1
|
Curinha A, Huang Z, Anglen T, Strong MA, Gliech CR, Jewett CE, Friskes A, Phan TP, Nicholas Z, Holland AJ. Centriole structural integrity defects are a crucial feature of hydrolethalus syndrome. J Cell Biol 2025; 224:e202403022. [PMID: 40009365 PMCID: PMC11864076 DOI: 10.1083/jcb.202403022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 11/16/2024] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Hydrolethalus syndrome (HLS) is a lethal, autosomal recessive ciliopathy caused by the mutation of the conserved centriole protein HYLS1. How HYLS1 controls centriole function is poorly understood. Here, we show that mice harboring the HYLS1 disease mutation die shortly after birth and exhibit developmental defects that recapitulate several manifestations of HLS. These phenotypes arise from a loss of centriole integrity that causes tissue-specific defects in cilia assembly and function. We show that HYLS1 is recruited to the centriole by CEP120 and stabilizes the localization of centriole inner scaffold proteins that ensure the integrity of the centriolar microtubule wall. The HLS disease mutation reduced the centriole localization of HYLS1 and caused degeneration of the centriole distal end. We propose that tissue-specific defects in centriole integrity caused by the HYLS1 mutation prevent ciliogenesis and contribute to HLS phenotypes.
Collapse
Affiliation(s)
- Ana Curinha
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhaoyu Huang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Taylor Anglen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Margaret A. Strong
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Colin R. Gliech
- Department of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cayla E. Jewett
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anoek Friskes
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Thao P. Phan
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Zachary Nicholas
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew J. Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Chen H, Wu Z, Yan Z, Chen C, Zhang Y, Wang Q, Gao Y, Ling K, Hu J, Wei Q. The ARPKD Protein DZIP1L Regulates Ciliary Protein Entry by Modulating the Architecture and Function of Ciliary Transition Fibers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308820. [PMID: 38634253 PMCID: PMC11200010 DOI: 10.1002/advs.202308820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/13/2024] [Indexed: 04/19/2024]
Abstract
Serving as the cell's sensory antennae, primary cilia are linked to numerous human genetic diseases when they malfunction. DZIP1L, identified as one of the genetic causes of human autosomal recessive polycystic kidney disease (ARPKD), is an evolutionarily conserved ciliary basal body protein. Although it has been reported that DZIP1L is involved in the ciliary entry of PKD proteins, the underlying mechanism remains elusive. Here, an uncharacterized role of DZIP1L is reported in modulating the architecture and function of transition fibers (TFs), striking ciliary base structures essential for selective cilia gating. Using C. elegans as a model, C01G5.7 (hereafter termed DZIP-1) is identified as the sole homolog of DZIP1L, which specifically localizes to TFs. While DZIP-1 or ANKR-26 (the ortholog of ANKRD26) deficiency shows subtle impact on TFs, co-depletion of DZIP-1 and ANKR-26 disrupts TF assembly and cilia gating for soluble and membrane proteins, including the ortholog of ADPKD protein polycystin-2. Notably, the synergistic role for DZIP1L and ANKRD26 in the formation and function of TFs is highly conserved in mammalian cilia. Hence, the findings illuminate an evolutionarily conserved role of DZIP1L in TFs architecture and function, highlighting TFs as a vital part of the ciliary gate implicated in ciliopathies ARPKD.
Collapse
Affiliation(s)
- Huicheng Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary BiologyCAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghai200032China
- University of Chinese Academy of SciencesBeijing100039China
- Center for Energy Metabolism and ReproductionInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences (CAS)Shenzhen518055China
| | - Zhimao Wu
- Center for Energy Metabolism and ReproductionInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences (CAS)Shenzhen518055China
| | - Ziwei Yan
- CAS Key Laboratory of Insect Developmental and Evolutionary BiologyCAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghai200032China
- University of Chinese Academy of SciencesBeijing100039China
| | - Chuan Chen
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMN55905USA
| | - Yingying Zhang
- Center for Energy Metabolism and ReproductionInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences (CAS)Shenzhen518055China
| | - Qiaoling Wang
- Institute of Medicine and Pharmaceutical SciencesZhengzhou UniversityZhengzhou430000China
| | - Yuqing Gao
- Center for Energy Metabolism and ReproductionInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences (CAS)Shenzhen518055China
| | - Kun Ling
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMN55905USA
| | - Jinghua Hu
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMN55905USA
| | - Qing Wei
- Center for Energy Metabolism and ReproductionInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences (CAS)Shenzhen518055China
- School of Synthetic BiologyShanxi Key Laboratory of Nucleic Acid BiopesticidesShanxi UniversityTaiyuan030006China
| |
Collapse
|
3
|
Takeda Y, Chinen T, Honda S, Takatori S, Okuda S, Yamamoto S, Fukuyama M, Takeuchi K, Tomita T, Hata S, Kitagawa D. Molecular basis promoting centriole triplet microtubule assembly. Nat Commun 2024; 15:2216. [PMID: 38519454 PMCID: PMC10960023 DOI: 10.1038/s41467-024-46454-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/28/2024] [Indexed: 03/25/2024] Open
Abstract
The triplet microtubule, a core structure of centrioles crucial for the organization of centrosomes, cilia, and flagella, consists of unclosed incomplete microtubules. The mechanisms of its assembly represent a fundamental open question in biology. Here, we discover that the ciliopathy protein HYLS1 and the β-tubulin isotype TUBB promote centriole triplet microtubule assembly. HYLS1 or a C-terminal tail truncated version of TUBB generates tubulin-based superstructures composed of centriole-like incomplete microtubule chains when overexpressed in human cells. AlphaFold-based structural models and mutagenesis analyses further suggest that the ciliopathy-related residue D211 of HYLS1 physically traps the wobbling C-terminal tail of TUBB, thereby suppressing its inhibitory role in the initiation of the incomplete microtubule assembly. Overall, our findings provide molecular insights into the biogenesis of atypical microtubule architectures conserved for over a billion years.
