1
|
Song JA, Lee E, Choi YU, Park JJC, Han J. Influence of temperature changes on oxidative stress and antioxidant defense system in the bay scallop, Argopecten irradians. Comp Biochem Physiol A Mol Integr Physiol 2025; 299:111775. [PMID: 39537095 DOI: 10.1016/j.cbpa.2024.111775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
In this study, we aimed to understand the effects of changes in temperature on biochemical and molecular responses associated with the antioxidant defense system in the bay scallop, Argopecten irradians. We measured the contents of H2O2 and malondialdehyde (MDA), as well as the activities of antioxidant enzymes (e.g., glutathione S-transferase [GST], superoxide dismutase [SOD], and catalase [CAT]), and the regulation of stress-related genes (e.g., GST, SOD, CAT, and heat shock protein 70 [HSP70]). In addition, total antioxidant capacity (TAC) was examined in scallops exposed to different temperatures. A. irradians showed high levels of H2O2 and MDA in response to acute thermal stress (48 and 72 h of exposure). Temperature changes also led to a significant increase in antioxidant enzyme activity and mRNA expression levels in A. irradians. Interestingly, the TAC increased in response to acute thermal stress (28 °C) for up to 12 h and decreased thereafter. The oxidative stress induced by high temperatures could not be alleviated by an increase in levels of antioxidant enzymes, such as GST, SOD, and CAT, resulting in high levels of H2O2 and MDA and low levels of TAC. In addition, significant changes (P < 0.05) in HSP70 levels were observed in response to changes in temperature, suggesting that HSP70 played an important role in the heat tolerance of A. irradians. In conclusion, A. irradians exhibits a greater degree of oxidative stress responses in high-temperature environments than that in low-temperature environments. Overall, these findings indicate that temperature changes lead to oxidative stress, resulting in cellular damage and activation of the antioxidant defense system in bay scallops. Further experiments are required to elucidate other antioxidants and fully understand the redox system in A. irradians.
Collapse
Affiliation(s)
- Jin Ah Song
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science & Technology (KIOST), Busan 49111, Republic of Korea
| | - Eunseong Lee
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science & Technology (KIOST), Busan 49111, Republic of Korea
| | - Young-Ung Choi
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science & Technology (KIOST), Busan 49111, Republic of Korea
| | - Jordan Jun Chul Park
- Département des Sciences, Université Sainte-Anne, Church Point, NS B0W 1M0, Canada
| | - Jeonghoon Han
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science & Technology (KIOST), Busan 49111, Republic of Korea.
| |
Collapse
|
2
|
Payne ARD, Mannion PD, Lloyd GT, Davis KE. Decoupling speciation and extinction reveals both abiotic and biotic drivers shaped 250 million years of diversity in crocodile-line archosaurs. Nat Ecol Evol 2024; 8:121-132. [PMID: 38049481 PMCID: PMC10781641 DOI: 10.1038/s41559-023-02244-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/26/2023] [Indexed: 12/06/2023]
Abstract
Whereas living representatives of Pseudosuchia, crocodylians, number fewer than 30 species, more than 700 pseudosuchian species are known from their 250-million-year fossil record, displaying far greater ecomorphological diversity than their extant counterparts. With a new time-calibrated tree of >500 species, we use a phylogenetic framework to reveal that pseudosuchian evolutionary history and diversification dynamics were directly shaped by the interplay of abiotic and biotic processes over hundreds of millions of years, supported by information theory analyses. Speciation, but not extinction, is correlated with higher temperatures in terrestrial and marine lineages, with high sea level associated with heightened extinction in non-marine taxa. Low lineage diversity and increased speciation in non-marine species is consistent with opportunities for niche-filling, whereas increased competition may have led to elevated extinction rates. In marine lineages, competition via increased lineage diversity appears to have driven both speciation and extinction. Decoupling speciation and extinction, in combination with ecological partitioning, reveals a more complex picture of pseudosuchian evolution than previously understood. As the number of species threatened with extinction by anthropogenic climate change continues to rise, the fossil record provides a unique window into the drivers that led to clade success and those that may ultimately lead to extinction.
Collapse
Affiliation(s)
- Alexander R D Payne
- Department of Biology, University of York, York, UK
- Leverhulme Centre for Anthropocene Biodiversity, University of York, York, UK
| | - Philip D Mannion
- Department of Earth Sciences, University College London, London, UK
| | | | - Katie E Davis
- Department of Biology, University of York, York, UK.
| |
Collapse
|
3
|
Thompson JB, Davis KE, Dodd HO, Wills MA, Priest NK. Speciation across the Earth driven by global cooling in terrestrial orchids. Proc Natl Acad Sci U S A 2023; 120:e2102408120. [PMID: 37428929 PMCID: PMC10629580 DOI: 10.1073/pnas.2102408120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/03/2023] [Indexed: 07/12/2023] Open
Abstract
Although climate change has been implicated as a major catalyst of diversification, its effects are thought to be inconsistent and much less pervasive than localized climate or the accumulation of species with time. Focused analyses of highly speciose clades are needed in order to disentangle the consequences of climate change, geography, and time. Here, we show that global cooling shapes the biodiversity of terrestrial orchids. Using a phylogeny of 1,475 species of Orchidoideae, the largest terrestrial orchid subfamily, we find that speciation rate is dependent on historic global cooling, not time, tropical distributions, elevation, variation in chromosome number, or other types of historic climate change. Relative to the gradual accumulation of species with time, models specifying speciation driven by historic global cooling are over 700 times more likely. Evidence ratios estimated for 212 other plant and animal groups reveal that terrestrial orchids represent one of the best-supported cases of temperature-spurred speciation yet reported. Employing >2.5 million georeferenced records, we find that global cooling drove contemporaneous diversification in each of the seven major orchid bioregions of the Earth. With current emphasis on understanding and predicting the immediate impacts of global warming, our study provides a clear case study of the long-term impacts of global climate change on biodiversity.
