1
|
Xie G, Zhang X, Zhang D, Han S, Liu H. Effects of different scattering components in speckle autocorrelation imaging. OPTICS LETTERS 2025; 50:880-883. [PMID: 39888778 DOI: 10.1364/ol.552026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/03/2025] [Indexed: 02/02/2025]
Abstract
Various methods of imaging through scattering media suffer a rapid degradation in image quality as medium thickness increases. To address this issue, based on speckle autocorrelation imaging we designed a double-layer diffuser experiment to study the effects of different scattering components on imaging. The results show that both singly scattered light and doubly scattered light can transmit information. However, the difference in memory effect range leads to diverse abilities in information extraction, thereby affecting image recovery. This study may provide insights into the mechanisms of information transmission within thick scattering media and methods to extract information from multiply scattered light to reconstruct images.
Collapse
|
2
|
Anderson BR, Gese N, Eilers H. Subsurface Spectroscopy of Thermal Degradation Inside an Inert Plastic Bonded Explosive (PBX) Simulant Using Feedback-Assisted Wavefront Shaping. APPLIED SPECTROSCOPY 2024; 78:1071-1077. [PMID: 39094002 DOI: 10.1177/00037028241267921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
We characterize the subsurface thermal degradation of an inert analog of high-explosive molecular crystals (Eu:Y(acac)3(DPEPO)) (EYAD) embedded inside of a plastic bonded explosive simulant using feedback-assisted wavefront shaping-based fluorescence and Raman spectroscopies. This technique utilizes wavefront shaping to focus pump light inside a heterogeneous material onto a target particle, which significantly improves its spectroscopic signature. We find that embedding the EYAD crystals in the heterogeneous polymer results in improved thermal stability, relative to bare crystal measurements, with the crystal remaining fluorescent to >612 K inside of the heterogeneous material, while the bare crystal's fluorescence is fully quenched by 500 K. We hypothesize that this improvement is due to the polymer restricting the effects of EYAD melting, which occurs at 400 K and is the primary mechanism for spectroscopic changes in the temperature range explored.
Collapse
Affiliation(s)
- Benjamin R Anderson
- Applied Sciences Laboratory, Institute for Shock Physics, Washington State University, Spokane, Washington, USA
| | - Natalie Gese
- Applied Sciences Laboratory, Institute for Shock Physics, Washington State University, Spokane, Washington, USA
| | - Hergen Eilers
- Applied Sciences Laboratory, Institute for Shock Physics, Washington State University, Spokane, Washington, USA
| |
Collapse
|
3
|
Talei Franzesi G, Gupta I, Hu M, Piatkveich K, Yildirim M, Zhao JP, Eom M, Han S, Park D, Andaraarachchi H, Li Z, Greenhagen J, Islam AM, Vashishtha P, Yaqoob Z, Pak N, Wissner-Gross AD, Martin-Alarcon D, Veinot J, So PT, Kortshagen U, Yoon YG, Sur M, Boyden ES. In Vivo Optical Clearing of Mammalian Brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611421. [PMID: 39282466 PMCID: PMC11398509 DOI: 10.1101/2024.09.05.611421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Established methods for imaging the living mammalian brain have, to date, taken optical properties of the tissue as fixed; we here demonstrate that it is possible to modify the optical properties of the brain itself to significantly enhance at-depth imaging while preserving native physiology. Using a small amount of any of several biocompatible materials to raise the refractive index of solutions superfusing the brain prior to imaging, we could increase several-fold the signals from the deepest cells normally visible and, under both one-photon and two-photon imaging, visualize cells previously too dim to see. The enhancement was observed for both anatomical and functional fluorescent reporters across a broad range of emission wavelengths. Importantly, visual tuning properties of cortical neurons in awake mice, and electrophysiological properties of neurons assessed ex vivo, were not altered by this procedure.
Collapse
|
4
|
Aizik D, Levin A. Non-invasive and noise-robust light focusing using confocal wavefront shaping. Nat Commun 2024; 15:5575. [PMID: 38956030 PMCID: PMC11219997 DOI: 10.1038/s41467-024-49697-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 06/11/2024] [Indexed: 07/04/2024] Open
Abstract
Wavefront-shaping is a promising approach for imaging fluorescent targets deep inside scattering tissue despite strong aberrations. It enables focusing an incoming illumination into a single spot inside tissue, as well as correcting the outgoing light scattered from the tissue. Previously, wavefront shaping modulations have been successively estimated using feedback from strong fluorescent beads, which have been manually added to a sample. However, such algorithms do not generalize to neurons whose emission is orders of magnitude weaker. We suggest a wavefront shaping approach that works with a confocal modulation of both the illumination and imaging arms. Since the aberrations are corrected in the optics before the detector, the low photon budget is directed into a single sensor spot and detected with high signal-noise ratio. We derive a score function for modulation evaluation from mathematical principles, and successfully use it to image fluorescence neurons, despite scattering through thick tissue.
Collapse
Affiliation(s)
- Dror Aizik
- Department of Electrical and Computer Engineering, Technion, Haifa, Israel.
| | - Anat Levin
- Department of Electrical and Computer Engineering, Technion, Haifa, Israel
| |
Collapse
|
5
|
Shen CY, Li J, Gan T, Li Y, Jarrahi M, Ozcan A. All-optical phase conjugation using diffractive wavefront processing. Nat Commun 2024; 15:4989. [PMID: 38862510 PMCID: PMC11166986 DOI: 10.1038/s41467-024-49304-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/30/2024] [Indexed: 06/13/2024] Open
Abstract
Optical phase conjugation (OPC) is a nonlinear technique used for counteracting wavefront distortions, with applications ranging from imaging to beam focusing. Here, we present a diffractive wavefront processor to approximate all-optical phase conjugation. Leveraging deep learning, a set of diffractive layers was optimized to all-optically process an arbitrary phase-aberrated input field, producing an output field with a phase distribution that is the conjugate of the input wave. We experimentally validated this wavefront processor by 3D-fabricating diffractive layers and performing OPC on phase distortions never seen during training. Employing terahertz radiation, our diffractive processor successfully performed OPC through a shallow volume that axially spans tens of wavelengths. We also created a diffractive phase-conjugate mirror by combining deep learning-optimized diffractive layers with a standard mirror. Given its compact, passive and multi-wavelength nature, this diffractive wavefront processor can be used for various applications, e.g., turbidity suppression and aberration correction across different spectral bands.
Collapse
Affiliation(s)
- Che-Yung Shen
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA
- Bioengineering Department, University of California, Los Angeles, CA, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA
| | - Jingxi Li
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA
- Bioengineering Department, University of California, Los Angeles, CA, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA
| | - Tianyi Gan
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA
| | - Yuhang Li
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA
- Bioengineering Department, University of California, Los Angeles, CA, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA
| | - Mona Jarrahi
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA.
- Bioengineering Department, University of California, Los Angeles, CA, USA.
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Sarafraz H, Nöbauer T, Kim H, Soldevila F, Gigan S, Vaziri A. Speckle-enabled in vivo demixing of neural activity in the mouse brain. BIOMEDICAL OPTICS EXPRESS 2024; 15:3586-3608. [PMID: 38867774 PMCID: PMC11166431 DOI: 10.1364/boe.524521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 06/14/2024]
Abstract
Functional imaging of neuronal activity in awake animals, using a combination of fluorescent reporters of neuronal activity and various types of microscopy modalities, has become an indispensable tool in neuroscience. While various imaging modalities based on one-photon (1P) excitation and parallel (camera-based) acquisition have been successfully used for imaging more transparent samples, when imaging mammalian brain tissue, due to their scattering properties, two-photon (2P) microscopy systems are necessary. In 2P microscopy, the longer excitation wavelengths reduce the amount of scattering while the diffraction-limited 3D localization of excitation largely eliminates out-of-focus fluorescence. However, this comes at the cost of time-consuming serial scanning of the excitation spot and more complex and expensive instrumentation. Thus, functional 1P imaging modalities that can be used beyond the most transparent specimen are highly desirable. Here, we transform light scattering from an obstacle into a tool. We use speckles with their unique patterns and contrast, formed when fluorescence from individual neurons propagates through rodent cortical tissue, to encode neuronal activity. Spatiotemporal demixing of these patterns then enables functional recording of neuronal activity from a group of discriminable sources. For the first time, we provide an experimental, in vivo characterization of speckle generation, speckle imaging and speckle-assisted demixing of neuronal activity signals in the scattering mammalian brain tissue. We found that despite an initial fast speckle decorrelation, substantial correlation was maintained over minute-long timescales that contributed to our ability to demix temporal activity traces in the mouse brain in vivo. Informed by in vivo quantifications of speckle patterns from single and multiple neurons excited using 2P scanning excitation, we recorded and demixed activity from several sources excited using 1P oblique illumination. In our proof-of-principle experiments, we demonstrate in vivo speckle-assisted demixing of functional signals from groups of sources in a depth range of 220-320 µm in mouse cortex, limited by available speckle contrast. Our results serve as a basis for designing an in vivo functional speckle imaging modality and for maximizing the key resource in any such modality, the speckle contrast. We anticipate that our results will provide critical quantitative guidance to the community for designing techniques that overcome light scattering as a fundamental limitation in bioimaging.
Collapse
Affiliation(s)
- Hossein Sarafraz
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Tobias Nöbauer
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
- The Kavli Neural Systems Institute, The Rockefeller University, New York, NY, USA
| | - Hyewon Kim
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Fernando Soldevila
- Laboratoire Kastler Brossel, ENS–Université PSL, CNRS, Sorbonne Université, College de France, 24 Rue Lhomond, F-75005 Paris, France
| | - Sylvain Gigan
- Laboratoire Kastler Brossel, ENS–Université PSL, CNRS, Sorbonne Université, College de France, 24 Rue Lhomond, F-75005 Paris, France
| | - Alipasha Vaziri
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
- The Kavli Neural Systems Institute, The Rockefeller University, New York, NY, USA
| |
Collapse
|
7
|
Shibukawa A, Higuchi R, Song G, Mikami H, Sudo Y, Jang M. Large-volume focus control at 10 MHz refresh rate via fast line-scanning amplitude-encoded scattering-assisted holography. Nat Commun 2024; 15:2926. [PMID: 38589389 PMCID: PMC11001868 DOI: 10.1038/s41467-024-47009-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
The capability of focus control has been central to optical technologies that require both high temporal and spatial resolutions. However, existing varifocal lens schemes are commonly limited to the response time on the microsecond timescale and share the fundamental trade-off between the response time and the tuning power. Here, we propose an ultrafast holographic focusing method enabled by translating the speed of a fast 1D beam scanner into the speed of the complex wavefront modulation of a relatively slow 2D spatial light modulator. Using a pair of a digital micromirror device and a resonant scanner, we demonstrate an unprecedented refresh rate of focus control of 31 MHz, which is more than 1,000 times faster than the switching rate of a digital micromirror device. We also show that multiple micrometer-sized focal spots can be independently addressed in a range of over 1 MHz within a large volume of 5 mm × 5 mm × 5.5 mm, validating the superior spatiotemporal characteristics of the proposed technique - high temporal and spatial precision, high tuning power, and random accessibility in a three-dimensional space. The demonstrated scheme offers a new route towards three-dimensional light manipulation in the 100 MHz regime.