Collapse
Affiliation(s)
- Yutaka Takeda
- Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Takumi Chinen
- Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.
| | - Shunnosuke Honda
- Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Sho Takatori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Shotaro Okuda
- Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Shohei Yamamoto
- Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Masamitsu Fukuyama
- Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Koh Takeuchi
- Laboratory of Physical Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Shoji Hata
- Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.
| | - Daiju Kitagawa
- Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
4
|
Brinzer RA, Winter AD, Page AP. The relationship between intraflagellar transport and upstream protein trafficking pathways and macrocyclic lactone resistance in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2024; 14:jkae009. [PMID: 38227795 PMCID: PMC10917524 DOI: 10.1093/g3journal/jkae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
Parasitic nematodes are globally important and place a heavy disease burden on infected humans, crops, and livestock, while commonly administered anthelmintics used for treatment are being rendered ineffective by increasing levels of resistance. It has recently been shown in the model nematode Caenorhabditis elegans that the sensory cilia of the amphid neurons play an important role in resistance toward macrocyclic lactones such as ivermectin (an avermectin) and moxidectin (a milbemycin) either through reduced uptake or intertissue signaling pathways. This study interrogated the extent to which ciliary defects relate to macrocyclic lactone resistance and dye-filling defects using a combination of forward genetics and targeted resistance screening approaches and confirmed the importance of intraflagellar transport in this process. This approach also identified the protein trafficking pathways used by the downstream effectors and the components of the ciliary basal body that are required for effector entry into these nonmotile structures. In total, 24 novel C. elegans anthelmintic survival-associated genes were identified in this study. When combined with previously known resistance genes, there are now 46 resistance-associated genes that are directly involved in amphid, cilia, and intraflagellar transport function.
Collapse
Affiliation(s)
- Robert A Brinzer
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Scotland G61 1QH, UK
| | - Alan D Winter
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Scotland G61 1QH, UK
| | - Antony P Page
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Scotland G61 1QH, UK
| |
Collapse
|
5
|
Curinha A, Huang Z, Anglen T, Strong MA, Gliech CR, Jewett CE, Friskes A, Holland AJ. Centriole structural integrity defects are a crucial feature of Hydrolethalus Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583733. [PMID: 38496445 PMCID: PMC10942441 DOI: 10.1101/2024.03.06.583733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Hydrolethalus Syndrome (HLS) is a lethal, autosomal recessive ciliopathy caused by the mutation of the conserved centriole protein HYLS1. However, how HYLS1 facilitates the centriole-based templating of cilia is poorly understood. Here, we show that mice harboring the HYLS1 disease mutation die shortly after birth and exhibit developmental defects that recapitulate several manifestations of the human disease. These phenotypes arise from tissue-specific defects in cilia assembly and function caused by a loss of centriole integrity. We show that HYLS1 is recruited to the centriole by CEP120 and functions to recruit centriole inner scaffold proteins that stabilize the centriolar microtubule wall. The HLS mutation disrupts the interaction of HYLS1 with CEP120 leading to HYLS1 displacement and degeneration of the centriole distal end. We propose that tissue-specific defects in centriole integrity caused by the HYLS1 mutation prevent ciliogenesis and drive HLS phenotypes.
Collapse
Affiliation(s)
- Ana Curinha
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhaoyu Huang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Taylor Anglen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Margaret A Strong
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Colin R Gliech
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cayla E Jewett
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anoek Friskes
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Moran AL, Louzao-Martinez L, Norris DP, Peters DJM, Blacque OE. Transport and barrier mechanisms that regulate ciliary compartmentalization and ciliopathies. Nat Rev Nephrol 2024; 20:83-100. [PMID: 37872350 DOI: 10.1038/s41581-023-00773-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/25/2023]
Abstract
Primary cilia act as cell surface antennae, coordinating cellular responses to sensory inputs and signalling molecules that regulate developmental and homeostatic pathways. Cilia are therefore critical to physiological processes, and defects in ciliary components are associated with a large group of inherited pleiotropic disorders - known collectively as ciliopathies - that have a broad spectrum of phenotypes and affect many or most tissues, including the kidney. A central feature of the cilium is its compartmentalized structure, which imparts its unique molecular composition and signalling environment despite its membrane and cytosol being contiguous with those of the cell. Such compartmentalization is achieved via active transport pathways that bring protein cargoes to and from the cilium, as well as gating pathways at the ciliary base that establish diffusion barriers to protein exchange into and out of the organelle. Many ciliopathy-linked proteins, including those involved in kidney development and homeostasis, are components of the compartmentalizing machinery. New insights into the major compartmentalizing pathways at the cilium, namely, ciliary gating, intraflagellar transport, lipidated protein flagellar transport and ciliary extracellular vesicle release pathways, have improved our understanding of the mechanisms that underpin ciliary disease and associated renal disorders.
Collapse
Affiliation(s)
- Ailis L Moran
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Laura Louzao-Martinez
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
7
|
Tran MV, Khuntsariya D, Fetter RD, Ferguson JW, Wang JT, Long AF, Cote LE, Wellard SR, Vázquez-Martínez N, Sallee MD, Genova M, Magiera MM, Eskinazi S, Lee JD, Peel N, Janke C, Stearns T, Shen K, Lansky Z, Magescas J, Feldman JL. MAP9/MAPH-9 supports axonemal microtubule doublets and modulates motor movement. Dev Cell 2024; 59:199-210.e11. [PMID: 38159567 PMCID: PMC11385174 DOI: 10.1016/j.devcel.2023.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/15/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
Microtubule doublets (MTDs) comprise an incomplete microtubule (B-tubule) attached to the side of a complete cylindrical microtubule. These compound microtubules are conserved in cilia across the tree of life; however, the mechanisms by which MTDs form and are maintained in vivo remain poorly understood. Here, we identify microtubule-associated protein 9 (MAP9) as an MTD-associated protein. We demonstrate that C. elegans MAPH-9, a MAP9 homolog, is present during MTD assembly and localizes exclusively to MTDs, a preference that is in part mediated by tubulin polyglutamylation. We find that loss of MAPH-9 causes ultrastructural MTD defects, including shortened and/or squashed B-tubules with reduced numbers of protofilaments, dysregulated axonemal motor velocity, and perturbed cilia function. Because we find that the mammalian ortholog MAP9 localizes to axonemes in cultured mammalian cells and mouse tissues, we propose that MAP9/MAPH-9 plays a conserved role in regulating ciliary motors and supporting the structure of axonemal MTDs.
