1
|
Guo H, Wu J, Cao K, He S, Zhong J, Pu Z, Peng Q, Zhang Q, Chen P, Jiang L. Palladium-Catalyzed Regioselective B(3,4,5,6)-H Tetra-Arylation of o-Carboranes. Inorg Chem 2025. [PMID: 40400108 DOI: 10.1021/acs.inorgchem.5c01257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
A transition-metal-catalyzed iterative multiple cage B-H activation reaction for constructing multifunctionalization of o-carboranes in one pot is challenging. Herein, palladium-catalyzed regioselective tetra-arylation of a wide range of C(1)-N-aryl-o-carboranyl amides with aryl iodides has been developed. A variety of B(3,4,5,6)-tetra-arylated o-carboranes were synthesized in good-to-excellent yields. Moreover, the mono-, di-, and triarylated intermediate products were isolated, and the exact structures were determined by NMR, high-resolution mass spectrometry, and X-ray analysis, which provide a rationale that the order of introduction of aryl groups into o-carborane is B(4) > B(5) > B(3)/B(6). This protocol represents a powerful synthetic method for constructing polyfunctionalization of o-carborane derivatives under very mild and simple reaction conditions, which offers a valuable reference for the design and synthesis of molecular propellers based on carboranes.
Collapse
Affiliation(s)
- Huijin Guo
- School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Ji Wu
- School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
- Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province, Sihuan, Panzhihua 617000, P. R. China
| | - Ke Cao
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010 Sichuan, P. R. China
| | - Siyi He
- School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Jiachun Zhong
- School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Zejun Pu
- School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Qiuxia Peng
- School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Quanli Zhang
- School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Peng Chen
- The Instrumental Analysis Center of Shenzhen University, Shenzhen University, Shenzhen, Guangdong 518055, P. R. China
| | - Linhai Jiang
- The Instrumental Analysis Center of Shenzhen University, Shenzhen University, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
2
|
Wu J, Cao K. Advances in the selective functionalization of B(3,6)-H of o-carboranes. Org Biomol Chem 2025; 23:3701-3711. [PMID: 40130546 DOI: 10.1039/d4ob01778a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
This review summarizes the methodologies for the selective functionalization of the B(3,6) vertices of o-carboranes, including the deboration-capitation reaction, the coupling reaction of B-X (X = I, Br) bonds, reactions of 1,3-dehydro-o-carborane and [3-N2-o-C2B10H11][BF4] as well as transition-metal-catalyzed B-H activation. These works offer a versatile toolbox for synthesizing B(3,6)-substituted o-carborane derivatives and will promote their applications in material science, pharmaceutical chemistry, and related disciplines.
Collapse
Affiliation(s)
- Ji Wu
- School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong, 643000, P. R. China
| | - Ke Cao
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
- Department of Oncology, Sichuan Science City Hospital, Mianyang, Sichuan, 621000, P. R. China
| |
Collapse
|
3
|
Holub J, Náhlík ŠP, Růžičková Z, Samsonov MA, Hnyk D, Cvačka J, Fanfrlík J, Vrána J, Růžička A. Cationic Polyhedral Chalcogenaboranes: Activation without breaking Wade's Rules. Angew Chem Int Ed Engl 2025; 64:e202419677. [PMID: 39878376 DOI: 10.1002/anie.202419677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/15/2024] [Accepted: 01/29/2025] [Indexed: 01/31/2025]
Abstract
Wade's rules are a well-established tool for the description of the geometry of inorganic clusters. Among others, they state that a decrease or increase in charge is always accompanied by a change in the number of skeletal electron pairs (SEPs). This work reports the synthesis of the first cationic chalcogenaboranes closo-[12-X-2-IPr-1-EB11H10]BF4 (IPr=1,3-(2,6-iPr2C6H3)-imidazole-2-ylidene; X=H, I; E=S, Se 3 a/b, 4 a/b) featuring the same SEP count as their neutral precursors, EB11H11, but bearing a positive charge. This ionisation significantly enhances the activity towards the electrophiles. It unlocks reactivity with very weak bases and offers the control of the regioselectivity towards hard/soft bases by the modulation of LUMO. The localisation of the positive charge within the borane cluster has been confirmed experimentally, spectroscopically and theoretically.
Collapse
Affiliation(s)
- Josef Holub
- Institute of Inorganic Chemistry, Czech Academy of Sciences 250 68, Řež, Czech Republic
| | - Šimon-Petr Náhlík
- Department of General and Inorganic Chemistry, University of Pardubice Studentská 573, 53210, Pardubice, Czech Republic
| | - Zdeňka Růžičková
- Department of General and Inorganic Chemistry, University of Pardubice Studentská 573, 53210, Pardubice, Czech Republic
| | - Maksim A Samsonov
- Department of General and Inorganic Chemistry, University of Pardubice Studentská 573, 53210, Pardubice, Czech Republic
| | - Drahomír Hnyk
- Institute of Inorganic Chemistry, Czech Academy of Sciences 250 68, Řež, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo náměstí 542/2, 166 10, Praha 6, Czech Republic
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo náměstí 542/2, 166 10, Praha 6, Czech Republic
| | - Jan Vrána
- Department of General and Inorganic Chemistry, University of Pardubice Studentská 573, 53210, Pardubice, Czech Republic
| | - Aleš Růžička
- Department of General and Inorganic Chemistry, University of Pardubice Studentská 573, 53210, Pardubice, Czech Republic
| |
Collapse
|
4
|
Guo C, Zhang J, Ge Y, Qiu Z, Xie Z. Asymmetric Palladium Migration for Synthesis of Chiral-at-Cage o-Carboranes. Angew Chem Int Ed Engl 2025; 64:e202416987. [PMID: 39438633 DOI: 10.1002/anie.202416987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
Metal migration strategy can offer BH functionalization of o-carboranes at different positions from where initial bond activation occurs to achieve bifunctionalized o-carboranes in one reaction. We report in this article an enantioselective 3,4-bifunctionalization of o-carboranes via asymmetric Pd migration with a high efficiency and up to 98 % ee. This asymmetric catalysis has a broad substrates scope, leading to the preparation of a class of chiral-at-cage o-carborane derivatives. The enantiocontrol model is suggested on the basis of density functional theory (DFT) results, where the chiral Trost ligand plays a crucial role in this enantioselective Pd migration from exo-alkenyl sp2 C to the cage B(4) position of o-carborane.
