1
|
Li J, Shi Y, Cui C, Li Y, Ruan C, Cheng T. Unveiling Quantum Coherence Effects in Modulating Electron Transfer in Platinum (II) Donor-Acceptor-Donor Systems. Chemistry 2025; 31:e202404512. [PMID: 39929777 DOI: 10.1002/chem.202404512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Quantum coherence effects (QCEs), arising from the interference of wave-like amplitudes, are crucial in controlling the electron transfer function of molecular systems. Here, we report a coherence phenomenon associated with charge separation (CS) in a range of Pt (II) cis-acetylide donor-acceptor-donor (D-A-D) systems, where the photogenerated Pt (III) center acts as an acceptor connecting two (R)phenothiazine (R = H or tBu) donors. Femtosecond transient absorption spectroscopy revealed that CS rates in D-A-D systems with double CS paths were accelerated by 4-8 times compared to their donor-acceptor (D-A) counterparts with a single path. An enhancement factor of 2-3 in electronic coupling, within the context of interference between CS paths, is derived, providing a clear signature of QCEs. This enhancementin CS processes closely correlates with the strength of coupling between donors. This study highlights the significant impact of QCEs on the photophysical properties of molecular systems and offers insights into charge and energy transport mechanisms in both natural and artificial systems.
Collapse
Affiliation(s)
- Juanjuan Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yuqing Shi
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Can Cui
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yefan Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Chenluwei Ruan
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Tao Cheng
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| |
Collapse
|
2
|
Kuzin S, Yulikov M. RIDME Spectroscopy: New Topics Beyond the Determination of Electron Spin-Spin Distances. J Phys Chem Lett 2025; 16:1024-1037. [PMID: 39841411 PMCID: PMC11789150 DOI: 10.1021/acs.jpclett.4c02667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/23/2025]
Abstract
Relaxation-induced dipolar modulation enhancement (RIDME) is a pulse EPR experiment originally designed to determine distances between spin labels. However, RIDME has several features that make it an efficient tool in a number of "nonconventional" applications, away from the original purpose of this pulse experiment. RIDME appears to be an interesting experiment to probe longitudinal electron spin dynamics, e.g., in relation to qubits research, to probe distributions of exchange couplings, useful for the design of molecular magnets, and to determine important details of electron spin interactions with the nuclear spin bath, which is related to the dynamic nuclear polarization and soft materials research. We also anticipate interesting applications of RIDME in the structural biology of biopolymers as well as their interactions, aggregation, and phase separation. It is not excluded that in the near future such "nonconventional" topics could grow in number and evolve into the main application area of RIDME.
Collapse
Affiliation(s)
- Sergei Kuzin
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, Vladimir Prelog Weg 2, 8093 Zurich, Switzerland
| | - Maxim Yulikov
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, Vladimir Prelog Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
3
|
Halboos SH, Al-Owaedi OA, Al-Robayi EM. Quantum interference features and thermoelectric properties of macrocyclic-single molecules: theoretical and modelling investigation. NANOSCALE ADVANCES 2024:d4na00541d. [PMID: 39430299 PMCID: PMC11488687 DOI: 10.1039/d4na00541d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
The quantum interference effect on the thermoelectric properties of cycloparaphenylacetylene-based molecular junctions was investigated theoretically using a combination of density functional theory (DFT) methods, a tight binding (Hückel) model (TBHM) and quantum transport theory (QTT). Manipulating the unique conjugation function of these molecules not only creates a quantum interference (QI) but it is also a robust strategy for improving the thermoelectric properties of these molecules. QI controls the transport behaviour and decreases the electrical conductance (G) from 0.14 × 10-7 to 0.67 × 10-11 S, as well as enhancing the Seebeck coefficient (S) from 14.4 to 294 μV K-1, and promoting the electronic figure of merit (Z el T) from 0.008 to 1.8, making these molecules promising candidates for thermoelectric applications.
Collapse
Affiliation(s)
- Sarah Hussein Halboos
- Department of Laser Physics, College of Science for Women, University of Babylon Hilla 51001 Iraq
| | - Oday A Al-Owaedi
- Department of Laser Physics, College of Science for Women, University of Babylon Hilla 51001 Iraq
- Al-Zahrawi University College, Karbala Najaf-Karbala Street 56001 Iraq
| | - Enas M Al-Robayi
- Department of Laser Physics, College of Science for Women, University of Babylon Hilla 51001 Iraq
| |
Collapse
|
4
|
Al-Owaedi OA. Thermoelectric Properties of Porphyrin Nano Rings: A Theoretical and Modelling Investigation. Chemphyschem 2024; 25:e202300616. [PMID: 38084460 DOI: 10.1002/cphc.202300616] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/01/2023] [Indexed: 03/02/2024]
Abstract
Propagation of De Broglie waves through nanomolecular junctions is greatly affected by molecular topology changes, which in turn plays a key role in determining the electronic and thermoelectric properties of source|molecule|drain junctions. The probing and realization of the constructive quantum interference (CQI) and a destructive quantum interference (DQI) are well established in this work. The critical role of quantum interference (QI) in governing and enhancing the transmission coefficient T(E), thermopower (S), power factor (P) and electronic figure of merit (ZelT) of porphyrin nanorings has been investigated using a combination of density functional theory (DFT) methods, a tight binding (Hückel) modelling (TBHM) and quantum transport theory (QTT). Remarkably, DQI not only dominates the asymmetric molecular pathways and lowering T(E), but also improves the thermoelectric properties.
