1
|
Xie B, Yu J, Chen C, Shen T. Protein Arginine Methyltransferases from Regulatory Function to Clinical Implication in Central Nervous System. Cell Mol Neurobiol 2025; 45:41. [PMID: 40366461 PMCID: PMC12078925 DOI: 10.1007/s10571-025-01546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/16/2025] [Indexed: 05/15/2025]
Abstract
Arginine methylation, catalyzed by protein arginine methyltransferases (PRMTs), is a regulatory key mechanism involved in various cellular processes such as gene expression, RNA processing, DNA damage repair. Increasing evidence highlights the crucial role of PRMTs in human diseases, including cancer, cardiovascular and metabolic diseases. Here, this review focuses on the latest findings regarding PRMTs in the central nervous system (CNS), emphasizing their regulatory roles in neural stem cells, neurons, and glial cells. Additionally, we examine the connection between PRMTs dysregulation and neurological diseases affecting the CNS, including brain tumors, neurodegenerative diseases, and neurodevelopmental disorders. Therefore, this review aims to deepen our understanding of PRMTs-mediated arginine methylation in CNS and open avenues for developing novel therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Bin Xie
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Jing Yu
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Chao Chen
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Ting Shen
- School of Life Sciences, Central South University, Changsha, 410013, China.
| |
Collapse
|
2
|
Wang X, Jin J, Yan H, Liu J, Huang S, Bai H, Guo M, Cheng X, Deng T, Ba Y, Gu Y, Gao X, Hu D. The mRNA export pathway licenses viral mimicry response and antitumor immunity by actively exporting nuclear retroelement transcripts. Sci Transl Med 2025; 17:eado4370. [PMID: 40203080 DOI: 10.1126/scitranslmed.ado4370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/07/2024] [Accepted: 03/06/2025] [Indexed: 04/11/2025]
Abstract
Nuclear retroelement transcripts (RTs), which can be elicited both transcriptionally and posttranscriptionally, form double-stranded RNA (dsRNA) in cytosol to trigger the viral mimicry response (VMR) and antitumor immunity. However, the strength of the induced VMR varies tremendously across tumor types, and the underlying mechanisms remain poorly understood. Here, we demonstrate that the mRNA export pathway modulates the VMR through actively exporting nuclear RTs for cytosolic dsRNA formation after their induction. Tumor cells hijack this process for immune evasion through aberrant coactivator-associated arginine methyltransferase 1 (CARM1) expression. Mechanistically, we show that the cytoplasmic transportation of RTs by the mRNA export pathway is counteracted by the RNA exosome, which cleaves multiple transcripts within this pathway, including those encoding the essential DExD-box helicase 39A (DDX39A) and the adaptor protein ALYREF. CARM1 enhances the RNA exosome activity to attenuate the nuclear export of RTs by the mRNA export pathway through two synergistic mechanisms: (i) transcriptionally activating several RNA exosome components and (ii) posttranslationally methylating arginine 6 of the RNA exosome subunit EXOSC1, which protects it from proteasome-mediated degradation. Collectively, our study highlights the critical active regulatory role of the mRNA export pathway in transporting nuclear RTs into the cytosol for triggering the VMR and tumor immunity. Furthermore, we propose that enhancing the mRNA export pathway activity, either through CARM1 inhibition or RNA exosome modulation, could reinforce the therapeutic agent-induced VMR, thus holding the promise for overcoming tumor immune evasion and immunotherapy resistance.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Jiaxing Jin
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Han Yan
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Jinhua Liu
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Shan Huang
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Hui Bai
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Mingrui Guo
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xinyue Cheng
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ting Deng
- Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yi Ba
- Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yong Gu
- Clinical Research Center, Hainan Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Hainan, 570203, China
| | - Xin Gao
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Deqing Hu
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| |
Collapse
|
3
|
Zhang K, Jagannath C. Crosstalk between metabolism and epigenetics during macrophage polarization. Epigenetics Chromatin 2025; 18:16. [PMID: 40156046 PMCID: PMC11954343 DOI: 10.1186/s13072-025-00575-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/17/2025] [Indexed: 04/01/2025] Open
Abstract
Macrophage polarization is a dynamic process driven by a complex interplay of cytokine signaling, metabolism, and epigenetic modifications mediated by pathogens. Upon encountering specific environmental cues, monocytes differentiate into macrophages, adopting either a pro-inflammatory (M1) or anti-inflammatory (M2) phenotype, depending on the cytokines present. M1 macrophages are induced by interferon-gamma (IFN-γ) and are characterized by their reliance on glycolysis and their role in host defense. In contrast, M2 macrophages, stimulated by interleukin-4 (IL-4) and interleukin-13 (IL-13), favor oxidative phosphorylation and participate in tissue repair and anti-inflammatory responses. Metabolism is tightly linked to epigenetic regulation, because key metabolic intermediates such as acetyl-coenzyme A (CoA), α-ketoglutarate (α-KG), S-adenosylmethionine (SAM), and nicotinamide adenine dinucleotide (NAD+) serve as cofactors for chromatin-modifying enzymes, which in turn, directly influences histone acetylation, methylation, RNA/DNA methylation, and protein arginine methylation. These epigenetic modifications control gene expression by regulating chromatin accessibility, thereby modulating macrophage function and polarization. Histone acetylation generally promotes a more open chromatin structure conducive to gene activation, while histone methylation can either activate or repress gene expression depending on the specific residue and its methylation state. Crosstalk between histone modifications, such as acetylation and methylation, further fine-tunes macrophage phenotypes by regulating transcriptional networks in response to metabolic cues. While arginine methylation primarily functions in epigenetics by regulating gene expression through protein modifications, the degradation of methylated proteins releases arginine derivatives like asymmetric dimethylarginine (ADMA), which contribute directly to arginine metabolism-a key factor in macrophage polarization. This review explores the intricate relationships between metabolism and epigenetic regulation during macrophage polarization. A better understanding of this crosstalk will likely generate novel therapeutic insights for manipulating macrophage phenotypes during infections like tuberculosis and inflammatory diseases such as diabetes.
Collapse
Affiliation(s)
- Kangling Zhang
- Department of Pharmacology and Toxicology, School of Medicine, University of Texas Medical Branch, Galveston, TX, USA.
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, USA.
| |
Collapse
|
4
|
Ni W, Garg S, Chowdhury B, Sattler M, Sanchez D, Meng C, Akatsu T, Donovan KA, Qi J, Wang MY, Starnbach CA, Liu X, Guzman MT, Teh WP, Stone R, Griffin JD, Buhrlage S, Weisberg E. Dual CARM1-and IKZF3-targeting: A novel approach to multiple myeloma therapy synergy between CARM1 inhibition and IMiDs. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200952. [PMID: 40123976 PMCID: PMC11930131 DOI: 10.1016/j.omton.2025.200952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/21/2024] [Accepted: 02/17/2025] [Indexed: 03/25/2025]
Abstract
Advancements in the treatment of multiple myeloma (MM) have resulted in an improvement in the survival rate. However, there continues to be an urgent need for improved therapies. The protein arginine methyltransferase, CARM1 (coactivator associated arginine methyltransferase 1), is emerging as a potential cancer therapy target and inhibitors have been developed. MM cell lines are particularly dependent on CARM1 for cell survival. Here, we show that targeting of CARM1 through small molecule inhibition potentiates the activity of immunomodulatory drugs (IMiDs) in cell line models of MM. This likely occurs through synergistic targeting of Aiolos (IKZF3) and MYC expression. Rational design of a new molecule, 074, which consists of a CARM1 inhibitor linked to the IMiD pomalidomide, was carried out and treatment with this agent led to more potent killing of MM cells than either the CARM1 inhibitor or the IMiD as single agents. Importantly, 074 was able to override IMiD resistance. Taken together, our results demonstrate that dual CARM1/IKZF3-targeting agents represent a promising novel therapeutic strategy for MM and IMiD-resistant disease.
Collapse
Affiliation(s)
- Wei Ni
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Swati Garg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Basudev Chowdhury
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Dana Sanchez
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Chengcheng Meng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Taisei Akatsu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Katherine A. Donovan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michelle Y. Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Cara Ann Starnbach
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xiaoxi Liu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Maria Tarazona Guzman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Wei Pin Teh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Richard Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - James D. Griffin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Sara Buhrlage
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ellen Weisberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Jones JE, Gunderson CE, Wigdahl B, Nonnemacher MR. Impact of chromatin on HIV-1 latency: a multi-dimensional perspective. Epigenetics Chromatin 2025; 18:9. [PMID: 40055755 PMCID: PMC11889793 DOI: 10.1186/s13072-025-00573-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 05/13/2025] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) is a retrovirus that infects multiple immune cell types and integrates into host cell DNA termed provirus. Under antiretroviral control, provirus in cells is able to evade targeting by both host immune surveillance and antiretroviral drug regimens. Additionally, the provirus remains integrated for the life of the cell, and clonal expansion establishes a persistent reservoir. As host cells become quiescent following the acute stage of infection, the provirus also enters a latent state characterized by low levels of transcription and virion production. Proviral latency may last years or even decades, but stimuli such as immune activation, accumulation of viral proteins, and certain medications can trigger reactivation of proviral gene expression. Left untreated, this can lead to virema, development of pathogenic out comes, and even death as the immune system becomes weakened and dysregulated. Over the last few decades, the role of chromatin in both HIV-1 latency and reactivation has been characterized in-depth, and a number of host factors have been identified as key players in modifying the local (2D) chromatin environment of the provirus. Here, the impact of the 2D chromatin environment and its related factors are reviewed. Enzymes that catalyze the addition or removal of covalent groups from histone proteins, such as histone deacetylase complexes (HDACs) and methyltransferases (HMTs) are of particular interest, as they both alter the affinity of histones for proviral DNA and function to recruit other proteins that contribute to chromatin remodeling and gene expression from the provirus. More recently, advances in next-generation sequencing and imaging technology has enabled the study of how the higher-order (3D) chromatin environment relates to proviral latency, including the impacts of integration site and cell type. All together, these multi-dimensional factors regulate latency by influencing the degree of accessibility to the proviral DNA by transcription machinery. Finally, additional implications for therapeutics and functional studies are proposed and discussed.
Collapse
Affiliation(s)
- Joanna E Jones
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Chelsea E Gunderson
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
6
|
Kelebeev J, MacKeracher A, Miyake T, McDermott JC. TAZ interactome analysis using nanotrap-based affinity purification-mass spectrometry. J Cell Sci 2025; 138:jcs263527. [PMID: 39898439 PMCID: PMC11928053 DOI: 10.1242/jcs.263527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/15/2025] [Indexed: 02/04/2025] Open
Abstract
Characterization of protein-protein interactions (PPIs) is a fundamental goal in the post-genomic era. Here, we document a generally applicable approach to identify cellular protein interactomes using a combination of nanobody-based affinity purification (AP) coupled with liquid chromatography and tandem mass spectrometry (LC-MS/MS). The Hippo signaling regulator TAZ (also known as WWTR1) functions as a transcriptional co-repressor or activator depending on its PPI network; we therefore undertook an unbiased proteomic screen to identify TAZ PPIs in striated muscle cells. A GFP nanotrap-based AP approach coupled with protein identification through LC-MS/MS was used to document a comprehensive list of known and novel TAZ interactome components. Informatic analysis of the interactome documented known components of the Hippo signaling pathway and multiple epigenetic regulators such as the NuRD, FACT and SWI/SNF complexes and the pro-myogenic CARM1 methyltransferase. Hippo pathway reporter gene (HOP/HIP) analysis indicated that CARM1 represses TAZ transcriptional co-activator function, promoting TAZ Ser89 phosphorylation and TAZ cytoplasmic sequestration. MS analysis revealed that CARM1 dimethylates TAZ at Arg77 in a PGPR*LAGG consensus peptide, resulting in enhanced TAZ Ser89 phosphorylation. These studies underline the utility of a nanobody-based AP approach for interactome analysis.