Collapse
Affiliation(s)
- Chenyang Guo
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jie Zhang
- Department of Chemistry, The Chinese University of Hong Kong Shatin, N.T., Hong Kong, China
| | - Yixiu Ge
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zaozao Qiu
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- International Joint Laboratory of Catalytic Chemistry, Innovation Institute of Carbon Neutrality, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Zuowei Xie
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
5
|
Lee K, Yoon S, Noh HC, Kim D, Lee PH. Rhodium(III)-Catalyzed B(4)-Azo Coupling of o-Carboranes with Aryl Diazonium Tetrafluoroborates. Org Lett 2024; 26:8410-8415. [PMID: 39320152 DOI: 10.1021/acs.orglett.4c03250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Rh(III)-catalyzed B(4)-azo coupling reactions of o-carborane acids with aryl diazonium tetrafluoroborates have been developed, leading to the regioselective formation of B(4)-azo-coupled o-carboranes. Moreover, B(4)-azo-coupled o-carboranes can be further functionalized by introducing a second azo group, producing B(4)-C(1)-di(arylazo) o-carborane. The B(4)-azo group as an efficient directing group enables catalytic C-H amidation reactions, providing a new synthetic route for complex o-carborane derivatives.
Collapse
Affiliation(s)
- Kyungsup Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sugyeong Yoon
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hee Chan Noh
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Republic of Korea
| | - Phil Ho Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
6
|
Meng Y, Lin X, Huang J, Zhang L. Recent Advances in Carborane-Based Crystalline Porous Materials. Molecules 2024; 29:3916. [PMID: 39202996 PMCID: PMC11357283 DOI: 10.3390/molecules29163916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/11/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
The field of carborane research has witnessed continuous development, leading to the construction and development of a diverse range of crystalline porous materials for various applications. Moreover, innovative synthetic approaches are expanding in this field. Since the first report of carborane-based crystalline porous materials (CCPMs) in 2007, the synthesis of carborane ligands, particularly through innovative methods, has consistently posed a significant challenge in discovering new structures of CCPMs. This paper provides a comprehensive summary of recent advances in various synthetic approaches for CCPMs, along with their applications in different domains. The primary challenges and future opportunities are expected to stimulate further multidisciplinary development in the field of CCPMs.
Collapse
Affiliation(s)
- Yuxuan Meng
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLo-FE), Fuzhou 350017, China; (Y.M.); (X.L.); (J.H.)
| | - Xi Lin
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLo-FE), Fuzhou 350017, China; (Y.M.); (X.L.); (J.H.)
| | - Jinyi Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLo-FE), Fuzhou 350017, China; (Y.M.); (X.L.); (J.H.)
| | - Liangliang Zhang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLo-FE), Fuzhou 350017, China; (Y.M.); (X.L.); (J.H.)
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi’an 710072, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
7
|
Yang HB, Guo Y, Cao K, Jiang QJ, Teng CC, Zhu DY, Wang SH. Iridium-catalyzed selective arylation of B(6)-H of 3-aryl- o-carboranes with arylboronic acid via direct B-H activation. Chem Commun (Camb) 2024; 60:1124-1127. [PMID: 38193475 DOI: 10.1039/d3cc05630a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
This work discloses an iridium-catalyzed selective arylation of B(6)-H of 3-Ar-o-carboranes with arylboronic acid via direct B-H activation for the first time. A series of unsymmetric and symmetric 3,6-diaryl-o-carboranes decorated with diverse active groups have been synthesized with moderate to excellent yields under mild conditions. This work offers an efficient approach for selective arylation of B(6)-H with arylboronic acid and has important value for selective functionalization of o-carboranes.
Collapse
Affiliation(s)
- Han-Bo Yang
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
| | - Yan Guo
- Department of Oncology, Sichuan Science City Hospital, Mianyang, Sichuan, 621000, P. R. China
| | - Ke Cao
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
| | - Qi-Jia Jiang
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
| | - Chao-Chao Teng
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
| | - Dao-Yong Zhu
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Shao-Hua Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
8
|
Ki Au Y, Ma Q, Zhang J, Xie Z. Ir-Catalyzed B(3)-Amination of o-Carboranes with Amines via Acceptorless Dehydrogenative BH/NH Cross-Coupling. Chem Asian J 2023; 18:e202300611. [PMID: 37694997 DOI: 10.1002/asia.202300611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
An efficient and convenient strategy for Ir-catalyzed selective B(3)-amination of o-carboranes with amines via acceptorless BH/NH dehydrocoupling was developed, affording a series of B(3)-aminated-o-carboranes in moderate to high isolated yields with H2 gas as a sole by-product. Such an oxidant-free system endues the protocol sustainability, atom-economy and environmental friendliness. A reaction mechanism via an Ir(I)-Ir(III)-Ir(I) catalytic cycle involving oxidative addition, dehydrogenation and reductive elimination was proposed.
Collapse
Affiliation(s)
- Yik Ki Au
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, N.T., Hong Kong, P.R. China
| | - Qiangqiang Ma
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, N.T., Hong Kong, P.R. China
| | - Jie Zhang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, N.T., Hong Kong, P.R. China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, N.T., Hong Kong, P.R. China
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P.R.China
| |
Collapse
|
9
|
Nie Z, Cheng R, Qiu Z, Xie Z. Reaction of 4-Bpin-o-Carborane with Ketones: Sequential Carbon Vertex Alkylation and B-B Bond Activation. Chem Asian J 2023; 18:e202300598. [PMID: 37547963 DOI: 10.1002/asia.202300598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Diboron compounds are important reagents in a series of transition metal catalyzed or metal-free borylation reactions. We describe herein a unique reactivity of 4-Bpin-o-carborane with ketones under basic conditions, leading to sequential cage carbon alkylation, B-B bond activation and unexpected O-migration. The reaction was compatible with a good substrate scope including dialkyl or alkyl aryl ketones. The reaction mechanism is also proposed, involving cage CH deprotonation, nucleophilic attack of ketone, and O-migration along with B-B bond cleavage.
Collapse
Affiliation(s)
- Zhen Nie
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai, 200032, China
| | - Ruofei Cheng
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai, 200032, China
| | - Zaozao Qiu
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai, 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Zuowei Xie
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai, 200032, China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
10
|
Zhang CY, Cao K, Liu D, Yang HB, Teng CC, Li B, Yang J. Iridium-catalyzed selective amination of B(4)-H for the synthesis of o-carborane-fused indolines. Dalton Trans 2023; 52:2933-2936. [PMID: 36815456 DOI: 10.1039/d3dt00316g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
An iridium-catalyzed selective amination of B(4)-H via dehydrogenative cross-coupling of B-H/N-H bonds for the synthesis of o-carborane-fused indolines has been developed for the first time. Various types of unprecedented o-carborane-fused indolines have been synthesized, which would be potential candidates for applications in drug discovery, pharmaceutical chemistry and functional materials. This work offers a valuable reference for the designing and synthesis of o-carborane-fused heterocycles.