Collapse
Affiliation(s)
- Jamie B. Thompson
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, BathBA2 7AY, United Kingdom
| | - Katie E. Davis
- Department of Biology, University of York, YorkYO10 5DD, United Kingdom
| | - Harry O. Dodd
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, BathBA2 7AY, United Kingdom
| | - Matthew A. Wills
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, BathBA2 7AY, United Kingdom
| | - Nicholas K. Priest
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, BathBA2 7AY, United Kingdom
| |
Collapse
|
4
|
Bista I, Wood JMD, Desvignes T, McCarthy SA, Matschiner M, Ning Z, Tracey A, Torrance J, Sims Y, Chow W, Smith M, Oliver K, Haggerty L, Salzburger W, Postlethwait JH, Howe K, Clark MS, William Detrich H, Christina Cheng CH, Miska EA, Durbin R. Genomics of cold adaptations in the Antarctic notothenioid fish radiation. Nat Commun 2023; 14:3412. [PMID: 37296119 PMCID: PMC10256766 DOI: 10.1038/s41467-023-38567-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/05/2023] [Indexed: 06/12/2023] Open
Abstract
Numerous novel adaptations characterise the radiation of notothenioids, the dominant fish group in the freezing seas of the Southern Ocean. To improve understanding of the evolution of this iconic fish group, here we generate and analyse new genome assemblies for 24 species covering all major subgroups of the radiation, including five long-read assemblies. We present a new estimate for the onset of the radiation at 10.7 million years ago, based on a time-calibrated phylogeny derived from genome-wide sequence data. We identify a two-fold variation in genome size, driven by expansion of multiple transposable element families, and use the long-read data to reconstruct two evolutionarily important, highly repetitive gene family loci. First, we present the most complete reconstruction to date of the antifreeze glycoprotein gene family, whose emergence enabled survival in sub-zero temperatures, showing the expansion of the antifreeze gene locus from the ancestral to the derived state. Second, we trace the loss of haemoglobin genes in icefishes, the only vertebrates lacking functional haemoglobins, through complete reconstruction of the two haemoglobin gene clusters across notothenioid families. Both the haemoglobin and antifreeze genomic loci are characterised by multiple transposon expansions that may have driven the evolutionary history of these genes.
Collapse
Affiliation(s)
- Iliana Bista
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Rd, Cambridge, CB2 1QN, UK.
- Naturalis Biodiversity Center, Leiden, 2333 CR, the Netherlands.
| | - Jonathan M D Wood
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Thomas Desvignes
- University of Oregon, Institute of Neuroscience, 1254 University of Oregon, 13th Avenue, Eugene, OR, 97403, USA
| | - Shane A McCarthy
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Michael Matschiner
- University of Oslo, Natural History Museum, University of Oslo, Sars' gate 1, 0562, Oslo, Norway
- University of Zurich, Department of Palaeontology and Museum, University of Zurich, Karl-Schmid-Strasse 4, 8006, Zurich, Switzerland
| | - Zemin Ning
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Alan Tracey
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - James Torrance
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Ying Sims
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - William Chow
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Michelle Smith
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Karen Oliver
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Leanne Haggerty
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Walter Salzburger
- University of Basel, Zoological Institute, Department of Environmental Sciences, Vesalgasse 1, 4051, Basel, Switzerland
| | - John H Postlethwait
- University of Oregon, Institute of Neuroscience, 1254 University of Oregon, 13th Avenue, Eugene, OR, 97403, USA
| | - Kerstin Howe
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Melody S Clark
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - H William Detrich
- Northeastern University, Department of Marine and Environmental Sciences, Marine Science Centre, 430 Nahant Rd., Nahant, MA, 01908, USA
| | - C-H Christina Cheng
- Department of Evolution, Ecology, and Behaviour, University of Illinois, Urbana-Champaign, IL, 61801, USA
| | - Eric A Miska
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Rd, Cambridge, CB2 1QN, UK
| | - Richard Durbin
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
| |
Collapse
|
5
|
Mendoza JCE, Chan KO, Lai JCY, Thoma BP, Clark PF, Guinot D, Felder DL, Ng PKL. A comprehensive molecular phylogeny of the brachyuran crab superfamily Xanthoidea provides novel insights into its systematics and evolutionary history. Mol Phylogenet Evol 2022; 177:107627. [PMID: 36096461 DOI: 10.1016/j.ympev.2022.107627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/27/2022]
Abstract
Maximum likelihood and Bayesian phylogenies for the brachyuran crab superfamily Xanthoidea were estimated based on three mitochondrial and four nuclear genes to infer phylogenetic relationships and inform taxonomy. Habitat data was then used in conjunction with several diversification rates analyses (BAMM, BiSSE, HiSSE, and FiSSE) to test evolutionary hypotheses regarding the diversification of xanthoid crabs. The phylogenies presented are the most comprehensive to date in terms of global diversity as they include all four constituent families (Xanthidae, Panopeidae, Pseudorhombilidae, and Linnaeoxanthidae) spanning all oceans in which xanthoid crabs occur. Six Xanthoidea families are recognised. Panopeidae and Xanthidae sensu stricto are the two largest family-level clades, which are reciprocally monophyletic. Pseudorhombilidae is nested within and is here treated as a subfamily of Panopeidae. Former subfamilies or tribes of Xanthidae sensu lato are basally positioned clades in Xanthoidea and are here assigned family-level ranks: Garthiellidae, Linnaeoxanthidae, Antrocarcinidae, and Nanocassiopidae. The genera Linnaeoxantho and Melybia were recovered in separate clades with Linnaeoxantho being sister to the family Antrocarcinidae, while Melybia was recovered within the family Panopeidae. The existing subfamily classification of Xanthidae and Panopeidae is drastically restructured with 20 xanthid and four panopeid subfamilies provisionally recognised. Diversification-time analyses inferred the origin of Xanthoidea and Garthiellidae in the Eocene, while the other families originated during the Oligocene. The majority of genus- and species-level diversification took place during the Miocene. Ancestral state reconstruction based on depth of occurrence (shallow vs. deep water) shows some ambiguity for the most recent common ancestor of Xanthoidea and Nanocassiopidae. The most recent common ancestors of Antrocarcinidae and Panopeidae were likely deep-water species, while those of Garthiellidae and Xanthidae were probably shallow-water species. Several shifts in net diversification rates were detected but they were not associated with depth-related habitat transitions.
Collapse
Affiliation(s)
- Jose C E Mendoza
- Lee Kong Chian Natural History Museum, Faculty of Science, National University of Singapore, 2 Conservatory Drive, 117377 Singapore, Singapore.
| | - Kin Onn Chan
- Lee Kong Chian Natural History Museum, Faculty of Science, National University of Singapore, 2 Conservatory Drive, 117377 Singapore, Singapore.