Collapse
Affiliation(s)
- Atsushi Shibukawa
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0020, Japan
| | - Ryota Higuchi
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0020, Japan
| | - Gookho Song
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Hideharu Mikami
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0020, Japan.
| | - Yuki Sudo
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan.
| | - Mooseok Jang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
8
|
Zeng J, Zhao W, Zhai A, Ji W, Wang D. Tight focusing through scattering media via a Bessel-basis transmission matrix. OPTICS LETTERS 2024; 49:698-701. [PMID: 38300093 DOI: 10.1364/ol.514256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024]
Abstract
The transmission matrix (TM) is a powerful tool for focusing light through scattering media. Here, we demonstrate a Bessel-basis TM that enables tight focusing through the scattering media and reduces the full width at half maximum of the focus by 23% on average, as compared to the normally used Hadamard-basis TM. To measure the Bessel-basis TM, we establish a common-path inter-mode interferometer (IMI), which can fully utilize the pixels of the spatial light modulator, leading to an enhancement in the peak-to-background intensity ratio (PBR) of the focus. Experimental results suggest that the Bessel-basis TM can achieve a tighter focus behind the scattering media, and the PBR of the focus obtained by the IMI is around 14.3% higher than that achieved using the normal peripheral reference interferometry.
Collapse
|
9
|
Zhao S, Rauer B, Valzania L, Dong J, Liu R, Li F, Gigan S, de Aguiar HB. Single-pixel transmission matrix recovery via two-photon fluorescence. SCIENCE ADVANCES 2024; 10:eadi3442. [PMID: 38232161 DOI: 10.1126/sciadv.adi3442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
Imaging at depth in opaque materials has long been a challenge. Recently, wavefront shaping has enabled notable advance for deep imaging. Nevertheless, most noninvasive wavefront-shaping methods require cameras, lack the sensitivity for deep imaging under weak optical signals, or can only focus on a single "guidestar." Here, we retrieve the transmission matrix (TM) noninvasively using two-photon fluorescence exploiting a single-pixel detection combined with a computational framework, allowing to achieve single-target focus on multiple guidestars spread beyond the memory effect range. In addition, if we assume that memory effect correlations exist in the TM, we are able to substantially reduce the number of measurements needed.
Collapse
Affiliation(s)
- Shupeng Zhao
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France. 24 rue Lhomond, 75005 Paris, France
- Shaanxi Province Key Laboratory for Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bernhard Rauer
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France. 24 rue Lhomond, 75005 Paris, France
| | - Lorenzo Valzania
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France. 24 rue Lhomond, 75005 Paris, France
| | - Jonathan Dong
- Biomedical Imaging Group, Ecole polytechnique fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Ruifeng Liu
- Shaanxi Province Key Laboratory for Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Fuli Li
- Shaanxi Province Key Laboratory for Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Sylvain Gigan
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France. 24 rue Lhomond, 75005 Paris, France
| | - Hilton B de Aguiar
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France. 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
10
|
He W, Li W, Zuo H, Zhang H, Pang L. Progressive acceleration in the genetic algorithm by intragenerational mutation. APPLIED OPTICS 2024; 63:10-16. [PMID: 38175000 DOI: 10.1364/ao.505653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024]
Abstract
The intragenerational mutation of the genetic algorithm (IMGA) is proposed to actively broaden the searching space during the optimization process. The searching space is aggressively increased by expanding the variation of mutation rates of all individuals within each generation, leading to the reduction of the required number of iterations, improving the convergence speed and the enhancement factor.
Collapse
|
11
|
Zhang S, Wang Q, Zhou W, Yan A, Zhang J, Shi J, Chi N, Li Z. Spatial pilot-aided fast-adapted framework for stable image transmission over long multi-mode fiber. OPTICS EXPRESS 2023; 31:37968-37979. [PMID: 38017915 DOI: 10.1364/oe.501167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/13/2023] [Indexed: 11/30/2023]
Abstract
Multi-mode fiber (MMF) has emerged as a promising platform for spatial information transmission attributed to its high capacity. However, the scattering characteristic and time-varying nature of MMF pose challenges for long-term stable transmission. In this study, we propose a spatial pilot-aided learning framework for MMF image transmission, which effectively addresses these challenges and maintains accurate performance in practical applications. By inserting a few reference image frames into the transmitting image sequence and leveraging a fast-adapt network training scheme, our framework adaptively accommodates to the physical channel variations and enables online model update for continuous transmission. Experimented on 100 m length unstable MMFs, we demonstrate transmission accuracy exceeding 92% over hours, with pilot frame overhead around 2%. Our fast-adapt learning scheme requires training of less than 2% of network parameters and reduces the computation time by 70% compared to conventional tuning approaches. Additionally, we propose two pilot-insertion strategies and elaborately compare their applicability to a wide range of scenarios including continuous transmission, burst transmission and transmission after fiber re-plugging. The proposed spatial pilot-aided fast-adapt framework opens up the possibility for MMF spatial transmission in practical complicated applications.
Collapse
|
12
|
Blaney G, Ivich F, Sassarolia A, Niedre M, Fantini S. Dual-ratio approach for detection of point fluorophores in biological tissue. ARXIV 2023:arXiv:2305.14436v2. [PMID: 37292468 PMCID: PMC10246068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
SIGNIFICANCE Diffuse in-vivo Flow Cytometry (DiFC) is an emerging fluorescence sensing method to non-invasively detect labeled circulating cells in-vivo. However, due to Signal-to-Noise Ratio (SNR) constraints largely attributed to background tissue autofluorescence, DiFC's measurement depth is limited. multiplies Aim: The Dual-Ratio (DR) / dual-slope is a new optical measurement method that aims to suppress noise and enhance SNR to deep tissue regions. We aim to investigate the combination of DR and Near-InfraRed (NIR) DiFC to improve circulating cells' maximum detectable depth and SNR. APPROACH Phantom experiments were used to estimate the key parameters in a diffuse fluorescence excitation and emission model. This model and parameters were implemented in Monte-Carlo to simulate DR DiFC while varying noise and autofluorescence parameters to identify the advantages and limitations of the proposed technique. RESULTS Two key factors must be true to give DR DiFC an advantage over traditional DiFC; first, the fraction of noise that DR methods cannot cancel cannot be above the order of 10% for acceptable SNR. Second, DR DiFC has an advantage, in terms of SNR, if the distribution of tissue autofluorescence contributors is surface-weighted. CONCLUSIONS DR cancelable noise may be designed for (e.g. through the use of source multiplexing), and indications point to the autofluorescence contributors' distribution being truly surface-weighted in-vivo. Successful and worthwhile implementation of DR DiFC depends on these considerations, but results point to DR DiFC having possible advantages over traditional DiFC.
Collapse
Affiliation(s)
- Giles Blaney
- Tufts University, Department of Biomedical Engineering, Medford, MA USA, 02155
| | - Fernando Ivich
- Northeastern University, Department of Bioengineering, Boston, MA USA, 02120
| | - Angelo Sassarolia
- Tufts University, Department of Biomedical Engineering, Medford, MA USA, 02155
| | - Mark Niedre
- Northeastern University, Department of Bioengineering, Boston, MA USA, 02120
| | - Sergio Fantini
- Tufts University, Department of Biomedical Engineering, Medford, MA USA, 02155
| |
Collapse
|
13
|
Liang H, Li TJ, Luo J, Zhao J, Wang J, Wu D, Luo ZC, Shen Y. Optical focusing inside scattering media with iterative time-reversed ultrasonically encoded near-infrared light. OPTICS EXPRESS 2023; 31:18365-18378. [PMID: 37381549 DOI: 10.1364/oe.491462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/03/2023] [Indexed: 06/30/2023]
Abstract
Focusing light inside scattering media is a long-sought goal in optics. Time-reversed ultrasonically encoded (TRUE) focusing, which combines the advantages of biological transparency of the ultrasound and the high efficiency of digital optical phase conjugation (DOPC) based wavefront shaping, has been proposed to tackle this problem. By invoking repeated acousto-optic interactions, iterative TRUE (iTRUE) focusing can further break the resolution barrier imposed by the acoustic diffraction limit, showing great potential for deep-tissue biomedical applications. However, stringent requirements on system alignment prohibit the practical use of iTRUE focusing, especially for biomedical applications at the near-infrared spectral window. In this work, we fill this blank by developing an alignment protocol that is suitable for iTRUE focusing with a near-infrared light source. This protocol mainly contains three steps, including rough alignment with manual adjustment, fine-tuning with a high-precision motorized stage, and digital compensation through Zernike polynomials. Using this protocol, an optical focus with a peak-to-background ratio (PBR) of up to 70% of the theoretical value can be achieved. By using a 5-MHz ultrasonic transducer, we demonstrated the first iTRUE focusing using near-infrared light at 1053 nm, enabling the formation of an optical focus inside a scattering medium composed of stacked scattering films and a mirror. Quantitatively, the size of the focus decreased from roughly 1 mm to 160 µm within a few consecutive iterations and a PBR up to 70 was finally achieved. We anticipate that the capability of focusing near-infrared light inside scattering media, along with the reported alignment protocol, can be beneficial to a variety of applications in biomedical optics.
Collapse
|
14
|
Hao Y, Xiao Y, Chen W. High-fidelity ghost diffraction through complex scattering media using a modified Gerchberg-Saxton algorithm. OPTICS EXPRESS 2023; 31:14389-14402. [PMID: 37157304 DOI: 10.1364/oe.486123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this paper, we propose a modified Gerchberg-Saxton (GS) algorithm to generate random amplitude-only patterns as information carriers in ghost diffraction. With the generated random patterns, high-fidelity ghost diffraction through complex scattering media can be realized with a single-pixel detector. The modified GS algorithm adopts a support constraint in the image plane, which is divided into a target region and a support region. In the Fourier plane, amplitude of the Fourier spectrum is scaled to regulate the sum of the image function. A random amplitude-only pattern can be generated to encode a pixel of the data to be transmitted using the modified GS algorithm. Optical experiments are conducted to verify the proposed method in complex scattering environments, e.g., dynamic and turbid water with non-line-of-sight (NLOS). Experimental results demonstrate that the proposed ghost diffraction is of high fidelity and high robustness against complex scattering media. It is expected that an avenue could be opened up for ghost diffraction and transmission in complex media.
