31/2018] [Indexed: 05/19/2023]
Abstract
The biogeochemical cycling of zinc (Zn) is intimately coupled with organic carbon in the ocean. Based on an extensive new sedimentary Zn isotope record across Earth's history, we provide evidence for a fundamental shift in the marine Zn cycle ~800 million years ago. We discuss a wide range of potential drivers for this transition and propose that, within available constraints, a restructuring of marine ecosystems is the most parsimonious explanation for this shift. Using a global isotope mass balance approach, we show that a change in the organic Zn/C ratio is required to account for observed Zn isotope trends through time. Given the higher affinity of eukaryotes for Zn relative to prokaryotes, we suggest that a shift toward a more eukaryote-rich ecosystem could have provided a means of more efficiently sequestering organic-derived Zn. Despite the much earlier appearance of eukaryotes in the microfossil record (~1700 to 1600 million years ago), our data suggest a delayed rise to ecological prominence during the Neoproterozoic, consistent with the currently accepted organic biomarker records.
Collapse
Affiliation(s)
- Terry T Isson
- Geology and Geophysics, Yale University, New Haven, Connecticut
| | - Gordon D Love
- Earth Science, University of California, Riverside, Riverside, California
| | - Christopher L Dupont
- Microbial and Environmental Genomics, J. Craig Venter Institute, San Diego, California
| | | | - Alex J Zumberge
- Earth Science, University of California, Riverside, Riverside, California
| | - Dan Asael
- Geology and Geophysics, Yale University, New Haven, Connecticut
| | - Bleuenn Gueguen
- Earth Science, Université de Bretagne Occidentale, Brest, France
| | - John McCrow
- J. Craig Venter Institute, Rockville, Maryland
| | - Ben C Gill
- Geosciences, Virginia Tech, Blacksburg, Virginia
| | | | | | - Alan D Rooney
- Geology and Geophysics, Yale University, New Haven, Connecticut
| | - Ming-Yu Zhao
- Geology and Geophysics, Yale University, New Haven, Connecticut
| | - Eva E Stueeken
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, Scotland, UK
| | - Kurt O Konhauser
- Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada
| | - Seth G John
- Earth Science, University of Southern Carolina, Los Angeles, California
| | - Timothy W Lyons
- Earth Science, University of California, Riverside, Riverside, California
| | | |
Collapse
|
23
|
After the boring billion and before the freezing millions: evolutionary patterns and innovations in the Tonian Period. Emerg Top Life Sci 2018; 2:161-171. [DOI: 10.1042/etls20170165] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/07/2018] [Accepted: 05/15/2018] [Indexed: 11/17/2022]
Abstract
The Tonian Period (ca. 1000–720 Ma) follows the ‘boring billion' in the Mesoproterozoic Era and precedes ‘snowball Earth' glaciations in the Cryogenian Period. It represents a critical transition in Earth history. Geochemical data indicate that the Tonian Period may have witnessed a significant increase in atmospheric pO2 levels and a major transition from predominantly sulfidic to ferruginous mid-depth seawaters. Molecular clock estimates suggest that early animals may have diverged in the Tonian Period, raising the intriguing possibility of coupled environmental changes and evolutionary innovations. The co-evolution of life and its environment during the Tonian Period can be tested against the fossil record by examining diversity trends in the Proterozoic and evolutionary innovations in the Tonian. Compilations of Proterozoic microfossils and macrofossils apparently support a Tonian increase in global taxonomic diversity and morphological range relative to the Mesoproterozoic Era, although this is not reflected in assemblage-level diversity patterns. The fossil record suggests that major eukaryote groups (including Opisthokonta, Amoebozoa, Plantae, and SAR) may have diverged and important evolutionary innovations (e.g. multicellularity and cell differentiation in several groups, eukaryovory, eukaryote biomineralization, and heterocystous cyanobacteria) may have arisen by the Tonian Period, but thus far no convincing animal fossils have been found in the Tonian. Tonian paleontology is still in its nascent stage, and it offers many opportunities to explore Earth-life evolution in this critical geological period.