Collapse
Affiliation(s)
- Cai-Yan Zhang
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
| | - Ke Cao
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
| | - Dechun Liu
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
| | - Han-Bo Yang
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
| | - Chao-Chao Teng
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
| | - Bo Li
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900, P. R. China
| | - Junxiao Yang
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
| |
Collapse
|
11
|
Ochi J, Tanaka K, Chujo Y. Investigation of the Substitution Site Effect on o-Carborane-Based Chromophores by Anthracene Introduction at the B(3) Position. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2023. [DOI: 10.1246/bcsj.20220310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- Junki Ochi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
12
|
Jia H, Qiu Z. Recent Advances in Transition Metal-Catalyzed B—H Bond Activation for Synthesis of o-Carborane Derivatives with B—Heteroatom Bond. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202211040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
13
|
Sivaev IB, Anufriev SA, Shmalko AV. How substituents at boron atoms affect the CH-acidity and the electron-withdrawing effect of the ortho-carborane cage: A close look on the 1H NMR spectra. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Lyu H, Xie Z. Transition metal catalyzed selective B(3)-H or B(4)-H amination of o-carboranes via dehydrogenative BH/NH cross-coupling. Chem Commun (Camb) 2022; 58:8392-8395. [PMID: 35792563 DOI: 10.1039/d2cc02852b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A unique approach to vertex-selective catalytic B-H amination at either the B(3)- or B(4)-position in o-carboranes has been developed. Using different transition metal catalysts, dehydrogenative BH/NH cross-coupling of o-carboranes and free amines has been achieved, leading to a wide variety of cage B(3)- or B(4)-aminated o-carboranes in moderate to high yields with excellent regioselectivity, where carboranyl carboxylic acids and amines can serve as competent coupling partners without any pre-functionalization. The isolation and structural identification of a key intermediate provide an insight into the reaction mechanism in the catalytic B(4)-H amination.
Collapse
Affiliation(s)
- Hairong Lyu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, China.
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, China.
| |
Collapse
|
15
|
Demel J, Kloda M, Lang K, Škoch K, Hynek J, Opravil A, Novotný M, Bould J, Ehn M, Londesborough MGS. Direct Phenylation of nido-B 10H 14. J Org Chem 2022; 87:10034-10043. [PMID: 35839127 DOI: 10.1021/acs.joc.2c00997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As a preliminary step toward its condensation into the porous polymer Activated Borane, the thermolysis of nido-B10H14 (1) in benzene at 200 °C results in the generation of a number of phenylated borane molecular species. The principal product is the new monophenylated compound 5-Ph-nido-B10H13 (2), isolated in 48% yield (based on consumption of 1) and structurally characterized by single-crystal X-ray diffraction analysis, NMR, and mass spectrometry along with other minor products, such as 6-Ph-nido-B10H13 (3), for which we observe UV-light-driven conversion into 2 via a "vertex-flip" mechanism, and novel diphenylated 5,8-Ph2-nido-B10H12 (4). Together, the phenylated derivatives provide a valuable insight into the assembly of Activated Borane and ultimately inform on its structure. The new compounds also display strong blue fluorescence in both solid-state and in solution and are the first examples of the direct phenylation of nido-B10H14, thus opening the door to the straight-forward synthesis of highly luminescent organic-borane hybrid systems.
Collapse
Affiliation(s)
- Jan Demel
- Institute of Inorganic Chemistry of the Czech Academy of Sciences 250 68, Husinec-Řež č.p. 1001, Czech Republic
| | - Matouš Kloda
- Institute of Inorganic Chemistry of the Czech Academy of Sciences 250 68, Husinec-Řež č.p. 1001, Czech Republic
| | - Kamil Lang
- Institute of Inorganic Chemistry of the Czech Academy of Sciences 250 68, Husinec-Řež č.p. 1001, Czech Republic
| | - Karel Škoch
- Institute of Inorganic Chemistry of the Czech Academy of Sciences 250 68, Husinec-Řež č.p. 1001, Czech Republic
| | - Jan Hynek
- Institute of Inorganic Chemistry of the Czech Academy of Sciences 250 68, Husinec-Řež č.p. 1001, Czech Republic
| | - Adam Opravil
- Institute of Inorganic Chemistry of the Czech Academy of Sciences 250 68, Husinec-Řež č.p. 1001, Czech Republic
| | - Matyáš Novotný
- Institute of Inorganic Chemistry of the Czech Academy of Sciences 250 68, Husinec-Řež č.p. 1001, Czech Republic
| | - Jonathan Bould
- Institute of Inorganic Chemistry of the Czech Academy of Sciences 250 68, Husinec-Řež č.p. 1001, Czech Republic
| | - Marcel Ehn
- Institute of Inorganic Chemistry of the Czech Academy of Sciences 250 68, Husinec-Řež č.p. 1001, Czech Republic
| | - Michael G S Londesborough
- Institute of Inorganic Chemistry of the Czech Academy of Sciences 250 68, Husinec-Řež č.p. 1001, Czech Republic
| |
Collapse
|
16
|
Tang W, He Y, Li H. Migration Mechanism of the B–H Activation of Carboranes. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wanyong Tang
- North Minzu University College of Chemistry and Chemical Engineering CHINA
| | - Yuhan He
- North Minzu University College of Chemistry and Chemical Engineering CHINA
| | - Hui Li
- North Minzu University Chemical science and engineering college No.204, North Wenchang Street, Xixia District, Yinchuan City, Ningxia, China 750021 Yinchuan CHINA
| |
Collapse
|
17
|
Dai C, Huang Y, Zhu J. Predicting Dinitrogen Activation by Carborane-Based Frustrated Lewis Pairs. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chenshu Dai
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuanyuan Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
18
|
Bisht R, Haldar C, Hassan MMM, Hoque ME, Chaturvedi J, Chattopadhyay B. Metal-catalysed C-H bond activation and borylation. Chem Soc Rev 2022; 51:5042-5100. [PMID: 35635434 DOI: 10.1039/d1cs01012c] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Transition metal-catalysed direct borylation of hydrocarbons via C-H bond activation has received a remarkable level of attention as a popular reaction in the synthesis of organoboron compounds owing to their synthetic versatility. While controlling the site-selectivity was one of the most challenging issues in these C-H borylation reactions, enormous efforts of several research groups proved instrumental in dealing with selectivity issues that presently reached an impressive level for both proximal and distal C-H bond borylation reactions. For example, in the case of ortho C-H bond borylation reactions, innovative methodologies have been developed either by the modification of the directing groups attached with the substrates or by creating new catalytic systems via the design of new ligand frameworks. Whereas meta and para selective C-H borylations remained a formidable challenge, numerous innovative concepts have been developed within a very short period of time by the development of new catalytic systems with the employment of various noncovalent interactions. Moreover, significant advancements have occurred for aliphatic C(sp3)-H borylations as well as enantioselective borylations. In this review article, we aim to discuss and summarize the different approaches and findings related to the development of directed proximal ortho, distal meta/para, aliphatic (racemic and enantioselective) borylation reactions since 2014. Additionally, considering the C-H borylation reaction as one of the most important mainstream reactions, various applications of this C-H borylation reaction toward the synthesis of natural products, therapeutics, and applications in materials chemistry will be summarized in the last part of this review article.