Collapse
|
15
|
Cheng Z, Li C, Khadria A, Zhang Y, Wang LV. High-gain and high-speed wavefront shaping through scattering media. NATURE PHOTONICS 2023; 17:299-305. [PMID: 37333511 PMCID: PMC10275582 DOI: 10.1038/s41566-022-01142-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 12/12/2022] [Indexed: 06/20/2023]
Abstract
Wavefront shaping (WFS) is emerging as a promising tool for controlling and focusing light in complex scattering media. The shaping system's speed, the energy gain of the corrected wavefronts, and the control degrees of freedom (DOF) are the most important metrics for WFS, especially for highly scattering and dynamic samples. Despite recent advances, current methods suffer from trade-offs that limit satisfactory performance to only one or two of these metrics. Here, we report a WFS technique that simultaneously achieves high speed, high energy gain, and high control DOF. By combining photorefractive crystal-based analog optical phase conjugation (AOPC) and stimulated emission light amplification, our technique achieves an energy gain approaching unity, more than three orders of magnitude larger than conventional AOPC. The response time of ~10 μs with about 106 control modes corresponds to an average mode time of about 0.01 ns/mode, which is more than 50 times lower than some of the fastest WFS systems to date. We anticipate that this technique will be instrumental in overcoming the optical diffusion limit in photonics and translate WFS techniques to real-world applications.
Collapse
Affiliation(s)
- Zhongtao Cheng
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Chengmingyue Li
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Anjul Khadria
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Yide Zhang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Lihong V. Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
16
|
Lee SY, Parot VJ, Bouma BE, Villiger M. Efficient dispersion modeling in optical multimode fiber. LIGHT, SCIENCE & APPLICATIONS 2023; 12:31. [PMID: 36720851 PMCID: PMC9889807 DOI: 10.1038/s41377-022-01061-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
Dispersion remains an enduring challenge for the characterization of wavelength-dependent transmission through optical multimode fiber (MMF). Beyond a small spectral correlation width, a change in wavelength elicits a seemingly independent distribution of the transmitted field. Here we report on a parametric dispersion model that describes mode mixing in MMF as an exponential map and extends the concept of principal modes to describe the fiber's spectrally resolved transmission matrix (TM). We present computational methods to fit the model to measurements at only a few, judiciously selected, discrete wavelengths. We validate the model in various MMF and demonstrate an accurate estimation of the full TM across a broad spectral bandwidth, approaching the bandwidth of the best-performing principal modes, and exceeding the original spectral correlation width by more than two orders of magnitude. The model allows us to conveniently study the spectral behavior of principal modes, and obviates the need for dense spectral measurements, enabling highly efficient reconstruction of the multispectral TM of MMF.
Collapse
Affiliation(s)
- Szu-Yu Lee
- Harvard Medical School and Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, MA, 02114, USA
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02140, USA
| | - Vicente J Parot
- Harvard Medical School and Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, MA, 02114, USA
- Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, 7820244, Chile
| | - Brett E Bouma
- Harvard Medical School and Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, MA, 02114, USA
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02140, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02140, USA
| | - Martin Villiger
- Harvard Medical School and Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, MA, 02114, USA.
| |
Collapse
|
17
|
Fan M, Zhu J, Wang S, Pu Y, Li H, Zhou S, Wang S. Light scattering control with the two-step focusing method based on neural networks and multi-pixel coding. OPTICS EXPRESS 2022; 30:46888-46899. [PMID: 36558629 DOI: 10.1364/oe.476255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Focusing light through scattering media is essential for high-resolution optical imaging and deep penetration. Here, a two-step focusing method based on neural networks (NNs) and multi-pixel coding is proposed to achieve high-quality focusing with theoretical maximum enhancement. In the first step, a single-layer neural network (SLNN) is used to obtain the initial mask, which can be used to focus with a moderate enhancement. In the second step, we use multi-pixel coding to encode the initial mask. The coded masks and their corresponding speckle patterns are used to train another SLNN to get the final mask and achieve high-quality focusing. In this experiment, for a mask of 16 × 16 modulation units, in the case of using 8 pixels in a modulation unit, focus with the enhancement of 40.3 (only 0.44 less than the theoretical value) has been achieved with 3000 pictures (1000 pictures in the first step and 2000 pictures in the second step). Compared with the case of employing only the initial mask and the direct multi-pixel encoded mask, the enhancement is increased by 220% and 24%. The proposed method provides a new idea for improving the focusing effect through the scattering media using NNs.
Collapse
|
18
|
Luo J, Liu Y, Wu D, Xu X, Shao L, Feng Y, Pan J, Zhao J, Shen Y, Li Z. High-speed single-exposure time-reversed ultrasonically encoded optical focusing against dynamic scattering. SCIENCE ADVANCES 2022; 8:eadd9158. [PMID: 36525498 PMCID: PMC11580674 DOI: 10.1126/sciadv.add9158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Focusing light deep inside live scattering tissue promises to revolutionize biophotonics by enabling deep tissue noninvasive optical imaging, manipulation, and therapy. By combining with guide stars, wavefront shaping is emerging as a powerful tool to make scattering media optically transparent. However, for in vivo biomedical applications, the speeds of existing techniques are still too slow to accommodate the fast speckle decorrelation of live tissue. To address this key bottleneck, we develop a quaternary phase encoding scheme to enable single-exposure time-reversed ultrasonically encode optical focusing with full-phase modulations. Specifically, we focus light inside dynamic scattering media with an average mode time down to 29 ns, which indicates that more than 104 effective spatial modes can be controlled within 1 millisecond. With this technique, we demonstrate in vivo light focusing in between a highly opaque adult zebrafish of 5.1 millimeters in thickness and a ground glass diffuser. Our work presents an important step toward in vivo deep tissue applications of wavefront shaping.
Collapse
Affiliation(s)
- Jiawei Luo
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, China
| | - Yan Liu
- School of Optometry, Indiana University, Bloomington, IN, USA
| | - Daixuan Wu
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, China
| | - Xiao Xu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lijie Shao
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Yuanhua Feng
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Jingshun Pan
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, China
| | - Jiayu Zhao
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, China
| | - Yuecheng Shen
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, China
| | - Zhaohui Li
- School of Electronics and Information Technology, Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
19
|
Xue Y, Ren D, Waller L. Three-dimensional bi-functional refractive index and fluorescence microscopy (BRIEF). BIOMEDICAL OPTICS EXPRESS 2022; 13:5900-5908. [PMID: 36733730 PMCID: PMC9872885 DOI: 10.1364/boe.456621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/19/2022] [Accepted: 10/01/2022] [Indexed: 06/18/2023]
Abstract
Fluorescence microscopy is a powerful tool for imaging biological samples with molecular specificity. In contrast, phase microscopy provides label-free measurement of the sample's refractive index (RI), which is an intrinsic optical property that quantitatively relates to cell morphology, mass, and stiffness. Conventional imaging techniques measure either the labeled fluorescence (functional) information or the label-free RI (structural) information, though it may be valuable to have both. For example, biological tissues have heterogeneous RI distributions, causing sample-induced scattering that degrades the fluorescence image quality. When both fluorescence and 3D RI are measured, one can use the RI information to digitally correct multiple-scattering effects in the fluorescence image. Here, we develop a new computational multi-modal imaging method based on epi-mode microscopy that reconstructs both 3D fluorescence and 3D RI from a single dataset. We acquire dozens of fluorescence images, each 'illuminated' by a single fluorophore, then solve an inverse problem with a multiple-scattering forward model. We experimentally demonstrate our method for epi-mode 3D RI imaging and digital correction of multiple-scattering effects in fluorescence images.
Collapse
Affiliation(s)
- Yi Xue
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - David Ren
- Department of Electrical Engineering & Computer Sciences, University of California, Berkeley, CA 94720, USA
| | - Laura Waller
- Department of Electrical Engineering & Computer Sciences, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
20
|
Liu L, Liang W, Qu Y, He Q, Shao R, Ding C, Yang J. Anti-scattering light focusing with full-polarization digital optical phase conjugation based on digital micromirror devices. OPTICS EXPRESS 2022; 30:31614-31622. [PMID: 36242240 DOI: 10.1364/oe.467444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/09/2022] [Indexed: 06/16/2023]
Abstract
The high resolution of optical imaging and optogenetic stimulation in the deep tissue requires focusing light against strong scattering with high contrast. Digital optical phase conjugation (DOPC) has emerged recently as a promising solution for this requirement, because of its short latency. A digital micromirror device (DMD) in the implementation of DOPC enables a large number of modulation modes and a high speed of modulation both of which are important when dealing with a highly dynamic scattering medium. Here, we propose full-polarization DOPC (fpDOPC) in which two DMDs simultaneously modulate the two orthogonally polarized components of the optical field, respectively, to mitigate the effect of depolarization caused by strong scattering. We designed a simple system to overcome the difficulty of alignment encountered when modulating two polarized components independently. Our simulation and experiment showed that fpDOPC could generate a high-contrast focal spot, even though the polarization of light had been highly randomized by scattering. In comparison with the conventional method of modulating the polarization along a particular direction, fpDOPC can improve the peak to background ratio of the focal spot by a factor of two. This new technique has good potential in applications such as high-contrast light focusing in vivo.
Collapse
|
21
|
Yu Z, Li H, Zhong T, Park JH, Cheng S, Woo CM, Zhao Q, Yao J, Zhou Y, Huang X, Pang W, Yoon H, Shen Y, Liu H, Zheng Y, Park Y, Wang LV, Lai P. Wavefront shaping: A versatile tool to conquer multiple scattering in multidisciplinary fields. Innovation (N Y) 2022; 3:100292. [PMID: 36032195 PMCID: PMC9405113 DOI: 10.1016/j.xinn.2022.100292] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/23/2022] [Indexed: 10/26/2022] Open
Abstract
Optical techniques offer a wide variety of applications as light-matter interactions provide extremely sensitive mechanisms to probe or treat target media. Most of these implementations rely on the usage of ballistic or quasi-ballistic photons to achieve high spatial resolution. However, the inherent scattering nature of light in biological tissues or tissue-like scattering media constitutes a critical obstacle that has restricted the penetration depth of non-scattered photons and hence limited the implementation of most optical techniques for wider applications. In addition, the components of an optical system are usually designed and manufactured for a fixed function or performance. Recent advances in wavefront shaping have demonstrated that scattering- or component-induced phase distortions can be compensated by optimizing the wavefront of the input light pattern through iteration or by conjugating the transmission matrix of the scattering medium. This offers unprecedented opportunities in many applications to achieve controllable optical delivery or detection at depths or dynamically configurable functionalities by using scattering media to substitute conventional optical components. In this article, the recent progress of wavefront shaping in multidisciplinary fields is reviewed, from optical focusing and imaging with scattering media, functionalized devices, modulation of mode coupling, and nonlinearity in multimode fiber to multimode fiber-based applications. Apart from insights into the underlying principles and recent advances in wavefront shaping implementations, practical limitations and roadmap for future development are discussed in depth. Looking back and looking forward, it is believed that wavefront shaping holds a bright future that will open new avenues for noninvasive or minimally invasive optical interactions and arbitrary control inside deep tissues. The high degree of freedom with multiple scattering will also provide unprecedented opportunities to develop novel optical devices based on a single scattering medium (generic or customized) that can outperform traditional optical components.