| | - Joelle C Y Lai
- Lee Kong Chian Natural History Museum, Faculty of Science, National University of Singapore, 2 Conservatory Drive, 117377 Singapore, Singapore
| | - Brent P Thoma
- Department of Biology, Jackson State University, P.O. Box 18540, Jackson, MS 39217, USA
| | - Paul F Clark
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| | - Danièle Guinot
- Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Institut de Systématique, Évolution, Biodiversité (ISYEB), Case Postale 53, 57 rue Cuvier, F-75231 Paris cedex 05, France
| | - Darryl L Felder
- Department of Biology and Laboratory for Crustacean Research, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Peter K L Ng
- Lee Kong Chian Natural History Museum, Faculty of Science, National University of Singapore, 2 Conservatory Drive, 117377 Singapore, Singapore
| |
Collapse
|
6
|
Short-term paleogeographic reorganizations and climate events shaped diversification of North American freshwater gastropods over deep time. Sci Rep 2022; 12:15572. [PMID: 36114216 PMCID: PMC9481594 DOI: 10.1038/s41598-022-19759-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/05/2022] [Indexed: 12/02/2022] Open
Abstract
What controls species diversity and diversification is one of the major questions in evolutionary biology and paleontology. Previous studies have addressed this issue based on various plant and animal groups, geographic regions, and time intervals. However, as most previous research focused on terrestrial or marine ecosystems, our understanding of the controls on diversification of biota (and particularly invertebrates) in freshwater environments in deep time is still limited. Here, we infer diversification rates of North American freshwater gastropods from the Late Triassic to the Pleistocene and explore potential links between shifts in speciation and extinction and major changes in paleogeography, climate, and biotic interactions. We found that variation in the speciation rate is best explained by changes in continental fragmentation, with rate shifts coinciding with major paleogeographic reorganizations in the Mesozoic, in particular the retreat of the Sundance Sea and subsequent development of the Bighorn wetland and the advance of the Western Interior Seaway. Climatic events in the Cenozoic (Middle Eocene Climate Optimum, Miocene Climate Optimum) variably coincide with shifts in speciation and extinction as well, but no significant long-term association could be detected. Similarly, no influence of diversity dependence was found across the entire time frame of ~ 214 Myr. Our results indicate that short-term climatic events and paleogeographic changes are relevant to the diversification of continental freshwater biota, while long-term trends have limited effect.
Collapse
|
7
|
Davis KE, De Grave S, Delmer C, Payne ARD, Mitchell S, Wills MA. Ecological Transitions and the Shape of the Decapod Tree of Life. Integr Comp Biol 2022; 62:332-344. [PMID: 35612997 DOI: 10.1093/icb/icac052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 11/14/2022] Open
Abstract
Understanding the processes that shaped the distribution of species richness across the Tree of Life is a central macroevolutionary research agenda. Major ecological innovations, including transitions between habitats, may help to explain the striking asymmetries of diversity that are often observed between sister clades. Here, we test the impact of such transitions on speciation rates across decapod crustaceans, modelling diversification dynamics within a phylogenetic framework. Our results show that, while terrestrial lineages have higher speciation rates than either marine or freshwater lineages, there is no difference between mean speciation rates in marine and freshwater lineages across Decapoda. Partitioning our data by infraorder reveals that those clades with habitat heterogeneity have higher speciation rates in freshwater and terrestrial lineages, with freshwater rates up to 1.5 times faster than marine rates, and terrestrial rates approximately four times faster. This averaging out of marine and freshwater speciation rates results from the varying contributions of different clades to average speciation rates. However, with the exception of Caridea, we find no evidence for any causal relationship between habitat and speciation rate. Our results demonstrate that while statistical generalisations about ecological traits and evolutionary rates are valuable, there are many exceptions. Hence, while freshwater and terrestrial lineages typically speciate faster than their marine relatives, there are many atypically slow freshwater lineages and fast marine lineages across Decapoda. Future work on diversification patterns will benefit from the inclusion of fossil data, as well as additional ecological factors.
Collapse
Affiliation(s)
- Katie E Davis
- University of York, Department of Biology York, North Yorkshire, UK
| | - Sammy De Grave
- Oxford University Museum of Natural History, Oxford, Oxfordshire, UK
| | - Cyrille Delmer
- University of Bath, Department of Biology & Biochemistry, Bath, Bath and North East Somerset, UK
| | - Alexander R D Payne
- University of York, Leverhulme Centre for Anthropocene Biodiversity, York, North Yorkshire, UK
| | - Steve Mitchell
- University of Bath, Department of Biology & Biochemistry, Bath, Bath and North East Somerset, UK
| | - Matthew A Wills
- University of Bath, Department of Biology & Biochemistry, Bath, Bath and North East Somerset, UK
| |
Collapse
|
8
|
Xu W, Dong WJ, Fu TT, Gao W, Lu CQ, Yan F, Wu YH, Jiang K, Jin JQ, Chen HM, Zhang YP, Hillis DM, Che J. Herpetological phylogeographic analyses support a Miocene focal point of Himalayan uplift and biological diversification. Natl Sci Rev 2021; 8:nwaa263. [PMID: 34691726 PMCID: PMC8433089 DOI: 10.1093/nsr/nwaa263] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/29/2020] [Accepted: 10/18/2020] [Indexed: 11/26/2022] Open
Abstract
The Himalaya are among the youngest and highest mountains in the world, but the exact timing of their uplift and origins of their biodiversity are still in debate. The Himalayan region is a relatively small area but with exceptional diversity and endemism. One common hypothesis to explain the rich montane diversity is uplift-driven diversification-that orogeny creates conditions favoring rapid in situ speciation of resident lineages. We test this hypothesis in the Himalayan region using amphibians and reptiles, two environmentally sensitive vertebrate groups. In addition, analysis of diversification of the herpetofauna provides an independent source of information to test competing geological hypotheses of Himalayan orogenesis. We conclude that the origins of the Himalayan herpetofauna date to the early Paleocene, but that diversification of most groups was concentrated in the Miocene. There was an increase in both rates and modes of diversification during the early to middle Miocene, together with regional interchange (dispersal) between the Himalaya and adjacent regions. Our analyses support a recently proposed stepwise geological model of Himalayan uplift beginning in the Paleocene, with a subsequent rapid increase of uplifting during the Miocene, finally giving rise to the intensification of the modern South Asian Monsoon.
Collapse
Affiliation(s)
- Wei Xu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Wen-Jie Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Ting-Ting Fu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Wei Gao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Chen-Qi Lu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Fang Yan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yun-He Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Ke Jiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jie-Qiong Jin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Hong-Man Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - David M Hillis
- Department of Integrative Biology and Biodiversity Center, University of Texas at Austin, Austin, TX 78712, USA
| | - Jing Che
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
9
|
Abstract
The Antarctic environment is famously inhospitable to most terrestrial biodiversity, traditionally viewed as a driver of species extinction. Combining population- and species-level molecular data, we show that beetles on islands along the Antarctic Polar Front diversified in response to major climatic events over the last 50 Ma in surprising synchrony with the region’s marine organisms. Unique algae- and moss-feeding habits enabled beetles to capitalize on cooling conditions, which resulted in a decline in flowering plants—the typical hosts for beetles elsewhere. Antarctica’s cooling paleoclimate thus fostered the diversification of both terrestrial and marine life. Climatically driven evolutionary processes since the Miocene may underpin much of the region’s diversity, are still ongoing, and should be further investigated among Antarctic biota. Global cooling and glacial–interglacial cycles since Antarctica’s isolation have been responsible for the diversification of the region’s marine fauna. By contrast, these same Earth system processes are thought to have played little role terrestrially, other than driving widespread extinctions. Here, we show that on islands along the Antarctic Polar Front, paleoclimatic processes have been key to diversification of one of the world’s most geographically isolated and unique groups of herbivorous beetles—Ectemnorhinini weevils. Combining phylogenomic, phylogenetic, and phylogeographic approaches, we demonstrate that these weevils colonized the sub-Antarctic islands from Africa at least 50 Ma ago and repeatedly dispersed among them. As the climate cooled from the mid-Miocene, diversification of the beetles accelerated, resulting in two species-rich clades. One of these clades specialized to feed on cryptogams, typical of the polar habitats that came to prevail under Miocene conditions yet remarkable as a food source for any beetle. This clade’s most unusual representative is a marine weevil currently undergoing further speciation. The other clade retained the more common weevil habit of feeding on angiosperms, which likely survived glaciation in isolated refugia. Diversification of Ectemnorhinini weevils occurred in synchrony with many other Antarctic radiations, including penguins and notothenioid fishes, and coincided with major environmental changes. Our results thus indicate that geo-climatically driven diversification has progressed similarly for Antarctic marine and terrestrial organisms since the Miocene, potentially constituting a general biodiversity paradigm that should be sought broadly for the region’s taxa.