Collapse
|
24
|
Abstract
The period 1800 to 800 Ma (“Boring Billion”) is believed to mark a delay in the evolution of complex life, primarily due to low levels of oxygen in the atmosphere. Earlier studies highlight the remarkably flat C, Cr isotopes and low trace element trends during the so-called stasis, caused by prolonged nutrient, climatic, atmospheric and tectonic stability. In contrast, we suggest a first-order variability of bio-essential trace element availability in the oceans by combining systematic sampling of the Proterozoic rock record with sensitive geochemical analyses of marine pyrite by LA-ICP-MS technique. We also recall that several critical biological evolutionary events, such as the appearance of eukaryotes, origin of multicellularity & sexual reproduction, and the first major diversification of eukaryotes (crown group) occurred during this period. Therefore, it appears possible that the period of low nutrient trace elements (1800–1400 Ma) caused evolutionary pressures which became an essential trigger for promoting biological innovations in the eukaryotic domain. Later periods of stress-free conditions, with relatively high nutrient trace element concentration, facilitated diversification. We propose that the “Boring Billion” was a period of sequential stepwise evolution and diversification of complex eukaryotes, triggering evolutionary pathways that made possible the later rise of micro-metazoans and their macroscopic counterparts.
Collapse
|
25
|
Fairén AG, Parro V, Schulze-Makuch D, Whyte L. Searching for Life on Mars Before It Is Too Late. ASTROBIOLOGY 2017; 17:962-970. [PMID: 28885042 PMCID: PMC5655416 DOI: 10.1089/ast.2017.1703] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
Decades of robotic exploration have confirmed that in the distant past, Mars was warmer and wetter and its surface was habitable. However, none of the spacecraft missions to Mars have included among their scientific objectives the exploration of Special Regions, those places on the planet that could be inhabited by extant martian life or where terrestrial microorganisms might replicate. A major reason for this is because of Planetary Protection constraints, which are implemented to protect Mars from terrestrial biological contamination. At the same time, plans are being drafted to send humans to Mars during the 2030 decade, both from international space agencies and the private sector. We argue here that these two parallel strategies for the exploration of Mars (i.e., delaying any efforts for the biological reconnaissance of Mars during the next two or three decades and then directly sending human missions to the planet) demand reconsideration because once an astronaut sets foot on Mars, Planetary Protection policies as we conceive them today will no longer be valid as human arrival will inevitably increase the introduction of terrestrial and organic contaminants and that could jeopardize the identification of indigenous martian life. In this study, we advocate for reassessment over the relationships between robotic searches, paying increased attention to proactive astrobiological investigation and sampling of areas more likely to host indigenous life, and fundamentally doing this in advance of manned missions. Key Words: Contamination-Earth Mars-Planetary Protection-Search for life (biosignatures). Astrobiology 17, 962-970.
Collapse
Affiliation(s)
- Alberto G. Fairén
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Department of Astronomy, Cornell University, Ithaca, New York
| | - Victor Parro
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - Dirk Schulze-Makuch
- Center of Astronomy and Astrophysics, Technical University Berlin, Berlin, Germany
- SETI Institute, Mountain View, California
| | - Lyle Whyte
- Department of Natural Resource Sciences, McGill University, Québec, Canada
| |
Collapse
|
26
|
Bock R. Witnessing Genome Evolution: Experimental Reconstruction of Endosymbiotic and Horizontal Gene Transfer. Annu Rev Genet 2017; 51:1-22. [PMID: 28846455 DOI: 10.1146/annurev-genet-120215-035329] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Present day mitochondria and plastids (chloroplasts) evolved from formerly free-living bacteria that were acquired through endosymbiosis more than a billion years ago. Conversion of the bacterial endosymbionts into cell organelles involved the massive translocation of genetic material from the organellar genomes to the nucleus. The development of transformation technologies for organellar genomes has made it possible to reconstruct this endosymbiotic gene transfer in laboratory experiments and study the mechanisms involved. Recently, the horizontal transfer of genetic information between organisms has also become amenable to experimental investigation. It led to the discovery of horizontal genome transfer as an asexual process generating new species and new combinations of nuclear and organellar genomes. This review describes experimental approaches towards studying endosymbiotic and horizontal gene transfer processes, discusses the new knowledge gained from these approaches about both the evolutionary significance of gene transfer and the underlying molecular mechanisms, and highlights exciting possibilities to exploit gene and genome transfer in biotechnology and synthetic biology.