Collapse
Affiliation(s)
- Michael V Tran
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Daria Khuntsariya
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, 25250 Vestec, Prague West, Czech Republic
| | - Richard D Fetter
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - James W Ferguson
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jennifer T Wang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Alexandra F Long
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Lauren E Cote
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | | | - Maria D Sallee
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Mariya Genova
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France; Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Maria M Magiera
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France; Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Sani Eskinazi
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Nina Peel
- The College of New Jersey, Ewing, NJ 08628, USA
| | - Carsten Janke
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France; Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Tim Stearns
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kang Shen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Zdenek Lansky
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, 25250 Vestec, Prague West, Czech Republic
| | - Jérémy Magescas
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Jessica L Feldman
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
8
|
Green TE, Fujita A, Ghaderi N, Heinzen EL, Matsumoto N, Klein KM, Berkovic SF, Hildebrand MS. Brain mosaicism of hedgehog signalling and other cilia genes in hypothalamic hamartoma. Neurobiol Dis 2023; 185:106261. [PMID: 37579995 DOI: 10.1016/j.nbd.2023.106261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023] Open
Abstract
Hypothalamic hamartoma (HH) is a rare benign developmental brain lesion commonly associated with a well characterized epilepsy phenotype. Most individuals with HH are non-syndromic without additional developmental anomalies nor a family history of disease. Nonetheless, HH is a feature of Pallister-Hall (PHS) and Oro-Facial-Digital Type VI (OFD VI) syndromes, both characterized by additional developmental anomalies. Initial genetic of analysis HH began with syndromic HH, where germline inherited or de novo variants in GLI3, encoding a central transcription factor in the sonic hedgehog (Shh) signalling pathway, were identified in most individuals with PHS. Following these discoveries in syndromic HH, the hypothesis that post-zygotic mosaicism in related genes may underly non-syndromic HH was tested. We discuss the identified mosaic variants within individuals with non-syndromic HH, review the analytical methodologies and diagnostic yields, and explore understanding of the functional role of the implicated genes with respect to Shh signalling, and cilia development and function. We also outline future challenges in studying non-syndromic HH and suggest potential novel strategies to interrogate brain mosaicism in HH.
Collapse
Affiliation(s)
- Timothy E Green
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Navid Ghaderi
- Departments of Clinical Neurosciences, Medical Genetics and Community Health Sciences, Hotchkiss Brain Institute & Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Erin L Heinzen
- Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Karl Martin Klein
- Departments of Clinical Neurosciences, Medical Genetics and Community Health Sciences, Hotchkiss Brain Institute & Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Epilepsy Center Frankfurt Rhine-Main and Department of Neurology, Goethe University and University Hospital Frankfurt, Frankfurt am Main, Germany; LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia
| | - Michael S Hildebrand
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia; Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia.
| |
Collapse
|
9
|
Ma X, Zhang Y, Zhang Y, Zhang X, Huang Y, He K, Chen C, Hao J, Zhao D, LeBrasseur NK, Kirkland JL, Chini EN, Wei Q, Ling K, Hu J. A stress-induced cilium-to-PML-NB route drives senescence initiation. Nat Commun 2023; 14:1840. [PMID: 37019904 PMCID: PMC10076330 DOI: 10.1038/s41467-023-37362-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023] Open
Abstract
Cellular senescence contributes to tissue homeostasis and age-related pathologies. However, how senescence is initiated in stressed cells remains vague. Here, we discover that exposure to irradiation, oxidative or inflammatory stressors induces transient biogenesis of primary cilia, which are then used by stressed cells to communicate with the promyelocytic leukemia nuclear bodies (PML-NBs) to initiate senescence responses in human cells. Mechanistically, a ciliary ARL13B-ARL3 GTPase cascade negatively regulates the association of transition fiber protein FBF1 and SUMO-conjugating enzyme UBC9. Irreparable stresses downregulate the ciliary ARLs and release UBC9 to SUMOylate FBF1 at the ciliary base. SUMOylated FBF1 then translocates to PML-NBs to promote PML-NB biogenesis and PML-NB-dependent senescence initiation. Remarkably, Fbf1 ablation effectively subdues global senescence burden and prevents associated health decline in irradiation-treated mice. Collectively, our findings assign the primary cilium a key role in senescence induction in mammalian cells and, also, a promising target in future senotherapy strategies.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Yingyi Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Yuanyuan Zhang
- Department of Clinical Genetics, ShengJing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xu Zhang
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Yan Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Kai He
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Chuan Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jielu Hao
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Debiao Zhao
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Nathan K LeBrasseur
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Eduardo N Chini
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Department of Anesthesiology, Mayo Clinic, Jacksonville, FL, USA
| | - Qing Wei
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China.
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
- Mayo Clinic Robert M. and Billie Kelley Pirnie Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, MN, USA.
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
10
|
Tran MV, Ferguson JW, Cote LE, Khuntsariya D, Fetter RD, Wang JT, Wellard SR, Sallee MD, Genova M, Eskinazi S, Magiera MM, Janke C, Stearns T, Lansky Z, Shen K, Magescas J, Feldman JL. MAP9/MAPH-9 supports axonemal microtubule doublets and modulates motor movement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529616. [PMID: 36865107 PMCID: PMC9980146 DOI: 10.1101/2023.02.23.529616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Microtubule doublets (MTDs) are a well conserved compound microtubule structure found primarily in cilia. However, the mechanisms by which MTDs form and are maintained in vivo remain poorly understood. Here, we characterize microtubule-associated protein 9 (MAP9) as a novel MTD-associated protein. We demonstrate that C. elegans MAPH-9, a MAP9 homolog, is present during MTD assembly and localizes exclusively to MTDs, a preference that is in part mediated by tubulin polyglutamylation. Loss of MAPH-9 caused ultrastructural MTD defects, dysregulated axonemal motor velocity, and perturbed cilia function. As we found that the mammalian ortholog MAP9 localized to axonemes in cultured mammalian cells and mouse tissues, we propose that MAP9/MAPH-9 plays a conserved role in supporting the structure of axonemal MTDs and regulating ciliary motors.