Collapse
Affiliation(s)
- Jonathan Kelebeev
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, M3J 1P3, Canada
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, M3J 1P3, Canada
| | - Anastasia MacKeracher
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, M3J 1P3, Canada
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, M3J 1P3, Canada
| | - Tetsuaki Miyake
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, M3J 1P3, Canada
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, M3J 1P3, Canada
| | - John C. McDermott
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, M3J 1P3, Canada
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, M3J 1P3, Canada
| |
Collapse
|
7
|
Huang J, Qiao B, Yuan Y, Xie Y, Xia X, Li F, Wang L. PRMT3 and CARM1: Emerging Epigenetic Targets in Cancer. J Cell Mol Med 2025; 29:e70386. [PMID: 39964832 PMCID: PMC11834966 DOI: 10.1111/jcmm.70386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 01/01/2025] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
The family of protein arginine methyltransferases (PRMTs) occupies an important position in biology, especially during the initiation and development of cancer. PRMT3 and CARM1(also known as PRMT4), being type I protein arginine methyltransferases, are key in controlling tumour progression by catalysing the mono-methylation and asymmetric di-methylation of both histone and non-histone substrates. This paper reviews the functions and potential therapeutic target value of PRMT3 and CARM1 in a variety of cancers. Studies have identified abnormal expressions of PRMT3 and CARM1 in several malignancies, closely linked to cancer progression, advancement, and resistance to treatment. Such as hepatocellular carcinoma, colorectal cancer, ovarian cancer, and endometrial cancer. These findings offer new strategies and directions for cancer treatment, especially in enhancing the effectiveness of conventional treatment methods.
Collapse
Affiliation(s)
- Jiezuo Huang
- College of Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Beining Qiao
- College of Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Yixin Yuan
- Xiangya College of Public HealthCentral South UniversityChangshaChina
| | - Yuxuan Xie
- Hunan Normal University School of MedicineChangshaChina
| | - Xiaomeng Xia
- Department of Gynaecology and Obstetrics, Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Fenghe Li
- Department of Gynaecology and Obstetrics, Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Lei Wang
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical ScienceCentral South UniversityChangshaChina
| |
Collapse
|
8
|
Tang Y, Meng X, Luo X, Yao W, Tian L, Zhang Z, Zhao Y, Xiao J, Zhu H, Hu J. Arginine methylation-dependent TRIM47 stability mediated by CARM1 promotes the metastasis of hepatocellular carcinoma. Cell Death Discov 2024; 10:477. [PMID: 39567506 PMCID: PMC11579460 DOI: 10.1038/s41420-024-02244-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024] Open
Abstract
The tripartite motif (TRIM) protein family has been shown to play important roles in the occurrence and development of various tumors. However, the biological functions of TRIM47 and its regulatory mechanism in hepatocellular carcinoma (HCC) remain unexplored. Here, we showed that TRIM47 was upregulated in HCC tissues compared with adjacent normal tissues, especially at advanced stages, and associated with poor prognosis in HCC patients. Functional studies demonstrated that TRIM47 enhanced the migration and invasion ability of HCC cells in vitro and in vivo. Mechanistically, TRIM47 promotes HCC metastasis through interacting with SNAI1 and inhibiting its degradation by proteasome. Moreover, TRIM47 was di-methylated by CARM1 at its arginine 210 (R210) and arginine 582 (R582), which protected TRIM47 from the ubiquitination and degradation mediated by E3 ubiquitin ligase complex CRL4CRBN. Collectively, our study reveals a pro-metastasis role of TRIM47 in HCC, unveils a unique mechanism controlling TRIM47 stability by CARM1 mediated arginine methylation, and highlights the role of the CARM1-CRL4CRBN-TRIM47-SNAI1 axis in HCC metastasis. This work may provide potential therapeutic targets for metastatic HCC treatment.
Collapse
Affiliation(s)
- Yuzhe Tang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, China
| | - Xiang Meng
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, China
| | - Xia Luo
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wentao Yao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, China
| | - Li Tian
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, China
| | - Zijian Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, China
| | - Yuan Zhao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, China
| | - Juan Xiao
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
| | - Haichuan Zhu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, China.
| | - Jia Hu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
9
|
Zhang B, Guan Y, Zeng D, Wang R. Arginine methylation and respiratory disease. Transl Res 2024; 272:140-150. [PMID: 38453053 DOI: 10.1016/j.trsl.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Arginine methylation, a vital post-translational modification, plays a pivotal role in numerous cellular functions such as signal transduction, DNA damage response and repair, regulation of gene transcription, mRNA splicing, and protein interactions. Central to this modification is the role of protein arginine methyltransferases (PRMTs), which have been increasingly recognized for their involvement in the pathogenesis of various respiratory diseases. This review begins with an exploration of the biochemical underpinnings of arginine methylation, shedding light on the intricate molecular regulatory mechanisms governed by PRMTs. It then delves into the impact of arginine methylation and the dysregulation of arginine methyltransferases in diverse pulmonary disorders. Concluding with a focus on the therapeutic potential and recent advancements in PRMT inhibitors, this article aims to offer novel perspectives and therapeutic avenues for the management and treatment of respiratory diseases.
Collapse
Affiliation(s)
- Binbin Zhang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China
| | - Youhong Guan
- Department of Infectious Diseases, Hefei Second People's Hospital, Hefei 230001, Anhui Province, PR China
| | - Daxiong Zeng
- Department of Pulmonary and Critical Care Medicine, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou 215006, Jiangsu Province, PR China.
| | - Ran Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China.
| |
Collapse
|
10
|
Feng D, Gao J, Liu R, Liu W, Gao T, Yang Y, Zhang D, Yang T, Yin X, Yu H, Huang W, Wang Y. CARM1 drives triple-negative breast cancer progression by coordinating with HIF1A. Protein Cell 2024; 15:744-765. [PMID: 38476024 PMCID: PMC11443453 DOI: 10.1093/procel/pwae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/15/2024] [Indexed: 03/14/2024] Open
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1) promotes the development and metastasis of estrogen receptor alpha (ERα)-positive breast cancer. The function of CARM1 in triple-negative breast cancer (TNBC) is still unclear and requires further exploration. Here, we report that CARM1 promotes proliferation, epithelial-mesenchymal transition, and stemness in TNBC. CARM1 is upregulated in multiple cancers and its expression correlates with breast cancer progression. Genome-wide analysis of CARM1 showed that CARM1 is recruited by hypoxia-inducible factor-1 subunit alpha (HIF1A) and occupy the promoters of CDK4, Cyclin D1, β-Catenin, HIF1A, MALAT1, and SIX1 critically involved in cell cycle, HIF-1 signaling pathway, Wnt signaling pathway, VEGF signaling pathway, thereby modulating the proliferation and invasion of TNBC cells. We demonstrated that CARM1 is physically associated with and directly interacts with HIF1A. Moreover, we found that ellagic acid, an inhibitor of CARM1, can suppress the proliferation and invasion of TNBC by directly inhibiting CDK4 expression. Our research has determined the molecular basis of CARM1 carcinogenesis in TNBC and its effective natural inhibitor, which may provide new ideas and drugs for cancer therapy.
Collapse
Affiliation(s)
- Dandan Feng
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jie Gao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan 250033, China
| | - Ruiqiong Liu
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan 250033, China
- Department of Cancer Center, The Second Hospital of Shandong University, Jinan 250033, China
| | - Wei Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Tianyang Gao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yunkai Yang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Die Zhang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tianshu Yang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xin Yin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Hefen Yu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
11
|
Bourassa J, Paris G, Trinkle-Mulcahy L, Côté J. Biochemical Properties of CARM1: Impact on Western Blotting and Proteomic Studies. ACS OMEGA 2024; 9:40204-40213. [PMID: 39346878 PMCID: PMC11425859 DOI: 10.1021/acsomega.4c06360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024]
Abstract
CARM1 is an arginine methyltransferase that has crucial roles in a number of cellular pathways and is being explored as a therapeutic target in diseases such as cancer and neurodegenerative disorders. Its deregulation at the protein level was found to have potential prognostic value, and as such, its protein levels are regularly assessed through the common practice of western blotting (WB). Our group uncovered that CARM1 has biochemical properties that complicate its analysis by standard WB sample preparation techniques. Here, we show that CARM1 has the ability to form SDS-resistant aggregates that effectively hinder gel migration in SDS-PAGE. CARM1 levels and the temperature at the denaturation step can both influence CARM1 aggregation, which prompts the use of additional measures to ensure representative detection at the protein level. We have demonstrated the formation of CARM1 aggregates in both cell and tissue extracts, making these findings an important consideration for any CARM1-related study. We also show how aggregate formation in models of CARM1 overexpression can hinder proteomic studies. Having identified factors that can induce CARM1 aggregation, we suggest alternative sample preparation techniques that allow for clear resolution of the protein in stringent denaturing conditions while avoiding aggregation.
Collapse
Affiliation(s)
- Julie Bourassa
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Genevieve Paris
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Laura Trinkle-Mulcahy
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, University
of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Jocelyn Côté
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Center
for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
12
|
Ping M, Li G, Li Q, Fang Y, Fan T, Wu J, Zhang R, Zhang L, Shen B, Guo J. The NRF2-CARM1 axis links glucose sensing to transcriptional and epigenetic regulation of the pentose phosphate pathway in gastric cancer. Cell Death Dis 2024; 15:670. [PMID: 39266534 PMCID: PMC11393079 DOI: 10.1038/s41419-024-07052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024]
Abstract
Cancer cells autonomously alter metabolic pathways in response to dynamic nutrient conditions in the microenvironment to maintain cell survival and proliferation. A better understanding of these adaptive alterations may reveal the vulnerabilities of cancer cells. Here, we demonstrate that coactivator-associated arginine methyltransferase 1 (CARM1) is frequently overexpressed in gastric cancer and predicts poor prognosis of patients with this cancer. Gastric cancer cells sense a reduced extracellular glucose content, leading to activation of nuclear factor erythroid 2-related factor 2 (NRF2). Subsequently, NRF2 mediates the classic antioxidant pathway to eliminate the accumulation of reactive oxygen species induced by low glucose. We found that NRF2 binds to the CARM1 promoter, upregulating its expression and triggering CARM1-mediated hypermethylation of histone H3 methylated at R arginine 17 (H3R17me2) in the glucose-6-phosphate dehydrogenase gene body. The upregulation of this dehydrogenase, driven by the H3R17me2 modification, redirects glucose carbon flux toward the pentose phosphate pathway. This redirection contributes to nucleotide synthesis (yielding nucleotide precursors, such as ribose-5-phosphate) and redox homeostasis and ultimately facilitates cancer cell survival and growth. NRF2 or CARM1 knockdown results in decreased H3R17me2a accompanied by the reduction of glucose-6-phosphate dehydrogenase under low glucose conditions. Collectively, this study reveals a significant role of CARM1 in regulating the tumor metabolic switch and identifies CARM1 as a potential therapeutic target for gastric cancer treatment.
Collapse
Affiliation(s)
- Miaomiao Ping
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Guangyao Li
- Department of Gastrointestinal Surgery, The Second People's Hospital of Wuhu, Wuhu, China
| | - Qijiao Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yang Fang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Taotao Fan
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Jing Wu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruiyi Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Lesha Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Jizheng Guo
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
13
|
Wang J, Wang Q, Zhou J, Wang Y, Liu Z, Wang K, Ye M. A Chemoenzymatic Method Enables Global Enrichment and Characterization of Protein Arginine Methylation. Anal Chem 2024; 96:14612-14620. [PMID: 39185576 DOI: 10.1021/acs.analchem.4c03180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Arginine methylation is one of the most important post-translational modifications involved in the regulation of numerous biological processes. To better understand the biological significance of arginine methylation, enrichment methods need to be developed to analyze the methylated proteome at large-scale. Unfortunately, the prevailing enrichment method based on immunoaffinity purification can only enrich a subset of them due to the lack of pan-specific antibodies. Therefore, it is crucial to develop a stable and efficient antibody-free approach for the global analysis of arginine methylation. In this study, we developed a chemoenzymatic method for the simultaneous identification of mono- and dimethylated arginine. Totally, we identified 1006 arginine methylation events in Jurkat T cells, corresponding to 645 dimethylated sites and 361 monomethylated sites. We further applied the developed approach to global identification of the substrate proteins regulated by type I protein arginine methyltransferases (PRMTs) and identified 49 substrate proteins of type I PRMTs, which will facilitate a better understanding of PRMTs-regulated biological processes. Given the robust performance of this method, it would have broad application in methylproteomics analysis.