Collapse
Affiliation(s)
- Ranjana Bisht
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Chabush Haldar
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Mirja Md Mahamudul Hassan
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Md Emdadul Hoque
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Jagriti Chaturvedi
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Buddhadeb Chattopadhyay
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| |
Collapse
|
19
|
Guo W, Guo C, Ma YN, Chen X. Practical Synthesis of B(9)-Halogenated Carboranes with N-Haloamides in Hexafluoroisopropanol. Inorg Chem 2022; 61:5326-5334. [PMID: 35311288 DOI: 10.1021/acs.inorgchem.2c00074] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The B(9)-H halogenation of o-carborane and m-carborane was achieved with excellent selectivities in hexafluoroisopropanol (HFIP) under simple reaction conditions: single reagent [trichloroisocyanuric acid (TCCA), tribromoisocyanuric acid (TBCA) or N-iodosuccinimide (NIS)], catalyst-free, air-/moisture-tolerant, and convenient work-up. With this method, a variety of 9-halogenated o-carboranes and m-carboranes were obtained in good to excellent yields with broad tolerance of functional groups.
Collapse
Affiliation(s)
- Wenjing Guo
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Chenyang Guo
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Shanghai 200032, China
| | - Yan-Na Ma
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xuenian Chen
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
20
|
Mahamudul Hassan MM, Mondal B, Singh S, Haldar C, Chaturvedi J, Bisht R, Sunoj RB, Chattopadhyay B. Ir-Catalyzed Ligand-Free Directed C–H Borylation of Arenes and Pharmaceuticals: Detailed Mechanistic Understanding. J Org Chem 2022; 87:4360-4375. [DOI: 10.1021/acs.joc.2c00046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mirja Md Mahamudul Hassan
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Biplab Mondal
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Sukriti Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chabush Haldar
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Jagriti Chaturvedi
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Ranjana Bisht
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Raghavan B. Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Buddhadeb Chattopadhyay
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
21
|
Ko GH, Lee JK, Han SH, Lee PH. Rhodium-Catalyzed B(4)-H and B(3)-H Alkylation Reaction of Pyridyl o-Carboranes with α-Diazodicarboxylates. Org Lett 2022; 24:1507-1512. [PMID: 35142522 DOI: 10.1021/acs.orglett.2c00187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient Rh-catalyzed B(4)-H and B(3)-H alkylation reaction was demonstrated from the reactions of a variety of pyridyl o-carboranes with α-diazodicarboxylates with the release of molecular nitrogen, leading to the production of B(4)-H and B(3)-H alkylated o-carboranes in good to excellent yields with high selectivity, a wide substrate scope, and good functional group tolerance.
Collapse
Affiliation(s)
- Gi Hoon Ko
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ji Kwon Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sang Hoon Han
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Phil Ho Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea.,KIIT (Kangwon Institute of Inclusive Technology), Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
22
|
Yang Z, Sun C, Wei X, Lu J, Lu JY. Palladium‐Catalyzed Cascade Deboronation/Regioselective B−P Coupling of closo‐Carboranes. ChemCatChem 2022. [DOI: 10.1002/cctc.202101571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ziyi Yang
- Hainan University school of science CHINA
| | | | - Xing Wei
- Hainan University school of science CHINA
| | - Jian Lu
- Xi'an Modern Chemistry Research Institute Catalysis Division Xi'an 710065, China 710065 Xi'an CHINA
| | - Ju-You Lu
- Hainan University School of Science 58 Renmin Road, Haikou 570228, China 570228 Haikou CHINA
| |
Collapse
|
23
|
Wang Y, Gao Y, Guo W, Zhao Q, Ma YN, Chen X. Highly selective electrophilic B(9)-amination of o-carborane driven by HOTf and HFIP. Org Chem Front 2022. [DOI: 10.1039/d2qo00732k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient B(9) electrophilic amination of o-carboranes with azodicarboxylates, promoted by a Brønsted acid and HFIP, was developed.
Collapse
Affiliation(s)
- Yan Wang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yan Gao
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Wenjing Guo
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Qianyi Zhao
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yan-Na Ma
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xuenian Chen
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
24
|
Zhang J, Xie Z. Advances in transition metal catalyzed selective B H functionalization of o-carboranes. ADVANCES IN CATALYSIS 2022. [DOI: 10.1016/bs.acat.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Ge Y, Qiu Z, Xie Z. Pd-Catalyzed One-Pot Synthesis of Difunctionalized o-Carboranes via Construction of B—C and B—Heteroatom Bonds ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Liu J, Fu D, Chen Z, Li T, Qu LB, Li SJ, Zhang W, Lan Y. Regioselectivity of Pd-catalyzed o-carborane arylation: a theoretical view. Org Chem Front 2022. [DOI: 10.1039/d2qo00046f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
B(3)-Arylation is unfavorable because the steric repulsion between the substituent group on C(2) and the metal moiety would lead to significant distortion of o-carborane and would result in a higher activation energy for reductive elimination.
Collapse
Affiliation(s)
- Jiying Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Dongmin Fu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zitong Chen
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Tiantian Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ling-Bo Qu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Shi-Jun Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wenjing Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yu Lan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| |
Collapse
|
27
|
Fu Y, Li Y, Luo D, Lu Y, Huang J, Yang Z, Lu J, Jiang YY, Lu JY. Palladium-Catalyzed Regioselective B(3,4)-H Acyloxylation of o-Carboranes. Inorg Chem 2021; 61:911-922. [PMID: 34964616 DOI: 10.1021/acs.inorgchem.1c02758] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We disclose herein an efficient regioselective B(3,4)-H activation via a ligand strategy, affording B(3)-monoacyloxylated and B(3,4)-diacyloxylated o-carboranes. The identification of amino acid and phosphoric acid ligands is crucial for the success of B(3)-mono- and B(3,4)-diacyloxylation, respectively. This ligand approach is compatible with a broad range of carboxylic acids. The functionalization of complex drug molecules is demonstrated. Other acyloxyl sources, including sodium benzoate, benzoic anhydride, and iodobenzene diacetate, are also tolerated.