Collapse
|
22
|
Ryu Y, Kim Y, Lim HR, Kim HJ, Park BS, Kim JG, Park SJ, Ha CM. Single-Step Fast Tissue Clearing of Thick Mouse Brain Tissue for Multi-Dimensional High-Resolution Imaging. Int J Mol Sci 2022; 23:ijms23126826. [PMID: 35743267 PMCID: PMC9224586 DOI: 10.3390/ijms23126826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/10/2022] Open
Abstract
Recent advances in optical clearing techniques have dramatically improved deep tissue imaging by reducing the obscuring effects of light scattering and absorption. However, these optical clearing methods require specialized equipment or a lengthy undertaking with complex protocols that can lead to sample volume changes and distortion. In addition, the imaging of cleared tissues has limitations, such as fluorescence bleaching, harmful and foul-smelling solutions, and the difficulty of handling samples in high-viscosity refractive index (RI) matching solutions. To address the various limitations of thick tissue imaging, we developed an Aqueous high refractive Index matching and tissue Clearing solution for Imaging (termed AICI) with a one-step tissue clearing protocol that was easily made at a reasonable price in our own laboratory without any equipment. AICI can rapidly clear a 1 mm thick brain slice within 90 min with simultaneous RI matching, low viscosity, and a high refractive index (RI = 1.466), allowing the imaging of the sample without additional processing. We compared AICI with commercially available RI matching solutions, including optical clear agents (OCAs), for tissue clearing. The viscosity of AICI is closer to that of water compared with other RI matching solutions, and there was a less than 2.3% expansion in the tissue linear morphology during 24 h exposure to AICI. Moreover, AICI remained fluid over 30 days of air exposure, and the EGFP fluorescence signal was only reduced to ~65% after 10 days. AICI showed a limited clearing of brain tissue >3 mm thick. However, fine neuronal structures, such as dendritic spines and axonal boutons, could still be imaged in thick brain slices treated with AICI. Therefore, AICI is useful not only for the three-dimensional (3D) high-resolution identification of neuronal structures, but also for the examination of multiple structural imaging by neuronal distribution, projection, and gene expression in deep brain tissue. AICI is applicable beyond the imaging of fluorescent antibodies and dyes, and can clear a variety of tissue types, making it broadly useful to researchers for optical imaging applications.
Collapse
Affiliation(s)
- Youngjae Ryu
- Research Strategy Office and Brain Research Core Facilities of Korea Brain Research Institute, Daegu 41068, Korea; (Y.R.); (Y.K.); (H.R.L.)
- Department of Histology, College of Veterinary Medicine, Kyungpook University, Daegu 41566, Korea;
| | - Yoonju Kim
- Research Strategy Office and Brain Research Core Facilities of Korea Brain Research Institute, Daegu 41068, Korea; (Y.R.); (Y.K.); (H.R.L.)
| | - Hye Ryeong Lim
- Research Strategy Office and Brain Research Core Facilities of Korea Brain Research Institute, Daegu 41068, Korea; (Y.R.); (Y.K.); (H.R.L.)
| | - Hyung-Joon Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu 41068, Korea;
| | - Byong Seo Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (B.S.P.); (J.G.K.)
| | - Jae Geun Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (B.S.P.); (J.G.K.)
| | - Sang-Joon Park
- Department of Histology, College of Veterinary Medicine, Kyungpook University, Daegu 41566, Korea;
| | - Chang Man Ha
- Research Strategy Office and Brain Research Core Facilities of Korea Brain Research Institute, Daegu 41068, Korea; (Y.R.); (Y.K.); (H.R.L.)
- Correspondence:
| |
Collapse
|
23
|
Zhang J, Gao Z, Zhang J, Ge P, Gao F, Wang J, Gao F. Snapshot time-reversed ultrasonically encoded optical focusing guided by time-reversed photoacoustic wave. PHOTOACOUSTICS 2022; 26:100352. [PMID: 35433254 PMCID: PMC9006768 DOI: 10.1016/j.pacs.2022.100352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 05/29/2023]
Abstract
Deep-tissue optical imaging is a longstanding challenge limited by scattering. Both optical imaging and treatment can benefit from focusing light in deep tissue beyond one transport mean free path. Wavefront shaping based on time-reversed ultrasonically encoded (TRUE) optical focusing utilizes ultrasound focus, which is much less scattered than light in biological tissues as the 'guide star'. However, the traditional TRUE is limited by the ultrasound focusing area and pressure tagging efficiency, especially in acoustically heterogeneous medium. Even the improved version of iterative TRUE comes at a large time consumption, which limits the application of TRUE. To address this problem, we proposed a method called time-reversed photoacoustic wave guided time-reversed ultrasonically encoded (TRPA-TRUE) optical focusing by integrating accurate ultrasonic focusing through acoustically heterogeneous medium guided by time-reversing PA signals, and the ultrasound modulation of diffused coherent light with optical phase conjugation (OPC), achieving dynamic focusing of light into scattering medium. Simulation results show that the focusing accuracy of the proposed method has been significantly improved compared with conventional TRUE, which is more suitable for practical applications that suffers severe acoustic distortion, e.g. transcranial optical focusing.
Collapse
Affiliation(s)
- Juze Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zijian Gao
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jingyan Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Peng Ge
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Feng Gao
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jingya Wang
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fei Gao
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, Shanghai 201210, China
| |
Collapse
|
24
|
Cao J, Yang Q, Miao Y, Li Y, Qiu S, Zhu Z, Wang P, Chen Z. Enhance the delivery of light energy ultra-deep into turbid medium by controlling multiple scattering photons to travel in open channels. LIGHT, SCIENCE & APPLICATIONS 2022; 11:108. [PMID: 35462570 PMCID: PMC9035453 DOI: 10.1038/s41377-022-00795-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/01/2022] [Accepted: 04/09/2022] [Indexed: 05/24/2023]
Abstract
Multiple light scattering is considered as the major limitation for deep imaging and focusing in turbid media. In this paper, we present an innovative method to overcome this limitation and enhance the delivery of light energy ultra-deep into turbid media with significant improvement in focusing. Our method is based on a wide-field reflection matrix optical coherence tomography (RM-OCT). The time-reversal decomposition of the RM is calibrated with the Tikhonov regularization parameter in order to get more accurate reversal results deep inside the scattering sample. We propose a concept named model energy matrix, which provides a direct mapping of light energy distribution inside the scattering sample. To the best of our knowledge, it is the first time that a method to measure and quantify the distribution of beam intensity inside a scattering sample is demonstrated. By employing the inversion of RM to find the matched wavefront and shaping with a phase-only spatial light modulator, we succeeded in both focusing a beam deep (~9.6 times of scattering mean free path, SMFP) inside the sample and increasing the delivery of light energy by an order of magnitude at an ultra-deep (~14.4 SMFP) position. This technique provides a powerful tool to understand the propagation of photon in a scattering medium and opens a new way to focus light inside biological tissues.
Collapse
Affiliation(s)
- Jing Cao
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, 92612, USA
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, 570228, Hainan, China
| | - Qiang Yang
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, 92612, USA
| | - Yusi Miao
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, 92612, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| | - Yan Li
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, 92612, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| | - Saijun Qiu
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, 92612, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| | - Zhikai Zhu
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, 92612, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| | - Pinghe Wang
- China State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610054, Chengdu, China.
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, 92612, USA.
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
25
|
Wang N, Ren F, Li L, Wang H, Wang L, Zeng Q, Song Y, Zeng T, Zhu S, Chen X. Quantitative chemical sensing of drugs in scattering media with Bessel beam Raman spectroscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:2488-2502. [PMID: 35519250 PMCID: PMC9045933 DOI: 10.1364/boe.455666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/06/2022] [Accepted: 03/16/2022] [Indexed: 06/01/2023]
Abstract
Scattering can seriously affect the highly sensitive detection and quantitative analysis of chemical substances in scattering media and becomes a significant challenge for in vivo application of Raman spectroscopy. In this study, we demonstrated a proof of concept for using the self-reconstructing Bessel beam for Raman spectroscopic sensing of the chemicals in the handmade scattering media and biological tissue slices. The homebuilt Bessel beam Raman spectroscopy (BRS) was capable of accurately detecting the Raman spectra of the chemicals buried in the scattering media, and had a superiority in quantitative analysis. The feasibility of the developed technique was verified by detecting the Raman spectra of pure samples in air. Compared with the spectra acquired by the Gaussian beam Raman spectroscope, the performance of the BRS system in terms of Raman spectrum detection and Raman peak recognition was confirmed. Subsequently, by employing the technique for the detection of acetaminophen buried in the scattering media, the application of the new technology in detecting and quantitating the chemicals in the scattering media were underlined, offering greater detection depth and better linear quantification capability than the conventional Gaussian beam Raman spectroscopy. Finally, we explored the potential of the BRS system for chemical sensing of acetaminophen in biological tissue slices, indicating a significant development towards the evaluation of drug in vivo.
Collapse
Affiliation(s)
- Nan Wang
- Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, Xidian University, Xi’an, Shaanxi 710126, China
- Equal contributors
| | - Feng Ren
- Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, Xidian University, Xi’an, Shaanxi 710126, China
- Equal contributors
| | - Li Li
- Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, Xidian University, Xi’an, Shaanxi 710126, China
| | - Haoyu Wang
- Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, Xidian University, Xi’an, Shaanxi 710126, China
| | - Lin Wang
- School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, Shaanxi 710048, China
| | - Qi Zeng
- Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, Xidian University, Xi’an, Shaanxi 710126, China
| | - Yali Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tingting Zeng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shouping Zhu
- Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, Xidian University, Xi’an, Shaanxi 710126, China
| | - Xueli Chen
- Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, Xidian University, Xi’an, Shaanxi 710126, China
| |
Collapse
|
26
|
Abdelfattah AS, Ahuja S, Akkin T, Allu SR, Brake J, Boas DA, Buckley EM, Campbell RE, Chen AI, Cheng X, Čižmár T, Costantini I, De Vittorio M, Devor A, Doran PR, El Khatib M, Emiliani V, Fomin-Thunemann N, Fainman Y, Fernandez-Alfonso T, Ferri CGL, Gilad A, Han X, Harris A, Hillman EMC, Hochgeschwender U, Holt MG, Ji N, Kılıç K, Lake EMR, Li L, Li T, Mächler P, Miller EW, Mesquita RC, Nadella KMNS, Nägerl UV, Nasu Y, Nimmerjahn A, Ondráčková P, Pavone FS, Perez Campos C, Peterka DS, Pisano F, Pisanello F, Puppo F, Sabatini BL, Sadegh S, Sakadzic S, Shoham S, Shroff SN, Silver RA, Sims RR, Smith SL, Srinivasan VJ, Thunemann M, Tian L, Tian L, Troxler T, Valera A, Vaziri A, Vinogradov SA, Vitale F, Wang LV, Uhlířová H, Xu C, Yang C, Yang MH, Yellen G, Yizhar O, Zhao Y. Neurophotonic tools for microscopic measurements and manipulation: status report. NEUROPHOTONICS 2022; 9:013001. [PMID: 35493335 PMCID: PMC9047450 DOI: 10.1117/1.nph.9.s1.013001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Neurophotonics was launched in 2014 coinciding with the launch of the BRAIN Initiative focused on development of technologies for advancement of neuroscience. For the last seven years, Neurophotonics' agenda has been well aligned with this focus on neurotechnologies featuring new optical methods and tools applicable to brain studies. While the BRAIN Initiative 2.0 is pivoting towards applications of these novel tools in the quest to understand the brain, this status report reviews an extensive and diverse toolkit of novel methods to explore brain function that have emerged from the BRAIN Initiative and related large-scale efforts for measurement and manipulation of brain structure and function. Here, we focus on neurophotonic tools mostly applicable to animal studies. A companion report, scheduled to appear later this year, will cover diffuse optical imaging methods applicable to noninvasive human studies. For each domain, we outline the current state-of-the-art of the respective technologies, identify the areas where innovation is needed, and provide an outlook for the future directions.