Collapse
|
11
|
Primary Cilia Are Frequently Present in Small Cell Lung Carcinomas but Not in Non–Small Cell Lung Carcinomas or Lung Carcinoids. J Transl Med 2023; 103:100007. [PMID: 37039149 DOI: 10.1016/j.labinv.2022.100007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/30/2022] [Accepted: 08/11/2022] [Indexed: 01/11/2023] Open
Abstract
Most human malignant neoplasms show loss of primary cilia (PC). However, PC are known to be retained and involved in tumorigenesis in some types of neoplasms. The PC status in lung carcinomas remains largely uninvestigated. In this study, we comprehensively assessed the PC status in lung carcinomas. A total of 492 lung carcinomas, consisting of adenocarcinomas (ACs) (n = 319), squamous cell carcinomas (SCCs) (n = 152), and small cell lung carcinomas (SCLCs) (n = 21), were examined by immunohistochemical analysis using an antibody against ARL13B, a marker of PC. The PC-positive rate was markedly higher in SCLCs (81.0%) than in ACs (1.6%) and SCCs (7.9%). We subsequently performed analyses to characterize the PC-positive lung carcinomas further. PC-positive lung carcinomas were more numerous and had longer PC than normal cells. The presence of PC in these cells was not associated with the phase of the cell cycle. We also found that the PC were retained even in metastases from PC-positive lung carcinomas. Furthermore, the hedgehog signaling pathway was activated in PC-positive lung carcinomas. Because ARL13B immunohistochemistry of lung carcinoids (n = 10) also showed a statistically significantly lower rate (10.0%) of PC positivity than SCLCs, we searched for a gene(s) that might be upregulated in PC-positive SCLCs compared with lung carcinoids, but not in PC-negative carcinomas. This search, and further cell culture experiments, identified HYLS1 as a gene possessing the ability to regulate ciliogenesis in PC-positive lung carcinomas. In conclusion, our findings indicate that PC are frequently present in SCLCs but not in non-SCLCs (ACs and SCCs) or lung carcinoids, and their PC exhibit various specific pathobiological characteristics. This suggests an important link between lung carcinogenesis and PC.
Collapse
|
12
|
Cai Z, Liu S, Wang W, Wang R, Miao X, Song P, Shan B, Wang L, Li Y, Lin L. Comparative transcriptome sequencing analysis of female and male Decapterus macrosoma. PeerJ 2022; 10:e14342. [PMID: 36389430 PMCID: PMC9651050 DOI: 10.7717/peerj.14342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022] Open
Abstract
Sexual growth dimorphism is a common phenomenon in teleost fish and has led to many reproductive strategies. Growth- and sex-related gene research in teleost fish would broaden our understanding of the process. In this study, transcriptome sequencing of shortfin scad Decapterus macrosoma was performed for the first time, and a high-quality reference transcriptome was constructed. After identification and assembly, a total of 58,475 nonredundant unigenes were obtained with an N50 length of 2,266 bp, and 28,174 unigenes were successfully annotated with multiple public databases. BUSCO analysis determined a level of 92.9% completeness for the assembled transcriptome. Gene expression analysis revealed 2,345 differentially expressed genes (DEGs) in the female and male D. macrosoma, 1,150 of which were female-biased DEGs, and 1,195 unigenes were male-biased DEGs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the DEGs were mainly involved in biological processes including protein synthesis, growth, rhythmic processes, immune defense, and vitellogenesis. Then, we identified many growth- and sex-related genes, including Igf, Fabps, EF-hand family genes, Zp3, Zp4 and Vg. In addition, a total of 19,573 simple sequence repeats (SSRs) were screened and identified from the transcriptome sequences. The results of this study can provide valuable information on growth- and sex-related genes and facilitate further exploration of the molecular mechanism of sexual growth dimorphism.
Collapse
Affiliation(s)
- Zizi Cai
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Shigang Liu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Wei Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Rui Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Xing Miao
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Puqing Song
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Binbin Shan
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Liangming Wang
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Yuan Li
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China,Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen, China
| | - Longshan Lin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China,Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen, China
| |
Collapse
|
13
|
Zárybnický T, Heikkinen A, Kangas SM, Karikoski M, Martínez-Nieto GA, Salo MH, Uusimaa J, Vuolteenaho R, Hinttala R, Sipilä P, Kuure S. Modeling Rare Human Disorders in Mice: The Finnish Disease Heritage. Cells 2021; 10:cells10113158. [PMID: 34831381 PMCID: PMC8621025 DOI: 10.3390/cells10113158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/31/2022] Open
Abstract
The modification of genes in animal models has evidently and comprehensively improved our knowledge on proteins and signaling pathways in human physiology and pathology. In this review, we discuss almost 40 monogenic rare diseases that are enriched in the Finnish population and defined as the Finnish disease heritage (FDH). We will highlight how gene-modified mouse models have greatly facilitated the understanding of the pathological manifestations of these diseases and how some of the diseases still lack proper models. We urge the establishment of subsequent international consortiums to cooperatively plan and carry out future human disease modeling strategies. Detailed information on disease mechanisms brings along broader understanding of the molecular pathways they act along both parallel and transverse to the proteins affected in rare diseases, therefore also aiding understanding of common disease pathologies.
Collapse
Affiliation(s)
- Tomáš Zárybnický
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland;
| | - Anne Heikkinen
- Biocenter Oulu, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland; (A.H.); (S.M.K.); (M.H.S.); (R.V.)
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 8000, 90014 Oulu, Finland
| | - Salla M. Kangas
- Biocenter Oulu, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland; (A.H.); (S.M.K.); (M.H.S.); (R.V.)
- PEDEGO Research Unit, University of Oulu, P.O. Box 8000, 90014 Oulu, Finland;
- Medical Research Center, Oulu University Hospital, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
| | - Marika Karikoski
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; (M.K.); (G.A.M.-N.)
| | - Guillermo Antonio Martínez-Nieto
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; (M.K.); (G.A.M.-N.)
- Turku Center for Disease Modelling (TCDM), Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| | - Miia H. Salo
- Biocenter Oulu, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland; (A.H.); (S.M.K.); (M.H.S.); (R.V.)
- PEDEGO Research Unit, University of Oulu, P.O. Box 8000, 90014 Oulu, Finland;
- Medical Research Center, Oulu University Hospital, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
| | - Johanna Uusimaa
- PEDEGO Research Unit, University of Oulu, P.O. Box 8000, 90014 Oulu, Finland;
- Medical Research Center, Oulu University Hospital, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
- Clinic for Children and Adolescents, Division of Pediatric Neurology, Oulu University Hospital, P.O. Box 20, 90029 Oulu, Finland
| | - Reetta Vuolteenaho
- Biocenter Oulu, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland; (A.H.); (S.M.K.); (M.H.S.); (R.V.)
| | - Reetta Hinttala
- Biocenter Oulu, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland; (A.H.); (S.M.K.); (M.H.S.); (R.V.)