Collapse
|
10
|
Morris MRJ, Wuitchik SJS, Rosebush J, Rogers SM. Mitochondrial volume density and evidence for its role in adaptive divergence in response to thermal tolerance in threespine stickleback. J Comp Physiol B 2021; 191:657-668. [PMID: 33788018 DOI: 10.1007/s00360-021-01366-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
Phenotypic plasticity is predicted to permit persistence in new environments, and may subsequently evolve to enhance fitness. Colonizing environments with lower winter temperatures can lead to the evolution of lower critical thermal minima; the corresponding physiological traits associated with temperature tolerance are predicted to involve mitochondrial function. Threespine stickleback (Gasterosteus aculeatus) have colonized freshwater lakes along the Pacific Northwest. These freshwater populations are known to exhibit cold-induced increases in mitochondrial volume density in pectoral muscle, but whether such plasticity evolved before or after colonization is uncertain. Here, we measure critical thermal minima (CTmin) in one marine and one freshwater population of threespine stickleback, and mitochondrial volume density in pectoral and cardiac tissue of both populations acclimated to different temperature treatments (6.2, 14.5 and 20.6 ℃). Mitochondrial volume density increased with cold acclimation in pectoral muscle; cardiac muscle was non-plastic but had elevated mitochondrial volume densities compared to pectoral muscle across all temperature treatments. There were no differences in the levels of plasticity between marine and freshwater stickleback, but neither were there differences in CTmin. Importantly, marine stickleback exhibited plasticity under low-salinity conditions, suggesting that marine stickleback had at least one necessary phenotype for persistence in freshwater environments before colonization occurred.
Collapse
Affiliation(s)
- Matthew R J Morris
- Department of Biology, Ambrose University, Calgary, AB, Canada. .,Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.
| | - Sara J S Wuitchik
- Informatics Group, Harvard University, Cambridge, MA, USA.,Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.,Department of Biology, Boston University, Boston, MA, USA
| | | | - Sean M Rogers
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
11
|
Yang Y, Abalde S, Afonso CL, Tenorio MJ, Puillandre N, Templado J, Zardoya R. Mitogenomic phylogeny of mud snails of the mostly Atlantic/Mediterranean genus
Tritia
(Gastropoda: Nassariidae). ZOOL SCR 2021. [DOI: 10.1111/zsc.12489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yi Yang
- Museo Nacional de Ciencias Naturales (MNCN‐CSIC) Madrid Spain
| | - Samuel Abalde
- Museo Nacional de Ciencias Naturales (MNCN‐CSIC) Madrid Spain
| | | | - Manuel J. Tenorio
- Departamento CMIM y Q. Inorgánica‐INBIO Facultad de Ciencias Universidad de Cadiz Puerto Real Spain
| | - Nicolas Puillandre
- Institut de Systématique, Évolution, Biodiversité (ISYEB) Muséum National d’Histoire NaturelleCNRSSorbonne UniversitéEPHEUniversité des Antilles Paris France
| | - José Templado
- Museo Nacional de Ciencias Naturales (MNCN‐CSIC) Madrid Spain
| | - Rafael Zardoya
- Museo Nacional de Ciencias Naturales (MNCN‐CSIC) Madrid Spain
| |
Collapse
|
12
|
Wolfe JM, Luque J, Bracken-Grissom HD. How to become a crab: Phenotypic constraints on a recurring body plan. Bioessays 2021; 43:e2100020. [PMID: 33751651 DOI: 10.1002/bies.202100020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022]
Abstract
A fundamental question in biology is whether phenotypes can be predicted by ecological or genomic rules. At least five cases of convergent evolution of the crab-like body plan (with a wide and flattened shape, and a bent abdomen) are known in decapod crustaceans, and have, for over 140 years, been known as "carcinization." The repeated loss of this body plan has been identified as "decarcinization." In reviewing the field, we offer phylogenetic strategies to include poorly known groups, and direct evidence from fossils, that will resolve the history of crab evolution and the degree of phenotypic variation within crabs. Proposed ecological advantages of the crab body are summarized into a hypothesis of phenotypic integration suggesting correlated evolution of the carapace shape and abdomen. Our premise provides fertile ground for future studies of the genomic and developmental basis, and the predictability, of the crab-like body form.
Collapse
Affiliation(s)
- Joanna M Wolfe
- Museum of Comparative Zoology and Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Javier Luque
- Museum of Comparative Zoology and Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.,Smithsonian Tropical Research Institute, Balboa-Ancon, Panama.,Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
| | - Heather D Bracken-Grissom
- Institute of Environment and Department of Biological Sciences, Florida International University, North Miami, Florida, USA
| |
Collapse
|
13
|
Ballesteros JA, Setton EVW, Santibáñez-López CE, Arango CP, Brenneis G, Brix S, Corbett KF, Cano-Sánchez E, Dandouch M, Dilly GF, Eleaume MP, Gainett G, Gallut C, McAtee S, McIntyre L, Moran AL, Moran R, López-González PJ, Scholtz G, Williamson C, Woods HA, Zehms JT, Wheeler WC, Sharma PP. Phylogenomic Resolution of Sea Spider Diversification through Integration of Multiple Data Classes. Mol Biol Evol 2021; 38:686-701. [PMID: 32915961 PMCID: PMC7826184 DOI: 10.1093/molbev/msaa228] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Despite significant advances in invertebrate phylogenomics over the past decade, the higher-level phylogeny of Pycnogonida (sea spiders) remains elusive. Due to the inaccessibility of some small-bodied lineages, few phylogenetic studies have sampled all sea spider families. Previous efforts based on a handful of genes have yielded unstable tree topologies. Here, we inferred the relationships of 89 sea spider species using targeted capture of the mitochondrial genome, 56 conserved exons, 101 ultraconserved elements, and 3 nuclear ribosomal genes. We inferred molecular divergence times by integrating morphological data for fossil species to calibrate 15 nodes in the arthropod tree of life. This integration of data classes resolved the basal topology of sea spiders with high support. The enigmatic family Austrodecidae was resolved as the sister group to the remaining Pycnogonida and the small-bodied family Rhynchothoracidae as the sister group of the robust-bodied family Pycnogonidae. Molecular divergence time estimation recovered a basal divergence of crown group sea spiders in the Ordovician. Comparison of diversification dynamics with other marine invertebrate taxa that originated in the Paleozoic suggests that sea spiders and some crustacean groups exhibit resilience to mass extinction episodes, relative to mollusk and echinoderm lineages.