Collapse
Affiliation(s)
- Yatong Fu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Science, Hainan University, 58 Renmin Road, Haikou 570228, People's Republic of China
| | - Yu Li
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People's Republic of China
| | - Donghong Luo
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Science, Hainan University, 58 Renmin Road, Haikou 570228, People's Republic of China
| | - Yibo Lu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Science, Hainan University, 58 Renmin Road, Haikou 570228, People's Republic of China
| | - Jiajun Huang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Science, Hainan University, 58 Renmin Road, Haikou 570228, People's Republic of China
| | - Ziyi Yang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Science, Hainan University, 58 Renmin Road, Haikou 570228, People's Republic of China
| | - Jian Lu
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an 710065, People's Republic of China
| | - Yuan-Ye Jiang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People's Republic of China
| | - Ju-You Lu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Science, Hainan University, 58 Renmin Road, Haikou 570228, People's Republic of China
| |
Collapse
|
28
|
Cheng B, Chen Y, Zhou P, Xie Z. Rhodium-catalyzed sequential B(3)-, B(4)-, and B(5)-trifunctionalization of o-carboranes with three different substituents. Chem Commun (Camb) 2021; 58:629-632. [PMID: 34913450 DOI: 10.1039/d1cc05936j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A rhodium-catalyzed one-pot trifunctionalization of o-carboranes with three different substituents via a carboxy group directed sequential B(5)-alkenylation, B(4)-alkyne annulation and B(3)-acyloxylation has been developed for the first time, leading to the synthesis of a new class of B(3,4,5)-trisubstituted o-carborane derivatives. Treatment of 1-COOH-2-CH3-o-C2B10H10 with ArCCAr in the presence of a [Cp*RhCl2]2 catalyst and a Cu(OPiv)2 oxidant gave 1,4-[COOC(Ar)C(Ar)]-2-Me-3-OPiv-5-[C(Ar)CH(Ar)-o-C2B10H7 in good to high yields. This protocol represents a new strategy for the catalytic selective polyfunctionalization of carboranes with different substituents.
Collapse
Affiliation(s)
- Biao Cheng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Yu Chen
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Peng Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
29
|
Synthesis of 3-Aryl- ortho-carboranes with Sensitive Functional Groups. Molecules 2021; 26:molecules26237297. [PMID: 34885881 PMCID: PMC8659134 DOI: 10.3390/molecules26237297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
A simple and efficient method was developed for the one-pot synthesis of 3-aryl derivatives of ortho-carborane with sensitive functional groups using 3-iodo-ortho-carborane and aryl zinc bromides that were generated in situ. A series of 3-aryl-ortho-carboranes, including those containing nitrile and ester groups, 3-RC6H4-1,2-C2B10H11 (R = p-Me, p-NMe2, p-OCH2OMe, p-OMe, o-CN, p-CN, o-COOEt, m-COOEt, p-COOEt) was synthesized using this approach. The solid-state structures of 3-RC6H4-1,2-C2B10H11 (R = p-OMe, o-CN, and p-CN) were determined by single crystal X-ray diffraction. The intramolecular hydrogen bonding involving the ortho-substituents of the aryl ring and the CH and BH groups of carborane was discussed.
Collapse
|
30
|
Eleazer BJ, Jayaweera HDAC, Gange GB, Smith MD, Martin CR, Park KC, Popov AA, Peryshkov DV. Bimetallic Ru-Pd and Trimetallic Ru-Pd-Cu Assemblies on the Carborane Cluster Surface. Inorg Chem 2021; 60:16911-16916. [PMID: 34710327 DOI: 10.1021/acs.inorgchem.1c02799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis of well-defined heterometallic complexes remains a frontier challenge in inorganic chemistry. We report an approach that relies on the sequential insertion of electrophilic metal fragments into electron-rich Ru-B bonds of the η2-BB-carboryne complex (POBBOP)Ru(CO)2 [POBBOP = 1,7-OP(iPr)2-m-2,6-dehydrocarborane]. Utilizing this synthetic strategy, bimetallic (POBBOP)(Ru)(CO)2[Pd(PtBu3)] and trimetallic (POBBOP)(Ru)(CO)2[Pd(PtBu3)](CuBr) complexes were selectively prepared. Structural and theoretical analysis of the features of chemical bonding within Ru-B-B-Cu and Ru-B-B-Pd fragments is presented.
Collapse
Affiliation(s)
- Bennett J Eleazer
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - H D A Chathumal Jayaweera
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Gayathri B Gange
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Corey R Martin
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Alexey A Popov
- Leibniz Institute for Solid State and Materials Research, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Dmitry V Peryshkov
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
31
|
Ham H, Shin S, Ko GH, Han SH, Han GU, Maeng C, Kim TH, Noh HC, Lee K, Kim H, Yang H, Lee PH. Direct and Regioselective Palladium(II)-Catalyzed B(4)-H Monoacyloxylation and B(4,5)-H Diacetoxylation of o-Carborane Acids with Phenyliodonium Dicarboxylates. J Org Chem 2021; 86:15153-15163. [PMID: 34592103 DOI: 10.1021/acs.joc.1c01804] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A direct B(4)-H monoacyloxylation via a Pd-catalyzed regioselective B(4)-H activation of o-carborane acids with phenyliodonium dicarboxylates was developed, and a series of B(4)-H monoacyloxylated o-carboranes decorated with active groups were synthesized with moderate to good yields as well as excellent selectivity. In addition, a direct B(4,5)-H diacetoxylation from o-carborane acids with phenyliodonium diacetate was demonstrated.
