1
|
Lai QL, Xu J, Fang X, Pan JB, Song XY, Zhang CF, Zhou YY, Liu SQ, Zhu MJ. Dual Enhancement of Electrochemiluminescence Imaging for Single Au-mSiO 2-CdSe Nanoparticles via Resonance Energy Transfer and Interlayer Conductivity. Anal Chem 2025; 97:6796-6803. [PMID: 40123124 DOI: 10.1021/acs.analchem.5c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Single-nanoparticle electrochemiluminescence (ECL) imaging is a promising technique for investigating surface dynamics and cellular processes. However, due to the low luminescence intensity of individual particles, most current approaches utilize luminescent materials such as ruthenium bipyridine or luminol derivatives. Quantum dot-based single-nanoparticle ECL imaging, however, remains less explored. In this study, we present the application of the ECL-RET enhancement mechanism to design and synthesize a novel Au-mSiO2-CdSe quantum dot nanoparticles (AmSQ NPs), enabling 90 nm single-nanoparticle ECL imaging without substrate modification. Experimental results demonstrate that the Au nanoparticle core and CdSe quantum dots were in the optimal distance (13 nm); thus, the Au NP enhances the local electromagnetic (EM) field. The enhanced EM field further increases the excitation and leads to a higher radiative decay rate (Γm), which finally enhances the ECL signals of AmSQ NP. In contrast, although the ASQ nanoparticles have a Au core, their insufficient interlayer conductivity prevented the production of detectable ECL signals. These findings confirm the feasibility of single-nanoparticle ECL imaging with quantum dots via the ECL-RET effect. Future studies will focus on optimizing assembly conditions and surface modifications to enable multichannel ECL detection.
Collapse
Affiliation(s)
- Qing-Long Lai
- School of Chemistry and Life Science, Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jialiang Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou 215123, P. R. China
| | - Xian Fang
- School of Chemistry and Life Science, Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jian-Bin Pan
- State Key Laboratory of Analytical Chemistry of Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xin-Yu Song
- School of Chemistry and Life Science, Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Cheng-Fa Zhang
- School of Chemistry and Life Science, Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yu-Yang Zhou
- School of Chemistry and Life Science, Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Shou-Qing Liu
- School of Chemistry and Life Science, Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Meng-Jiao Zhu
- School of Chemistry and Life Science, Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
2
|
Feng S, Liu Z, Liu M, Chen P, Fan X, Luo T, Ai J, Jiang L, Liu R. Ultrasensitive sulphide detecting by using Au (core)-Ag (shell) triangular nanoprisms. OPTICS EXPRESS 2024; 32:49082-49092. [PMID: 39876196 DOI: 10.1364/oe.544504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/09/2024] [Indexed: 01/30/2025]
Abstract
Hydrogen sulfide (H2S), the third endogenous gaseous molecule, plays a crucial role in biological signaling and metabolic processes. It has garnered significant attention from researchers in the field of biochemistry. The highly sensitive detection of H2S is essential for elucidating its functions and has long been a key objective in biochemical sensing. In this study, we present an ultrasensitive method for sulfide detection utilizing gold (core)-silver (shell) triangular nanoprisms (Au@Ag TNPs). This strategy is predicated on the preferential formation of Ag2S at the sharp corners of Au@Ag TNPs, which is manifested as a sensitive spectral shift observed in the nanoprobes. In comparison to the detection limit for sulfide using Au@Ag nanorods, as reported in Nat. Commun.4, 1708 (2013)10.1038/ncomms2722, this detection limit can be enhanced by three orders of magnitude when employing Au@Ag TNPs. Leveraging the single-particle scattering spectrum of individual Au@Ag TNPs, we have successfully reduced the detection limit for sulfide to 1 fM. This represents the lowest reported value for sulfide detection to date. This study presents a highly effective plasmonic nanoprobe for ultrasensitive sulfide detection, which is poised to play a significant role in biochemistry and environmental sciences.
Collapse
|
3
|
Labrador-Páez L, Casasnovas-Melián A, Junquera E, Guerrero-Martínez A, Ahijado-Guzmán R. Optical dark-field spectroscopy of single plasmonic nanoparticles for molecular biosciences. NANOSCALE 2024; 16:19192-19206. [PMID: 39351920 DOI: 10.1039/d4nr03055a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
An ideal sensor capable of quantifying analytes in minuscule sample volumes represents a significant technological advancement. Plasmonic nanoparticles integrated with optical dark-field spectroscopy have reached this capability, demonstrating versatility and expanding applicability across in vitro and in vivo subjects. This review underscores the applicability of optical dark-field spectroscopy with single plasmonic nanoparticles to elucidate a wide range of biomolecular characteristics, including binding constants, molecular dynamics, distances, and forces, as well as recording cell communication signals. Perspectives highlight the potential for the development of implantable nanosensors for metabolite detection in animal models, illustrating the technique's efficacy without the need for labeling molecules. In summary, this review aims to consolidate knowledge of this adaptable and robust technique for decoding molecular biological phenomena within the nano- and bio-scientific community.