Collapse
Affiliation(s)
- Jesús A Ballesteros
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI
| | - Emily V W Setton
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI
| | | | - Claudia P Arango
- Queensland Museum, Biodiversity Program, Brisbane, QLD, Australia
| | - Georg Brenneis
- Zoologisches Institut und Museum, Cytologie und Evolutionsbiologie, Universität Greifswald, Greifswald, Germany
| | - Saskia Brix
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), c/o Biocenter Grindel (CeNak), Martin-Luther-King-Platz 3, Hamburg, Germany
| | - Kevin F Corbett
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI
| | - Esperanza Cano-Sánchez
- Biodiversidad y Ecología Acuática, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Merai Dandouch
- Department of Biology, California State University-Channel Islands, Camarillo, CA
| | - Geoffrey F Dilly
- Department of Biology, California State University-Channel Islands, Camarillo, CA
| | - Marc P Eleaume
- Départment Milieux et Peuplements Aquatiques, Muséum National d’Histoire Naturelle, Paris, France
| | - Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI
| | - Cyril Gallut
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Concarneau, France
| | - Sean McAtee
- Department of Biology, California State University-Channel Islands, Camarillo, CA
| | - Lauren McIntyre
- Department of Biology, California State University-Channel Islands, Camarillo, CA
| | - Amy L Moran
- Department of Biology, University of Hawai’I at Mānoa, Honolulu, HI
| | - Randy Moran
- Department of Biology, California State University-Channel Islands, Camarillo, CA
| | - Pablo J López-González
- Biodiversidad y Ecología Acuática, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Gerhard Scholtz
- Institut für Biologie, Vergleichende Zoologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clay Williamson
- Department of Biology, California State University-Channel Islands, Camarillo, CA
| | - H Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT
| | - Jakob T Zehms
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI
| | - Ward C Wheeler
- Division of Invertebrate Zoology, American Museum of Natural History, New York City, NY
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI
| |
Collapse
|
14
|
Silva CNS, Murphy NP, Bell JJ, Green BS, Duhamel G, Cockcroft AC, Hernández CE, Strugnell JM. Global drivers of recent diversification in a marine species complex. Mol Ecol 2021; 30:1223-1236. [PMID: 33342039 DOI: 10.1111/mec.15780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 11/03/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Investigating historical gene flow in species complexes can indicate how environmental and reproductive barriers shape genome divergence during speciation. The processes influencing species diversification under environmental change remain one of the central focal points of evolutionary biology, particularly for marine organisms with high dispersal potential. We investigated genome-wide divergence, introgression patterns and inferred demographic history between species pairs of all six extant rock lobster species (Jasus spp.), which have a long larval duration of up to two years and have populated continental shelf and seamount habitats around the globe at approximately 40o S. Genetic differentiation patterns reflected geographic isolation and the environment (i.e. habitat structure). Eastern Pacific species (J. caveorum and J. frontalis) were geographically more distant and genetically more differentiated from the remaining four species. Species associated with continental shelf habitats shared a common ancestry, but are geographically distant from one another. Similarly, species associated with island/seamount habitats in the Atlantic and Indian Oceans shared a common ancestry, but are also geographically distant. Benthic temperature was the environmental variable that explained most of the genetic differentiation (FST ), while controlling for the effects of geographic distance. Eastern Pacific species retained a signal of strict isolation following ancient migration, whereas species pairs from Australia and Africa, and seamounts in the Indian and Atlantic oceans, included events of introgression after secondary contact. Our results reveal important effects of habitat and demographic processes on the recent divergence of species within the genus Jasus, providing one of the first empirical studies of genome-wide drivers of diversification that incorporates all extant species in a marine genus with long pelagic larval duration.
Collapse
Affiliation(s)
- Catarina N S Silva
- Centre for Sustainable Tropical Fisheries and Aquaculture and College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Nicholas P Murphy
- Department of Ecology, Environment & Evolution, La Trobe University, Melbourne, Vic, Australia
| | - James J Bell
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Bridget S Green
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Guy Duhamel
- Département Adaptations du Vivant, BOREA, MNHN, Paris, France
| | - Andrew C Cockcroft
- Department of Agriculture, Forestry and Fisheries, Cape Town, South Africa
| | - Cristián E Hernández
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.,Universidad Católica de Santa María, Arequipa, Perú
| | - Jan M Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture and College of Science and Engineering, James Cook University, Townsville, QLD, Australia.,Department of Ecology, Environment & Evolution, La Trobe University, Melbourne, Vic, Australia
| |
Collapse
|
15
|
Modica MV, Gorson J, Fedosov AE, Malcolm G, Terryn Y, Puillandre N, Holford M. Macroevolutionary Analyses Suggest That Environmental Factors, Not Venom Apparatus, Play Key Role in Terebridae Marine Snail Diversification. Syst Biol 2020; 69:413-430. [PMID: 31504987 PMCID: PMC7164365 DOI: 10.1093/sysbio/syz059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 08/19/2019] [Indexed: 12/21/2022] Open
Abstract
How species diversification occurs remains an unanswered question in predatory marine invertebrates, such as sea snails of the family Terebridae. However, the anatomical disparity found throughput the Terebridae provides a unique perspective for investigating diversification patterns in venomous predators. In this study, a new dated molecular phylogeny of the Terebridae is used as a framework for investigating diversification of the family through time, and for testing the putative role of intrinsic and extrinsic traits, such as shell size, larval ecology, bathymetric distribution, and anatomical features of the venom apparatus, as drivers of terebrid species diversification. Macroevolutionary analysis revealed that when diversification rates do not vary across Terebridae clades, the whole family has been increasing its global diversification rate since 25 Ma. We recovered evidence for a concurrent increase in diversification of depth ranges, while shell size appeared to have undergone a fast divergence early in terebrid evolutionary history. Our data also confirm that planktotrophy is the ancestral larval ecology in terebrids, and evolutionary modeling highlighted that shell size is linked to larval ecology of the Terebridae, with species with long-living pelagic larvae tending to be larger and have a broader size range than lecithotrophic species. Although we recovered patterns of size and depth trait diversification through time and across clades, the presence or absence of a venom gland (VG) did not appear to have impacted Terebridae diversification. Terebrids have lost their venom apparatus several times and we confirm that the loss of a VG happened in phylogenetically clustered terminal taxa and that reversal is extremely unlikely. Our findings suggest that environmental factors, and not venom, have had more influence on terebrid evolution.