Collapse
Affiliation(s)
- Ahmed S. Abdelfattah
- Brown University, Department of Neuroscience, Providence, Rhode Island, United States
| | - Sapna Ahuja
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Taner Akkin
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Srinivasa Rao Allu
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Joshua Brake
- Harvey Mudd College, Department of Engineering, Claremont, California, United States
| | - David A. Boas
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Erin M. Buckley
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University, Department of Pediatrics, Atlanta, Georgia, United States
| | - Robert E. Campbell
- University of Tokyo, Department of Chemistry, Tokyo, Japan
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada
| | - Anderson I. Chen
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Xiaojun Cheng
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Tomáš Čižmár
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Irene Costantini
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Biology, Florence, Italy
- National Institute of Optics, National Research Council, Rome, Italy
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Anna Devor
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Patrick R. Doran
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Mirna El Khatib
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | | | - Natalie Fomin-Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Yeshaiahu Fainman
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Tomas Fernandez-Alfonso
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Christopher G. L. Ferri
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Ariel Gilad
- The Hebrew University of Jerusalem, Institute for Medical Research Israel–Canada, Department of Medical Neurobiology, Faculty of Medicine, Jerusalem, Israel
| | - Xue Han
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Andrew Harris
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | | | - Ute Hochgeschwender
- Central Michigan University, Department of Neuroscience, Mount Pleasant, Michigan, United States
| | - Matthew G. Holt
- University of Porto, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| | - Na Ji
- University of California Berkeley, Department of Physics, Berkeley, California, United States
| | - Kıvılcım Kılıç
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evelyn M. R. Lake
- Yale School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, Connecticut, United States
| | - Lei Li
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Tianqi Li
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Philipp Mächler
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evan W. Miller
- University of California Berkeley, Departments of Chemistry and Molecular & Cell Biology and Helen Wills Neuroscience Institute, Berkeley, California, United States
| | | | | | - U. Valentin Nägerl
- Interdisciplinary Institute for Neuroscience University of Bordeaux & CNRS, Bordeaux, France
| | - Yusuke Nasu
- University of Tokyo, Department of Chemistry, Tokyo, Japan
| | - Axel Nimmerjahn
- Salk Institute for Biological Studies, Waitt Advanced Biophotonics Center, La Jolla, California, United States
| | - Petra Ondráčková
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Francesco S. Pavone
- National Institute of Optics, National Research Council, Rome, Italy
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Physics, Florence, Italy
| | - Citlali Perez Campos
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Darcy S. Peterka
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Filippo Pisano
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Francesca Puppo
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Bernardo L. Sabatini
- Harvard Medical School, Howard Hughes Medical Institute, Department of Neurobiology, Boston, Massachusetts, United States
| | - Sanaz Sadegh
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Sava Sakadzic
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Shy Shoham
- New York University Grossman School of Medicine, Tech4Health and Neuroscience Institutes, New York, New York, United States
| | - Sanaya N. Shroff
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - R. Angus Silver
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Ruth R. Sims
- Sorbonne University, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Spencer L. Smith
- University of California Santa Barbara, Department of Electrical and Computer Engineering, Santa Barbara, California, United States
| | - Vivek J. Srinivasan
- New York University Langone Health, Departments of Ophthalmology and Radiology, New York, New York, United States
| | - Martin Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Lei Tian
- Boston University, Departments of Electrical Engineering and Biomedical Engineering, Boston, Massachusetts, United States
| | - Lin Tian
- University of California Davis, Department of Biochemistry and Molecular Medicine, Davis, California, United States
| | - Thomas Troxler
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Antoine Valera
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Alipasha Vaziri
- Rockefeller University, Laboratory of Neurotechnology and Biophysics, New York, New York, United States
- The Rockefeller University, The Kavli Neural Systems Institute, New York, New York, United States
| | - Sergei A. Vinogradov
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Flavia Vitale
- Center for Neuroengineering and Therapeutics, Departments of Neurology, Bioengineering, Physical Medicine and Rehabilitation, Philadelphia, Pennsylvania, United States
| | - Lihong V. Wang
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Hana Uhlířová
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Chris Xu
- Cornell University, School of Applied and Engineering Physics, Ithaca, New York, United States
| | - Changhuei Yang
- California Institute of Technology, Departments of Electrical Engineering, Bioengineering and Medical Engineering, Pasadena, California, United States
| | - Mu-Han Yang
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Gary Yellen
- Harvard Medical School, Department of Neurobiology, Boston, Massachusetts, United States
| | - Ofer Yizhar
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | - Yongxin Zhao
- Carnegie Mellon University, Department of Biological Sciences, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
27
|
Wang J, Liang H, Luo J, Ye B, Shen Y. Modeling of iterative time-reversed ultrasonically encoded optical focusing in a reflection mode. OPTICS EXPRESS 2021; 29:30961-30977. [PMID: 34614811 DOI: 10.1364/oe.438736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Time-reversed ultrasonically-encoded (TRUE) optical focusing is a promising technique to realize deep-tissue optical focusing by employing ultrasonic guide stars. However, the sizes of the ultrasound-induced optical focus are determined by the wavelengths of the ultrasound, which are typically tens of microns. To satisfy the need for high-resolution imaging and manipulation, iterative TRUE (iTRUE) was proposed to break this limit by triggering repeated interactions between light and ultrasound and compressing the optical focus. However, even for the best result reported to date, the resolutions along the ultrasound axial and lateral direction were merely improved by only 2-fold to 3-fold. This observation leads to doubt whether iTRUE can be effective in reducing the size of the optical focus. In this work, we address this issue by developing a physical model to investigate iTRUE in a reflection mode numerically. Our numerical results show that, under the influence of shot noises, iTRUE can reduce the optical focus to a single speckle within a finite number of iterations. This model also allows numerical investigations of iTRUE in detail. Quantitatively, based on the parameters set, we show that the optical focus can be reduced to a size of 1.6 µm and a peak-to-background ratio over 104 can be realized. It is also shown that iTRUE cannot significantly advance the focusing depth. We anticipate that this work can serve as useful guidance for optimizing iTRUE system for future biomedical applications, including deep-tissue optical imaging, laser surgery, and optogenetics.
Collapse
|
28
|
Cheng Z, Wang LV. Focusing light into scattering media with ultrasound-induced field perturbation. LIGHT, SCIENCE & APPLICATIONS 2021; 10:159. [PMID: 34341328 PMCID: PMC8329210 DOI: 10.1038/s41377-021-00605-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 05/08/2023]
Abstract
Focusing light into scattering media, although challenging, is highly desirable in many realms. With the invention of time-reversed ultrasonically encoded (TRUE) optical focusing, acousto-optic modulation was demonstrated as a promising guidestar mechanism for achieving noninvasive and addressable optical focusing into scattering media. Here, we report a new ultrasound-assisted technique, ultrasound-induced field perturbation optical focusing, abbreviated as UFP. Unlike in conventional TRUE optical focusing, where only the weak frequency-shifted first-order diffracted photons due to acousto-optic modulation are useful, here UFP leverages the brighter zeroth-order photons diffracted by an ultrasonic guidestar as information carriers to guide optical focusing. We find that the zeroth-order diffracted photons, although not frequency-shifted, do have a field perturbation caused by the existence of the ultrasonic guidestar. By detecting and time-reversing the differential field of the frequency-unshifted photons when the ultrasound is alternately ON and OFF, we can focus light to the position where the field perturbation occurs inside the scattering medium. We demonstrate here that UFP optical focusing has superior performance to conventional TRUE optical focusing, which benefits from the more intense zeroth-order photons. We further show that UFP optical focusing can be easily and flexibly developed into double-shot realization or even single-shot realization, which is desirable for high-speed wavefront shaping. This new method upsets conventional thinking on the utility of an ultrasonic guidestar and broadens the horizon of light control in scattering media. We hope that it provides a more efficient and flexible mechanism for implementing ultrasound-guided wavefront shaping.
Collapse
Affiliation(s)
- Zhongtao Cheng
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
29
|
He Y, Wu D, Zhang R, Cao Z, Huang Y, Shen Y. Genetic-algorithm-assisted coherent enhancement absorption in scattering media by exploiting transmission and reflection matrices. OPTICS EXPRESS 2021; 29:20353-20369. [PMID: 34266126 DOI: 10.1364/oe.426496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
The investigations on coherent enhancement absorption (CEA) inside scattering media are critically important in biophotonics. CEA can deliver light to the targeted position, thus enabling deep-tissue optical imaging by improving signal strength and imaging resolution. In this work, we develop a numerical framework that employs the method of finite-difference time-domain. Both the transmission and reflection matrices of scattering media with open boundaries are constructed, allowing the studies on the eigenvalues and eigenchannels. To realize CEA for scattering media with local absorption, we develop a genetic-algorithm-assisted numerical model. By minimizing the total transmittance and reflectance simultaneously, different realizations of CEA are observed and, without setting internal monitors, can be differentiated with cases of light leaked from sides. By modulating the incident wavefront at only one side of the scattering medium, it is shown that for a 5-μm-diameter absorber buried inside a scattering medium of 15 μm × 12 μm, more than half of the incident light can be delivered and absorbed at the target position. The enhancement in absorption is more than four times higher than that with random input. This value can be even higher for smaller absorption regions. We also quantify the effectiveness of the method and show that it is inversely proportional to the openness of the scattering medium. This result is potentially useful for targeted light delivery inside scattering media with local absorption.