- PEDEGO Research Unit, University of Oulu, P.O. Box 8000, 90014 Oulu, Finland;
- Medical Research Center, Oulu University Hospital, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
- Correspondence: (R.H.); (P.S.); (S.K.)
| | - Petra Sipilä
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; (M.K.); (G.A.M.-N.)
- Turku Center for Disease Modelling (TCDM), Institute of Biomedicine, University of Turku, 20520 Turku, Finland
- Correspondence: (R.H.); (P.S.); (S.K.)
| | - Satu Kuure
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland;
- GM-Unit, Laboratory Animal Center, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
- Correspondence: (R.H.); (P.S.); (S.K.)
| |
Collapse
|
14
|
Zhang Y, Hao J, Tarrago MG, Warner GM, Giorgadze N, Wei Q, Huang Y, He K, Chen C, Peclat TR, White TA, Ling K, Tchkonia T, Kirkland JL, Chini EN, Hu J. FBF1 deficiency promotes beiging and healthy expansion of white adipose tissue. Cell Rep 2021; 36:109481. [PMID: 34348145 PMCID: PMC8428195 DOI: 10.1016/j.celrep.2021.109481] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/06/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Preadipocytes dynamically produce sensory cilia. However, the role of primary cilia in preadipocyte differentiation and adipose homeostasis remains poorly understood. We previously identified transition fiber component FBF1 as an essential player in controlling selective cilia import. Here, we establish Fbf1tm1a/tm1a mice and discover that Fbf1tm1a/tm1a mice develop severe obesity, but surprisingly, are not predisposed to adverse metabolic complications. Obese Fbf1tm1a/tm1a mice possess unexpectedly healthy white fat tissue characterized by spontaneous upregulated beiging, hyperplasia but not hypertrophy, and low inflammation along the lifetime. Mechanistically, FBF1 governs preadipocyte differentiation by constraining the beiging program through an AKAP9-dependent, cilia-regulated PKA signaling, while recruiting the BBS chaperonin to transition fibers to suppress the hedgehog signaling-dependent adipogenic program. Remarkably, obese Fbf1tm1a/tm1a mice further fed a high-fat diet are protected from diabetes and premature death. We reveal a central role for primary cilia in the fate determination of preadipocytes and the generation of metabolically healthy fat tissue.
Collapse
Affiliation(s)
- Yingyi Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jielu Hao
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Mariana G Tarrago
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Gina M Warner
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Nino Giorgadze
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Qing Wei
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Yan Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Kai He
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Chuan Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Thais R Peclat
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Thomas A White
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Tamar Tchkonia
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Eduardo N Chini
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA; Mayo Clinic Robert M. and Billie Kelley Pirnie Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
15
|
Garbrecht J, Laos T, Holzer E, Dillinger M, Dammermann A. An acentriolar centrosome at the C. elegans ciliary base. Curr Biol 2021; 31:2418-2428.e8. [PMID: 33798427 DOI: 10.1016/j.cub.2021.03.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/13/2021] [Accepted: 03/05/2021] [Indexed: 01/26/2023]
Abstract
In animal cells, the functions of the microtubule cytoskeleton are coordinated by centriole-based centrosomes via γ-tubulin complexes embedded in the pericentriolar material or PCM.1 PCM assembly has been best studied in the context of mitosis, where centriolar SPD-2 recruits PLK-1, which in turn phosphorylates key scaffolding components like SPD-5 and CNN to promote expansion of the PCM polymer.2-4 To what extent these mechanisms apply to centrosomes in interphase or in differentiated cells remains unclear.5 Here, we examine a novel type of centrosome found at the ciliary base of C. elegans sensory neurons, which we show plays important roles in neuronal morphogenesis, cellular trafficking, and ciliogenesis. These centrosomes display similar dynamic behavior to canonical, mitotic centrosomes, with a stable PCM scaffold and dynamically localized client proteins. Unusually, however, they are not organized by centrioles, which degenerate early in terminal differentiation.6 Yet, PCM not only persists but continues to grow with key scaffolding proteins including SPD-5 expressed under control of the RFX transcription factor DAF-19. This assembly occurs in the absence of the mitotic regulators SPD-2, AIR-1 and PLK-1, but requires tethering by PCMD-1, a protein which also plays a role in the initial, interphase recruitment of PCM in early embryos.7 These results argue for distinct mechanisms for mitotic and non-mitotic PCM assembly, with only the former requiring PLK-1 phosphorylation to drive rapid expansion of the scaffold polymer.
Collapse
Affiliation(s)
- Joachim Garbrecht
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr Bohr-Gasse 9, A-1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna
| | - Triin Laos
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr Bohr-Gasse 9, A-1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna
| | - Elisabeth Holzer
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Margarita Dillinger
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Alexander Dammermann
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr Bohr-Gasse 9, A-1030 Vienna, Austria.
| |
Collapse
|
16
|
Chen C, Xu Q, Zhang Y, Davies BA, Huang Y, Katzmann DJ, Harris PC, Hu J, Ling K. Ciliopathy protein HYLS1 coordinates the biogenesis and signaling of primary cilia by activating the ciliary lipid kinase PIPKIγ. SCIENCE ADVANCES 2021; 7:eabe3401. [PMID: 34162535 PMCID: PMC8221637 DOI: 10.1126/sciadv.abe3401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/10/2021] [Indexed: 05/04/2023]
Abstract
Mutation of ciliopathy protein HYLS1 causes the perinatal lethal hydrolethalus syndrome (HLS), yet the underlying molecular etiology and pathogenesis remain elusive. Here, we reveal unexpected mechanistic insights into the role of mammalian HYLS1 in regulating primary cilia. HYLS1 is recruited to the ciliary base via a direct interaction with the type Iγ phosphatidylinositol 4-phosphate [PI(4)P] 5-kinase (PIPKIγ). HYLS1 activates PIPKIγ by interrupting the autoinhibitory dimerization of PIPKIγ, which thereby expedites depletion of centrosomal PI(4)P to allow axoneme nucleation. HYLS1 deficiency interrupts the assembly of ciliary NPHP module and agonist-induced ciliary exit of β-arrestin, which, in turn, disturbs the removal of ciliary Gpr161 and activation of hedgehog (Hh) signaling. Consistent with this model of pathogenesis, the HLS mutant HYLS1D211G supports ciliogenesis but not activation of Hh signaling. These results implicate mammalian HYLS1 as a multitasking protein that facilitates ciliogenesis and ciliary signaling by coordinating with the ciliary lipid kinase PIPKIγ.