Collapse
Affiliation(s)
- Hyeongcheol Ham
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seohyun Shin
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Gi Hoon Ko
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sang Hoon Han
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Gi Uk Han
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Chanyoung Maeng
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Tae Hyeon Kim
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hee Chan Noh
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kyungsup Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hanjoong Kim
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Heejin Yang
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Phil Ho Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
32
|
Abstract
Carboranes are a class of polyhedral carbon-boron molecular clusters featuring three-dimensional aromaticity, which are often considered as 3D analogues of benzene. Their unique structural and electronic properties make them invaluable building blocks for applications ranging from functional materials to versatile ligands to pharmaceuticals. Thus, selective functionalization of carboranes has received tremendous research interest. In earlier days, the vast majority of the works in this area were focused on cage carbon functionalization via facile deprotonation of cage CH, followed by reaction with electrophiles. On the contrary, cage B-H activation is very challenging since the 10 B-H bonds on o-carborane are very similar, and how to achieve the desired transformation at specific boron vertex is a long-standing issue.As carbon is considered more electronegative than boron, this property results in different vertex charges on the o-carborane cage, which follow the order B(3,6)-H ≪ B(4,5,7,11)-H < B(8,10)-H < B(9,12)-H. We thought that this difference may trigger the favorite interaction of a proper transition metal complex with a specific B-H bond of carborane, which could be utilized to solve the selectivity issue. Accordingly, our strategy is described as follows: (1) electron-rich transition metal catalysts are good for the activation of the most electron-deficient B(3,6)-H bonds (connected to both cage C-H vertices); (2) electron-deficient transition metal catalysts are good for the activation of the relatively electron-rich B(8,9,10,12)-H bonds (with no bonding to either cage C-H vertices); and (3) directing-group-assisted transition metal catalysis is appropriate for the activation of the B(4,5,7,11)-H bonds (connected to only one cage C-H vertex), whose vertex charges lie in the middle of the range for the 10 B-H bonds. This strategy has been successfully applied by our laboratory and other groups in the development of a series of synthetic routes for catalytic selective activation of B-H bonds of the carborane cage, resulting in the synthesis of a large number of cage-boron-functionalized carborane derivatives in a regioselective and catalytic fashion. Subsequently, significant progress in this emerging area has been made.In 2013 we reported the selective tetrafluorination of o-carboranes at the B(8,9,10,12)-H bonds using an electron-deficient Pd(II) salt, [Pd(MeCN)4][BF4], as the catalyst. In 2014 we disclosed the first example of carboxy-directed alkenylation of o-carboranes at the B(4) vertex promoted by an Ir(III) catalyst. Subsequently, in 2017 we presented an electron-rich Ir(I)-catalyzed diborylation of o-carboranes at the B(3,6)-H bonds. We also uncovered the first example of Pd-catalyzed asymmetric synthesis of chiral-at-cage o-carboranes in 2018. These proof-of-principle studies have greatly stimulated research activities in selective B-H activation of carboranes and boron clusters enabled by transition metal catalysts. We have so far developed a toolbox of synthetic methods for selective catalytic cage B-olefination, -arylation, -alkenylation, -alkynylation, -oxygenation, -sulfenylation, -borylation, -halogenation, and -amination. We have recently expanded our research to base metal catalysis. As the field progresses, we expect that other methods for regioselective cage B-H activation will be invented, and the results detailed in this Account will promote these efforts.
Collapse
Affiliation(s)
- Zaozao Qiu
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zuowei Xie
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
33
|
Yang L, Jei BB, Scheremetjew A, Yuan B, Stückl AC, Ackermann L. Electrooxidative o-carborane chalcogenations without directing groups: cage activation by copper catalysis at room temperature. Chem Sci 2021; 12:12971-12976. [PMID: 34745527 PMCID: PMC8513870 DOI: 10.1039/d1sc02905c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/28/2021] [Indexed: 11/21/2022] Open
Abstract
Copper-catalyzed electrochemical direct chalcogenations of o-carboranes was established at room temperature. Thereby, a series of cage C-sulfenylated and C-selenylated o-carboranes anchored with valuable functional groups was accessed with high levels of position- and chemo-selectivity control. The cupraelectrocatalysis provided efficient means to activate otherwise inert cage C-H bonds for the late-stage diversification of o-carboranes.
Collapse
Affiliation(s)
- Long Yang
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Gottingen Germany http://www.ackermann.chemie.uni-goettingen.de/
| | - Becky Bongsuiru Jei
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Gottingen Germany http://www.ackermann.chemie.uni-goettingen.de/
| | - Alexej Scheremetjew
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Gottingen Germany http://www.ackermann.chemie.uni-goettingen.de/
| | - Binbin Yuan
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Gottingen Germany http://www.ackermann.chemie.uni-goettingen.de/
| | - A Claudia Stückl
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen Tammannstraße 4 37077 Gottingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Gottingen Germany http://www.ackermann.chemie.uni-goettingen.de/
- Woehler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen Tammannstraße 2 37077 Gottingen Germany
| |
Collapse
|
34
|
Cao K, Wu J, Zhang C, Ding L, Yang J. Iridium Catalyzed Selective Arylation of B(3)‐H Bond of
o
‐Carborane via B−H/C−H Activation. ChemistrySelect 2021. [DOI: 10.1002/slct.202102432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ke Cao
- State Key Laboratory of Environment-friendly Energy Materials & School of Material Science and Engineering Southwest University of Science and Technology 59 Qinglong Road, Mianyang Sichuan P. R. China
| | - Ji Wu
- State Key Laboratory of Environment-friendly Energy Materials & School of Material Science and Engineering Southwest University of Science and Technology 59 Qinglong Road, Mianyang Sichuan P. R. China
- College of Materials Science and Engineering Sichuan University of Science & Engineering, Zigong Sichuan P. R. China
| | - Cai‐Yan Zhang
- State Key Laboratory of Environment-friendly Energy Materials & School of Material Science and Engineering Southwest University of Science and Technology 59 Qinglong Road, Mianyang Sichuan P. R. China
| | - Li‐Fang Ding
- State Key Laboratory of Environment-friendly Energy Materials & School of Material Science and Engineering Southwest University of Science and Technology 59 Qinglong Road, Mianyang Sichuan P. R. China
| | - Junxiao Yang
- State Key Laboratory of Environment-friendly Energy Materials & School of Material Science and Engineering Southwest University of Science and Technology 59 Qinglong Road, Mianyang Sichuan P. R. China
| |
Collapse
|
35
|
Cheng B, Chen Y, Xie Z. Iridium-Catalyzed Annulation of o-Carboranyl Carboxylic Acids with Alkynes: Synthesis of Carborano-Isocoumarins. J Org Chem 2021; 86:12412-12418. [PMID: 34365793 DOI: 10.1021/acs.joc.1c01395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An efficient iridium-catalyzed formal [4+2] annulation of carboranyl carboxylic acids with alkynes is developed, resulting in the facile synthesis of a new class of carborano-isocoumarin derivatives. The carboxyl group not only serves as a directing group to control the regioselectivity but also ingeniously becomes a part of the final products. The reaction mechanism involves sequential carboxyl-directed B(4)-H metalation, alkyne insertion, and reductive elimination.
Collapse
Affiliation(s)
- Biao Cheng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yu Chen
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
36
|
Ge Y, Qiu Z, Xie Z. Pd-catalyzed selective tetrafunctionalization of diiodo- o-carboranes. Chem Commun (Camb) 2021; 57:8071-8074. [PMID: 34296721 DOI: 10.1039/d1cc03449a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A palladium-catalyzed highly selective tetrafunctionalization of 3,6-I2-o-carborane and 4,7-I2-o-carborane has been developed, leading to the preparation of 3,6-dialkenyl-4,11-R2-o-carboranes and 4,7-dialkenyl-5,11-R2-o-carboranes (R = alkyl, allyl and aryl) in moderate to excellent yields. This represents a new strategy for selective synthesis of polyfunctionalized o-carborane derivatives via a one-pot process.