Collapse
Affiliation(s)
- Lucía Labrador-Páez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda Complutense s/n, 28040 Madrid, Spain.
| | - Alfredo Casasnovas-Melián
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda Complutense s/n, 28040 Madrid, Spain.
| | - Elena Junquera
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda Complutense s/n, 28040 Madrid, Spain.
| | - Andrés Guerrero-Martínez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda Complutense s/n, 28040 Madrid, Spain.
| | - Rubén Ahijado-Guzmán
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda Complutense s/n, 28040 Madrid, Spain.
| |
Collapse
|
4
|
Shang J, Ma Y, Liu X, Sun S, Pang X, Zhou R, Huan S, He Y, Xiong B, Zhang XB. Single-particle rotational microrheology enables pathological staging of macrophage foaming and antiatherosclerotic studies. Proc Natl Acad Sci U S A 2024; 121:e2403740121. [PMID: 39102540 PMCID: PMC11331104 DOI: 10.1073/pnas.2403740121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
The formation of macrophage-derived foam cells has been recognized as the pathological hallmark of atherosclerotic diseases. However, the pathological evolution dynamics and underlying regulatory mechanisms remain largely unknown. Herein, we introduce a single-particle rotational microrheology method for pathological staging of macrophage foaming and antiatherosclerotic explorations by probing the dynamic changes of lysosomal viscous feature over the pathological evolution progression. The principle of this method involves continuous monitoring of out-of-plane rotation-caused scattering brightness fluctuations of the gold nanorod (AuNR) probe-based microrheometer and subsequent determination of rotational relaxation time to analyze the viscous feature in macrophage lysosomes. With this method, we demonstrated the lysosomal viscous feature as a robust pathological reporter and uncovered three distinct pathological stages underlying the evolution dynamics, which are highly correlated with a pathological stage-dependent activation of the NLRP3 inflammasome-involved positive feedback loop. We also validated the potential of this positive feedback loop as a promising therapeutic target and revealed the time window-dependent efficacy of NLRP3 inflammasome-targeted drugs against atherosclerotic diseases. To our knowledge, the pathological staging of macrophage foaming and the pathological stage-dependent activation of the NLRP3 inflammasome-involved positive feedback mechanism have not yet been reported. These findings provide insights into in-depth understanding of evolutionary features and regulatory mechanisms of macrophage foaming, which can benefit the analysis of effective therapeutical drugs as well as the time window of drug treatment against atherosclerotic diseases in preclinical studies.
Collapse
Affiliation(s)
- Jinhui Shang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
| | - Yuan Ma
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
| | - Xixuan Liu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
| | - Shijie Sun
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
| | - Xiayun Pang
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang712083, China
| | - Rui Zhou
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang712083, China
| | - Shuangyan Huan
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
| | - Yan He
- Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Bin Xiong
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
| |
Collapse
|
5
|
Wang O, Kong J, Xue Z, An B, Xu J, Wang X. Tailoring the Ni-O Microenvironment in Amorphous-Dominated Highly Active and Stable Zn/NiO for Hydrogen Sulfide Detection. ACS Sens 2024; 9:3233-3243. [PMID: 38832488 DOI: 10.1021/acssensors.4c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Amorphous metal oxide semiconductor (MOS) materials are endowed with great promise to modulate electronic structures for gas-sensing performance improvement. However, the elevated-temperature requirement of gas sensors severely impedes the application of amorphous materials due to their low thermal stability. Here, a cationic-assisted strategy to tailor the Ni-O microenvironment in an amorphous-dominated Zn/NiO heterogeneous structure with high thermal stability was developed. It was found that 6 mol % Zn incorporation into amorphous NiO can effectively preserve the amorphous-dominated NiO phase even at high temperature. After calcination, the amorphous oxide can only be converted to crystals partly thus leading to the formation of amorphous/crystalline compounds, and the content of the amorphous phase can be adjusted by changing the calcination temperature. This amorphous/crystalline configuration can induce more electron transfer from Ni to Zn species, leading to the formation of active Niδ+ (δ>2) centers. Ex situ XPS and in situ Raman spectroscopy studies proved that the generated Niδ+ species pronouncedly promote the electron transfer during the H2S adsorption process. The amorphous/crystalline-6 mol % Zn/NiO sensor exhibits exceptional hydrogen sulfide response (2 ppm, 3.23), outstanding repeatability (as long as 5 weeks), and low limit of detection (as low as 50 ppb), surpassing most reported nickel-based gas sensors such as the crystal nickel oxide prepared in this work. The response and detection limit of the latter is only (2 ppm, 1.89) and (0.05 ppm) respectively. Our work thus opens up more opportunities for fundamental understanding and modulating of highly active amorphous sensing materials.