Collapse
Affiliation(s)
- Chuan Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Qingwen Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yuxia Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Brian A Davies
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yan Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - David J Katzmann
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Peter C Harris
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
17
|
Wiegering A, Dildrop R, Vesque C, Khanna H, Schneider-Maunoury S, Gerhardt C. Rpgrip1l controls ciliary gating by ensuring the proper amount of Cep290 at the vertebrate transition zone. Mol Biol Cell 2021; 32:675-689. [PMID: 33625872 PMCID: PMC8108517 DOI: 10.1091/mbc.e20-03-0190] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A range of severe human diseases called ciliopathies is caused by the dysfunction of primary cilia. Primary cilia are cytoplasmic protrusions consisting of the basal body (BB), the axoneme, and the transition zone (TZ). The BB is a modified mother centriole from which the axoneme, the microtubule-based ciliary scaffold, is formed. At the proximal end of the axoneme, the TZ functions as the ciliary gate governing ciliary protein entry and exit. Since ciliopathies often develop due to mutations in genes encoding proteins that localize to the TZ, the understanding of the mechanisms underlying TZ function is of eminent importance. Here, we show that the ciliopathy protein Rpgrip1l governs ciliary gating by ensuring the proper amount of Cep290 at the vertebrate TZ. Further, we identified the flavonoid eupatilin as a potential agent to tackle ciliopathies caused by mutations in RPGRIP1L as it rescues ciliary gating in the absence of Rpgrip1l.
Collapse
Affiliation(s)
- Antonia Wiegering
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany.,Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology Unit, 75005 Paris, France
| | - Renate Dildrop
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Christine Vesque
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology Unit, 75005 Paris, France
| | - Hemant Khanna
- Department of Ophthalmology and Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Sylvie Schneider-Maunoury
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology Unit, 75005 Paris, France
| | - Christoph Gerhardt
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
18
|
Etchegaray A, Juarez-Peñalva S, Petracchi F, Igarzabal L. Prenatal genetic considerations in congenital ventriculomegaly and hydrocephalus. Childs Nerv Syst 2020; 36:1645-1660. [PMID: 32006096 DOI: 10.1007/s00381-020-04526-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 01/25/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Fetal ventriculomegaly (VM) is a frequent finding in prenatal ultrasound. Rather than a proper diagnosis, VM is a sonographic sign, making prenatal counseling a complex and challenging undertaking. VM can range from severe pathologic processes leading to severe neurodevelopmental delay to normal variants. DISCUSSION A growing number of genetic conditions with different pathophysiological mechanisms, inheritance patterns, and long-term prognosis have been associated both to isolated and complex fetal VM. These include chromosomal abnormalities, copy number variants, and several single gene diseases. In this review, we describe some of the most common genetic conditions associated with fetal VM and provide a simplified diagnostic workflow for the clinician.
Collapse
Affiliation(s)
- Adolfo Etchegaray
- Unidad de Medicina Fetal, Hospital Universitario Austral, Pilar, Buenos Aires, Argentina.
| | - Sofia Juarez-Peñalva
- Unidad de Medicina Fetal, Hospital Universitario Austral, Pilar, Buenos Aires, Argentina
| | | | | |
Collapse
|
19
|
Hu J, Harris PC. Regulation of polycystin expression, maturation and trafficking. Cell Signal 2020; 72:109630. [PMID: 32275942 PMCID: PMC7269868 DOI: 10.1016/j.cellsig.2020.109630] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 12/26/2022]
Abstract
The major autosomal dominant polycystic kidney disease (ADPKD) genes, PKD1 and PKD2, are wildly expressed at the organ and tissue level. PKD1 encodes polycystin 1 (PC1), a large membrane associated receptor-like protein that can complex with the PKD2 product, PC2. Various cellular locations have been described for both PC1, including the plasma membrane and extracellular vesicles, and PC2, especially the endoplasmic reticulum (ER), but compelling evidence indicates that the primary cilium, a sensory organelle, is the key site for the polycystin complex to prevent PKD. As with other membrane proteins, the ER biogenesis pathway is key to appropriately folding, performing quality control, and exporting fully folded PC1 to the Golgi apparatus. There is a requirement for binding with PC2 and cleavage of PC1 at the GPS for this folding and export to occur. Six different monogenic defects in this pathway lead to cystic disease development, with PC1 apparently particularly sensitive to defects in this general protein processing pathway. Trafficking of membrane proteins, and the polycystins in particular, through the Golgi to the primary cilium have been analyzed in detail, but at this time, there is no clear consensus on a ciliary targeting sequence required to export proteins to the cilium. After transitioning though the trans-Golgi network, polycystin-bearing vesicles are likely sorted to early or recycling endosomes and then transported to the ciliary base, possibly via docking to transition fibers (TF). The membrane-bound polycystin complex then undergoes facilitated trafficking through the transition zone, the diffusion barrier at the base of the cilium, before entering the cilium. Intraflagellar transport (IFT) may be involved in moving the polycystins along the cilia, but data also indicates other mechanisms. The ciliary polycystin complex can be ubiquitinated and removed from cilia by internalization at the ciliary base and may be sent back to the plasma membrane for recycling or to lysosomes for degradation. Monogenic defects in processes regulating the protein composition of cilia are associated with syndromic disorders involving many organ systems, reflecting the pleotropic role of cilia during development and for tissue maintenance. Many of these ciliopathies have renal involvement, likely because of faulty polycystin signaling from cilia. Understanding the expression, maturation and trafficking of the polycystins helps understand PKD pathogenesis and suggests opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| | - Peter C Harris
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
20
|
Hou Y, Wu Z, Zhang Y, Chen H, Hu J, Guo Y, Peng Y, Wei Q. Functional Analysis of Hydrolethalus Syndrome Protein HYLS1 in Ciliogenesis and Spermatogenesis in Drosophila. Front Cell Dev Biol 2020; 8:301. [PMID: 32509774 PMCID: PMC7253586 DOI: 10.3389/fcell.2020.00301] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/07/2020] [Indexed: 12/02/2022] Open
Abstract
Cilia and flagella are conserved subcellular organelles, which arise from centrioles and play critical roles in development and reproduction of eukaryotes. Dysfunction of cilia leads to life-threatening ciliopathies. HYLS1 is an evolutionarily conserved centriole protein, which is critical for ciliogenesis, and its mutation causes ciliopathy–hydrolethalus syndrome. However, the molecular function of HYLS1 remains elusive. Here, we investigated the function of HYLS1 in cilia formation using the Drosophila model. We demonstrated that Drosophila HYLS1 is a conserved centriole and basal body protein. Deletion of HYLS1 led to sensory cilia dysfunction and spermatogenesis abnormality. Importantly, we found that Drosophila HYLS1 is essential for giant centriole/basal body elongation in spermatocytes and is required for spermatocyte centriole to efficiently recruit pericentriolar material and for spermatids to assemble the proximal centriole-like structure (the precursor of the second centriole for zygote division). Hence, by taking advantage of the giant centriole/basal body of Drosophila spermatocyte, we uncover previously uncharacterized roles of HYLS1 in centriole elongation and assembly.