Collapse
Affiliation(s)
- Oday A Al-Owaedi
- Department of Laser Physics, University of Babylon, Babylon, Hilla, 51001, Iraq
- Al-Zahrawi University College, Holy Karbala, Karbala, 56001, Iraq
| |
Collapse
|
5
|
Al-Owaedi OA. Carbon Nanohoops: Multiple Molecular Templates for Exploring Spectroscopic, Electronic, and Thermoelectric Properties. ACS OMEGA 2024; 9:10610-10620. [PMID: 38463279 PMCID: PMC10918671 DOI: 10.1021/acsomega.3c08944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
A combination of density functional theory (DFT) methods and quantum transport theory (QTT) has been used to investigate the spectroscopic, electronic, and thermoelectric properties of carbon nanohoop molecules with different molecular templates. The connectivity type, along with inherent strain, impacts the transport behavior and creates a destructive quantum interference (DQI), which proves itself to be a powerful strategy to enhance the thermoelectric properties of these molecules, making them promising candidates for thermoelectric applications.
Collapse
|
6
|
Little EJ, Mrozek J, Rogers CJ, Liu J, McInnes EJL, Bowen AM, Ardavan A, Winpenny REP. Title: experimental realisation of multi-qubit gates using electron paramagnetic resonance. Nat Commun 2023; 14:7029. [PMID: 37919283 PMCID: PMC10622571 DOI: 10.1038/s41467-023-42169-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/28/2023] [Indexed: 11/04/2023] Open
Abstract
Quantum information processing promises to revolutionise computing; quantum algorithms have been discovered that address common tasks significantly more efficiently than their classical counterparts. For a physical system to be a viable quantum computer it must be possible to initialise its quantum state, to realise a set of universal quantum logic gates, including at least one multi-qubit gate, and to make measurements of qubit states. Molecular Electron Spin Qubits (MESQs) have been proposed to fulfil these criteria, as their bottom-up synthesis should facilitate tuning properties as desired and the reproducible production of multi-MESQ structures. Here we explore how to perform a two-qubit entangling gate on a multi-MESQ system, and how to readout the state via quantum state tomography. We propose methods of accomplishing both procedures using multifrequency pulse Electron Paramagnetic Resonance (EPR) and apply them to a model MESQ structure consisting of two nitroxide spin centres. Our results confirm the methodological principles and shed light on the experimental hurdles which must be overcome to realise a demonstration of controlled entanglement on this system.
Collapse
Affiliation(s)
- Edmund J Little
- Photon Science Institute and School of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, UK
| | - Jacob Mrozek
- Clarendon Laboratory, University of Oxford, Parks Road, OX1 3PU, Oxford, UK
| | - Ciarán J Rogers
- Photon Science Institute and School of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, UK
| | - Junjie Liu
- Clarendon Laboratory, University of Oxford, Parks Road, OX1 3PU, Oxford, UK
| | - Eric J L McInnes
- Photon Science Institute and School of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, UK
| | - Alice M Bowen
- Photon Science Institute and School of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, UK.
| | - Arzhang Ardavan
- Clarendon Laboratory, University of Oxford, Parks Road, OX1 3PU, Oxford, UK.
| | - Richard E P Winpenny
- Photon Science Institute and School of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, UK.
| |
Collapse
|
7
|
Giannoulis A, Ackermann K, Bogdanov A, Cordes DB, Higgins C, Ward J, Slawin AMZ, Taylor JE, Bode BE. Synthesis of mono-nitroxides and of bis-nitroxides with varying electronic through-bond communication. Org Biomol Chem 2023; 21:375-385. [PMID: 36524609 PMCID: PMC9811921 DOI: 10.1039/d2ob01863b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nitroxides are a unique class of persistent radicals finding a wide range of applications, from spin probes to polarizing agents, and recently bis-nitroxides have been used as proof-of-concept molecules for quantum information processing. Here we present the syntheses of pyrroline-based nitroxide (NO) radicals and give a comparision of two possible synthetic routes to form two key intermediates, namely 2,2,5,5-tetramethylpyrroline-1-oxyl-3-acetylene (TPA) and 1-oxyl-2,2,5,5-tetramethylpyrroline-3-carboxylic acid (TPC). TPC and TPA were then used as precursors for the synthesis of three model compounds featuring two distant NO groups with a variable degree of conjugation and thus electronic communication between them. Using relatively facile synthetic routes, we produced a number of mono- and bis-nitroxides with the structures of multiple compounds unambiguously characterized by X-ray crystallography, while Continuous Wave Electron Paramagnetic Resonance (CW-EPR) allowed us to quantify the electronic communication in the bis-nitroxides. Our study expands the repertoire of mono- and bis-nitroxides with possibilities of exploiting them for studying quantum coherence effects and as polarizing agents.