Collapse
Affiliation(s)
- Maria Vittoria Modica
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
- UMR5247, Université de Montpellier CC 1703, Place Eugène Bataillon 34095 Montpellier, France
| | - Juliette Gorson
- Department of Chemistry, Hunter College Belfer Research Center, 413 E. 69th Street, BRB 424, New York, NY 10021, USA
- Department of Biochemistry, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA
| | - Alexander E Fedosov
- Institute of Ecology and Evolution of Russian Academy of Sciences, Leninskiy Prospect, 33, Moscow 119071, Russia
| | - Gavin Malcolm
- Bird Hill, Barnes Lane, Milford on Sea, Hampshire, UK
| | - Yves Terryn
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antillles, 57 rue Cuvier, CP 26, 75005 Paris, France
| | - Nicolas Puillandre
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antillles, 57 rue Cuvier, CP 26, 75005 Paris, France
| | - Mandë Holford
- Department of Chemistry, Hunter College Belfer Research Center, 413 E. 69th Street, BRB 424, New York, NY 10021, USA
- Department of Biochemistry, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA
| |
Collapse
|
16
|
Wolfe JM, Breinholt JW, Crandall KA, Lemmon AR, Lemmon EM, Timm LE, Siddall ME, Bracken-Grissom HD. A phylogenomic framework, evolutionary timeline and genomic resources for comparative studies of decapod crustaceans. Proc Biol Sci 2020; 286:20190079. [PMID: 31014217 DOI: 10.1098/rspb.2019.0079] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Comprising over 15 000 living species, decapods (crabs, shrimp and lobsters) are the most instantly recognizable crustaceans, representing a considerable global food source. Although decapod systematics have received much study, limitations of morphological and Sanger sequence data have yet to produce a consensus for higher-level relationships. Here, we introduce a new anchored hybrid enrichment kit for decapod phylogenetics designed from genomic and transcriptomic sequences that we used to capture new high-throughput sequence data from 94 species, including 58 of 179 extant decapod families, and 11 of 12 major lineages. The enrichment kit yields 410 loci (greater than 86 000 bp) conserved across all lineages of Decapoda, more clade-specific molecular data than any prior study. Phylogenomic analyses recover a robust decapod tree of life strongly supporting the monophyly of all infraorders, and monophyly of each of the reptant, 'lobster' and 'crab' groups, with some results supporting pleocyemate monophyly. We show that crown decapods diverged in the Late Ordovician and most crown lineages diverged in the Triassic-Jurassic, highlighting a cryptic Palaeozoic history, and post-extinction diversification. New insights into decapod relationships provide a phylogenomic window into morphology and behaviour, and a basis to rapidly and cheaply expand sampling in this economically and ecologically significant invertebrate clade.
Collapse
Affiliation(s)
- Joanna M Wolfe
- 1 Division of Invertebrate Zoology and Sackler Institute of Comparative Genomics, American Museum of Natural History , New York, NY 10024 , USA.,2 Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology , Cambridge, MA 02139 , USA.,3 Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University , Cambridge, MA 02138 , USA
| | - Jesse W Breinholt
- 4 Florida Museum of Natural History, University of Florida , Gainesville, FL 32611 , USA.,5 RAPiD Genomics , Gainesville, FL 32601 , USA
| | - Keith A Crandall
- 6 Computational Biology Institute, The George Washington University , Ashburn, VA 20147 , USA.,7 Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution , Washington, DC 20012 , USA
| | - Alan R Lemmon
- 8 Department of Scientific Computing, Florida State University , Dirac Science Library, Tallahassee, FL 32306 , USA
| | - Emily Moriarty Lemmon
- 9 Department of Biological Science, Florida State University , Tallahassee, FL 32306 , USA
| | - Laura E Timm
- 10 Department of Biological Sciences, Florida International University , North Miami, FL 33181 , USA
| | - Mark E Siddall
- 1 Division of Invertebrate Zoology and Sackler Institute of Comparative Genomics, American Museum of Natural History , New York, NY 10024 , USA
| | - Heather D Bracken-Grissom
- 10 Department of Biological Sciences, Florida International University , North Miami, FL 33181 , USA
| |
Collapse
|
17
|
Rodríguez‐Flores PC, Buckley D, Macpherson E, Corbari L, Machordom A. Deep‐sea squat lobster biogeography (Munidopsidae:
Leiogalathea
) unveils Tethyan vicariance and evolutionary patterns shared by shallow‐water relatives. ZOOL SCR 2020. [DOI: 10.1111/zsc.12414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Paula C. Rodríguez‐Flores
- Museo Nacional de Ciencias Naturales (MNCN‐CSIC) Madrid Spain
- Centre d'Estudis Avançats de Blanes (CEAB‐CSIC) Blanes Spain
| | - David Buckley
- Departamento de Biología (Genética) Facultad de Biología Universidad Autónoma de Madrid Madrid Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC‐UAM) Facultad de Biología Universidad Autónoma de Madrid Madrid Spain
| | | | - Laure Corbari
- Institut de Systématique Évolution Biodiversité (ISYEB, UMR 7205) Muséum national d'Histoire naturelle CNRS Sorbonne UniversitéEPHE Paris France
| | - Annie Machordom
- Museo Nacional de Ciencias Naturales (MNCN‐CSIC) Madrid Spain
| |
Collapse
|
18
|
Phylogenetic supertree and functional trait database for all extant parrots. Data Brief 2019; 24:103882. [PMID: 31193185 PMCID: PMC6520560 DOI: 10.1016/j.dib.2019.103882] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 03/14/2019] [Accepted: 03/22/2019] [Indexed: 11/22/2022] Open
Abstract
We present a complete dataset from the literature on functional traits including morphological measurements, dietary information, foraging strategy, and foraging location for all 398 extant species of parrots. The morphological measurements include: mass, total length, wing chord, culmen length, tarsus length, and tail length. The diet data describe whether each species is known to consume particular food items (e.g. nectar, berries, and carrion), foraging strategy data describes how each species captures or accesses food, and foraging location data describe the habitat from which each species finds food (e.g. ground, canopy, and subcanopy). We also present a time-calibrated phylogenetic supertree that contains all 398 extant species as well as 15 extinct species (413 total species). These data are hosted on the Figshare data depository (https://figshare.com/s/6cdf8cf00793deab7ba6).