Collapse
Affiliation(s)
- Yixiu Ge
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai 200032, China.
| | - Zaozao Qiu
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai 200032, China. and CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai 200032, China
| | - Zuowei Xie
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai 200032, China. and Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| |
Collapse
|
37
|
Chen M, Zhao D, Xu J, Li C, Lu C, Yan H. Electrooxidative B−H Functionalization of
nido
‐Carboranes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Meng Chen
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Deshi Zhao
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jingkai Xu
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Chunxiao Li
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
38
|
Au YK, Xie Z. Recent Advances in Transition Metal-Catalyzed Selective B-H Functionalization ofo-Carboranes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200366] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yik Ki Au
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, P. R. China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, P. R. China
| |
Collapse
|
39
|
Au YK, Zhang J, Quan Y, Xie Z. Ir-Catalyzed Selective B(3)-H Amination of o-Carboranes with NH3. J Am Chem Soc 2021; 143:4148-4153. [DOI: 10.1021/jacs.1c00593] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yik Ki Au
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| | - Jie Zhang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| | - Yangjian Quan
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| |
Collapse
|
40
|
Chen M, Zhao D, Xu J, Li C, Lu C, Yan H. Electrooxidative B-H Functionalization of nido-Carboranes. Angew Chem Int Ed Engl 2021; 60:7838-7844. [PMID: 33372727 DOI: 10.1002/anie.202015299] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Indexed: 11/07/2022]
Abstract
An atom-economical method for the direct B-H functionalization of nido-carboranes (7,8-nido-C2 B9 H12 - ) has been developed under electrochemical reaction conditions. In this reaction system, anodic oxidation serves as a green alternative for traditional chemical oxidants in the oxidation of nido-carboranes. No transition-metal catalyst is required and different heteroatoms bearing a lone pair are reactive in this transformation. Coupling nido-carboranes with thioethers, selenides, tellurides, N-heterocycles, phosphates, phosphines, arsenides and antimonides demonstrates high site-selectivity and efficiency. Importantly, nido-carboranes can be easily incorporated into drug motifs through this reaction protocol.
Collapse
Affiliation(s)
- Meng Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Deshi Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jingkai Xu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chunxiao Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
41
|
Li CX, Ning Q, Zhao W, Cao HJ, Wang YP, Yan H, Lu CS, Liang Y. Rh-Catalyzed Decarbonylative Cross-Coupling between o-Carboranes and Twisted Amides: A Regioselective, Additive-Free, and Concise Late-Stage Carboranylation. Chemistry 2021; 27:2699-2706. [PMID: 32969106 DOI: 10.1002/chem.202003634] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/06/2020] [Indexed: 12/17/2022]
Abstract
The convenient cross-coupling of sp2 or sp3 carbons with a specific boron vertex on carborane cage represents significant synthetic values and insurmountable challenges. In this work, we report an Rh-catalyzed reaction between o-carborane and N-acyl-glutarimides to construct various Bcage -C bonds. Under the optimized condition, the removable imine directing group (DG) leads to B(3)- or B(3,6)-C couplings, while the pyridyl DG leads to B(3,5)-Ar coupling. In particular, an unexpected rearrangement of amide reagent is observed in pyridyl directed B(4)-C(sp3 ) formation. This scalable protocol has many advantages, including easy access, the use of cheap and widely available coupling agents, no requirement of an external ligand, base or oxidant, high efficiency, and a broad substrate scope. Leveraging the RhI dimer and twisted amides, this method enables straightforward access to diversely substituted and therapeutically important carborane derivatives at boron site, and provides a highly valuable vista for carborane-based drug screening.
Collapse
Affiliation(s)
- Chun-Xiao Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key, Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Qian Ning
- State Key Laboratory of Coordination Chemistry, Jiangsu Key, Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Wenxuan Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key, Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hou-Ji Cao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key, Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yi-Ping Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key, Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key, Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Chang-Sheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key, Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key, Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
42
|
Guo C, Qiu Z, Xie Z. Catalytic Cage BH Functionalization of Carboranes via “Cage Walking” Strategy. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05639] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chenyang Guo
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, The Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Zaozao Qiu
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, The Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Zuowei Xie
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, The Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, People’s Republic of China
| |
Collapse
|
43
|
Yang L, Bongsuiru Jei B, Scheremetjew A, Kuniyil R, Ackermann L. Electrochemical B-H Nitrogenation: Access to Amino Acid and BODIPY-Labeled nido-Carboranes. Angew Chem Int Ed Engl 2021; 60:1482-1487. [PMID: 32991021 PMCID: PMC7839532 DOI: 10.1002/anie.202012105] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Indexed: 12/16/2022]
Abstract
Electrocatalyzed oxidative B-H nitrogenations of nido-carborane (nido-7,8-C2 B9 H12- ) with N-heterocycles have been established, enabling the preparation of various N-substituted nido-carboranes without chemical oxidants or metal catalyst under ambient conditions. The electrolysis manifold occurred with high levels of efficiency as well as chemo- and position- selectivity, employing sustainable electricity as the sole oxidant. The strategy set the stage for a user-friendly access to novel amino acid and fluorogenic boron-dipyrrin (BODIPY)-labeled nido-carborane hybrids.
Collapse
Affiliation(s)
- Long Yang
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable ChemistryGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Becky Bongsuiru Jei
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable ChemistryGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Alexej Scheremetjew
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable ChemistryGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Rositha Kuniyil
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable ChemistryGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable ChemistryGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| |
Collapse
|
44
|
Liu XR, Cui PF, Guo ST, Yuan RZ, Jin GX. Stepwise B–H bond activation of a meta-carborane. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00732g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Stepwise multiple B–H bond activation is a major challenge in synthetic chemistry.
Collapse
Affiliation(s)
- Xin-Ran Liu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Peng-Fei Cui
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Shu-Ting Guo
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Run-Ze Yuan
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
45
|
Ge Y, Zhang J, Qiu Z, Xie Z. Pd-Catalyzed sequential B(3)–I/B(4)–H bond activation for the synthesis of 3,4-benzo-o-carboranes. Dalton Trans 2021; 50:1766-1773. [DOI: 10.1039/d0dt03740k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Pd-catalyzed sequential B(3)–I and B(4)–H bond activation was developed for the synthesis of 3,4-benzo-o-carboranes via a formal [2 + 2 + 2] cycloaddition.