Collapse
Affiliation(s)
- Jiayi Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiahua Zhou
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhen Liu
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Keyun Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingliang Ye
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Chen X, Huang MF, Fan DM, He YH, Zhang WJ, Ding JC, Peng BL, Pan X, Liu Y, Du J, Li Y, Liu ZY, Xie BL, Kuang ZJ, Yi J, Liu W. CARM1 hypermethylates the NuRD chromatin remodeling complex to promote cell cycle gene expression and breast cancer development. Nucleic Acids Res 2024; 52:6811-6829. [PMID: 38676947 PMCID: PMC11229315 DOI: 10.1093/nar/gkae329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/25/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024] Open
Abstract
Protein arginine methyltransferase CARM1 has been shown to methylate a large number of non-histone proteins, and play important roles in gene transcriptional activation, cell cycle progress, and tumorigenesis. However, the critical substrates through which CARM1 exerts its functions remain to be fully characterized. Here, we reported that CARM1 directly interacts with the GATAD2A/2B subunit in the nucleosome remodeling and deacetylase (NuRD) complex, expanding the activities of NuRD to include protein arginine methylation. CARM1 and NuRD bind and activate a large cohort of genes with implications in cell cycle control to facilitate the G1 to S phase transition. This gene activation process requires CARM1 to hypermethylate GATAD2A/2B at a cluster of arginines, which is critical for the recruitment of the NuRD complex. The clinical significance of this gene activation mechanism is underscored by the high expression of CARM1 and NuRD in breast cancers, and the fact that knockdown CARM1 and NuRD inhibits cancer cell growth in vitro and tumorigenesis in vivo. Targeting CARM1-mediated GATAD2A/2B methylation with CARM1 specific inhibitors potently inhibit breast cancer cell growth in vitro and tumorigenesis in vivo. These findings reveal a gene activation program that requires arginine methylation established by CARM1 on a key chromatin remodeler, and targeting such methylation might represent a promising therapeutic avenue in the clinic.
Collapse
Affiliation(s)
- Xue Chen
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Ming-feng Huang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Da-meng Fan
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Yao-hui He
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Wen-juan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Ganzhou, Jiangxi 341000, China
| | - Jian-cheng Ding
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Bing-ling Peng
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Xu Pan
- Xiamen University-Amogene Joint R&D Center for Genetic Diagnostics, School of Pharmaceutical Sciences, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Ya Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Jun Du
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Ying Li
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Zhi-ying Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Bing-lan Xie
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Zhi-jian Kuang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Jia Yi
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Wen Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| |
Collapse
|
15
|
Bacabac M, Liu P, Xu W. Protein Arginine Methyltransferase CARM1 in Human Breast Cancer. Endocrinology 2024; 165:bqae068. [PMID: 38878278 PMCID: PMC11220664 DOI: 10.1210/endocr/bqae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Indexed: 07/04/2024]
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1) is a protein arginine methyltransferase that deposits asymmetrical dimethylation marks on both histone and nonhistone substrates. The regulatory role of CARM1 in transcription was first identified in estrogen receptor positive (ER+) breast cancer. Since then, the mechanism of CARM1 in activating ER-target genes has been further interrogated. CARM1 is expressed at the highest level in ER negative (ER-) breast cancer and higher expression correlates with poor prognosis, suggesting an oncogenic role of CARM1. Indeed, in ER- breast cancer, CARM1 can promote proliferation and metastasis at least partly through methylation of proteins and activation of oncogenes. In this review, we summarize the mechanisms of transcriptional activation by CARM1 in breast cancer. The methyltransferase activity of CARM1 is important for many of its functions; here, we also highlight the nonenzymatic roles of CARM1. We also cover the biological processes regulated by CARM1 that are often deregulated in cancer and the ways to harness CARM1 in cancer treatment.
Collapse
Affiliation(s)
- Megan Bacabac
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53705, USA
- UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Peng Liu
- UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, WI 53726, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53705, USA
- UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| |
Collapse
|
16
|
Li X, Song Y, Mu W, Hou X, Ba T, Ji S. Dysregulation of arginine methylation in tumorigenesis. Front Mol Biosci 2024; 11:1420365. [PMID: 38911125 PMCID: PMC11190088 DOI: 10.3389/fmolb.2024.1420365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/22/2024] [Indexed: 06/25/2024] Open
Abstract
Protein methylation, similar to DNA methylation, primarily involves post-translational modification (PTM) targeting residues of nitrogen-containing side-chains and other residues. Protein arginine methylation, occurred on arginine residue, is mainly mediated by protein arginine methyltransferases (PRMTs), which are ubiquitously present in a multitude of organisms and are intricately involved in the regulation of numerous biological processes. Specifically, PRMTs are pivotal in the process of gene transcription regulation, and protein function modulation. Abnormal arginine methylation, particularly in histones, can induce dysregulation of gene expression, thereby leading to the development of cancer. The recent advancements in modification mediated by PRMTs and cancer research have had a profound impact on our understanding of the abnormal modification involved in carcinogenesis and progression. This review will provide a defined overview of these recent progression, with the aim of augmenting our knowledge on the role of PRMTs in progression and their potential application in cancer therapy.
Collapse
Affiliation(s)
- Xiao Li
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Yaqiong Song
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Weiwei Mu
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Xiaoli Hou
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Te Ba
- Department of Shanxi University of Chinese Medicine, Jinzhong, Shanxi, China
| | - Shaoping Ji
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
- Department of Biochemistry and Molecular Biology, Medical School, Henan University, Kaifeng, Henan, China
| |
Collapse
|
17
|
Liu Z, Lin M, Liu C, Chen X, Chen Q, Li X, Wu X, Wang Y, Wang L, Yang F, Luo C, Jin J, Ye F. Development of (2-(Benzyloxy)phenyl)methanamine Derivatives as Potent and Selective Inhibitors of CARM1 for the Treatment of Melanoma. J Med Chem 2024; 67:6313-6326. [PMID: 38574345 DOI: 10.1021/acs.jmedchem.3c02265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1), an important member of type I protein arginine methyltransferases (PRMTs), has emerged as a promising therapeutic target for various cancer types. In our previous study, we have identified a series of type I PRMT inhibitors, among which ZL-28-6 (6) exhibited increased activity against CARM1 while displaying decreased potency against other type I PRMTs. In this work, we conducted chemical modifications on compound 6, resulting in a series of (2-(benzyloxy)phenyl)methanamine derivatives as potent inhibitors of CARM1. Among them, compound 17e displayed remarkable potency and selectivity for CARM1 (IC50 = 2 ± 1 nM), along with notable antiproliferative effects against melanoma cell lines. Cellular thermal shift assay and western blot experiments confirmed that compound 6 effectively targets CARM1 within cells. Furthermore, compound 17e displayed good antitumor efficacy in a melanoma xenograft model, indicating that this compound warrants further investigation as a potential anticancer agent.
Collapse
Affiliation(s)
- Zhihao Liu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Min Lin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chenyu Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Xin Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qian Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinyu Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Xiaoyan Wu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Yahui Wang
- Department of Anesthesiology, the First Affiliated Hospital of Bengbu Medical College, No. 287 Changhuai Road, Bengbu City 233000, China
| | - Lei Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fan Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Cheng Luo
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jia Jin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fei Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
18
|
Itonaga H, Mookhtiar AK, Greenblatt SM, Liu F, Martinez C, Bilbao D, Rains M, Hamard PJ, Sun J, Umeano AC, Duffort S, Chen C, Man N, Mas G, Tottone L, Totiger T, Bradley T, Taylor J, Schürer S, Nimer SD. Tyrosine phosphorylation of CARM1 promotes its enzymatic activity and alters its target specificity. Nat Commun 2024; 15:3415. [PMID: 38649367 PMCID: PMC11035800 DOI: 10.1038/s41467-024-47689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
An important epigenetic component of tyrosine kinase signaling is the phosphorylation of histones, and epigenetic readers, writers, and erasers. Phosphorylation of protein arginine methyltransferases (PRMTs), have been shown to enhance and impair their enzymatic activity. In this study, we show that the hyperactivation of Janus kinase 2 (JAK2) by the V617F mutation phosphorylates tyrosine residues (Y149 and Y334) in coactivator-associated arginine methyltransferase 1 (CARM1), an important target in hematologic malignancies, increasing its methyltransferase activity and altering its target specificity. While non-phosphorylatable CARM1 methylates some established substrates (e.g. BAF155 and PABP1), only phospho-CARM1 methylates the RUNX1 transcription factor, on R223 and R319. Furthermore, cells expressing non-phosphorylatable CARM1 have impaired cell-cycle progression and increased apoptosis, compared to cells expressing phosphorylatable, wild-type CARM1, with reduced expression of genes associated with G2/M cell cycle progression and anti-apoptosis. The presence of the JAK2-V617F mutant kinase renders acute myeloid leukemia (AML) cells less sensitive to CARM1 inhibition, and we show that the dual targeting of JAK2 and CARM1 is more effective than monotherapy in AML cells expressing phospho-CARM1. Thus, the phosphorylation of CARM1 by hyperactivated JAK2 regulates its methyltransferase activity, helps select its substrates, and is required for the maximal proliferation of malignant myeloid cells.
Collapse
Affiliation(s)
- Hidehiro Itonaga
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Adnan K Mookhtiar
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Sarah M Greenblatt
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, 92121, USA
| | - Fan Liu
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Concepcion Martinez
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Daniel Bilbao
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Masai Rains
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Pierre-Jacques Hamard
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
- Center for Epigenetics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jun Sun
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
- Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Afoma C Umeano
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Stephanie Duffort
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Chuan Chen
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Na Man
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Gloria Mas
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Luca Tottone
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Tulasigeri Totiger
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Terrence Bradley
- Department of Medicine, Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL, 33136, USA
| | - Justin Taylor
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Stephan Schürer
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA.
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA.
- Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
19
|
Zhou L, Deng Z, Wang Y, Zhang H, Yan S, Kanwar YS, Wang Y, Dai Y, Deng F. PRMT4 interacts with NCOA4 to inhibit ferritinophagy in cisplatin-induced acute kidney injury. FASEB J 2024; 38:e23584. [PMID: 38568836 DOI: 10.1096/fj.202302596r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/04/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Cisplatin-induced acute kidney injury (AKI) is commonly seen in the clinical practice, and ferroptosis, a type of non-apoptotic cell death, plays a pivotal role in it. Previous studies suggested that protein arginine methyltransferase 4 (PRMT4) was incorporated in various bioprocesses, but its role in renal injuries has not been investigated. Our present study showed that PRMT4 was highly expressed in renal proximal tubular cells, and it was downregulated in cisplatin-induced AKI. Besides, genetic disruption of PRMT4 exacerbated, while its overexpression attenuated, cisplatin-induced redox injuries in renal proximal epithelia. Mechanistically, our work showed that PRMT4 interacted with NCOA4 to inhibit ferritinophagy, a type of selective autophagy favoring lipid peroxidation to accelerate ferroptosis. Taken together, our study demonstrated that PRMT4 interacted with NCOA4 to attenuate ferroptosis in cisplatin-induced AKI, suggesting that PRMT4 might present as a new therapeutic target for cisplatin-related nephropathy.