Collapse
|
30
|
Park J, Park B, Kim TY, Jung S, Choi WJ, Ahn J, Yoon DH, Kim J, Jeon S, Lee D, Yong U, Jang J, Kim WJ, Kim HK, Jeong U, Kim HH, Kim C. Quadruple ultrasound, photoacoustic, optical coherence, and fluorescence fusion imaging with a transparent ultrasound transducer. Proc Natl Acad Sci U S A 2021; 118:e1920879118. [PMID: 33836558 PMCID: PMC7980418 DOI: 10.1073/pnas.1920879118] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ultrasound and optical imagers are used widely in a variety of biological and medical applications. In particular, multimodal implementations combining light and sound have been actively investigated to improve imaging quality. However, the integration of optical sensors with opaque ultrasound transducers suffers from low signal-to-noise ratios, high complexity, and bulky form factors, significantly limiting its applications. Here, we demonstrate a quadruple fusion imaging system using a spherically focused transparent ultrasound transducer that enables seamless integration of ultrasound imaging with photoacoustic imaging, optical coherence tomography, and fluorescence imaging. As a first application, we comprehensively monitored multiparametric responses to chemical and suture injuries in rats' eyes in vivo, such as corneal neovascularization, structural changes, cataracts, and inflammation. As a second application, we successfully performed multimodal imaging of tumors in vivo, visualizing melanomas without using labels and visualizing 4T1 mammary carcinomas using PEGylated gold nanorods. We strongly believe that the seamlessly integrated multimodal system can be used not only in ophthalmology and oncology but also in other healthcare applications with broad impact and interest.
Collapse
Affiliation(s)
- Jeongwoo Park
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Byullee Park
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Tae Yeong Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Sungjin Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Woo June Choi
- School of Electrical and Electronics Engineering, Chung-Ang University, 06974 Seoul, Republic of Korea
| | - Joongho Ahn
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Dong Hee Yoon
- Department of Ophthalmology, School of Medicine, Kyungpook National University, 41944 Daegu, Republic of Korea
| | - Jeongho Kim
- Department of Ophthalmology, School of Medicine, Kyungpook National University, 41944 Daegu, Republic of Korea
| | - Seungwan Jeon
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Donghyun Lee
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Uijung Yong
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Jinah Jang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Won Jong Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Chemistry, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Hong Kyun Kim
- Department of Ophthalmology, School of Medicine, Kyungpook National University, 41944 Daegu, Republic of Korea
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea;
| | - Hyung Ham Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea;
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Chulhong Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea;
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| |
Collapse
|
31
|
Zhao T, Ourselin S, Vercauteren T, Xia W. High-speed photoacoustic-guided wavefront shaping for focusing light in scattering media. OPTICS LETTERS 2021; 46:1165-1168. [PMID: 33649683 PMCID: PMC8237830 DOI: 10.1364/ol.412572] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/05/2020] [Accepted: 12/16/2020] [Indexed: 05/09/2023]
Abstract
Wavefront shaping is becoming increasingly attractive as it promises to enable various biomedical applications by breaking through the optical diffusion limit that prevents light focusing at depths larger than ∼1mm in biological tissue. However, despite recent advancements in wavefront shaping technology, such as those exploiting non-invasive photoacoustic-guidance, in vivo demonstrations remain challenging mainly due to rapid tissue speckle decorrelation. In this work, we report a high-speed photoacoustic-guided wavefront shaping method with a relatively simple experimental setup, based on the characterization of a scattering medium with a real-valued intensity transmission matrix. We demonstrated light focusing through an optical diffuser by optimizing 4096 binary amplitude modulation modes of a digital micromirror device within ∼300ms, leading to a system runtime of 75 µs per input mode, which is 3 orders of magnitude smaller than the smallest runtime reported in literature so far using photoacoustic-guided wavefront shaping. Thus, our method is a solid step forward toward in vivo applications of wavefront shaping.
Collapse
|
32
|
Xie X, He Q, Liu Y, Liang H, Zhou J. Non-invasive optical imaging using the extension of the Fourier-domain shower-curtain effect. OPTICS LETTERS 2021; 46:98-101. [PMID: 33362026 DOI: 10.1364/ol.415181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Optical imaging for non-self-luminous objects surrounded by complex scattering environments is scientifically challenging and technologically important. We propose a non-invasive imaging method by externally sending the illuminating light through the scattering medium and by detecting and analyzing the speckle patterns. The imaging of the object is recovered by extending the application scope of the Fourier-domain shower-curtain effect. It is found that the imaging depth is substantially extended and that faster imaging restoration is realized with the improved illumination scheme assisted with optical lenses, hence making it possible to apply the non-invasive optical imaging technique for practical applications.
Collapse
|
33
|
Kanngiesser J, Roth B. Wavefront Shaping Concepts for Application in Optical Coherence Tomography-A Review. SENSORS (BASEL, SWITZERLAND) 2020; 20:E7044. [PMID: 33316998 PMCID: PMC7763956 DOI: 10.3390/s20247044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 01/10/2023]
Abstract
Optical coherence tomography (OCT) enables three-dimensional imaging with resolution on the micrometer scale. The technique relies on the time-of-flight gated detection of light scattered from a sample and has received enormous interest in applications as versatile as non-destructive testing, metrology and non-invasive medical diagnostics. However, in strongly scattering media such as biological tissue, the penetration depth and imaging resolution are limited. Combining OCT imaging with wavefront shaping approaches significantly leverages the capabilities of the technique by controlling the scattered light field through manipulation of the field incident on the sample. This article reviews the main concepts developed so far in the field and discusses the latest results achieved with a focus on signal enhancement and imaging.
Collapse
Affiliation(s)
- Jonas Kanngiesser
- Hannoversches Zentrum für Optische Technologien, Leibniz Universität Hannover, Nienburger Straße 17, D-30167 Hannover, Germany;
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering–Innovation Across Disciplines), D-30167 Hannover, Germany
| | - Bernhard Roth
- Hannoversches Zentrum für Optische Technologien, Leibniz Universität Hannover, Nienburger Straße 17, D-30167 Hannover, Germany;
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering–Innovation Across Disciplines), D-30167 Hannover, Germany
| |
Collapse
|
34
|
Boniface A, Dong J, Gigan S. Non-invasive focusing and imaging in scattering media with a fluorescence-based transmission matrix. Nat Commun 2020; 11:6154. [PMID: 33262335 PMCID: PMC7708489 DOI: 10.1038/s41467-020-19696-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/08/2020] [Indexed: 11/16/2022] Open
Abstract
In biological microscopy, light scattering represents the main limitation to image at depth. Recently, a set of wavefront shaping techniques has been developed in order to manipulate coherent light in strongly disordered materials. The Transmission Matrix approach has shown its capability to inverse the effect of scattering and efficiently focus light. In practice, the matrix is usually measured using an invasive detector or low-resolution acoustic guide stars. Here, we introduce a non-invasive and all-optical strategy based on linear fluorescence to reconstruct the transmission matrices, to and from a fluorescent object placed inside a scattering medium. It consists in demixing the incoherent patterns emitted by the object using low-rank factorizations and phase retrieval algorithms. We experimentally demonstrate the efficiency of this method through robust and selective focusing. Additionally, from the same measurements, it is possible to exploit memory effect correlations to image and reconstruct extended objects. This approach opens up a new route towards imaging in scattering media with linear or non-linear contrast mechanisms. Light scattering represents the main limitation to image at depth in biological microscopy. The authors present a strategy to characterize light propagation in and out of a scattering medium based on linear fluorescence feedback and from the same measurements exploit memory effect correlations to image and reconstruct extended objects.
Collapse
Affiliation(s)
- Antoine Boniface
- Laboratoire Kastler Brossel, Sorbonne Université, École Normale Supérieure-Paris Sciences et Lettres (PSL) Research University, Centre National de la Recherche Scientifique (CNRS) UMR 8552, Collège de France, 24 rue Lhomond, 75005, Paris, France.
| | - Jonathan Dong
- Laboratoire Kastler Brossel, Sorbonne Université, École Normale Supérieure-Paris Sciences et Lettres (PSL) Research University, Centre National de la Recherche Scientifique (CNRS) UMR 8552, Collège de France, 24 rue Lhomond, 75005, Paris, France.,Laboratoire de Physique de l'École Normale Supérieure, Université Paris Sciences et Lettres (PSL), Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, 24 rue Lhomond, 75005, Paris, France
| | - Sylvain Gigan
- Laboratoire Kastler Brossel, Sorbonne Université, École Normale Supérieure-Paris Sciences et Lettres (PSL) Research University, Centre National de la Recherche Scientifique (CNRS) UMR 8552, Collège de France, 24 rue Lhomond, 75005, Paris, France
| |
Collapse
|
35
|
Cheng Z, Yang J, Wang LV. Single-shot time-reversed optical focusing into and through scattering media. ACS PHOTONICS 2020; 7:2871-2877. [PMID: 34337103 PMCID: PMC8317964 DOI: 10.1021/acsphotonics.0c01154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Optical time reversal can focus light through or into scattering media, which raises a new possibility for conquering optical diffusion. Because optical time reversal must be completed within the correlation time of speckles, enhancing the speed of time-reversed optical focusing is important for practical applications. Although employing faster digital devices for time-reversal helps, more efficient methodologies are also desired. Here, we report a single-shot time-reversed optical focusing method to minimize the wavefront measurement time. In our approach, all information requisite for optical time reversal is extracted from a single-shot hologram, and hence no other preconditions or measurements are required. In particular, we demonstrate the first realization of single-shot time-reversed ultrasonically encoded (TRUE) optical focusing into scattering media. By using the minimum amount of measurement, this work breaks the fundamental speed limit of digitally based time reversal for focusing into and through scattering media, and constitutes an important step toward high-speed wavefront shaping applications.
Collapse
|
36
|
Aziz A, Pane S, Iacovacci V, Koukourakis N, Czarske J, Menciassi A, Medina-Sánchez M, Schmidt OG. Medical Imaging of Microrobots: Toward In Vivo Applications. ACS NANO 2020; 14:10865-10893. [PMID: 32869971 DOI: 10.1021/acsnano.0c05530] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Medical microrobots (MRs) have been demonstrated for a variety of non-invasive biomedical applications, such as tissue engineering, drug delivery, and assisted fertilization, among others. However, most of these demonstrations have been carried out in in vitro settings and under optical microscopy, being significantly different from the clinical practice. Thus, medical imaging techniques are required for localizing and tracking such tiny therapeutic machines when used in medical-relevant applications. This review aims at analyzing the state of the art of microrobots imaging by critically discussing the potentialities and limitations of the techniques employed in this field. Moreover, the physics and the working principle behind each analyzed imaging strategy, the spatiotemporal resolution, and the penetration depth are thoroughly discussed. The paper deals with the suitability of each imaging technique for tracking single or swarms of MRs and discusses the scenarios where contrast or imaging agent's inclusion is required, either to absorb, emit, or reflect a determined physical signal detected by an external system. Finally, the review highlights the existing challenges and perspective solutions which could be promising for future in vivo applications.