Collapse
Affiliation(s)
- Yanan Hou
- Laboratory for Reproductive Health, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Zhimao Wu
- Laboratory for Reproductive Health, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China.,Chinese Academy of Sciences Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yingying Zhang
- Laboratory for Reproductive Health, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China.,Chinese Academy of Sciences Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huicheng Chen
- Laboratory for Reproductive Health, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China.,Chinese Academy of Sciences Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Yi Guo
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Ying Peng
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States.,Institute of Medicine and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qing Wei
- Laboratory for Reproductive Health, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
21
|
TALPID3 and ANKRD26 selectively orchestrate FBF1 localization and cilia gating. Nat Commun 2020; 11:2196. [PMID: 32366837 PMCID: PMC7198521 DOI: 10.1038/s41467-020-16042-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 04/10/2020] [Indexed: 12/19/2022] Open
Abstract
Transition fibers (TFs) regulate cilia gating and make the primary cilium a distinct functional entity. However, molecular insights into the biogenesis of a functional cilia gate remain elusive. In a forward genetic screen in Caenorhabditis elegans, we uncover that TALP-3, a homolog of the Joubert syndrome protein TALPID3, is a TF-associated component. Genetic analysis reveals that TALP-3 coordinates with ANKR-26, the homolog of ANKRD26, to orchestrate proper cilia gating. Mechanistically, TALP-3 and ANKR-26 form a complex with key gating component DYF-19, the homolog of FBF1. Co-depletion of TALP-3 and ANKR-26 specifically impairs the recruitment of DYF-19 to TFs. Interestingly, in mammalian cells, TALPID3 and ANKRD26 also play a conserved role in coordinating the recruitment of FBF1 to TFs. We thus report a conserved protein module that specifically regulates the functional component of the ciliary gate and suggest a correlation between defective gating and ciliopathy pathogenesis. Most cells possess sensory cilia, which need to be gated properly. Here the authors show that the C. elegans proteins TALP-3 and ANKR-26 coordinate cilia gating in the context of transition fibers and that this mechanism is conserved in mammalian cells and likely implicated in certain ciliopathies.
Collapse
|
22
|
Establishing and regulating the composition of cilia for signal transduction. Nat Rev Mol Cell Biol 2020; 20:389-405. [PMID: 30948801 DOI: 10.1038/s41580-019-0116-4] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The primary cilium is a hair-like surface-exposed organelle of the eukaryotic cell that decodes a variety of signals - such as odorants, light and Hedgehog morphogens - by altering the local concentrations and activities of signalling proteins. Signalling within the cilium is conveyed through a diverse array of second messengers, including conventional signalling molecules (such as cAMP) and some unusual intermediates (such as sterols). Diffusion barriers at the ciliary base establish the unique composition of this signalling compartment, and cilia adapt their proteome to signalling demands through regulated protein trafficking. Much progress has been made on the molecular understanding of regulated ciliary trafficking, which encompasses not only exchanges between the cilium and the rest of the cell but also the shedding of signalling factors into extracellular vesicles.
Collapse
|
23
|
Thomas S, Boutaud L, Reilly ML, Benmerah A. Cilia in hereditary cerebral anomalies. Biol Cell 2019; 111:217-231. [DOI: 10.1111/boc.201900012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Sophie Thomas
- Laboratory of Embryology and Genetics of Human MalformationINSERM UMR 1163Paris Descartes UniversityImagine Institute 75015 Paris France
| | - Lucile Boutaud
- Laboratory of Embryology and Genetics of Human MalformationINSERM UMR 1163Paris Descartes UniversityImagine Institute 75015 Paris France
| | - Madeline Louise Reilly
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163Paris Descartes UniversityImagine Institute 75015 Paris France
- Paris Diderot University 75013 Paris France
| | - Alexandre Benmerah
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163Paris Descartes UniversityImagine Institute 75015 Paris France
| |
Collapse
|
24
|
Nachury MV. The molecular machines that traffic signaling receptors into and out of cilia. Curr Opin Cell Biol 2018; 51:124-131. [PMID: 29579578 PMCID: PMC5949257 DOI: 10.1016/j.ceb.2018.03.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/06/2018] [Accepted: 03/08/2018] [Indexed: 12/12/2022]
Abstract
Cilia are surface-exposed organelles that dynamically concentrate signaling molecules to organize sensory, developmental and homeostatic pathways. Entry and exit of signaling receptors is germane to the processing of signals and the molecular machines for entry and exit have started to emerge. The IFT-A complex and its membrane recruitment factor Tulp3 complex promotes the entry of signaling receptors into cilia while the BBSome and its membrane recruitment factor Arl6GTP ferry activated signaling receptors out of cilia. Ciliary exit is a surprisingly complex process entailing passage through a first diffusion barrier at the transition zone, diffusion inside an intermediate compartment and crossing of a periciliary diffusion barrier. The two barriers may organize a privileged compartment where activated signaling receptors transiently reside.