Collapse
Affiliation(s)
- Lizhi Zhou
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Zebin Deng
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Yilong Wang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hao Zhang
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Shu Yan
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yashpal S Kanwar
- Departments of Pathology & Medicine, Northwestern University, Chicago, Illinois, USA
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Fei Deng
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| |
Collapse
|
20
|
Valero-Rubira I, Vallés MP, Echávarri B, Fustero P, Costar MA, Castillo AM. New Epigenetic Modifier Inhibitors Enhance Microspore Embryogenesis in Bread Wheat. PLANTS (BASEL, SWITZERLAND) 2024; 13:772. [PMID: 38592809 PMCID: PMC10975478 DOI: 10.3390/plants13060772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 04/11/2024]
Abstract
The use of doubled haploid (DH) technology enables the development of new varieties of plants in less time than traditional breeding methods. In microspore embryogenesis (ME), stress treatment triggers microspores towards an embryogenic pathway, resulting in the production of DH plants. Epigenetic modifiers have been successfully used to increase ME efficiency in a number of crops. In wheat, only the histone deacetylase inhibitor trichostatin A (TSA) has been shown to be effective. In this study, inhibitors of epigenetic modifiers acting on histone methylation (chaetocin and CARM1 inhibitor) and histone phosphorylation (aurora kinase inhibitor II (AUKI-II) and hesperadin) were screened to determine their potential in ME induction in high- and mid-low-responding cultivars. The use of chaetocin and AUKI-II resulted in a higher percentage of embryogenic structures than controls in both cultivars, but only AUKI-II was superior to TSA. In order to evaluate the potential of AUKI-II in terms of increasing the number of green DH plants, short and long application strategies were tested during the mannitol stress treatment. The application of 0.8 µM AUKI-II during a long stress treatment resulted in a higher percentage of chromosome doubling compared to control DMSO in both cultivars. This concentration produced 33% more green DH plants than the control in the mid-low-responding cultivar, but did not affect the final ME efficiency in a high-responding cultivar. This study has identified new epigenetic modifiers whose use could be promising for increasing the efficiency of other systems that require cellular reprogramming.
Collapse
Affiliation(s)
| | | | | | | | | | - Ana María Castillo
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, Spanish National Research Council (EEAD-CSIC), 50059 Zaragoza, Spain; (I.V.-R.); (M.P.V.); (B.E.); (P.F.); (M.A.C.)
| |
Collapse
|
21
|
Lu L, Ye Z, Zhang R, Olsen JV, Yuan Y, Mao Y. ETD-Based Proteomic Profiling Improves Arginine Methylation Identification and Reveals Novel PRMT5 Substrates. J Proteome Res 2024; 23:1014-1027. [PMID: 38272855 DOI: 10.1021/acs.jproteome.3c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Protein arginine methylations are important post-translational modifications (PTMs) in eukaryotes, regulating many biological processes. However, traditional collision-based mass spectrometry methods inevitably cause neutral losses of methylarginines, preventing the deep mining of biologically important sites. Herein we developed an optimized mass spectrometry workflow based on electron-transfer dissociation (ETD) with supplemental activation for proteomic profiling of arginine methylation in human cells. Using symmetric dimethylarginine (sDMA) as an example, we show that the ETD-based optimized workflow significantly improved the identification and site localization of sDMA. Quantitative proteomics identified 138 novel sDMA sites as potential PRMT5 substrates in HeLa cells. Further biochemical studies on SERBP1, a newly identified PRMT5 substrate, confirmed the coexistence of sDMA and asymmetric dimethylarginine in the central RGG/RG motif, and loss of either methylation caused increased the recruitment of SERBP1 to stress granules under oxidative stress. Overall, our optimized workflow not only enabled the identification and localization of extensive, nonoverlapping sDMA sites in human cells but also revealed novel PRMT5 substrates whose sDMA may play potentially important biological functions.
Collapse
Affiliation(s)
- Lingzi Lu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| | - Zilu Ye
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Rou Zhang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Yanqiu Yuan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| | - Yang Mao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
22
|
Li WJ, Huang Y, Lin YA, Zhang BD, Li MY, Zou YQ, Hu GS, He YH, Yang JJ, Xie BL, Huang HH, Deng X, Liu W. Targeting PRMT1-mediated SRSF1 methylation to suppress oncogenic exon inclusion events and breast tumorigenesis. Cell Rep 2023; 42:113385. [PMID: 37938975 DOI: 10.1016/j.celrep.2023.113385] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 08/10/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023] Open
Abstract
PRMT1 plays a vital role in breast tumorigenesis; however, the underlying molecular mechanisms remain incompletely understood. Herein, we show that PRMT1 plays a critical role in RNA alternative splicing, with a preference for exon inclusion. PRMT1 methylome profiling identifies that PRMT1 methylates the splicing factor SRSF1, which is critical for SRSF1 phosphorylation, SRSF1 binding with RNA, and exon inclusion. In breast tumors, PRMT1 overexpression is associated with increased SRSF1 arginine methylation and aberrant exon inclusion, which are critical for breast cancer cell growth. In addition, we identify a selective PRMT1 inhibitor, iPRMT1, which potently inhibits PRMT1-mediated SRSF1 methylation, exon inclusion, and breast cancer cell growth. Combination treatment with iPRMT1 and inhibitors targeting SRSF1 phosphorylation exhibits an additive effect of suppressing breast cancer cell growth. In conclusion, our study dissects a mechanism underlying PRMT1-mediated RNA alternative splicing. Thus, PRMT1 has great potential as a therapeutic target in breast cancer treatment.
Collapse
Affiliation(s)
- Wen-Juan Li
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Ying Huang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Yi-An Lin
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Bao-Ding Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China
| | - Mei-Yan Li
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Yi-Qin Zou
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Guo-Sheng Hu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Yao-Hui He
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Jing-Jing Yang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Bing-Lan Xie
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China
| | - Hai-Hua Huang
- Department of Pathology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China.
| | - Wen Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China.
| |
Collapse
|
23
|
Jin J, Bai H, Yan H, Deng T, Li T, Xiao R, Fan L, Bai X, Ning H, Liu Z, Zhang K, Wu X, Liang K, Ma P, Gao X, Hu D. PRMT2 promotes HIV-1 latency by preventing nucleolar exit and phase separation of Tat into the Super Elongation Complex. Nat Commun 2023; 14:7274. [PMID: 37949879 PMCID: PMC10638354 DOI: 10.1038/s41467-023-43060-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
The HIV-1 Tat protein hijacks the Super Elongation Complex (SEC) to stimulate viral transcription and replication. However, the mechanisms underlying Tat activation and inactivation, which mediate HIV-1 productive and latent infection, respectively, remain incompletely understood. Here, through a targeted complementary DNA (cDNA) expression screening, we identify PRMT2 as a key suppressor of Tat activation, thus contributing to proviral latency in multiple cell line latency models and in HIV-1-infected patient CD4+ T cells. Our data reveal that the transcriptional activity of Tat is oppositely regulated by NPM1-mediated nucleolar retention and AFF4-induced phase separation in the nucleoplasm. PRMT2 preferentially methylates Tat arginine 52 (R52) to reinforce its nucleolar sequestration while simultaneously counteracting its incorporation into the SEC droplets, thereby leading to its functional inactivation to promote proviral latency. Thus, our studies unveil a central and unappreciated role for Tat methylation by PRMT2 in connecting its subnuclear distribution, liquid droplet formation, and transactivating function, which could be therapeutically targeted to eradicate latent viral reservoirs.
Collapse
Affiliation(s)
- Jiaxing Jin
- National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, Department of Cell Biology, School of Basic Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, 300070, Tianjin, China
| | - Hui Bai
- National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, Department of Cell Biology, School of Basic Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, 300070, Tianjin, China
| | - Han Yan
- National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, Department of Cell Biology, School of Basic Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, 300070, Tianjin, China
| | - Ting Deng
- Key Laboratory of Breast Cancer Prevention and Therapy of Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China
| | - Tianyu Li
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, 430071, Wuhan, China
| | - Ruijing Xiao
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, 430071, Wuhan, China
| | - Lina Fan
- Department of Infectious Diseases, Tianjin Second People's Hospital, Nankai University, 300192, Tianjin, China
| | - Xue Bai
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Hanhan Ning
- National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, Department of Cell Biology, School of Basic Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, 300070, Tianjin, China
| | - Zhe Liu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Kai Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Xudong Wu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Kaiwei Liang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, 430071, Wuhan, China
| | - Ping Ma
- Department of Infectious Diseases, Tianjin Second People's Hospital, Nankai University, 300192, Tianjin, China.
| | - Xin Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020, Tianjin, China.
- Tianjin Institutes of Health Science, 301600, Tianjin, China.
| | - Deqing Hu
- National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, Department of Cell Biology, School of Basic Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, 300070, Tianjin, China.
| |
Collapse
|
24
|
Ma Z, Lyu X, Qin N, Liu H, Zhang M, Lai Y, Dong B, Lu P. Coactivator-associated arginine methyltransferase 1: A versatile player in cell differentiation and development. Genes Dis 2023; 10:2383-2392. [PMID: 37554200 PMCID: PMC10404874 DOI: 10.1016/j.gendis.2022.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/19/2022] [Accepted: 05/11/2022] [Indexed: 11/26/2022] Open
Abstract
Protein arginine methylation is a common post-translational modification involved in the regulation of various cellular functions. Coactivator-associated arginine methyltransferase 1 (CARM1) is a protein arginine methyltransferase that asymmetrically dimethylates histone H3 and non-histone proteins to regulate gene transcription. CARM1 has been found to play important roles in cell differentiation and development, cell cycle progression, autophagy, metabolism, pre-mRNA splicing and transportation, and DNA replication. In this review, we describe the molecular characteristics of CARM1 and summarize its roles in the regulation of cell differentiation and development in mammals.
Collapse
Affiliation(s)
- Zhongrui Ma
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
- Department of Immunology, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xinxing Lyu
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Ning Qin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Haoyu Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Mengrui Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yongchao Lai
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Peiyuan Lu
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
- Department of Immunology, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| |
Collapse
|
25
|
Azhar M, Xu C, Jiang X, Li W, Cao Y, Zhu X, Xing X, Wu L, Zou J, Meng L, Cheng Y, Han W, Bao J. The arginine methyltransferase Prmt1 coordinates the germline arginine methylome essential for spermatogonial homeostasis and male fertility. Nucleic Acids Res 2023; 51:10428-10450. [PMID: 37739418 PMCID: PMC10602896 DOI: 10.1093/nar/gkad769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/24/2023] Open
Abstract
Arginine methylation, catalyzed by the protein arginine methyltransferases (PRMTs), is a common post-translational protein modification (PTM) that is engaged in a plethora of biological events. However, little is known about how the methylarginine-directed signaling functions in germline development. In this study, we discover that Prmt1 is predominantly distributed in the nuclei of spermatogonia but weakly in the spermatocytes throughout mouse spermatogenesis. By exploiting a combination of three Cre-mediated Prmt1 knockout mouse lines, we unravel that Prmt1 is essential for spermatogonial establishment and maintenance, and that Prmt1-catalyzed asymmetric methylarginine coordinates inherent transcriptional homeostasis within spermatogonial cells. In conjunction with high-throughput CUT&Tag profiling and modified mini-bulk Smart-seq2 analyses, we unveil that the Prmt1-deposited H4R3me2a mark is permissively enriched at promoter and exon/intron regions, and sculpts a distinctive transcriptomic landscape as well as the alternative splicing pattern, in the mouse spermatogonia. Collectively, our study provides the genetic and mechanistic evidence that connects the Prmt1-deposited methylarginine signaling to the establishment and maintenance of a high-fidelity transcriptomic identity in orchestrating spermatogonial development in the mammalian germline.