Collapse
|
19
|
Strotz LC, Simões M, Girard MG, Breitkreuz L, Kimmig J, Lieberman BS. Getting somewhere with the Red Queen: chasing a biologically modern definition of the hypothesis. Biol Lett 2019; 14:rsbl.2017.0734. [PMID: 29720444 DOI: 10.1098/rsbl.2017.0734] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/13/2018] [Indexed: 01/24/2023] Open
Abstract
The Red Queen hypothesis (RQH) is both familiar and murky, with a scope and range that has broadened beyond its original focus. Although originally developed in the palaeontological arena, it now encompasses many evolutionary theories that champion biotic interactions as significant mechanisms for evolutionary change. As such it de-emphasizes the important role of abiotic drivers in evolution, even though such a role is frequently posited to be pivotal. Concomitant with this shift in focus, several studies challenged the validity of the RQH and downplayed its propriety. Herein, we examine in detail the assumptions that underpin the RQH in the hopes of furthering conceptual understanding and promoting appropriate application of the hypothesis. We identify issues and inconsistencies with the assumptions of the RQH, and propose a redefinition where the Red Queen's reign is restricted to certain types of biotic interactions and evolutionary patterns occurring at the population level.
Collapse
Affiliation(s)
- Luke C Strotz
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA .,Biodiversity Institute, University of Kansas, Lawrence, KS 66045, USA
| | - Marianna Simões
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA.,Biodiversity Institute, University of Kansas, Lawrence, KS 66045, USA
| | - Matthew G Girard
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA.,Biodiversity Institute, University of Kansas, Lawrence, KS 66045, USA
| | - Laura Breitkreuz
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA.,Biodiversity Institute, University of Kansas, Lawrence, KS 66045, USA
| | - Julien Kimmig
- Biodiversity Institute, University of Kansas, Lawrence, KS 66045, USA
| | - Bruce S Lieberman
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA.,Biodiversity Institute, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
20
|
Affiliation(s)
- Samuel Abalde
- Departamento de Biodiversidad y Biología Evolutiva; Museo Nacional de Ciencias Naturales (MNCN-CSIC); Madrid Spain
| | - Manuel J. Tenorio
- Departamento CMIM y Q. Inorgánica-INBIO, Facultad de Ciencias; Universidad de Cádiz; Puerto Real Spain
| | - Juan E. Uribe
- Departamento de Biodiversidad y Biología Evolutiva; Museo Nacional de Ciencias Naturales (MNCN-CSIC); Madrid Spain
- Department of Invertebrate Zoology, Smithsonian Institution; National Museum of Natural History; Washington District of Columbia USA
- Grupo de Evolución, Sistemática y Ecología Molecular; Universidad del Magdalena; Santa Marta Colombia
| | - Rafael Zardoya
- Departamento de Biodiversidad y Biología Evolutiva; Museo Nacional de Ciencias Naturales (MNCN-CSIC); Madrid Spain
| |
Collapse
|
21
|
Rodríguez-Flores PC, Macpherson E, Buckley D, Machordom A. High morphological similarity coupled with high genetic differentiation in new sympatric species of coral-reef squat lobsters (Crustacea: Decapoda: Galatheidae). Zool J Linn Soc 2018. [DOI: 10.1093/zoolinnean/zly074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Paula C Rodríguez-Flores
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal, Madrid, Spain
- Centre d’Estudis Avançats de Blanes (CEAB-CSIC), C. d’Accés Cala Sant Francesc, Blanes, Spain
| | - Enrique Macpherson
- Centre d’Estudis Avançats de Blanes (CEAB-CSIC), C. d’Accés Cala Sant Francesc, Blanes, Spain
| | - David Buckley
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal, Madrid, Spain
- Centre d’Estudis Avançats de Blanes (CEAB-CSIC), C. d’Accés Cala Sant Francesc, Blanes, Spain
| | - Annie Machordom
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal, Madrid, Spain
| |
Collapse
|
22
|
Elevated atmospheric CO 2 promoted speciation in mosquitoes (Diptera, Culicidae). Commun Biol 2018; 1:182. [PMID: 30417119 PMCID: PMC6218564 DOI: 10.1038/s42003-018-0191-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/11/2018] [Indexed: 11/18/2022] Open
Abstract
Mosquitoes are of great medical significance as vectors of deadly diseases. Despite this, little is known about their evolutionary history or how their present day diversity has been shaped. Within a phylogenetic framework, here we show a strong correlation between climate change and mosquito speciation rates: the first time to our knowledge such an effect has been demonstrated for insects. Information theory reveals that although climate change is correlated with mosquito evolution there are other important factors at play. We identify one such driver to be the rise of mammals, which are predominant hosts of Culicidae. Regardless of the precise mechanism, we demonstrate a strong historical association. This finding, taken in combination with projected rises in atmospheric CO2 from anthropogenic activity, has important implications for culicid vector distributions and abundance, and consequently for human health. Chufei Tang and Katie E. Davis et al. show that an elevated atmospheric CO2 promotes the speciation rates of mosquitoes. They demonstrate that climate change can expedite the evolution of mammalian disease vectors, potentially increasing vector−pathogen interactions and affecting human health.
Collapse
|
23
|
Li J, Huang JP, Sukumaran J, Knowles LL. Microevolutionary processes impact macroevolutionary patterns. BMC Evol Biol 2018; 18:123. [PMID: 30097006 PMCID: PMC6086068 DOI: 10.1186/s12862-018-1236-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 08/01/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Macroevolutionary modeling of species diversification plays important roles in inferring large-scale biodiversity patterns. It allows estimation of speciation and extinction rates and statistically testing their relationships with different ecological factors. However, macroevolutionary patterns are ultimately generated by microevolutionary processes acting at population levels, especially when speciation and extinction are considered protracted instead of point events. Neglecting the connection between micro- and macroevolution may hinder our ability to fully understand the underlying mechanisms that drive the observed patterns. RESULTS In this simulation study, we used the protracted speciation framework to demonstrate that distinct microevolutionary scenarios can generate very similar biodiversity patterns (e.g., latitudinal diversity gradient). We also showed that current macroevolutionary models may not be able to distinguish these different scenarios. CONCLUSIONS Given the compounded nature of speciation and extinction rates, one needs to be cautious when inferring causal relationships between ecological factors and macroevolutioanry rates. Future studies that incorporate microevolutionary processes into current modeling approaches are in need.
Collapse
Affiliation(s)
- Jingchun Li
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, USA. .,Museum of Natural History, University of Colorado Boulder, Boulder, USA. .,Museum of Zoology, Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, USA.
| | - Jen-Pen Huang
- Integrative Research Center, The Field Museum, Chicago, USA.,Museum of Zoology, Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, USA
| | - Jeet Sukumaran
- Museum of Zoology, Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, USA
| | - L Lacey Knowles
- Museum of Zoology, Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, USA
| |
Collapse
|
24
|
Davis KE, De Grave S, Delmer C, Wills MA. Freshwater transitions and symbioses shaped the evolution and extant diversity of caridean shrimps. Commun Biol 2018; 1:16. [PMID: 30271903 PMCID: PMC6123698 DOI: 10.1038/s42003-018-0018-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/02/2018] [Indexed: 01/08/2023] Open
Abstract
Understanding the processes that shaped the strikingly irregular distribution of species richness across the Tree of Life is a major research agenda. Changes in ecology may go some way to explain the often strongly asymmetrical fates of sister clades, and we test this in the caridean shrimps. First appearing in the Lower Jurassic, there are now ~3500 species worldwide. Carideans experienced several independent transitions to freshwater from marine habitats, while many of the marine species have also evolved a symbiotic lifestyle. Here we use diversification rate analyses to test whether these ecological traits promote or inhibit diversity within a phylogenetic framework. We demonstrate that speciation rates are more than twice as high in freshwater clades, whilst symbiotic ecologies are associated with lower speciation rates. These lower rates amongst symbiotic species are of concern given that symbioses often occur in some of the most diverse, delicately balanced and threatened marine ecosystems. Katie Davis et al. test the hypothesis that ecological traits are linked to diversification in caridean shrimps. They find that transitions from marine to freshwater habitats contributed to higher diversification rates, whereas symbiosis is associated with a slight decrease in diversification rates.