Collapse
Affiliation(s)
- Angeliki Giannoulis
- Department of Chemical and Biological Physics, Weizmann Institute of ScienceRehovot76100Israel,EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| | - Katrin Ackermann
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| | - Alexey Bogdanov
- Department of Chemical and Biological Physics, Weizmann Institute of ScienceRehovot76100Israel
| | - David B. Cordes
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| | - Catherine Higgins
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| | - Joshua Ward
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| | - Alexandra M. Z. Slawin
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| | - James E. Taylor
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St AndrewsNorth HaughSt AndrewsKY16 9STUK,Department of Chemistry, University of BathClaverton DownBathBA2 7AYUK
| | - Bela E. Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St AndrewsNorth HaughSt AndrewsKY16 9STUK
| |
Collapse
|
8
|
Mayländer M, Nolden O, Franz M, Chen S, Bancroft L, Qiu Y, Wasielewski MR, Gilch P, Richert S. Accessing the triplet state of perylenediimide by radical-enhanced intersystem crossing. Chem Sci 2022; 13:6732-6743. [PMID: 35756510 PMCID: PMC9172295 DOI: 10.1039/d2sc01899c] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/10/2022] [Indexed: 12/27/2022] Open
Abstract
Owing to their exceptional photophysical properties and high photostability, perylene diimide (PDI) chromophores have found various applications as building blocks of materials for organic electronics. In many light-induced processes in PDI derivatives, chromophore excited states with high spin multiplicities, such as triplet or quintet states, have been revealed as key intermediates. The exploration of their properties and formation conditions is thus expected to provide invaluable insight into their underlying photophysics and promises to reveal strategies for increasing the performance of optoelectronic devices. However, accessing these high-multiplicity excited states of PDI to increase our mechanistic understanding remains a difficult task, due to the fact that the lowest excited singlet state of PDI decays with near-unity quantum yield to its ground state. Here we make use of radical-enhanced intersystem crossing (EISC) to generate the PDI triplet state in high yield. One or two 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO) stable radicals were covalently attached to the imide position of PDI chromophores with and without p-tert-butylphenoxy core substituents. By combining femtosecond UV-vis transient absorption and transient electron paramagnetic resonance spectroscopies, we demonstrate strong magnetic exchange coupling between the PDI triplet state and TEMPO, resulting in the formation of excited quartet or quintet states. Important differences in the S1 state deactivation rate constants and triplet yields are observed for compounds bearing PDI moieties with different core substitution patterns. We show that these differences can be rationalized by considering the varying importance of competitive excited state decay processes, such as electron and excitation energy transfer. The comparison of the results obtained for different PDI–TEMPO derivatives leads us to propose design guidelines for optimizing the efficiency of triplet sensitization in molecular assemblies by EISC. The triplet state of PDI can be sensitized efficiently by radical-enhanced intersystem crossing. A detailed study of several related structures allows us to propose new strategies to optimize triplet formation in materials for optoelectronic devices.![]()
Collapse
Affiliation(s)
- Maximilian Mayländer
- Institute of Physical Chemistry, University of Freiburg Albertstraße 21 79104 Freiburg Germany
| | - Oliver Nolden
- Institute of Physical Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1 40225 Düsseldorf Germany
| | - Michael Franz
- Institute of Physical Chemistry, University of Freiburg Albertstraße 21 79104 Freiburg Germany
| | - Su Chen
- Department of Chemistry, Center for Molecular Quantum Transduction, Institute for Sustainability and Energy at Northwestern, Northwestern University 2145 Sheridan Road Evanston IL 60208-3113 USA
| | - Laura Bancroft
- Department of Chemistry, Center for Molecular Quantum Transduction, Institute for Sustainability and Energy at Northwestern, Northwestern University 2145 Sheridan Road Evanston IL 60208-3113 USA
| | - Yunfan Qiu
- Department of Chemistry, Center for Molecular Quantum Transduction, Institute for Sustainability and Energy at Northwestern, Northwestern University 2145 Sheridan Road Evanston IL 60208-3113 USA
| | - Michael R Wasielewski
- Department of Chemistry, Center for Molecular Quantum Transduction, Institute for Sustainability and Energy at Northwestern, Northwestern University 2145 Sheridan Road Evanston IL 60208-3113 USA
| | - Peter Gilch
- Institute of Physical Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1 40225 Düsseldorf Germany
| | - Sabine Richert
- Institute of Physical Chemistry, University of Freiburg Albertstraße 21 79104 Freiburg Germany
| |
Collapse
|
9
|
Keum H, Yoo D, Jon S. Photomedicine based on heme-derived compounds. Adv Drug Deliv Rev 2022; 182:114134. [PMID: 35122881 DOI: 10.1016/j.addr.2022.114134] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/16/2021] [Accepted: 01/30/2022] [Indexed: 02/08/2023]
Abstract
Photoimaging and phototherapy have become major platforms for the diagnosis and treatment of various health complications. These applications require a photosensitizer (PS) that is capable of absorbing light from a source and converting it into other energy forms for detection and therapy. While synthetic inorganic materials such as quantum dots and gold nanorods have been widely explored for their medical diagnosis and photodynamic (PDT) and photothermal (PTT) therapy capabilities, translation of these technologies has lagged, primarily owing to potential cytotoxicity and immunogenicity issues. Of the various photoreactive molecules, the naturally occurring endogenous compound heme, a constituent of red blood cells, and its derivatives, porphyrin, biliverdin and bilirubin, have shown immense potential as noteworthy candidates for clinically translatable photoreactive agents, as evidenced by previous reports. While porphyrin-based photomedicines have attracted significant attention and are well documented, research on photomedicines based on two other heme-derived compounds, biliverdin and bilirubin, has been relatively lacking. In this review, we summarize the unique photoproperties of heme-derived compounds and outline recent efforts to use them in biomedical imaging and phototherapy applications.