Collapse
Affiliation(s)
- Muhammad Azhar
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Caoling Xu
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Xue Jiang
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Wenqing Li
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Yuzhu Cao
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Xiaoli Zhu
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Xuemei Xing
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Limin Wu
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jiaqi Zou
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Lan Meng
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Yu Cheng
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Wenjie Han
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| | - Jianqiang Bao
- Department of Obstetrics and Gynecology, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Anhui, China
| |
Collapse
|
26
|
Zheng K, Chen S, Ren Z, Wang Y. Protein arginine methylation in viral infection and antiviral immunity. Int J Biol Sci 2023; 19:5292-5318. [PMID: 37928266 PMCID: PMC10620831 DOI: 10.7150/ijbs.89498] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
Protein arginine methyltransferase (PRMT)-mediated arginine methylation is an important post-transcriptional modification that regulates various cellular processes including epigenetic gene regulation, genome stability maintenance, RNA metabolism, and stress-responsive signal transduction. The varying substrates and biological functions of arginine methylation in cancer and neurological diseases have been extensively discussed, providing a rationale for targeting PRMTs in clinical applications. An increasing number of studies have demonstrated an interplay between arginine methylation and viral infections. PRMTs have been found to methylate and regulate several host cell proteins and different functional types of viral proteins, such as viral capsids, mRNA exporters, transcription factors, and latency regulators. This modulation affects their activity, subcellular localization, protein-nucleic acid and protein-protein interactions, ultimately impacting their roles in various virus-associated processes. In this review, we discuss the classification, structure, and regulation of PRMTs and their pleiotropic biological functions through the methylation of histones and non-histones. Additionally, we summarize the broad spectrum of PRMT substrates and explore their intricate effects on various viral infection processes and antiviral innate immunity. Thus, comprehending the regulation of arginine methylation provides a critical foundation for understanding the pathogenesis of viral diseases and uncovering opportunities for antiviral therapy.
Collapse
Affiliation(s)
- Kai Zheng
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Siyu Chen
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Zhe Ren
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632, China
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
27
|
Cao MT, Feng Y, Zheng YG. Protein arginine methyltransferase 6 is a novel substrate of protein arginine methyltransferase 1. World J Biol Chem 2023; 14:84-98. [PMID: 37901302 PMCID: PMC10600687 DOI: 10.4331/wjbc.v14.i5.84] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Post-translational modifications play key roles in various biological processes. Protein arginine methyltransferases (PRMTs) transfer the methyl group to specific arginine residues. Both PRMT1 and PRMT6 have emerges as crucial factors in the development and progression of multiple cancer types. We posit that PRMT1 and PRMT6 might interplay directly or in-directly in multiple ways accounting for shared disease phenotypes. AIM To investigate the mechanism of the interaction between PRMT1 and PRMT6. METHODS Gel electrophoresis autoradiography was performed to test the methyltranferase activity of PRMTs and characterize the kinetics parameters of PRMTs. Liquid chromatography-tandem mass spectrometryanalysis was performed to detect the PRMT6 methylation sites. RESULTS In this study we investigated the interaction between PRMT1 and PRMT6, and PRMT6 was shown to be a novel substrate of PRMT1. We identified specific arginine residues of PRMT6 that are methylated by PRMT1, with R106 being the major methylation site. Combined biochemical and cellular data showed that PRMT1 downregulates the enzymatic activity of PRMT6 in histone H3 methylation. CONCLUSION PRMT6 is methylated by PRMT1 and R106 is a major methylation site induced by PRMT1. PRMT1 methylation suppresses the activity of PRMT6.
Collapse
Affiliation(s)
- Meng-Tong Cao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States
| | - You Feng
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States
| |
Collapse
|
28
|
Ratovitski T, Kamath SV, O'Meally RN, Gosala K, Holland CD, Jiang M, Cole RN, Ross CA. Arginine methylation of RNA-binding proteins is impaired in Huntington's disease. Hum Mol Genet 2023; 32:3006-3025. [PMID: 37535888 PMCID: PMC10549789 DOI: 10.1093/hmg/ddad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion in the HD gene, coding for huntingtin protein (HTT). Mechanisms of HD cellular pathogenesis remain undefined and likely involve disruptions in many cellular processes and functions presumably mediated by abnormal protein interactions of mutant HTT. We previously found HTT interaction with several protein arginine methyl-transferase (PRMT) enzymes. Protein arginine methylation mediated by PRMT enzymes is an important post-translational modification with an emerging role in neurodegeneration. We found that normal (but not mutant) HTT can facilitate the activity of PRMTs in vitro and the formation of arginine methylation complexes. These interactions appear to be disrupted in HD neurons. This suggests an additional functional role for HTT/PRMT interactions, not limited to substrate/enzyme relationship, which may result in global changes in arginine protein methylation in HD. Our quantitative analysis of striatal precursor neuron proteome indicated that arginine protein methylation is significantly altered in HD. We identified a cluster highly enriched in RNA-binding proteins with reduced arginine methylation, which is essential to their function in RNA processing and splicing. We found that several of these proteins interact with HTT, and their RNA-binding and localization are affected in HD cells likely due to a compromised arginine methylation and/or abnormal interactions with mutant HTT. These studies reveal a potential new mechanism for disruption of RNA processing in HD, involving a direct interaction of HTT with methyl-transferase enzymes and modulation of their activity and highlighting methylation of arginine as potential new therapeutic target for HD.
Collapse
Affiliation(s)
- Tamara Ratovitski
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Siddhi V Kamath
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Robert N O'Meally
- Department of Biological Chemistry, Mass Spectrometry and Proteomics Facility, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Keerthana Gosala
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Chloe D Holland
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Mali Jiang
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Robert N Cole
- Department of Biological Chemistry, Mass Spectrometry and Proteomics Facility, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Christopher A Ross
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University, Baltimore, MD 21287, USA
- Departments of Neurology, Neuroscience and Pharmacology, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
29
|
Xie H, Bacabac MS, Ma M, Kim EJ, Wang Y, Wu W, Li L, Xu W, Tang W. Development of Potent and Selective Coactivator-Associated Arginine Methyltransferase 1 (CARM1) Degraders. J Med Chem 2023; 66:13028-13042. [PMID: 37703322 PMCID: PMC10775954 DOI: 10.1021/acs.jmedchem.3c00982] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
CARM1 is amplified or overexpressed in many cancer types, and its overexpression correlates with poor prognosis. Potent small-molecule inhibitors for CARM1 have been developed, but the cellular efficacy of the CARM1 inhibitors is limited. We herein report the development of the proteolysis targeting chimera (PROTAC) for CARM1, which contains a CARM1 ligand TP-064, a linker, and a VHL E3 ligase ligand. Compound 3b elicited potent cellular degradation activity (DC50 = 8 nM and Dmax > 95%) in a few hours. Compound 3b degraded CARM1 in VHL- and proteasome-dependent manner and was highly selective for CARM1 over other protein arginine methyltransferases. CARM1 degradation by 3b resulted in potent downregulation of CARM1 substrate methylation and inhibition of cancer cell migration in cell-based assays. Thus, CARM1 PROTACs can be used to interrogate CARM1's cellular functions and potentially be developed as therapeutic agents for targeting CARM1-driven cancers.
Collapse
Affiliation(s)
- Haibo Xie
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Megan S Bacabac
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Min Ma
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Eui-Jun Kim
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Yidan Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Wenxin Wu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Lingjun Li
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Weiping Tang
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
30
|
Alexander AK, Elshahawi SI. Promiscuous Enzymes for Residue-Specific Peptide and Protein Late-Stage Functionalization. Chembiochem 2023; 24:e202300372. [PMID: 37338668 PMCID: PMC10496146 DOI: 10.1002/cbic.202300372] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
The late-stage functionalization of peptides and proteins holds significant promise for drug discovery and facilitates bioorthogonal chemistry. This selective functionalization leads to innovative advances in in vitro and in vivo biological research. However, it is a challenging endeavor to selectively target a certain amino acid or position in the presence of other residues containing reactive groups. Biocatalysis has emerged as a powerful tool for selective, efficient, and economical modifications of molecules. Enzymes that have the ability to modify multiple complex substrates or selectively install nonnative handles have wide applications. Herein, we highlight enzymes with broad substrate tolerance that have been demonstrated to modify a specific amino acid residue in simple or complex peptides and/or proteins at late-stage. The different substrates accepted by these enzymes are mentioned together with the reported downstream bioorthogonal reactions that have benefited from the enzymatic selective modifications.
Collapse
Affiliation(s)
- Ashley K Alexander
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Sherif I Elshahawi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618, USA
| |
Collapse
|
31
|
Ma M, Liu F, Miles HN, Kim EJ, Fields L, Xu W, Li L. Proteome-wide Profiling of Asymmetric Dimethylated Arginine in Human Breast Tumors. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1692-1700. [PMID: 37463068 PMCID: PMC10726702 DOI: 10.1021/jasms.3c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Arginine methylation catalyzed by protein arginine methyltransferases (PRMTs) is a prevalent post-translational modification (PTM) that regulates diverse cellular processes. Aberrant expression of type I PRMTs that catalyze asymmetric arginine dimethylation (ADMA) is often found in cancer, though little is known about the ADMA status of substrate proteins in tumors. Using LC-MS/MS along with pan-specific ADMA antibodies, we performed global mapping of ADMA in five patient-derived xenograft (PDX) tumors representing different subtypes of human breast cancer. In total, 403 methylated sites from 213 proteins were identified, including 322 novel sites when compared to the PhosphositesPlus database. Moreover, using peptide arrays in vitro, approximately 70% of the putative substrates were validated to be methylated by PRMT1, PRMT4, and PRMT6. Notably, when compared with our previously identified ADMA sites from breast cancer cell lines, only 75 ADMA sites overlapped between cell lines and PDX tumors. Collectively, this study provides a useful resource for both PRMT and breast cancer communities for further exploitation of the functions of PRMT dysregulation during breast cancer progression.
Collapse
Affiliation(s)
- Min Ma
- School of Pharmacy, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Fabao Liu
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, 53705, United States
- Advanced Medical Research Institute, Shandong University, Shandong, 250012, PR China
| | - Hannah N. Miles
- School of Pharmacy, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Eui-Jun Kim
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, 53705, United States
| | - Lauren Fields
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin–Madison, Madison, Wisconsin, United States
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, 53706, United States
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| |
Collapse
|
32
|
Yin S, Liu L, Gan W. PRMT1 and PRMT5: on the road of homologous recombination and non-homologous end joining. GENOME INSTABILITY & DISEASE 2023; 4:197-209. [PMID: 37663901 PMCID: PMC10470524 DOI: 10.1007/s42764-022-00095-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/28/2022] [Indexed: 09/05/2023]
Abstract
DNA double-strand breaks (DSBs) are widely accepted to be the most deleterious form of DNA lesions that pose a severe threat to genome integrity. Two predominant pathways are responsible for repair of DSBs, homologous recombination (HR) and non-homologous end-joining (NHEJ). HR relies on a template to faithfully repair breaks, while NHEJ is a template-independent and error-prone repair mechanism. Multiple layers of regulation have been documented to dictate the balance between HR and NHEJ, such as cell cycle and post-translational modifications (PTMs). Arginine methylation is one of the most common PTMs, which is catalyzed by protein arginine methyltransferases (PRMTs). PRMT1 and PRMT5 are the predominate PRMTs that promote asymmetric dimethylarginine and symmetric dimethylarginine, respectively. They have emerged to be crucial regulators of DNA damage repair. In this review, we summarize current understanding and unaddressed questions of PRMT1 and PRMT5 in regulation of HR and NHEJ, providing insights into their roles in DSB repair pathway choice and the potential of targeting them for cancer therapy.