Collapse
Affiliation(s)
- Yixiu Ge
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Shanghai 200032
| | - Jie Zhang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry
- The Chinese University of Hong Kong
- Shatin, N. T
- China
| | - Zaozao Qiu
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Shanghai 200032
| | - Zuowei Xie
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Shanghai 200032
| |
Collapse
|
46
|
Cao K, Xu TT, Wu J, Zhang CY, Wen XY, Yang J. The in Situ NHC-Palladium Catalyzed Selective Activation of B(3)-H or B(6)-H Bonds of o-Carboranes for Hydroboration of Alkynes: An Efficient Approach to Alkenyl- o-carboranes. Inorg Chem 2020; 60:1080-1085. [PMID: 33378622 DOI: 10.1021/acs.inorgchem.0c03203] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An in situ Pd-NHC catalyzed selective B(3,6)-H activation for hydroboration of internal alkynes has been accomplished under mild conditions. This work offers a facile approach for the synthesis of alkenyl-o-carboranes and has important reference for selective functionalization of B(3,6)-H bonds.
Collapse
Affiliation(s)
- Ke Cao
- State Key Laboratory of Environment-Friendly Energy Materials & School of Material Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan 621010, People's Republic of China
| | - Tao-Tao Xu
- State Key Laboratory of Environment-Friendly Energy Materials & School of Material Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan 621010, People's Republic of China
| | - Ji Wu
- State Key Laboratory of Environment-Friendly Energy Materials & School of Material Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan 621010, People's Republic of China
| | - Cai-Yan Zhang
- State Key Laboratory of Environment-Friendly Energy Materials & School of Material Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan 621010, People's Republic of China
| | - Xin-Yu Wen
- State Key Laboratory of Environment-Friendly Energy Materials & School of Material Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan 621010, People's Republic of China
| | - Junxiao Yang
- State Key Laboratory of Environment-Friendly Energy Materials & School of Material Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan 621010, People's Republic of China
| |
Collapse
|
47
|
Ochi J, Tanaka K, Chujo Y. Experimental proof for emission annihilation through bond elongation at the carbon-carbon bond in o-carborane with fused biphenyl-substituted compounds. Dalton Trans 2020; 50:1025-1033. [PMID: 33367426 DOI: 10.1039/d0dt03618h] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Because of their unique luminescence properties, such as aggregation-induced emission (AIE), intense solid-state luminescence and stimuli-responsive luminochromism, aryl-substituted o-carboranes have attracted attention as a platform for developing functional optoelectronic materials. However, there still remains one fundamental issue with the detailed mechanism of solution quenching in AIE behaviors. Aryl-modified o-carboranes with AIE properties exhibit intense emission not in solution but in the solid state. According to quantum calculations and many experimental results, the elongation at the carbon-carbon bond in o-carborane in the excited state, followed by nonradiative decay, has been proposed as a main path for emission annihilation in solution. However, intramolecular rotation would simultaneously occur, and there is a possibility that emission annihilation could be induced by the combination of both bond elongation and rotation. In this study, we designed two types of biphenyl-substituted o-carboranes having fused structures at the neighbor carbon and boron atoms for fixing molecular conformation. In these molecules, bond elongation is allowed, while rotation would be prohibited. From the series of optical measurements and theoretical investigations, we proved that emission annihilation can occur through bond elongation in the absence of rotation. Moreover, we show that bond elongation could be suppressed by introducing a bulky substituent at the adjacent carbon, and emission color tuning was achieved. This is the first example, to the best of our knowledge, to prove that excitation decay can proceed only through bond elongation without electronic perturbation caused by rotation.
Collapse
Affiliation(s)
- Junki Ochi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | | | | |
Collapse
|
48
|
Mu X, Hopp M, Dziedzic RM, Waddington MA, Rheingold AL, Sletten EM, Axtell JC, Spokoyny AM. Expanding the Scope of Palladium-Catalyzed B - N Cross-Coupling Chemistry in Carboranes. Organometallics 2020; 39:4380-4386. [PMID: 34012188 DOI: 10.1021/acs.organomet.0c00576] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Over the past several years, a number of strategies for the functionalization of dicarba-closo-dodecaboranes (carboranes) have emerged. Despite these developments, B - N bond formation on the carborane scaffold remains a challenge due to the propensity of strong nucleophiles to partially deboronate the parent closo-carborane cluster into the corresponding nido form. Here we show that azide, sulfonamide, cyanate, and phosphoramidate nucleophiles can be straightforwardly cross-coupled onto the B(9) vertices of the o- and m-carborane core from readily accessible precursors without significant deboronation by-products, laying the groundwork for further study into the utility and properties of these new B-aminated carborane species. We further showcase select reactivity of the installed functional groups highlighting some unique features stemming from the combination of the electron-donating B(9) position and the large steric profile of the B-connected carborane substituent.
Collapse
Affiliation(s)
- Xin Mu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Morgan Hopp
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Rafal M Dziedzic
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Mary A Waddington
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Arnold L Rheingold
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Jonathan C Axtell
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| |
Collapse
|
49
|
Lian L, Lin C, Yu Y, Yuan Y, Ye KY. Phosphine oxide-directed palladium-catalyzed B(3)–H arylation of o-carboranes. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
50
|
Wu J, Cao K, Zhang CY, Xu TT, Wen XY, Li B, Yang J. Palladium Catalyzed Selective B(3)-H Activation/Oxidative Dehydrogenative Coupling for the Synthesis of Bis( o-carborane)s. Inorg Chem 2020; 59:17340-17346. [PMID: 33232154 DOI: 10.1021/acs.inorgchem.0c02638] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A palladium catalyzed selective B(3)-H activation/oxidative dehydrogenative coupling for the synthesis of bis(o-carborane)s connected with B(3)-B(3') and B(3)-B(6') bonds has been developed for the first time. A plausible mechanism involving stepwise activation of B(3)-H and B(3'/6')-H bonds by PdII and PdIV was proposed. This work is the first example and the most efficient protocol for synthesis of bis(o-carborane)s connected with B(3)-B(3') and B(3)-B(6') bonds, which has important reference for design, synthesis, and application of bis(o-carborane)s in related fields.
Collapse
Affiliation(s)
- Ji Wu
- State Key Laboratory of Environment-friendly Energy Materials & School of Material Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan 621010, P. R. China
| | - Ke Cao
- State Key Laboratory of Environment-friendly Energy Materials & School of Material Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan 621010, P. R. China
| | - Cai-Yan Zhang
- State Key Laboratory of Environment-friendly Energy Materials & School of Material Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan 621010, P. R. China
| | - Tao-Tao Xu
- State Key Laboratory of Environment-friendly Energy Materials & School of Material Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan 621010, P. R. China
| | - Xin-Yu Wen
- State Key Laboratory of Environment-friendly Energy Materials & School of Material Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan 621010, P. R. China
| | - Bo Li
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900, P. R. China
| | - Junxiao Yang
- State Key Laboratory of Environment-friendly Energy Materials & School of Material Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan 621010, P. R. China
| |
Collapse
|