Collapse
|
10
|
Ackermann K, Chapman A, Bode BE. A Comparison of Cysteine-Conjugated Nitroxide Spin Labels for Pulse Dipolar EPR Spectroscopy. Molecules 2021; 26:7534. [PMID: 34946616 PMCID: PMC8706713 DOI: 10.3390/molecules26247534] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/23/2022] Open
Abstract
The structure-function and materials paradigms drive research on the understanding of structures and structural heterogeneity of molecules and solids from materials science to structural biology. Functional insights into complex architectures are often gained from a suite of complementary physicochemical methods. In the context of biomacromolecular structures, the use of pulse dipolar electron paramagnetic resonance spectroscopy (PDS) has become increasingly popular. The main interest in PDS is providing long-range nanometre distance distributions that allow for identifying macromolecular topologies, validating structural models and conformational transitions as well as docking of quaternary complexes. Most commonly, cysteines are introduced into protein structures by site-directed mutagenesis and modified site-specifically to a spin-labelled side-chain such as a stable nitroxide radical. In this contribution, we investigate labelling by four different commercial labelling agents that react through different sulfur-specific reactions. Further, the distance distributions obtained are between spin-bearing moieties and need to be related to the protein structure via modelling approaches. Here, we compare two different approaches to modelling these distributions for all four side-chains. The results indicate that there are significant differences in the optimum labelling procedure. All four spin-labels show differences in the ease of labelling and purification. Further challenges arise from the different tether lengths and rotamers of spin-labelled side-chains; both influence the modelling and translation into structures. Our comparison indicates that the spin-label with the shortest tether in the spin-labelled side-group, (bis-(2,2,5,5-Tetramethyl-3-imidazoline-1-oxyl-4-yl) disulfide, may be underappreciated and could increase the resolution of structural studies by PDS if labelling conditions are optimised accordingly.
Collapse
Affiliation(s)
| | | | - Bela E. Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK; (K.A.); (A.C.)
| |
Collapse
|
11
|
Sengul O, Valli A, Stadler R. Electrode effects on the observability of destructive quantum interference in single-molecule junctions. NANOSCALE 2021; 13:17011-17021. [PMID: 34617536 DOI: 10.1039/d1nr01230d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Destructive quantum interference (QI) has been a source of interest as a new paradigm for molecular electronics as the electronic conductance is widely dependent on the occurrence or absence of destructive QI effects. In order to interpret experimentally observed transmission features, it is necessary to understand the effects of all components of the junction on electron transport. We perform non-equilibrium Green's function calculations within the framework of density functional theory to assess the structure-function relationship of transport through pyrene molecular junctions with distinct QI properties. The chemical nature of the anchor groups and the electrodes controls the Fermi level alignment, which determines the observability of destructive QI. A thorough analysis allows to disentangle the transmission features arising from the molecule and the electrodes. Interestingly, graphene electrodes introduce features in the low-bias regime, which can either mask or be misinterpreted as QI effects, while instead originating from the topological properties of the edges. Thus, this first principles analysis provides clear indications to guide the interpretation of experimental studies, which cannot be obtained from simple Hückel model calculations.
Collapse
Affiliation(s)
- Ozlem Sengul
- Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria.
| | - Angelo Valli
- Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria.
| | - Robert Stadler
- Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria.
| |
Collapse
|
12
|
Yamashita K, Furutani K, Ogawa T. Outstanding Enhancement in the Axial Coordination Ability of the Highly Rigid Cofacial Cyclic Metalloporphyrin Dimer. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ken‐ichi Yamashita
- Department of Chemistry, Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Kazuhiro Furutani
- Department of Chemistry, Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Takuji Ogawa
- Department of Chemistry, Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| |
Collapse
|
13
|
Anderson HL, Patrick CW, Scriven LM, Woltering SL. A Short History of Cyclocarbons. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200345] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Harry L. Anderson
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - Connor W. Patrick
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - Lorel M. Scriven
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - Steffen L. Woltering
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| |
Collapse
|
14
|
Polakovsky A, Showman J, Valdiviezo J, Palma JL. Quantum interference enhances rectification behavior of molecular devices. Phys Chem Chem Phys 2021; 23:1550-1557. [DOI: 10.1039/d0cp05801g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A theoretical and computational study of the effect of quantum interference on the rectification behavior of unimolecular devices.