Collapse
Affiliation(s)
- Shasha Yin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Liu Liu
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Wenjian Gan
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
33
|
Jin W, Zhang J, Chen X, Yin S, Yu H, Gao F, Yao D. Unraveling the complexity of histone-arginine methyltransferase CARM1 in cancer: From underlying mechanisms to targeted therapeutics. Biochim Biophys Acta Rev Cancer 2023; 1878:188916. [PMID: 37196782 DOI: 10.1016/j.bbcan.2023.188916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1), a type I protein arginine methyltransferase (PRMT), has been widely reported to catalyze arginine methylation of histone and non-histone substrates, which is closely associated with the occurrence and progression of cancer. Recently, accumulating studies have demonstrated the oncogenic role of CARM1 in many types of human cancers. More importantly, CARM1 has been emerging as an attractive therapeutic target for discovery of new candidate anti-tumor drugs. Therefore, in this review, we summarize the molecular structure of CARM1 and its key regulatory pathways, as well as further discuss the rapid progress in better understanding of the oncogenic functions of CARM1. Moreover, we further demonstrate several representative targeted CARM1 inhibitors, especially focusing on demonstrating their designing strategies and potential therapeutic applications. Together, these inspiring findings would shed new light on elucidating the underlying mechanisms of CARM1 and provide a clue on discovery of more potent and selective CARM1 inhibitors for the future targeted cancer therapy.
Collapse
Affiliation(s)
- Wenke Jin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Xiya Chen
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China; School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Siwen Yin
- School of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haiyang Yu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Feng Gao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China.
| |
Collapse
|
34
|
Lai Y, Li X, Li T, Li X, Nyunoya T, Chen K, Kitsios G, Nouraie M, Zhang Y, McVerry BJ, Lee JS, Mallmapalli RK, Zou C. Protein arginine N-methyltransferase 4 (PRMT4) contributes to lymphopenia in experimental sepsis. Thorax 2023; 78:383-393. [PMID: 35354645 PMCID: PMC9522923 DOI: 10.1136/thoraxjnl-2021-217526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 03/04/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND One hallmark of sepsis is the reduced number of lymphocytes, termed lymphopenia, that occurs from decreased lymphocyte proliferation or increased cell death contributing to immune suppression. Histone modification enzymes regulate immunity by their epigenetic and non-epigenetic functions; however, the role of these enzymes in lymphopenia remains elusive. METHODS We used molecular biological approaches to investigate the high expression and function of a chromatin modulator protein arginine N-methyltransferase 4 (PRMT4)/coactivator-associated arginine methyltransferase 1 in human samples from septic patients and cellular and animal septic models. RESULTS We identified that PRMT4 is elevated systemically in septic patients and experimental sepsis. Gram-negative bacteria and their derived endotoxin lipopolysaccharide (LPS) increased PRMT4 in B and T lymphocytes and THP-1 monocytes. Single-cell RNA sequencing results indicate an increase of PRMT4 gene expression in activated T lymphocytes. Augmented PRMT4 is crucial for inducing lymphocyte apoptosis but not monocyte THP-1 cells. Ectopic expression of PRMT4 protein caused substantial lymphocyte death via caspase 3-mediated cell death signalling, and knockout of PRMT4 abolished LPS-mediated lymphocyte death. PRMT4 inhibition with a small molecule compound attenuated lymphocyte death in complementary models of sepsis. CONCLUSIONS These findings demonstrate a previously uncharacterised role of a key chromatin modulator in lymphocyte survival that may shed light on devising therapeutic modalities to lessen the severity of septic immunosuppression.
Collapse
Affiliation(s)
- Yandong Lai
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xiuying Li
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Veterans Affairs Pittsburgh Healthcare system, Pittsburgh, Pennsylvania, USA
| | - Tiao Li
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xiaoyun Li
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Toru Nyunoya
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Veterans Affairs Pittsburgh Healthcare system, Pittsburgh, Pennsylvania, USA
| | - Kong Chen
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Georgios Kitsios
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mehdi Nouraie
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yingze Zhang
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Bryan J McVerry
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Janet S Lee
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Chunbin Zou
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Veterans Affairs Pittsburgh Healthcare system, Pittsburgh, Pennsylvania, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
35
|
Wang Q, Yan X, Fu B, Xu Y, Li L, Chang C, Jia C. mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation. Anal Chem 2023; 95:3684-3693. [PMID: 36757215 DOI: 10.1021/acs.analchem.2c04648] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Characterization of protein arginine dimethylation presents significant challenges due to its occurrence at the substoichiometric level. To enable a targeted MS/MS analysis of these dimethylation sites, we developed the mNeuCode (methyl-neutron-coding) tag by metabolically labeling methylarginine with stable isotopes during cell culture, which generated a diagnostic peak containing the NeuCode isotopologue signature in a high-resolution MS scan. A software tool, termed NeuCodeFinder, was developed for screening the NeuCode signatures in mass spectra. Therefore, a targeted MS/MS workflow was established for proteome-wide discovery of arginine dimethylation. The efficacy and utility were demonstrated by identifying 176 arginine dimethylation sites residing on 70 proteins in HeLa cells. Among them, 38% of the sites and 29% of the dimethylated proteins are novel, including five novel arginine dimethylation sites on the protein FAM98A, which is a substrate of protein arginine methyltransferase 1 (PRMT1). Our results show that deletion of FAM98A in HeLa cells suppressed cell migration, and importantly, dimethylation-deficient mutation suppressed this process as well. Therefore, the PRMT1-FAM98A pathway mediates cell migration possibly through dimethylation of these newly identified sites of FAM98A. Our study might drive the methodological shift from shotgun-based to targeted proteome analysis for interrogation of the substoichiometric biomolecules by using NeuCode-enabled techniques.
Collapse
Affiliation(s)
- Qianqian Wang
- National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xin Yan
- National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China.,Xiong County Center for Disease Control and Prevention, Baoding 071000, China
| | - Bin Fu
- National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Ying Xu
- National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Lingjun Li
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Cheng Chang
- National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China.,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Chenxi Jia
- National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
36
|
Gao G, Hausmann S, Flores NM, Benitez AM, Shen J, Yang X, Person MD, Gayatri S, Cheng D, Lu Y, Liu B, Mazur PK, Bedford MT. The NFIB/CARM1 partnership is a driver in preclinical models of small cell lung cancer. Nat Commun 2023; 14:363. [PMID: 36690626 PMCID: PMC9870865 DOI: 10.1038/s41467-023-35864-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
The coactivator associated arginine methyltransferase (CARM1) promotes transcription, as its name implies. It does so by modifying histones and chromatin bound proteins. We identified nuclear factor I B (NFIB) as a CARM1 substrate and show that this transcription factor utilizes CARM1 as a coactivator. Biochemical studies reveal that tripartite motif 29 (TRIM29) is an effector molecule for methylated NFIB. Importantly, NFIB harbors both oncogenic and metastatic activities, and is often overexpressed in small cell lung cancer (SCLC). Here, we explore the possibility that CARM1 methylation of NFIB is important for its transforming activity. Using a SCLC mouse model, we show that both CARM1 and the CARM1 methylation site on NFIB are critical for the rapid onset of SCLC. Furthermore, CARM1 and methylated NFIB are responsible for maintaining similar open chromatin states in tumors. Together, these findings suggest that CARM1 might be a therapeutic target for SCLC.
Collapse
Affiliation(s)
- Guozhen Gao
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Simone Hausmann
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Natasha M Flores
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ana Morales Benitez
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaojie Yang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Maria D Person
- Center for Biomedical Research Support, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sitaram Gayatri
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Evozyne Inc., Chicago, IL, 60614, USA
| | - Donghang Cheng
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Pawel K Mazur
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
37
|
Singh AP, Kumar R, Gupta D. Structural insights into the mechanism of human methyltransferase hPRMT4. J Biomol Struct Dyn 2022; 40:10821-10834. [PMID: 34308797 DOI: 10.1080/07391102.2021.1950567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Human PRMT4, also known as CARM1, is a type I arginine methyltransferase protein that catalyse the formation of asymmetrical dimethyl arginine product. Structural studies done to date on PRMT4 have shown that the N-terminal region, Rossmann fold and dimerization arm play an important role in PRMT4 activity. Elucidating the functions of these regions in catalysis remains to be explored. Studies have shown the existence of communication pathways in PRMT4, which need further elucidation. The molecular dynamics (MD) simulations performed in this study show differences in different monomeric and dimeric forms of hPRMT4, revealing the role of the N-terminal region, Rossmann fold and dimerization arm. The study shows the conformational changes that occur during dimerization and SAM binding. Our cross-correlation analysis showed a correlation between these regions. Further, we performed PSN and network analysis to establish the existence of communication networks and an allosteric pathway. This study shows the use of MD simulations and network analysis to explore the aspects of PRMT4 dimerization, SAM binding and demonstrates the existence of an allosteric network. These findings shed novel insights into the conformational changes associated with hPRMT4, the mechanism of its dimerization, SAM binding and clues for better inhibitor designs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amar Pratap Singh
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rakesh Kumar
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
38
|
Lee J, Pang K, Kim J, Hong E, Lee J, Cho HJ, Park J, Son M, Park S, Lee M, Ooshima A, Park KS, Yang HK, Yang KM, Kim SJ. ESRP1-regulated isoform switching of LRRFIP2 determines metastasis of gastric cancer. Nat Commun 2022; 13:6274. [PMID: 36307405 PMCID: PMC9616898 DOI: 10.1038/s41467-022-33786-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/03/2022] [Indexed: 12/25/2022] Open
Abstract
Although accumulating evidence indicates that alternative splicing is aberrantly altered in many cancers, the functional mechanism remains to be elucidated. Here, we show that epithelial and mesenchymal isoform switches of leucine-rich repeat Fli-I-interacting protein 2 (LRRFIP2) regulated by epithelial splicing regulatory protein 1 (ESRP1) correlate with metastatic potential of gastric cancer cells. We found that expression of the splicing variants of LRRFIP2 was closely correlated with that of ESRP1. Surprisingly, ectopic expression of the mesenchymal isoform of LRRFIP2 (variant 3) dramatically increased liver metastasis of gastric cancer cells, whereas deletion of exon 7 of LRRFIP2 by the CRISPR/Cas9 system caused an isoform switch, leading to marked suppression of liver metastasis. Mechanistically, the epithelial LRRFIP2 isoform (variant 2) inhibited the oncogenic function of coactivator-associated arginine methyltransferase 1 (CARM1) through interaction. Taken together, our data reveals a mechanism of LRRFIP2 isoform switches in gastric cancer with important implication for cancer metastasis.