Collapse
Affiliation(s)
- Azaam Aziz
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Stefano Pane
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56025, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Veronica Iacovacci
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56025, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Nektarios Koukourakis
- Chair of Measurement and Sensor System Technique, School of Engineering, TU Dresden, Helmholtzstrasse 18, 01069 Dresden, Germany
- Center for Biomedical Computational Laser Systems, TU Dresden, 01062 Dresden, Germany
| | - Jürgen Czarske
- Chair of Measurement and Sensor System Technique, School of Engineering, TU Dresden, Helmholtzstrasse 18, 01069 Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, 01307 Dresden, Germany
- Center for Biomedical Computational Laser Systems, TU Dresden, 01062 Dresden, Germany
| | - Arianna Menciassi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56025, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Mariana Medina-Sánchez
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), TU Chemnitz, Reichenhainer Strasse 10, 09107 Chemnitz, Germany
- School of Science, TU Dresden, 01062 Dresden, Germany
| |
Collapse
|
37
|
Thendiyammal A, Osnabrugge G, Knop T, Vellekoop IM. Model-based wavefront shaping microscopy. OPTICS LETTERS 2020; 45:5101-5104. [PMID: 32932463 DOI: 10.1364/ol.400985] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Wavefront shaping is increasingly being used in modern microscopy to obtain high-resolution images deep inside inhomogeneous media. Wavefront shaping methods typically rely on the presence of a "guide star" to find the optimal wavefront to mitigate the scattering of light. However, the use of guide stars poses severe limitations. Notably, only objects in the close vicinity of the guide star can be imaged. Here, we introduce a guide-star-free wavefront shaping method in which the optimal wavefront is computed using a digital model of the sample. The refractive index model of the sample, that serves as the input for the computation, is constructed in situ by the microscope itself. In a proof of principle imaging experiment, we demonstrate a large improvement in the two-photon fluorescence signal through a diffuse medium, outperforming state-of-the-art wavefront shaping by a factor of two in imaging depth.
Collapse
|
38
|
Yu YW, Sun CC, Hsieh PK, Huang YH, Song CY, Yang TH. An edge-lit volume holographic optical element for an objective turret in a lensless digital holographic microscope. Sci Rep 2020; 10:14580. [PMID: 32884051 PMCID: PMC7471914 DOI: 10.1038/s41598-020-71497-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 08/17/2020] [Indexed: 11/25/2022] Open
Abstract
In this paper, we propose and demonstrate the use of an edge-lit volume holographic optical element (EL-VHOE) as a reference waveguide to reduce the volume of a lensless digital holographic microscope. Additionally, a hybrid lensless Fourier transform digital holography is applied to make the EL-VHOE function as an objective turret. It used a spherical wave in the object beam of the EL-VHOE, which served as the reference beam of the microscope. Another sheared spherical wave was used to illuminate the sample. The longitudinal position of the spherical reference beam is changeable. It was shown that the tradeoff between resolution and field of view can be adjusted by changing the longitudinal position of the spherical reference beam. The corresponding experimental results matched the simulational and theoretical predictions. A resolution of approximately 3.11 μm was achieved when the object distance was 6 mm and the longitudinal distance of the spherical reference was 10 mm.
Collapse
Affiliation(s)
- Yeh-Wei Yu
- Department of Optics and Photonics, National Central University, Chung-Li, 320, Taoyüan, Taiwan.,Optical Sciences Center, National Central University, Chung-Li, 320, Taoyüan, Taiwan
| | - Ching-Cherng Sun
- Department of Optics and Photonics, National Central University, Chung-Li, 320, Taoyüan, Taiwan. .,Optical Sciences Center, National Central University, Chung-Li, 320, Taoyüan, Taiwan. .,Department of Electrophysics, National Chiao Tung University, Hsin-Chu, 300, Hsinchu, Taiwan.
| | - Po-Kai Hsieh
- Department of Optics and Photonics, National Central University, Chung-Li, 320, Taoyüan, Taiwan
| | - Yi-Hao Huang
- Department of Optics and Photonics, National Central University, Chung-Li, 320, Taoyüan, Taiwan
| | - Chih-Yuan Song
- Department of Optics and Photonics, National Central University, Chung-Li, 320, Taoyüan, Taiwan
| | - Tsung-Hsun Yang
- Department of Optics and Photonics, National Central University, Chung-Li, 320, Taoyüan, Taiwan.,Optical Sciences Center, National Central University, Chung-Li, 320, Taoyüan, Taiwan
| |
Collapse
|
39
|
Zhang H, Zhang B, Feng Q, Ding Y, Liu Q. Self-reference method for measuring the transmission matrices of scattering media. APPLIED OPTICS 2020; 59:7547-7552. [PMID: 32902453 DOI: 10.1364/ao.398419] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
A significant approach for manipulating light propagation through scattering media consists of the measurement of transmission matrices (TMs). Here we propose a TM-measurement method with high stability and universal applicability, which we call the self-reference method. This method uses a new, to the best of our knowledge, way to perform holographic measurement, where the reference light is superimposed directly to the signal light. This method does not pose any restriction on the signal light, so it is applicable to nearly all types of input bases. The effectivity of this method in accurately measuring the TM is verified by experimentally achieving high-quality light focusing through a scattering medium. We believe that the self-reference method provides an ideal way for TM measurement and wavefront shaping, which will be of great significance to imaging and communication technologies in scattering environments.
Collapse
|
40
|
Pan CT, Chang WH, Kumar A, Singh SP, Kaushik AC, Sharma J, Long ZJ, Wen ZH, Mishra SK, Yen CK, Chaudhary RK, Shiue YL. Nanoparticles-mediated Brain Imaging and Disease Prognosis by Conventional as well as Modern Modal Imaging Techniques: a Comparison. Curr Pharm Des 2020; 25:2637-2649. [PMID: 31603057 DOI: 10.2174/1381612825666190709220139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/02/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Multimodal imaging plays an important role in the diagnosis of brain disorders. Neurological disorders need to be diagnosed at an early stage for their effective treatment as later, it is very difficult to treat them. If possible, diagnosing at an early stage can be much helpful in curing the disease with less harm to the body. There is a need for advanced and multimodal imaging techniques for the same. This paper provides an overview of conventional as well as modern imaging techniques for brain diseases, specifically for tumor imaging. In this paper, different imaging modalities are discussed for tumor detection in the brain along with their advantages and disadvantages. Conjugation of two and more than two modalities provides more accurate information rather than a single modality. They can monitor and differentiate the cellular processes of normal and diseased condition with more clarity. The advent of molecular imaging, including reporter gene imaging, has opened the door of more advanced noninvasive detection of brain tumors. Due to specific optical properties, semiconducting polymer-based nanoparticles also play a pivotal role in imaging tumors. OBJECTIVE The objective of this paper is to review nanoparticles-mediated brain imaging and disease prognosis by conventional as well as modern modal imaging techniques. CONCLUSION We reviewed in detail various medical imaging techniques. This paper covers recent developments in detail and elaborates a possible research aspect for the readers in the field.
Collapse
Affiliation(s)
- Cheng-Tang Pan
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan
| | - Wei-Hsi Chang
- Department of Emergency Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Ajay Kumar
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan
| | - Satya P Singh
- School of EEE, Nanyang Technological University, Nanyang Ave, Singapore
| | - Aman Chandra Kaushik
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, ShanghaiJia Tong University, Shanghai 200240, China
| | - Jyotsna Sharma
- Amity School of Applied Sciences, Amity University Haryana, Gurugram-122413, Manesai, Panchgaon, Haryana, India
| | - Zheng-Jing Long
- Department of Emergency Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Sunil Kumar Mishra
- Patronage Institute of Management Studies, Greater Noida, Uttar Pradesh, India
| | - Chung-Kun Yen
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan
| | - Ravi Kumar Chaudhary
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pardesh, India, India
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan
| |
Collapse
|
41
|
Huang G, Wu D, Luo J, Huang Y, Shen Y. Retrieving the optical transmission matrix of a multimode fiber using the extended Kalman filter. OPTICS EXPRESS 2020; 28:9487-9500. [PMID: 32225555 DOI: 10.1364/oe.389133] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Characterizing the transmission matrix (TM) of a multimode fiber (MMF) benefits many fiber-based applications and allows in-depth studies on the physical properties. For example, by modulating the incident field, the knowledge of the TM allows one to synthesize any optical field at the distill end of the MMF. However, the extraction of optical fields usually requires holographic measurements with interferometry, which complicates the system design and introduces additional noise. In this work, we developed an efficient method to retrieve the TM of the MMF in a referenceless optical system. With pure intensity measurements, this method uses the extended Kalman filter (EKF) to recursively search for the optimum solution. To facilitate the computational process, a modified speckle-correlation scatter matrix (MSSM) is constructed as a low-fidelity initial estimation. This method, termed EKF-MSSM, only requires 4N intensity measurements to precisely solve for N unknown complex variables in the TM. Experimentally, we successfully retrieved the TM of the MMF with high precision, which allows optical focusing with the enhancement (>70%) close to the theoretical value. We anticipate that this method will serve as a useful tool for studying physical properties of the MMFs and potentially open new possibilities in a variety of applications in fiber optics.
Collapse
|
42
|
Inzunza-Ibarra MA, Premillieu E, Grünsteidl C, Piestun R, Murray TW. Sub-acoustic resolution optical focusing through scattering using photoacoustic fluctuation guided wavefront shaping. OPTICS EXPRESS 2020; 28:9823-9832. [PMID: 32225582 DOI: 10.1364/oe.385320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/12/2020] [Indexed: 05/22/2023]
Abstract
Focusing light through turbid media using wavefront shaping generally requires a noninvasive guide star to provide feedback on the focusing process. Here we report a photoacoustic guide star mechanism suitable for wavefront shaping through a scattering wall that is based on the fluctuations in the photoacoustic signals generated in a micro-vessel filled with flowing absorbers. The standard deviation of photoacoustic signals generated from random distributions of particles is dependent on the illumination volume and increases nonlinearly as the illumination volume is decreased. We harness this effect to guide wavefront shaping using the standard deviation of the photoacoustic response as the feedback signal. We further demonstrate sub-acoustic resolution optical focusing through a diffuser with a genetic algorithm optimization routine.
Collapse
|
43
|
Yang J, Li L, Li J, Cheng Z, Liu Y, Wang LV. Fighting against fast speckle decorrelation for light focusing inside live tissue by photon frequency shifting. ACS PHOTONICS 2020; 7:837-844. [PMID: 34113691 PMCID: PMC8188831 DOI: 10.1021/acsphotonics.0c00027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Focusing light inside live tissue by digital optical phase conjugation (DOPC) has been intensively investigated due to its potential biomedical applications in deep-tissue imaging, optogenetics, microsurgery, and phototherapy. However, fast physiological motions in a live animal, such as blood flow and respiratory motions, produce undesired photon perturbation and thus inevitably deteriorate the performance of light focusing. Here, we develop a photon-frequency-shifting DOPC method to fight against fast physiological motions by switching the states of a guide star at a distinctive frequency. Therefore, the photons tagged by the guide star are well detected at the specific frequency, separating them from the photons perturbed by fast motions. Light focusing was demonstrated in both phantoms in vitro and mice in vivo with substantially improved focusing contrast. This work puts a new perspective on light focusing inside live tissue and promises wide biomedical applications.