Collapse
Affiliation(s)
| | - Janai Showman
- Department of Chemistry
- The Pennsylvania State University
- Lemont Furnace
- USA
| | | | - Julio L. Palma
- Department of Chemistry
- The Pennsylvania State University
- Lemont Furnace
- USA
| |
Collapse
|
15
|
When Molecular Magnetism Meets Supramolecular Chemistry: Multifunctional and Multiresponsive Dicopper(II) Metallacyclophanes as Proof-of-Concept for Single-Molecule Spintronics and Quantum Computing Technologies? MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6040069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Molecular magnetism has made a long journey, from the fundamental studies on through-ligand electron exchange magnetic interactions in dinuclear metal complexes with extended organic bridges to the more recent exploration of their electron spin transport and quantum coherence properties. Such a field has witnessed a renaissance of dinuclear metallacyclic systems as new experimental and theoretical models for single-molecule spintronics and quantum computing, due to the intercrossing between molecular magnetism and metallosupramolecular chemistry. The present review reports a state-of-the-art overview as well as future perspectives on the use of oxamato-based dicopper(II) metallacyclophanes as promising candidates to make multifunctional and multiresponsive, single-molecule magnetic (nano)devices for the physical implementation of quantum information processing (QIP). They incorporate molecular magnetic couplers, transformers, and wires, controlling and facilitating the spin communication, as well as molecular magnetic rectifiers, transistors, and switches, exhibiting a bistable (ON/OFF) spin behavior under external stimuli (chemical, electronic, or photonic). Special focus is placed on the extensive research work done by Professor Francesc Lloret, an outstanding chemist, excellent teacher, best friend, and colleague, in recognition of his invaluable contributions to molecular magnetism on the occasion of his 65th birthday.
Collapse
|
16
|
Chen LC, Zheng J, Liu J, Gong XT, Chen ZZ, Guo RX, Huang X, Zhang YP, Zhang L, Li R, Shao X, Hong W, Zhang HL. Nonadditive Transport in Multi-Channel Single-Molecule Circuits. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002808. [PMID: 32851802 DOI: 10.1002/smll.202002808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/13/2020] [Indexed: 06/11/2023]
Abstract
As stated in the classic Kirchhoff's circuit laws, the total conductance of two parallel channels in an electronic circuit is the sum of the individual conductance. However, in molecular circuits, the quantum interference (QI) between the individual channels may lead to apparent invalidity of Kirchhoff's laws. Such an effect can be very significant in single-molecule circuits consisting of partially overlapped multiple transport channels. Herein, an investigation on how the molecular circuit conductance correlates to the individual channels is conducted in the presence of QI. It is found that the conductance of multi-channel circuit consisting of both constructive and destructive QI is significantly smaller than the addition of individual ones due to the interference between channels. In contrast, the circuit consisting of destructive QI channels exhibits an additive transport. These investigations provide a new cognition of transport mechanism and manipulation of transport in multi-channel molecular circuits.
Collapse
Affiliation(s)
- Li-Chuan Chen
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jueting Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChem Xiamen University, Xiamen, 361005, P. R. China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChem Xiamen University, Xiamen, 361005, P. R. China
| | - Xiao-Ting Gong
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zi-Zhen Chen
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Rui-Xue Guo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xiaoyan Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChem Xiamen University, Xiamen, 361005, P. R. China
| | - Yu-Peng Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Lei Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Ruihao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChem Xiamen University, Xiamen, 361005, P. R. China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChem Xiamen University, Xiamen, 361005, P. R. China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
17
|
Keller K, Ritsch I, Hintz H, Hülsmann M, Qi M, Breitgoff FD, Klose D, Polyhach Y, Yulikov M, Godt A, Jeschke G. Accessing distributions of exchange and dipolar couplings in stiff molecular rulers with Cu(ii) centres. Phys Chem Chem Phys 2020; 22:21707-21730. [DOI: 10.1039/d0cp03105d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel approaches to quantitatively analyse distributed exchange couplings are described and tested on experimental data sets for stiff synthetic molecules.