Collapse
Affiliation(s)
- Katie E Davis
- Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD, UK.
| | - Sammy De Grave
- Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, UK
| | - Cyrille Delmer
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AX, UK
| | - Matthew A Wills
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AX, UK
| |
Collapse
|
25
|
Abalde S, Tenorio MJ, Afonso CML, Uribe JE, Echeverry AM, Zardoya R. Phylogenetic relationships of cone snails endemic to Cabo Verde based on mitochondrial genomes. BMC Evol Biol 2017; 17:231. [PMID: 29178825 PMCID: PMC5702168 DOI: 10.1186/s12862-017-1069-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/06/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Due to their great species and ecological diversity as well as their capacity to produce hundreds of different toxins, cone snails are of interest to evolutionary biologists, pharmacologists and amateur naturalists alike. Taxonomic identification of cone snails still relies mostly on the shape, color, and banding patterns of the shell. However, these phenotypic traits are prone to homoplasy. Therefore, the consistent use of genetic data for species delimitation and phylogenetic inference in this apparently hyperdiverse group is largely wanting. Here, we reconstruct the phylogeny of the cones endemic to Cabo Verde archipelago, a well-known radiation of the group, using mitochondrial (mt) genomes. RESULTS The reconstructed phylogeny grouped the analyzed species into two main clades, one including Kalloconus from West Africa sister to Trovaoconus from Cabo Verde and the other with a paraphyletic Lautoconus due to the sister group relationship of Africonus from Cabo Verde and Lautoconus ventricosus from Mediterranean Sea and neighboring Atlantic Ocean to the exclusion of Lautoconus endemic to Senegal (plus Lautoconus guanche from Mauritania, Morocco, and Canary Islands). Within Trovaoconus, up to three main lineages could be distinguished. The clade of Africonus included four main lineages (named I to IV), each further subdivided into two monophyletic groups. The reconstructed phylogeny allowed inferring the evolution of the radula in the studied lineages as well as biogeographic patterns. The number of cone species endemic to Cabo Verde was revised under the light of sequence divergence data and the inferred phylogenetic relationships. CONCLUSIONS The sequence divergence between continental members of the genus Kalloconus and island endemics ascribed to the genus Trovaoconus is low, prompting for synonymization of the latter. The genus Lautoconus is paraphyletic. Lautoconus ventricosus is the closest living sister group of genus Africonus. Diversification of Africonus was in allopatry due to the direct development nature of their larvae and mainly triggered by eustatic sea level changes during the Miocene-Pliocene. Our study confirms the diversity of cone endemic to Cabo Verde but significantly reduces the number of valid species. Applying a sequence divergence threshold, the number of valid species within the sampled Africonus is reduced to half.
Collapse
Affiliation(s)
- Samuel Abalde
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Manuel J Tenorio
- Departamento CMIM y Q. Inorgánica-INBIO, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Carlos M L Afonso
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005 - 139, Faro, Portugal
| | - Juan E Uribe
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Ana M Echeverry
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Rafael Zardoya
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain.
| |
Collapse
|
26
|
Cermeño P, Benton MJ, Paz Ó, Vérard C. Trophic and tectonic limits to the global increase of marine invertebrate diversity. Sci Rep 2017; 7:15969. [PMID: 29162866 PMCID: PMC5698323 DOI: 10.1038/s41598-017-16257-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/02/2017] [Indexed: 11/09/2022] Open
Abstract
The marine invertebrate fossil record provides the most comprehensive history of how the diversity of animal life has evolved through time. One of the main features of this record is a modest rise in diversity over nearly a half-billion years. The long-standing view is that ecological interactions such as resource competition and predation set upper limits to global diversity, which, in the absence of external perturbations, is maintained indefinitely at equilibrium. However, the effect of mechanisms associated with the history of the seafloor, and their influence on the creation and destruction of marine benthic habitats, has not been explored. Here we use statistical methods for causal inference to investigate the drivers of marine invertebrate diversity dynamics through the Phanerozoic. We find that diversity dynamics responded to secular variations in marine food supply, substantiating the idea that global species richness is regulated by resource availability. Once diversity was corrected for changes in food resource availability, its dynamics were causally linked to the age of the subducting oceanic crust. We suggest that the time elapsed between the formation (at mid-ocean ridges) and destruction (at subduction zones) of ocean basins influences the diversity dynamics of marine invertebrates and may have contributed to constrain their diversification.
Collapse
Affiliation(s)
- Pedro Cermeño
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
| | - Michael J Benton
- School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, United Kingdom
| | - Óscar Paz
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Christian Vérard
- Institute for Environmental Sciences (ISE), University of Geneva, Boulevard Carl-Vogt, 66, CH-1211, Genève/GE, Switzerland
| |
Collapse
|
27
|
Mounce R, Murray-Rust P, Wills M. A machine-compiled microbial supertree from figure-mining thousands of papers. RESEARCH IDEAS AND OUTCOMES 2017. [DOI: 10.3897/rio.3.e13589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
28
|
Palero F, Robainas-Barcia A, Corbari L, Macpherson E. Phylogeny and evolution of shallow-water squat lobsters (Decapoda, Galatheoidea) from the Indo-Pacific. ZOOL SCR 2016. [DOI: 10.1111/zsc.12230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ferran Palero
- INRA, University of Nice Sophia Antipolis; CNRS, UMR 1355-7254, Institut Sophia Agrobiotech; Sophia Antipolis 06900 France
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC); Carrer d'Accés a la Cala Sant Francesc 14 17300 Blanes Spain
| | - Aymee Robainas-Barcia
- Departament de Genètica; Facultat de Biologia; Universitat de Barcelona; Av. Diagonal 645 08028 Barcelona Spain
| | - Laure Corbari
- UMR 7205; Institut de Systématique; Evolution et Biodiversité; département Systématique et Evolution; Muséum national d'Histoire naturelle; 55 rue Buffon CP51 75005 Paris France
| | - Enrique Macpherson
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC); Carrer d'Accés a la Cala Sant Francesc 14 17300 Blanes Spain
| |
Collapse
|