Collapse
Affiliation(s)
- Jiamiao Yang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Lei Li
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Jingwei Li
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
- Present address: Centre for Optical and Electromagnetic Research, Chinese National Engineering Research Center for Optical Instruments, Zhejiang University, Hangzhou 310058, China
| | - Zhongtao Cheng
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Yan Liu
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Lihong V. Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
44
|
Büttner L, Thümmler M, Czarske J. Velocity measurements with structured light transmitted through a multimode optical fiber using digital optical phase conjugation. OPTICS EXPRESS 2020; 28:8064-8075. [PMID: 32225439 DOI: 10.1364/oe.386047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
Lensless fiber microendoscopes enable optical diagnostics and therapy with minimal invasiveness. Because of their small diameters, multimode fibers are ideal candidates, but mode scrambling hinders the transmission of structured light fields. We present the generation of a localized fringe system at variable distances from the distal fiber end by exploiting digital optical phase conjugation. The replayed fringe system was used for quantitative metrology. Velocity measurements of a microchannel flow in the immediate proximity of the fiber end without the use of any imaging lenses are shown. Lensless multimode fiber systems are of interest especially for biomedical imaging and stimulation as well as technical inspection and flow measurements.
Collapse
|
45
|
Jang M, Ko H, Hong JH, Lee WK, Lee JS, Choi W. Deep tissue space-gated microscopy via acousto-optic interaction. Nat Commun 2020; 11:710. [PMID: 32024847 PMCID: PMC7002486 DOI: 10.1038/s41467-020-14514-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/14/2020] [Indexed: 11/09/2022] Open
Abstract
To extend the imaging depth of high-resolution optical microscopy, various gating operations-confocal, coherence, and polarization gating-have been devised to filter out the multiply scattered wave. However, the imaging depth is still limited by the multiply scattered wave that bypasses the existing gating operations. Here, we present a space gating method, whose mechanism is independent of the existing methods and yet effective enough to complement them. Specifically, we reconstruct an image only using the ballistic wave that is acousto-optically modulated at the object plane. The space gating suppresses the multiply scattered wave by 10-100 times in a highly scattering medium, and thus enables visualization of the skeletal muscle fibers in whole-body zebrafish at 30 days post fertilization. The space gating will be an important addition to optical-resolution microscopy for achieving the ultimate imaging depth set by the detection limit of ballistic wave.
Collapse
Affiliation(s)
- Mooseok Jang
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea. .,Department of Physics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea. .,Department of Bio and Brain Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.
| | - Hakseok Ko
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea.,Department of Physics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea
| | - Jin Hee Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea.,Department of Physics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea
| | - Won Kyu Lee
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea
| | - Jae-Seung Lee
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea
| | - Wonshik Choi
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea. .,Department of Physics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea.
| |
Collapse
|
46
|
Huang Y, Cua M, Brake J, Liu Y, Yang C. Investigating ultrasound-light interaction in scattering media. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-12. [PMID: 32103649 PMCID: PMC7043283 DOI: 10.1117/1.jbo.25.2.025002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/06/2020] [Indexed: 05/31/2023]
Abstract
SIGNIFICANCE Ultrasound-assisted optical imaging techniques, such as ultrasound-modulated optical tomography, allow for imaging deep inside scattering media. In these modalities, a fraction of the photons passing through the ultrasound beam is modulated. The efficiency by which the photons are converted is typically referred to as the ultrasound modulation's "tagging efficiency." Interestingly, this efficiency has been defined in varied and discrepant fashion throughout the scientific literature. AIM The aim of this study is the ultrasound tagging efficiency in a manner consistent with its definition and experimentally verify the contributive (or noncontributive) relationship between the mechanisms involved in the ultrasound optical modulation process. APPROACH We adopt a general description of the tagging efficiency as the fraction of photons traversing an ultrasound beam that is frequency shifted (inclusion of all frequency-shifted components). We then systematically studied the impact of ultrasound pressure and frequency on the tagging efficiency through a balanced detection measurement system that measured the power of each order of the ultrasound tagged light, as well as the power of the unmodulated light component. RESULTS Through our experiments, we showed that the tagging efficiency can reach 70% in a scattering phantom with a scattering anisotropy of 0.9 and a scattering coefficient of 4 mm - 1 for a 1-MHz ultrasound with a relatively low (and biomedically acceptable) peak pressure of 0.47 MPa. Furthermore, we experimentally confirmed that the two ultrasound-induced light modulation mechanisms, particle displacement and refractive index change, act in opposition to each other. CONCLUSION Tagging efficiency was quantified via simulation and experiments. These findings reveal avenues of investigation that may help improve ultrasound-assisted optical imaging techniques.
Collapse
Affiliation(s)
- Yujia Huang
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
| | - Michelle Cua
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
| | - Joshua Brake
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
| | - Yan Liu
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
| | - Changhuei Yang
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
| |
Collapse
|
47
|
Implementation of an Off-Axis Digital Optical Phase Conjugation System for Turbidity Suppression on Scattering Medium. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Due to the light scattering effect, it is difficult to directly achieve optical focusing and imaging in turbid media, such as milk and biological tissue. The turbidity suppression of a scattering medium and control of light through the scattering medium are important for imaging on biological tissue or biophotonics. Optical phase conjugation is a novel technology on turbidity suppression by directly creating phase conjugation light waves to form time-reversed light. In this work, we report a digital optical phase conjugation system based on off-axis holography. Compared with traditional digital optical phase conjugation methods, the off-axis holography acquires the conjugation phase using only one interference image, obviously saving photo acquisition time. Furthermore, we tested the optical phase conjugate reduction performance of this system and also achieved optical focusing through the diffuser. We also proved that the reversing of random scattering in turbid media is achievable by phase conjugation.
Collapse
|
48
|
Kojima K, Shibukawa A, Sudo Y. The Unlimited Potential of Microbial Rhodopsins as Optical Tools. Biochemistry 2019; 59:218-229. [PMID: 31815443 DOI: 10.1021/acs.biochem.9b00768] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Microbial rhodopsins, a photoactive membrane protein family, serve as fundamental tools for optogenetics, an innovative technology for controlling biological activities with light. Microbial rhodopsins are widely distributed in nature and have a wide variety of biological functions. Regardless of the many different known types of microbial rhodopsins, only a few of them have been used in optogenetics to control neural activity to understand neural networks. The efforts of our group have been aimed at identifying and characterizing novel rhodopsins from nature and also at engineering novel variant rhodopsins by rational design. On the basis of the molecular and functional characteristics of those novel rhodopsins, we have proposed new rhodopsin-based optogenetics tools to control not only neural activities but also "non-neural" activities. In this Perspective, we introduce the achievements and summarize future challenges in creating optogenetics tools using rhodopsins. The implementation of optogenetics deep inside an in vivo brain is the well-known challenge for existing rhodopsins. As a perspective to address this challenge, we introduce innovative optical illumination techniques using wavefront shaping that can reinforce the low light sensitivity of the rhodopsins and realize deep-brain optogenetics. The applications of our optogenetics tools could be extended to manipulate non-neural biological activities such as gene expression, apoptosis, energy production, and muscle contraction. We also discuss the potentially unlimited biotechnological applications of microbial rhodopsins in the future such as in photovoltaic devices and in drug delivery systems. We believe that advances in the field will greatly expand the potential uses of microbial rhodopsins as optical tools.
Collapse
Affiliation(s)
- Keiichi Kojima
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama University , Okayama 700-8530 , Japan
| | - Atsushi Shibukawa
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama University , Okayama 700-8530 , Japan
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama University , Okayama 700-8530 , Japan
| |
Collapse
|
49
|
Bidhendi AJ, Geitmann A. Methods to quantify primary plant cell wall mechanics. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3615-3648. [PMID: 31301141 DOI: 10.1093/jxb/erz281] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 06/26/2019] [Indexed: 05/23/2023]
Abstract
The primary plant cell wall is a dynamically regulated composite material of multiple biopolymers that forms a scaffold enclosing the plant cells. The mechanochemical make-up of this polymer network regulates growth, morphogenesis, and stability at the cell and tissue scales. To understand the dynamics of cell wall mechanics, and how it correlates with cellular activities, several experimental frameworks have been deployed in recent years to quantify the mechanical properties of plant cells and tissues. Here we critically review the application of biomechanical tool sets pertinent to plant cell mechanics and outline some of their findings, relevance, and limitations. We also discuss methods that are less explored but hold great potential for the field, including multiscale in silico mechanical modeling that will enable a unified understanding of the mechanical behavior across the scales. Our overview reveals significant differences between the results of different mechanical testing techniques on plant material. Specifically, indentation techniques seem to consistently report lower values compared with tensile tests. Such differences may in part be due to inherent differences among the technical approaches and consequently the wall properties that they measure, and partly due to differences between experimental conditions.
Collapse
Affiliation(s)
- Amir J Bidhendi
- Department of Plant Science, McGill University, Macdonald Campus, Lakeshore, Ste-Anne-de-Bellevue, Québec, Canada
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, Montreal, Quebec, Canada
| | - Anja Geitmann
- Department of Plant Science, McGill University, Macdonald Campus, Lakeshore, Ste-Anne-de-Bellevue, Québec, Canada
| |
Collapse
|
50
|
An ICCD camera-based time-domain ultrasound-switchable fluorescence imaging system. Sci Rep 2019; 9:10552. [PMID: 31332236 PMCID: PMC6646316 DOI: 10.1038/s41598-019-47156-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022] Open
Abstract
Fluorescence imaging in centimeter-deep tissues with high resolution is highly desirable for many biomedical applications. Recently, we have developed a new imaging modality, ultrasound-switchable fluorescence (USF) imaging, for achieving this goal. In our previous work, we successfully achieved USF imaging with several types of USF contrast agents and imaging systems. In this study, we introduced a new USF imaging system: an intensified charge-coupled device (ICCD) camera-based, time-domain USF imaging system. We demonstrated the principle of time-domain USF imaging by using two USF contrast agents. With a series of USF imaging experiments, we demonstrated the tradeoffs among different experimental parameters (i.e., data acquisition time, including CCD camera recording time and intensifier gate delay; focused ultrasound (FU) power; and imaging depth) and the image qualities (i.e., signal-to-noise ratio, spatial resolution, and temporal resolution). In this study, we also discussed several imaging strategies for achieving a high-quality USF image via this time-domain system.
Collapse
|