Collapse
Affiliation(s)
- Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany;
| |
Collapse
|
27
|
Knoll AH, Nowak MA. The timetable of evolution. SCIENCE ADVANCES 2017; 3:e1603076. [PMID: 28560344 PMCID: PMC5435417 DOI: 10.1126/sciadv.1603076] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/21/2017] [Indexed: 05/06/2023]
Abstract
The integration of fossils, phylogeny, and geochronology has resulted in an increasingly well-resolved timetable of evolution. Life appears to have taken root before the earliest known minimally metamorphosed sedimentary rocks were deposited, but for a billion years or more, evolution played out beneath an essentially anoxic atmosphere. Oxygen concentrations in the atmosphere and surface oceans first rose in the Great Oxygenation Event (GOE) 2.4 billion years ago, and a second increase beginning in the later Neoproterozoic Era [Neoproterozoic Oxygenation Event (NOE)] established the redox profile of modern oceans. The GOE facilitated the emergence of eukaryotes, whereas the NOE is associated with large and complex multicellular organisms. Thus, the GOE and NOE are fundamental pacemakers for evolution. On the time scale of Earth's entire 4 billion-year history, the evolutionary dynamics of the planet's biosphere appears to be fast, and the pace of evolution is largely determined by physical changes of the planet. However, in Phanerozoic ecosystems, interactions between new functions enabled by the accumulation of characters in a complex regulatory environment and changing biological components of effective environments appear to have an important influence on the timing of evolutionary innovations. On the much shorter time scale of transient environmental perturbations, such as those associated with mass extinctions, rates of genetic accommodation may have been limiting for life.
Collapse
Affiliation(s)
- Andrew H. Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Martin A. Nowak
- Program for Evolutionary Dynamics, Department of Organismic and Evolutionary Biology, Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
28
|
The δ 30Si peak value discovered in middle Proterozoic chert and its implication for environmental variations in the ancient ocean. Sci Rep 2017; 7:44000. [PMID: 28272425 PMCID: PMC5341034 DOI: 10.1038/srep44000] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 02/02/2017] [Indexed: 12/01/2022] Open
Abstract
The silicon isotope composition of chert has recently been used to study the historic evolution of the global ocean. It has been suggested that Precambrian cherts have much higher δ30Si values than Phanerozoic cherts do and that the former show an increasing trend from 3.5 to 0.85 Ga, reflecting a decrease in ocean temperatures. However, cherts have various origins, and their isotopic compositions might be reset by metamorphic fluid circulation; thus, different types of cherts should be distinguished. Here, we present a new set of δ30Si data for cherts from early and middle Proterozoic carbonate rocks from Northern China. We found that cherts of 1.355–1.325 Ga show a peak range of 2.2–3.9‰. Based on these results, we propose that from the Archean to the middle Proterozoic, there was a drastic decrease in silicon content and an increase in the δ30Si value in ocean water due to a temperature decrease and biological activity increase. After that period, the silicon content of the ocean was limited to a low level by a high degree of biological absorption, and their δ30Si values varied in a small range around a significantly lower value.
Collapse
|
29
|
Selenium isotopes record extensive marine suboxia during the Great Oxidation Event. Proc Natl Acad Sci U S A 2017; 114:875-880. [PMID: 28096405 DOI: 10.1073/pnas.1615867114] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been proposed that an "oxygen overshoot" occurred during the early Paleoproterozoic Great Oxidation Event (GOE) in association with the extreme positive carbon isotopic excursion known as the Lomagundi Event. Moreover, it has also been suggested that environmental oxygen levels then crashed to very low levels during the subsequent extremely negative Shunga-Francevillian carbon isotopic anomaly. These redox fluctuations could have profoundly influenced the course of eukaryotic evolution, as eukaryotes have several metabolic processes that are obligately aerobic. Here we investigate the magnitude of these proposed oxygen perturbations using selenium (Se) geochemistry, which is sensitive to redox transitions across suboxic conditions. We find that δ82/78Se values in offshore shales show a positive excursion from 2.32 Ga until 2.1 Ga (mean +1.03 ± 0.67‰). Selenium abundances and Se/TOC (total organic carbon) ratios similarly show a peak during this interval. Together these data suggest that during the GOE there was pervasive suboxia in near-shore environments, allowing nonquantitative Se reduction to drive the residual Se oxyanions isotopically heavy. This implies O2 levels of >0.4 μM in these settings. Unlike in the late Neoproterozoic and Phanerozoic, when negative δ82/78Se values are observed in offshore environments, only a single formation, evidently the shallowest, shows evidence of negative δ82/78Se. This suggests that there was no upwelling of Se oxyanions from an oxic deep-ocean reservoir, which is consistent with previous estimates that the deep ocean remained anoxic throughout the GOE. The abrupt decline in δ82/78Se and Se/TOC values during the subsequent Shunga-Francevillian anomaly indicates a widespread decrease in surface oxygenation.
Collapse
|
30
|
Stolz JF. Gaia and her microbiome. FEMS Microbiol Ecol 2016; 93:fiw247. [DOI: 10.1093/femsec/fiw247] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/03/2016] [Accepted: 12/07/2016] [Indexed: 01/09/2023] Open
|
31
|
|