Collapse
|
18
|
Herrmann C. Electronic Communication as a Transferable Property of Molecular Bridges? J Phys Chem A 2019; 123:10205-10223. [PMID: 31380640 DOI: 10.1021/acs.jpca.9b05618] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Electronic communication through molecular bridges is important for different types of experiments, such as single-molecule conductance, electron transfer, superexchange spin coupling, and intramolecular singlet fission. In many instances, the chemical structure of the bridge determines how the two parts it is connecting communicate, and does so in ways that are transferable between these different manifestations (for example, high conductance often correlates with strong antiferromagnetic spin coupling, and low conductance due to destructive quantum interference correlates with ferromagnetic coupling). Defining electronic communication as a transferable property of the bridge can help transfer knowledge between these different areas of research. Examples and limits of such transferability are discussed here, along with some possible directions for future research, such as employing spin-coupled and mixed-valence systems as structurally well-controlled proxies for understanding molecular conductance and for validating first-principles theoretical methodologies, building conceptual understanding for the growing experimental work on intramolecular singlet fission, and developing measures for the transferability of electronic communication as a bridge property.
Collapse
Affiliation(s)
- Carmen Herrmann
- Department of Chemistry , University of Hamburg , Martin-Luther-King-Platz 6 , Hamburg 20146 , Germany
| |
Collapse
|
19
|
Soft chromophore featured liquid porphyrins and their utilization toward liquid electret applications. Nat Commun 2019; 10:4210. [PMID: 31570713 PMCID: PMC6768991 DOI: 10.1038/s41467-019-12249-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/29/2019] [Indexed: 11/12/2022] Open
Abstract
Optoelectronically active viscous liquids are ideal for fabricating foldable/stretchable electronics owing to their excellent deformability and predictable π-unit–based optoelectronic functions, which are independent of the device shape and geometry. Here we show, unprecedented ‘liquid electret’ devices that exhibit mechanoelectrical and electroacoustic functions, as well as stretchability, have been prepared using solvent-free liquid porphyrins. The fluidic nature of the free-base alkylated-tetraphenylporphyrins was controlled by attaching flexible and bulky branched alkyl chains at different positions. Furthermore, a subtle porphyrin ring distortion that originated from the bulkiness of alkyl chains was observed. Its consequences on the electronic perturbation of the porphyrin-unit were precisely elucidated by spectroscopic techniques and theoretical modelling. This molecular design allows shielding of the porphyrin unit by insulating alkyl chains, which facilitates its corona-charged state for a long period under ambient conditions. Though electret materials are attractive for realizing flexible mechanoelectrical devices, these materials are typically solid films. Here, the authors report stretchable ‘liquid-electret’ devices consisting solvent-free liquid porphyrins that show piezoelectric and electroacoustic functionality.
Collapse
|
20
|
Phelan BT, Schultz JD, Zhang J, Huang GJ, Young RM, Wasielewski MR. Quantum coherence in ultrafast photo-driven charge separation. Faraday Discuss 2019; 216:319-338. [PMID: 31066389 DOI: 10.1039/c8fd00218e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Coherent interactions are prevalent in photodriven processes, ranging from photosynthetic energy transfer to superexchange-mediated electron transfer, resulting in numerous studies aimed towards identifying and understanding these interactions. A key motivator of this interest is the non-statistical scaling laws that result from coherently traversing multiple pathways due to quantum interference. To that end, we employed ultrafast transient absorption spectroscopy to measure electron transfer in two donor-acceptor molecular systems comprising a p-(9-anthryl)-N,N-dimethylaniline chromophore/electron donor and either one or two equivalent naphthalene-1,8:4,5-bis(dicarboximide) electron acceptors at both ambient and cryogenic temperatures. The two-acceptor compound shows a statistical factor of 2.1 ± 0.2 rate enhancement at room temperature and a non-statistical factor of 2.6 ± 0.2 rate enhancement at cryogenic temperatures, suggesting correlated interactions between the two acceptors with the donor and with the bath modes. Comparing the charge recombination rates indicates that the electron is delocalized over both acceptors at low temperature but localized on a single acceptor at room temperature. These results highlight the importance of shielding the system from bath fluctuations to preserve and ultimately exploit the coherent interactions.
Collapse
Affiliation(s)
- Brian T Phelan
- Department of Chemistry, Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL 60208-3113, USA.
| | - Jonathan D Schultz
- Department of Chemistry, Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL 60208-3113, USA.
| | - Jinyuan Zhang
- Department of Chemistry, Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL 60208-3113, USA.
| | - Guan-Jhih Huang
- Department of Chemistry, Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL 60208-3113, USA.
| | - Ryan M Young
- Department of Chemistry, Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL 60208-3113, USA.
| | - Michael R Wasielewski
- Department of Chemistry, Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL 60208-3113, USA.
| |
Collapse
|
21
|
Xue S, Kuzuhara D, Aratani N, Yamada H. Synthesis of a Porphyrin(2.1.2.1) Nanobelt and Its Ability To Bind Fullerene. Org Lett 2019; 21:2069-2072. [DOI: 10.1021/acs.orglett.9b00329] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Songlin Xue
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Daiki Kuzuhara
- Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Naoki Aratani
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Hiroko Yamada
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
22
|
Ritsch I, Hintz H, Jeschke G, Godt A, Yulikov M. Improving the accuracy of Cu(ii)–nitroxide RIDME in the presence of orientation correlation in water-soluble Cu(ii)–nitroxide rulers. Phys Chem Chem Phys 2019; 21:9810-9830. [DOI: 10.1039/c8cp06573j] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Detailed analysis of artefacts in the Cu(ii)–nitroxide RIDME experiments, related to orientation averaging, echo-crossing, ESEEM and background-correction is presented.