Collapse
Affiliation(s)
- Jihee Lee
- GILO Institute, GILO Foundation, Seoul, 06668 Korea ,grid.410886.30000 0004 0647 3511Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi-do 13488 Korea
| | | | - Junil Kim
- grid.263765.30000 0004 0533 3568School of Systems Biomedical Science, Soongsil University, Seoul, 06978 Korea
| | - Eunji Hong
- GILO Institute, GILO Foundation, Seoul, 06668 Korea ,grid.264381.a0000 0001 2181 989XDepartment of Biomedical Science, College of Life Science, Sungkyunkwan University, Suwon, Gyeonggi-do 16419 Korea
| | - Jeeyun Lee
- grid.264381.a0000 0001 2181 989XDivision of Hematology-Oncology, Department of Medicine, Samsung Medical Center Sungkyunkwan University School of Medicine, Seoul, 06351 Korea
| | - Hee Jin Cho
- grid.258803.40000 0001 0661 1556Department of Biomedical Convergence Science and Technology, Kyungpook National University, Daegu, 41566 Korea ,grid.414964.a0000 0001 0640 5613Innovative Therapeutic Research Center, Precision Medicine Research Institute, Samsung Medical Center, Seoul, 06531 Republic of Korea
| | - Jinah Park
- GILO Institute, GILO Foundation, Seoul, 06668 Korea
| | - Minjung Son
- GILO Institute, GILO Foundation, Seoul, 06668 Korea ,grid.264381.a0000 0001 2181 989XDepartment of Biomedical Science, College of Life Science, Sungkyunkwan University, Suwon, Gyeonggi-do 16419 Korea
| | - Sihyun Park
- GILO Institute, GILO Foundation, Seoul, 06668 Korea
| | | | | | - Kyung-Soon Park
- grid.410886.30000 0004 0647 3511Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi-do 13488 Korea
| | - Han-Kwang Yang
- grid.412484.f0000 0001 0302 820XDepartment of Surgery, Seoul National University Hospital, Seoul, 03080 Korea ,grid.31501.360000 0004 0470 5905Cancer Research Institute, Seoul National University, Seoul, 03080 Korea
| | | | - Seong-Jin Kim
- GILO Institute, GILO Foundation, Seoul, 06668 Korea ,Medpacto Inc., Seoul, 06668 Korea
| |
Collapse
|
39
|
PRMT4-mediated arginine methylation promotes tyrosine phosphorylation of VEGFR-2 and regulates filopodia protrusions. iScience 2022; 25:104736. [PMID: 35942094 PMCID: PMC9356023 DOI: 10.1016/j.isci.2022.104736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/09/2022] [Accepted: 07/07/2022] [Indexed: 11/24/2022] Open
Abstract
Through tightly controlled multilayer mechanisms, vascular endothelial growth factor receptor-2 (VEGFR-2) activation and its downstream signal transduction govern vasculogenesis and pathological angiogenesis, such as tumor angiogenesis. Therefore, it is critical to understand the molecular mechanisms governing VEGFR-2 signal transduction. We report that protein arginine methyltransferase 4 (PRMT4) via its highly conserved EVH1 and PH domain-like N-terminal domain binds to VEGFR-2 and mediates methylation of the juxtamembrane arginine 817 (R817) on VEGFR-2. Methylation of R817 selectively increases phosphorylation of tyrosine 820 (Y820). Phosphorylation of Y820 facilitates the c-Src binding with VEGFR-2 via Src homology domain 2 (SH2). Interfering with the methylation of R817 or phosphorylation of Y820 inhibits VEGFR-2-induced filopodia protrusions, a process that is critical for the core angiogenic responses of VEGFR-2. Methylation of R817 is an important previously unrecognized mechanism of the angiogenic signaling of VEGFR-2, with implications for the development of novel-targeted VEGFR-2 inhibitors. Arginine 817 methylation regulates phosphorylation of Y820 on VEGFR-2 Phosphorylation of Y820 recruits c-Src kinase to VEGFR-2, leading to its activation VEGFR-2/c-Src axis mediates filopodia protrusions in endothelial cells
Collapse
|
40
|
vanLieshout TL, Stouth DW, Hartel NG, Vasam G, Ng SY, Webb EK, Rebalka IA, Mikhail AI, Graham NA, Menzies KJ, Hawke TJ, Ljubicic V. The CARM1 transcriptome and arginine methylproteome mediate skeletal muscle integrative biology. Mol Metab 2022; 64:101555. [PMID: 35872306 PMCID: PMC9379683 DOI: 10.1016/j.molmet.2022.101555] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Coactivator-associated arginine methyltransferase 1 (CARM1) catalyzes the methylation of arginine residues on target proteins to regulate critical processes in health and disease. A mechanistic understanding of the role(s) of CARM1 in skeletal muscle biology is only gradually emerging. The purpose of this study was to elucidate the function of CARM1 in regulating the maintenance and plasticity of skeletal muscle. METHODS We used transcriptomic, methylproteomic, molecular, functional, and integrative physiological approaches to determine the specific impact of CARM1 in muscle homeostasis. RESULTS Our data defines the occurrence of arginine methylation in skeletal muscle and demonstrates that this mark occurs on par with phosphorylation and ubiquitination. CARM1 skeletal muscle-specific knockout (mKO) mice displayed altered transcriptomic and arginine methylproteomic signatures with molecular and functional outcomes confirming remodeled skeletal muscle contractile and neuromuscular junction characteristics, which presaged decreased exercise tolerance. Moreover, CARM1 regulates AMPK-PGC-1α signalling during acute conditions of activity-induced muscle plasticity. CONCLUSIONS This study uncovers the broad impact of CARM1 in the maintenance and remodelling of skeletal muscle biology.
Collapse
Affiliation(s)
| | - Derek W Stouth
- Department of Kinesiology, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Nicolas G Hartel
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Goutham Vasam
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Sean Y Ng
- Department of Kinesiology, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Erin K Webb
- Department of Kinesiology, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Irena A Rebalka
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Andrew I Mikhail
- Department of Kinesiology, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Nicholas A Graham
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Keir J Menzies
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology and the Centre for Neuromuscular Disease, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Rd, K1H 8M5, Ottawa, Canada
| | - Thomas J Hawke
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, Hamilton, ON, L8S 4L8, Canada.
| |
Collapse
|
41
|
Cao Y, Chen Z, Qin Z, Qian K, Liu T, Zhang Y. CDKN2AIP-induced cell senescence and apoptosis of testicular seminoma are associated with CARM1 and eIF4β. Acta Biochim Biophys Sin (Shanghai) 2022; 54:604-614. [PMID: 35593475 PMCID: PMC9909323 DOI: 10.3724/abbs.2022040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Testicular seminoma is a relatively rare tumor which is mostly detected in male population aged from 15 to 35 years old. Although several molecular biomarkers have been identified to be associated with testicular seminoma pathogenesis, the exact mechanism for testicular seminoma progression remains largely unknown. CDKN2A interacting protein (CDKN2AIP) has previously been identified as a tumor suppressor in multiple malignant diseases. In this study, we aimed to further explore its role in testicular seminoma as well as the underlying molecular mechanisms. Retrospective testicular seminoma clinical samples, normal tissues, NTERA-2 cell line, and mouse xenograft models were used in this study. RT-qPCR, western blot analysis, immunofluorescence microscopy, Co-IP and IP-MS experiments were performed to detect the expression of CDKN2AIP and its interaction with CARM1 and eIF4β. SA-β-gal staining assay and H3K9me3 activity experiments were used to subsequently evaluate the cell senescence and apoptosis. Mouse xenograft animal model was used for in vivo study. The results showed that CDKN2AIP is highly expressed in normal testis samples, and is significantly suppressed in testicular seminoma clinical samples and cell line model. Up-regulation of CDKN2AIP is significantly associated with the inhibition of testicular seminoma tumor growth and the increase of cell senescence and apoptosis. CDKN2AIP exhibits anti-tumor activity by interacting with CARM1 and eIF4β. CDKN2AIP induces testicular seminoma cell senescence by suppressing CARM1 expression and eIF4β phosphorylation. The CDKN2AIP-CARM1 and CDKN2AIP-eIF4β interactions, which induce tumor cell senescence and apoptosis, may be the potential druggable molecular pathways in testicular seminoma tumor pathogenesis and progression.
Collapse
Affiliation(s)
- Yuming Cao
- Department of Gynaecology and ObstetricsZhongnan Hospital of Wuhan UniversityWuhan430071China,Clinical Medicine Research Center for Prenatal Diagnosis and Birth HealthWuhan430071China
| | - Zhenlie Chen
- Department of Gynaecology and ObstetricsZhongnan Hospital of Wuhan UniversityWuhan430071China,Clinical Medicine Research Center for Prenatal Diagnosis and Birth HealthWuhan430071China
| | - Zihan Qin
- Department of Gynaecology and ObstetricsZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Kaiyu Qian
- Department of Biological RepositoriesZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Tongzu Liu
- Urology SurgeryZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Yuanzhen Zhang
- Department of Gynaecology and ObstetricsZhongnan Hospital of Wuhan UniversityWuhan430071China,Clinical Medicine Research Center for Prenatal Diagnosis and Birth HealthWuhan430071China,Correspondence address. Tel: +86-27-67813040; E-mail:
| |
Collapse
|
42
|
Ishino Y, Shimizu S, Tohyama M, Miyata S. Coactivator‐associated arginine methyltransferase 1 controls oligodendrocyte differentiation in the corpus callosum during early brain development. Dev Neurobiol 2022; 82:245-260. [DOI: 10.1002/dneu.22871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/07/2022] [Accepted: 01/27/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yugo Ishino
- Division of Molecular Brain Science Research Institute of Traditional Asian Medicine Kindai University Osaka‐Sayama Osaka 589–8511 Japan
| | - Shoko Shimizu
- Division of Molecular Brain Science Research Institute of Traditional Asian Medicine Kindai University Osaka‐Sayama Osaka 589–8511 Japan
| | - Masaya Tohyama
- Division of Molecular Brain Science Research Institute of Traditional Asian Medicine Kindai University Osaka‐Sayama Osaka 589–8511 Japan
| | - Shingo Miyata
- Division of Molecular Brain Science Research Institute of Traditional Asian Medicine Kindai University Osaka‐Sayama Osaka 589–8511 Japan
| |
Collapse
|
43
|
von Grüning H, Coradin M, Mendoza MR, Reader J, Sidoli S, Garcia BA, Birkholtz LM. A dynamic and combinatorial histone code drives malaria parasite asexual and sexual development. Mol Cell Proteomics 2022; 21:100199. [PMID: 35051657 PMCID: PMC8941266 DOI: 10.1016/j.mcpro.2022.100199] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Histone posttranslational modifications (PTMs) frequently co-occur on the same chromatin domains or even in the same molecule. It is now established that these “histone codes” are the result of cross talk between enzymes that catalyze multiple PTMs with univocal readout as compared with these PTMs in isolation. Here, we performed a comprehensive identification and quantification of histone codes of the malaria parasite, Plasmodium falciparum. We used advanced quantitative middle-down proteomics to identify combinations of PTMs in both the proliferative, asexual stages and transmissible, sexual gametocyte stages of P. falciparum. We provide an updated, high-resolution compendium of 77 PTMs on H3 and H3.3, of which 34 are newly identified in P. falciparum. Coexisting PTMs with unique stage distinctions were identified, indicating that many of these combinatorial PTMs are associated with specific stages of the parasite life cycle. We focused on the code H3R17me2K18acK23ac for its unique presence in mature gametocytes; chromatin proteomics identified a gametocyte-specific SAGA-like effector complex including the transcription factor AP2-G2, which we tied to this specific histone code, as involved in regulating gene expression in mature gametocytes. Ultimately, this study unveils previously undiscovered histone PTMs and their functional relationship with coexisting partners. These results highlight that investigating chromatin regulation in the parasite using single histone PTM assays might overlook higher-order gene regulation for distinct proliferation and differentiation processes. First middle-down chromatin proteomics compendium of the malaria parasite, Plasmodium falciparum. Novel histone PTMs (including arginine methylation) in both asexual parasites and transmissible gametocytes. Histone PTM cross talk is dynamic life cycle stage stratified. Gametocytes rely on histone PTM connectivity to allow onward transmission. AP2-G2 is an important effector of H3K18acK23ac in mature gametocytes.
Collapse
Affiliation(s)
- Hilde von Grüning
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa; Institute for Sustainable Malaria Control, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa
| | - Mariel Coradin
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mariel R Mendoza
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa; Institute for Sustainable Malaria Control, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa.
| |
Collapse
|
44
|
Systematic pan-cancer landscape identifies CARM1 as a potential prognostic and immunological biomarker. BMC Genom Data 2022; 23:7. [PMID: 35033016 PMCID: PMC8761291 DOI: 10.1186/s12863-021-01022-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/23/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Belonging to the protein arginine methyltransferase (PRMT) family, the enzyme encoded by coactivator associated arginine methyltransferase 1 (CARM1) catalyzes the methylation of protein arginine residues, especially acts on histones and other chromatin related proteins, which is essential in regulating gene expression. Beyond its well-established involvement in the regulation of transcription, recent studies have revealed a novel role of CARM1 in tumorigenesis and development, but there is still a lack of systematic understanding of CARM1 in human cancers. An integrated analysis of CARM1 in pan-cancer may contribute to further explore its prognostic value and potential immunological function in tumor therapy. RESULTS Based on systematic analysis of data in multiple databases, we firstly verified that CARM1 is highly expressed in most tumors compared with corresponding normal tissues, and is bound up with poor prognosis in some tumors. Subsequently, relevance between CARM1 expression level and tumor immune microenvironment is analyzed from the perspectives of tumor mutation burden, microsatellite instability, mismatch repair genes, methyltransferases genes, immune checkpoint genes and immune cells infiltration, indicating a potential relationship between CARM1 expression and tumor microenvironment. A gene enrichment analysis followed shortly, which implied that the role of CARM1 in tumor pathogenesis may be related to transcriptional imbalance and viral carcinogenesis. CONCLUSIONS Our first comprehensive bioinformatics analysis provides a broad molecular perspective on the role of CARM1 in various tumors, highlights its value in clinical prognosis and potential association with tumor immune microenvironment, which may furnish an immune based antitumor strategy to provide a reference for more accurate and personalized immunotherapy in the future.