Collapse
Affiliation(s)
- Maxence V Nachury
- UCSF School of Medicine, Department of Ophthalmology, United States.
| |
Collapse
|
25
|
Primary Cilium Formation and Ciliary Protein Trafficking Is Regulated by the Atypical MAP Kinase MAPK15 in Caenorhabditis elegans and Human Cells. Genetics 2017; 207:1423-1440. [PMID: 29021280 DOI: 10.1534/genetics.117.300383] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/05/2017] [Indexed: 11/18/2022] Open
Abstract
Motile and immotile (or primary) cilia are microtubule-based structures that mediate multiple cellular functions, including the transduction of environmental cues, developmental signaling, cellular motility, and modulation of fluid flow. Although their core architectures are similar, motile and primary cilia exhibit marked structural differences that underlie distinct functional properties. However, the extent to which ciliogenesis mechanisms are shared between these different cilia types is not fully described. Here, we report that the atypical MAP kinase MAPK15 (ERK7/8), implicated in the formation of vertebrate motile cilia, also regulates the formation of primary cilia in Caenorhabditis elegans sensory neurons and human cells. We find that MAPK15 localizes to a basal body subdomain with the ciliopathy protein BBS7 and to cell-cell junctions. MAPK15 also regulates the localization of ciliary proteins involved in cilium structure, transport, and signaling. Our results describe a primary cilia-related role for this poorly studied member of the MAPK family in vivo, and indicate a broad requirement for MAPK15 in the formation of multiple ciliary classes across species.
Collapse
|
26
|
Nechipurenko IV, Sengupta P. The rise and fall of basal bodies in the nematode Caenorhabditis elegans. Cilia 2017; 6:9. [PMID: 28770089 PMCID: PMC5530580 DOI: 10.1186/s13630-017-0053-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/11/2017] [Indexed: 11/17/2022] Open
Abstract
The free-living nematode, Caenorhabditis elegans, is a widely used genetic model organism for investigations into centriole and cilia biology. Only sensory neurons are ciliated in C. elegans; morphologically diverse cilia in these neurons are nucleated by basal bodies located at the dendritic endings. C. elegans centrioles comprise a central tube with a symmetric array of nine singlet microtubules. These singlet microtubules remodel in a subset of sensory neurons to form the doublet microtubules of the basal bodies. Following initiation of ciliogenesis, the central tube, but not the outer centriole wall, of the basal body degenerates. Recent ultrastructural characterization of basal body architecture and remodeling have laid the foundation for future studies into mechanisms underlying different aspects of basal body genesis, remodeling, and intracellular positioning.
Collapse
Affiliation(s)
- Inna V Nechipurenko
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454 USA
| | - Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454 USA
| |
Collapse
|
27
|
Li W, Yi P, Zhu Z, Zhang X, Li W, Ou G. Centriole translocation and degeneration during ciliogenesis in Caenorhabditis elegans neurons. EMBO J 2017; 36:2553-2566. [PMID: 28743734 DOI: 10.15252/embj.201796883] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/06/2017] [Accepted: 07/03/2017] [Indexed: 11/09/2022] Open
Abstract
Neuronal cilia that are formed at the dendritic endings of sensory neurons are essential for sensory perception. However, it remains unclear how the centriole-derived basal body is positioned to form a template for cilium formation. Using fluorescence time-lapse microscopy, we show that the centriole translocates from the cell body to the dendrite tip in the Caenorhabditis elegans sensory neurons. The centriolar protein SAS-5 interacts with the dynein light-chain LC8 and conditional mutations of cytoplasmic dynein-1 block centriole translocation and ciliogenesis. The components of the central tube are essential for the biogenesis of centrioles, which later drive ciliogenesis in the dendrite; however, the centriole loses these components at the late stage of centriole translocation and subsequently recruits transition zone and intraflagellar transport proteins. Together, our results provide a comprehensive model of ciliogenesis in sensory neurons and reveal the importance of the dynein-dependent centriole translocation in this process.
Collapse
Affiliation(s)
- Wenjing Li
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Peishan Yi
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Zhiwen Zhu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Xianliang Zhang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Wei Li
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| |
Collapse
|
28
|
Nechipurenko IV, Berciu C, Sengupta P, Nicastro D. Centriolar remodeling underlies basal body maturation during ciliogenesis in Caenorhabditis elegans. eLife 2017; 6. [PMID: 28411364 PMCID: PMC5392363 DOI: 10.7554/elife.25686] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/15/2017] [Indexed: 12/31/2022] Open
Abstract
The primary cilium is nucleated by the mother centriole-derived basal body (BB) via as yet poorly characterized mechanisms. BBs have been reported to degenerate following ciliogenesis in the C. elegans embryo, although neither BB architecture nor early ciliogenesis steps have been described in this organism. In a previous study (Doroquez et al., 2014), we described the three-dimensional morphologies of sensory neuron cilia in adult C. elegans hermaphrodites at high resolution. Here, we use serial section electron microscopy and tomography of staged C. elegans embryos to demonstrate that BBs remodel to support ciliogenesis in a subset of sensory neurons. We show that centriolar singlet microtubules are converted into BB doublets which subsequently grow asynchronously to template the ciliary axoneme, visualize degeneration of the centriole core, and define the developmental stage at which the transition zone is established. Our work provides a framework for future investigations into the mechanisms underlying BB remodeling. DOI:http://dx.doi.org/10.7554/eLife.25686.001
Collapse
Affiliation(s)
- Inna V Nechipurenko
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Cristina Berciu
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, United States
| | - Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Daniela Nicastro
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, United States.,Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
29
|
Serwas D, Su TY, Roessler M, Wang S, Dammermann A. Centrioles initiate cilia assembly but are dispensable for maturation and maintenance in C. elegans. J Cell Biol 2017; 216:1659-1671. [PMID: 28411189 PMCID: PMC5461022 DOI: 10.1083/jcb.201610070] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/10/2017] [Accepted: 04/10/2017] [Indexed: 01/17/2023] Open
Abstract
Cilia are cellular projections that assemble on centriole-derived basal bodies. While cilia assembly is absolutely dependent on centrioles, it is not known to what extent they contribute to downstream events. The nematode C. elegans provides a unique opportunity to address this question, as centrioles do not persist at the base of mature cilia. Using fluorescence microscopy and electron tomography, we find that centrioles degenerate early during ciliogenesis. The transition zone and axoneme are not completely formed at this time, indicating that cilia maturation does not depend on intact centrioles. The hydrolethalus syndrome protein HYLS-1 is the only centriolar protein known to remain at the base of mature cilia and is required for intraflagellar transport trafficking. Surprisingly, targeted degradation of HYLS-1 after initiation of ciliogenesis does not affect ciliary structures. Taken together, our results indicate that while centrioles are essential to initiate cilia formation, they are dispensable for cilia maturation and maintenance.
Collapse
Affiliation(s)
- Daniel Serwas
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Tiffany Y Su
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Max Roessler
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Shaohe Wang
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Alexander Dammermann
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), A-1030 Vienna, Austria
| |
Collapse
|