Collapse
Affiliation(s)
- Irina Ritsch
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Bioscience
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Henrik Hintz
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Bioscience
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Maxim Yulikov
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Bioscience
- ETH Zurich
- 8093 Zurich
- Switzerland
| |
Collapse
|
23
|
Worswick SG, Spencer JA, Jeschke G, Kuprov I. Deep neural network processing of DEER data. SCIENCE ADVANCES 2018; 4:eaat5218. [PMID: 30151430 PMCID: PMC6108566 DOI: 10.1126/sciadv.aat5218] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/20/2018] [Indexed: 05/24/2023]
Abstract
The established model-free methods for the processing of two-electron dipolar spectroscopy data [DEER (double electron-electron resonance), PELDOR (pulsed electron double resonance), DQ-EPR (double-quantum electron paramagnetic resonance), RIDME (relaxation-induced dipolar modulation enhancement), etc.] use regularized fitting. In this communication, we describe an attempt to process DEER data using artificial neural networks trained on large databases of simulated data. Accuracy and reliability of neural network outputs from real experimental data were found to be unexpectedly high. The networks are also able to reject exchange interactions and to return a measure of uncertainty in the resulting distance distributions. This paper describes the design of the training databases, discusses the training process, and rationalizes the observed performance. Neural networks produced in this work are incorporated as options into Spinach and DeerAnalysis packages.
Collapse
Affiliation(s)
- Steven G. Worswick
- School of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - James A. Spencer
- School of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology in Zurich, Vladimir Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Ilya Kuprov
- School of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| |
Collapse
|
24
|
Bols PS, Anderson HL. Shadow Mask Templates for Site-Selective Metal Exchange in Magnesium Porphyrin Nanorings. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Pernille S. Bols
- Department of Chemistry; University of Oxford; Chemistry Research Laboratory; Oxford OX1 3TA UK
| | - Harry L. Anderson
- Department of Chemistry; University of Oxford; Chemistry Research Laboratory; Oxford OX1 3TA UK
| |
Collapse
|
25
|
Bols PS, Anderson HL. Shadow Mask Templates for Site-Selective Metal Exchange in Magnesium Porphyrin Nanorings. Angew Chem Int Ed Engl 2018; 57:7874-7877. [DOI: 10.1002/anie.201804787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Pernille S. Bols
- Department of Chemistry; University of Oxford; Chemistry Research Laboratory; Oxford OX1 3TA UK
| | - Harry L. Anderson
- Department of Chemistry; University of Oxford; Chemistry Research Laboratory; Oxford OX1 3TA UK
| |
Collapse
|
26
|
Valli A, Amaricci A, Brosco V, Capone M. Quantum Interference Assisted Spin Filtering in Graphene Nanoflakes. NANO LETTERS 2018; 18:2158-2164. [PMID: 29473754 DOI: 10.1021/acs.nanolett.8b00453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We demonstrate that hexagonal graphene nanoflakes with zigzag edges display quantum interference (QI) patterns analogous to benzene molecular junctions. In contrast with graphene sheets, these nanoflakes also host magnetism. The cooperative effect of QI and magnetism enables spin-dependent quantum interference effects that result in a nearly complete spin polarization of the current and holds a huge potential for spintronic applications. We understand the origin of QI in terms of symmetry arguments, which show the robustness and generality of the effect. This also allows us to devise a concrete protocol for the electrostatic control of the spin polarization of the current by breaking the sublattice symmetry of graphene, by deposition on hexagonal boron nitride, paving the way to switchable spin filters. Such a system benefits from all of the extraordinary conduction properties of graphene, and at the same time, it does not require any external magnetic field to select the spin polarization, as magnetism emerges spontaneously at the edges of the nanoflake.