Collapse
|
45
|
Schrimpf A, Knappe O, Qvartskhava N, Poschmann G, Stühler K, Bidmon HJ, Luedde T, Häussinger D, Görg B. Hyperammonemia-induced changes in the cerebral transcriptome and proteome. Anal Biochem 2022; 641:114548. [DOI: 10.1016/j.ab.2022.114548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/10/2021] [Accepted: 01/06/2022] [Indexed: 02/07/2023]
|
46
|
Wang F, Zhang J, Tang H, Pang Y, Ke X, Peng W, Chen S, Abbas MN, Dong Z, Cui Z, Cui H. Nup54-induced CARM1 nuclear importation promotes gastric cancer cell proliferation and tumorigenesis through transcriptional activation and methylation of Notch2. Oncogene 2022; 41:246-259. [PMID: 34725461 DOI: 10.1038/s41388-021-02078-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022]
Abstract
Gastric cancer (GC) has the fifth highest incidence globally, but its molecular mechanisms are not well understood. Here, we report that coactivator-associated arginine methyltransferase 1 (CARM1) is specifically highly expressed in gastric cancer and that its overexpression correlates with poor prognosis in patients with gastric cancer. Nucleoporin 54 (Nup54) was identified as a CARM1-interacting protein that promoted CARM1 nuclear importation. In the nucleus, CARM1 cooperates with transcriptional factor EB (TFEB) to activate Notch2 transcription by inducing H3R17me2 of the Notch2 promoter but not H3R26me2. Additionally, the Notch2 intracellular domain (N2ICD) was identified as a CARM1 substrate. Methylation of N2ICD at R1786, R1838, and R2047 by CARM1 enhanced the binding between N2ICD and mastermind-like protein 1 (MAML1) and increased gastric cancer cell proliferation in vitro and tumor formation in vivo. Our findings reveal a molecular mechanism linking CARM1-mediated transcriptional activation of the Notch2 signaling pathway to Notch2 methylation in gastric cancer progression.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Jiayi Zhang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Houyi Tang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Yi Pang
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, 404120, China
| | - Xiaoxue Ke
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Wen Peng
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Shitong Chen
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Zhaobo Cui
- Department of Intensive Care Unit, Harrison International Peace Hospital, Hengshui, 053000, Hebei, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China. .,Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China.
| |
Collapse
|
47
|
Si Y, Bon C, Barbachowska M, Cadet-Daniel V, Jallet C, Soresinetti L, Boullé M, Duchateau M, Matondo M, Agou F, Halby L, Arimondo PB. A novel screening strategy to identify histone methyltransferase inhibitors reveals a crosstalk between DOT1L and CARM1. RSC Chem Biol 2022; 3:456-467. [PMID: 35441144 PMCID: PMC8985137 DOI: 10.1039/d1cb00095k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 02/04/2022] [Indexed: 11/21/2022] Open
Abstract
Epigenetic regulation is a dynamic and reversible process that controls gene expression. Abnormal function results in human diseases such as cancer, thus the enzymes that establish epigenetic marks, such as...
Collapse
Affiliation(s)
- Yang Si
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR3523 CNRS 75015 Paris France
| | - Corentin Bon
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR3523 CNRS 75015 Paris France
- Ecole Doctorale MTCI, Université de Paris, Sorbonne Paris Cité Paris France
| | - Magdalena Barbachowska
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR3523 CNRS 75015 Paris France
- Ecole Doctorale MTCI, Université de Paris, Sorbonne Paris Cité Paris France
| | - Veronique Cadet-Daniel
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR3523 CNRS 75015 Paris France
| | - Corinne Jallet
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR3523 CNRS 75015 Paris France
| | - Laura Soresinetti
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR3523 CNRS 75015 Paris France
| | - Mikaël Boullé
- Chemogenomics and Biology Screening platform, Institut Pasteur 75015 Paris France
| | - Magalie Duchateau
- Proteomic Platform, Mass spectrometry for Biology, CNRS USR 2000, Institut Pasteur 75015 Paris France
| | - Mariette Matondo
- Proteomic Platform, Mass spectrometry for Biology, CNRS USR 2000, Institut Pasteur 75015 Paris France
| | - Fabrice Agou
- Chemogenomics and Biology Screening platform, Institut Pasteur 75015 Paris France
| | - Ludovic Halby
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR3523 CNRS 75015 Paris France
| | - Paola B Arimondo
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR3523 CNRS 75015 Paris France
| |
Collapse
|
48
|
Kim EJ, Liu P, Zhang S, Donahue K, Wang Y, Schehr J, Wolfe S, Dickerson A, Lu L, Rui L, Zhong X, Wisinski K, Yu M, Suzuki A, Lang J, Ong I, Xu W. BAF155 methylation drives metastasis by hijacking super-enhancers and subverting anti-tumor immunity. Nucleic Acids Res 2021; 49:12211-12233. [PMID: 34865122 PMCID: PMC8643633 DOI: 10.1093/nar/gkab1122] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/06/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022] Open
Abstract
Subunits of the chromatin remodeler SWI/SNF are the most frequently disrupted genes in cancer. However, how post-translational modifications (PTM) of SWI/SNF subunits elicit epigenetic dysfunction remains unknown. Arginine-methylation of BAF155 by coactivator-associated arginine methyltransferase 1 (CARM1) promotes triple-negative breast cancer (TNBC) metastasis. Herein, we discovered the dual roles of methylated-BAF155 (me-BAF155) in promoting tumor metastasis: activation of super-enhancer-addicted oncogenes by recruiting BRD4, and repression of interferon α/γ pathway genes to suppress host immune response. Pharmacological inhibition of CARM1 and BAF155 methylation not only abrogated the expression of an array of oncogenes, but also boosted host immune responses by enhancing the activity and tumor infiltration of cytotoxic T cells. Moreover, strong me-BAF155 staining was detected in circulating tumor cells from metastatic cancer patients. Despite low cytotoxicity, CARM1 inhibitors strongly inhibited TNBC cell migration in vitro, and growth and metastasis in vivo. These findings illustrate a unique mechanism of arginine methylation of a SWI/SNF subunit that drives epigenetic dysregulation, and establishes me-BAF155 as a therapeutic target to enhance immunotherapy efficacy.
Collapse
Affiliation(s)
- Eui-Jun Kim
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Peng Liu
- Department of Biostatistics and Medical Informatics. School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Shengjie Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kristine Donahue
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Yidan Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Jennifer L Schehr
- Department of Medicine, University of Wisconsin, Madison, WI 53706, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Serena K Wolfe
- Department of Medicine, University of Wisconsin, Madison, WI 53706, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Amber Dickerson
- Department of Stem Cell Biology and Regenerative Medicine, and USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Li Lu
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison WI, USA
| | - Lixin Rui
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Xuehua Zhong
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison WI, USA
| | - Kari B Wisinski
- Department of Medicine, University of Wisconsin, Madison, WI 53706, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, and USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Joshua M Lang
- Department of Medicine, University of Wisconsin, Madison, WI 53706, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Irene M Ong
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
- Department of Biostatistics and Medical Informatics. School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
49
|
Tan C, Xiao Y, Huang X, Wu L, Huang Y. Alterations of Asymmetric Dimethylarginine (ADMA)-Containing Protein Profiles Associated with Chronic Pancreatitis Pathogenesis. J Inflamm Res 2021; 14:7381-7392. [PMID: 34992424 PMCID: PMC8714020 DOI: 10.2147/jir.s346575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/17/2021] [Indexed: 11/23/2022] Open
Abstract
Objective The pathophysiological mechanisms of chronic pancreatitis (CP) still remain poorly understood. In this study, we aimed to characterize asymmetric dimethylarginine (ADMA)-containing proteins in pancreatic tissues and its relationship with CP pathogenesis. Methods Totally 36 patients with CP were enrolled in this study. Seven other cholangiocarcinoma patients without pancreas involvements or patients with benign pancreatic tumors were included as the control group. Total proteins in human pancreatic tissues were digested by trypsin, and ADMA-containing peptides were enriched via immunoaffinity purification. The LC-MS/MS was performed to characterize ADMA-containing peptides and their modification sites in CP tissues. Relative asymmetric arginine dimethylation levels of HNRNPA3 proteins in human pancreatic tissues were detected by the immunoprecipitation combined with Western blot. The serum inflammatory factors were determined via the ELISA method. Results A total of 134 ADMA sites in the control group and 137 ADMA sites in CP tissues were characterized by mass spectrometry, which belong to 93 and 94 ADMA-containing proteins in the control group and CP tissues, respectively. Glycine and proline residues were significantly overrepresented in the flanking sequences of ADMA sites. ADMA-containing proteins in the CP tissues were associated with various biological processes, especially the RNA metabolism and splicing pathways. Multiple protein members of the spliceosome pathway such as HNRNPA3 possess ADMA sites in the CP tissues. HNRNPA3 dimethylation levels were greatly increased in CP tissues, which were positively correlated with inflammatory factors. Conclusion The pathogenesis of CP is associated with alterations of asymmetric arginine dimethylation in pancreatic tissues.
Collapse
Affiliation(s)
- Chaochao Tan
- Department of Clinical Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
| | - Yan Xiao
- Intensive Care Unit, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
| | - Xiangping Huang
- Department of Clinical Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
| | - Ling Wu
- Department of Clinical Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
| | - Ying Huang
- Department of Emergency, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
- Correspondence: Ying Huang Department of Emergency, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), 61 Jiefang Road, Changsha, Hunan, 410005, People’s Republic of ChinaTel +8613974858993 Email
| |
Collapse
|
50
|
Zhang Z, Guo Z, Xu X, Cao D, Yang H, Li Y, Shi Q, Du Z, Guo X, Wang X, Chen D, Zhang Y, Chen L, Zhou K, Li J, Geng M, Huang X, Xiong B. Structure-Based Discovery of Potent CARM1 Inhibitors for Solid Tumor and Cancer Immunology Therapy. J Med Chem 2021; 64:16650-16674. [PMID: 34781683 DOI: 10.1021/acs.jmedchem.1c01308] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CARM1 is a protein arginine methyltransferase and acts as a transcriptional coactivator regulating multiple biological processes. Aberrant expression of CARM1 has been related to the progression of multiple types of cancers, and therefore CARM1 was considered as a promising drug target. In the present work, we report the structure-based discovery of a series of N1-(3-(pyrimidin-2-yl)benzyl)ethane-1,2-diamines as potent CARM1 inhibitors, in which compound 43 displays high potency and selectivity. With the advantage of excellent tissue distribution, compound 43 demonstrated good in vivo efficacy for solid tumors. Furthermore, from the detailed immuno-oncology study with MC38 C57BL/6J xenograft model, we confirmed that this chemical probe 43 has profound effects in tumor immunity, which paves the way for future studies on the modulation of arginine post-translational modification that could be utilized in solid tumor treatment and cancer immunotherapy.
Collapse
Affiliation(s)
- Zhuqing Zhang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
| | - Zuhao Guo
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
| | - Xiaowei Xu
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
| | - Danyan Cao
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Hong Yang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Yanlian Li
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Qiongyu Shi
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Zhiyan Du
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Xiaobin Guo
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Xin Wang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Danqi Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Ying Zhang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
| | - Lin Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Kaixin Zhou
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Jian Li
- College of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Meiyu Geng
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China.,Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, P. R. China
| | - Xun Huang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China.,Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, P. R. China
| | - Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
| |
Collapse
|