Collapse
Affiliation(s)
- Angelo Valli
- Scuola Internazionale Superiore di Studi Avanzati (SISSA) and Democritos National Simulation Center, Consiglio Nazionale delle Ricerche, Istituto Officina dei Materiali (CNR-IOM) , Via Bonomea 265 , 34136 Trieste , Italy
| | - Adriano Amaricci
- Scuola Internazionale Superiore di Studi Avanzati (SISSA) and Democritos National Simulation Center, Consiglio Nazionale delle Ricerche, Istituto Officina dei Materiali (CNR-IOM) , Via Bonomea 265 , 34136 Trieste , Italy
| | - Valentina Brosco
- Scuola Internazionale Superiore di Studi Avanzati (SISSA) and Democritos National Simulation Center, Consiglio Nazionale delle Ricerche, Istituto Officina dei Materiali (CNR-IOM) , Via Bonomea 265 , 34136 Trieste , Italy
| | - Massimo Capone
- Scuola Internazionale Superiore di Studi Avanzati (SISSA) and Democritos National Simulation Center, Consiglio Nazionale delle Ricerche, Istituto Officina dei Materiali (CNR-IOM) , Via Bonomea 265 , 34136 Trieste , Italy
| |
Collapse
|
27
|
Kowalska P, Peeks MD, Roliński T, Anderson HL, Waluk J. Detection of a weak ring current in a nonaromatic porphyrin nanoring using magnetic circular dichroism. Phys Chem Chem Phys 2017; 19:32556-32565. [PMID: 29188834 DOI: 10.1039/c7cp07348h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We compare the absorption and magnetic circular dichroism (MCD) spectra of a series of porphyrin oligomers - dimer, tetramer, and hexamer - bound in a linear or cyclic fashion. The MCD signal is extremely weak for low energy transitions in the linear oligomers, but it is amplified when the cyclic porphyrin hexamer binds a template, restricting rotational freedom. The appearance of Faraday A terms in the MCD spectra demonstrates the presence of a magnetic moment, and thus, uncompensated electronic current. The value of the excited state magnetic moment estimated from the A term is very low compared with those of monomeric porphyrins, which confirms the nonaromatic character of the cyclic array and the lack of a global ring current in the ground state of the neutral nanoring. DFT calculations predict the absorption and MCD patterns reasonably well, but fail to reproduce the MCD sign inversion observed in substituted monomeric zinc porphyrins ("soft" chromophores). Interestingly, a correct sign pattern is predicted by INDO/S calculations. Analysis of the MCD spectra of the monomeric porphyrin unit allowed us to distinguish between two close-lying lowest energy transitions, which some previous assignments placed further apart. The present results prove the usefulness of MCD not only for deconvolution and assignment of electronic transitions, but also as a sensitive tool for detecting electronic ring currents.
Collapse
Affiliation(s)
- Patrycja Kowalska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | | | | | | | | |
Collapse
|
28
|
Roche C, Luo Q, Gil-Ramírez G, Jiang HW, Kohn DR, Xiong Y, Thompson AL, Anderson HL. Unexpected Interactions between Alkyl Straps and Pyridine Ligands in Sulfur-Strapped Porphyrin Nanorings. J Org Chem 2017; 82:7446-7462. [PMID: 28654266 PMCID: PMC5600440 DOI: 10.1021/acs.joc.7b01128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Strapped or “basket-handle” porphyrins have been
investigated previously as hemoglobin mimics and catalysts. The facial
selectivity of their interactions with axial ligands is a sensitive
test for noncovalent bonding. Here the binding of pyridyl ligands
to zinc porphyrins with thioester-linked alkyl straps is investigated
in solution by NMR spectroscopy and UV–vis titration, and in
the solid state by X-ray crystallography. We expected that coordination
of the axial ligand would occur on the less hindered face of the porphyrin,
away from the strap. Surprisingly, attractive interactions between
the strap and the ligand direct axial coordination to the strapped
face of the porphyrin, except when the strap is short and tight. The
strapped porphyrins were incorporated into π-conjugated cyclic
porphyrin hexamers using template-directed synthesis. The strap and
the sulfur substituents are located either inside or outside the porphyrin
nanoring, depending on the length of the strap. Six-porphyrin nanorings
with outwardly pointing sulfur anchors were prepared for exploring
quantum interference effects in single-molecule charge transport.
Collapse
Affiliation(s)
- Cécile Roche
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory , Oxford OX1 3TA, United Kingdom
| | - Qianfu Luo
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory , Oxford OX1 3TA, United Kingdom
| | - Guzmán Gil-Ramírez
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory , Oxford OX1 3TA, United Kingdom
| | - Hua-Wei Jiang
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory , Oxford OX1 3TA, United Kingdom
| | - Daniel R Kohn
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory , Oxford OX1 3TA, United Kingdom
| | - Yaoyao Xiong
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory , Oxford OX1 3TA, United Kingdom
| | - Amber L Thompson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory , Oxford OX1 3TA, United Kingdom
| | - Harry L Anderson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory , Oxford OX1 3TA, United Kingdom
| |
Collapse
|
29
|
Richert S, Kuprov I, Peeks MD, Suturina EA, Cremers J, Anderson HL, Timmel CR. Quantifying the exchange coupling in linear copper porphyrin oligomers. Phys Chem Chem Phys 2017; 19:16057-16061. [DOI: 10.1039/c7cp01787a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The unique combination of EPR, DFT and novel large-scale simulation methods provides information on exchange coupling between metal centers in molecular wires.
Collapse
Affiliation(s)
- Sabine Richert
- Centre for Advanced Electron Spin Resonance (CAESR)
- University of Oxford
- Oxford
- UK
| | - Ilya Kuprov
- Department of Chemistry
- University of Southampton
- Southampton
- UK
| | | | | | | | | | | |
Collapse
|