Collapse
Affiliation(s)
- Ou Wang
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Jiawei Kong
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Zhengang Xue
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - BaoLi An
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Jiaqiang Xu
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Xiaohong Wang
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
6
|
Zhang TY, Liu FQ, Li Z, Xu YT, Zhao WW, Chen HY, Xu JJ. A hollow Ag/AgCl nanoelectrode for single-cell chloride detection. Chem Commun (Camb) 2024; 60:2373-2376. [PMID: 38318933 DOI: 10.1039/d3cc06078k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
This work reports the construction of a miniaturized Ag/AgCl nanoelectrode on a nanopipette, which is capable of dual-functions of single-cell drug infusion and chloride detection and is envisioned to promote the study of chloride-correlated therapeutic effects.
Collapse
Affiliation(s)
- Tian-Yang Zhang
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Fang-Qing Liu
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Zheng Li
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yi-Tong Xu
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Wei-Wei Zhao
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Hong-Yuan Chen
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jing-Juan Xu
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
7
|
Kim HM, Kim HJ, Park JH, Lee SK. Bimetallic nanodisk-based fiber-optic plasmonic nanoprobe for gas detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 306:123575. [PMID: 39492381 DOI: 10.1016/j.saa.2023.123575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/06/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
In this study, gold-palladium bimetallic nanodisks were patterned on optical fibers via nanosphere lithography and chemical growth. The conditions related to the density of the structures, concentration of the growth solution, and growth time were modified. The structural features of nanodisks with a large surface area and enhancement of plasmonic efficiency owing to the palladium shell resulted in a high refractive index sensitivity. Additionally, based on palladium's sensitivity to hydrogen, hydrogen sensing was performed at various concentrations with a detection limit of 0.125 % and signal-to-noise ratio of 24.2 dB. The response time and hysteresis showed a good performance relative to those of other hydrogen sensors. The high throughput of the nanosphere lithography and simple seed-mediated growth make this system a cost-effective fiber-optic plasmonic nanoprobe. Based on these investigations, the optical fiber-based plasmonic nanoprobe can be actively applied to detect dangerous environments using remote sensing for safety management in the clean energy era.
Collapse
Affiliation(s)
- Hyeong-Min Kim
- Department of Electronics and Electrical Engineering, Dankook University, Yongin 16890, Republic of Korea
| | - Hyo-Jun Kim
- Department of Electronics and Electrical Engineering, Dankook University, Yongin 16890, Republic of Korea
| | - Jae-Hyoung Park
- Department of Electronics and Electrical Engineering, Dankook University, Yongin 16890, Republic of Korea
| | - Seung-Ki Lee
- Department of Electronics and Electrical Engineering, Dankook University, Yongin 16890, Republic of Korea.
| |
Collapse
|
8
|
Chen HY, Xu HB, Lv J, Chang S, Wu MS, Chen ZC, Zhu SC, He Y, Qian RC, Li DW. Smart Nanoplatform for Visualizing Hydrogen Sulfide and Amplifying Oxidative Stress to Tumor Apoptosis. ACS Sens 2023; 8:3555-3562. [PMID: 37607401 DOI: 10.1021/acssensors.3c01203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Oxidative stress is involved in various signaling pathways and serves a key role in inducing cell apoptosis. Therefore, it is significant to monitor oxidative stress upon drug release for the assessment of therapeutic effects in cancer cells. Herein, a glutathione (GSH)-responsive surface-enhanced Raman scattering (SERS) nanoplatform is proposed for ultra-sensitively monitoring the substance related with oxidative stress (hydrogen sulfide, H2S), depleting reactive sulfur species and releasing anticancer drugs to amplify oxidative stress for tumor apoptosis. The Au@Raman reporter@Ag (Au@M@Ag) nanoparticles, where a 4-mercaptobenzonitrile molecule as a Raman reporter was embedded between layers of gold and silver to obtain sensitive SERS response, were coated with a covalent organic framework (COF) shell to form a core-shell structure (Au@M@Ag@COFs) as the SERS nanoplatform. The COF shell loading doxorubicin (DOX) of Au@M@Ag@COFs exhibited the GSH-responsive degradation capacity to release DOX, and its Ag layer as the sensing agent was oxidized to Ag2S by H2S to result in its prominent changes in SERS signals with a low detection limit of 0.33 nM. Moreover, the releasing DOX can inhibit the generation of H2S to promote the production of reactive oxygen species, and the depletion of reactive sulfur species (GSH and H2S) in cancer cells can further enhance the oxidative stress to induce tumor apoptosis. Overall, the SERS strategy could provide a powerful tool to monitor the dynamic changes of oxidative stress during therapeutic processes in a tumor microenvironment.
Collapse
Affiliation(s)
- Hua-Ying Chen
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Han-Bin Xu
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jian Lv
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Shuai Chang
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Man-Sha Wu
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhen-Chi Chen
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Shi-Cheng Zhu
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yue He
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
9
|
Chen H, Cai Z, Gui J, Tang Y, Yin P, Zhu X, Zhang Y, Li H, Liu M, Yao S. A redox reaction-induced ratiometric fluorescence platform for the specific detection of ascorbic acid based on Ag 2S quantum dots and multifunctional CoOOH nanoflakes. J Mater Chem B 2023; 11:1279-1287. [PMID: 36651433 DOI: 10.1039/d2tb02438a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this work, a ratiometric fluorescent nanoplatform for the detection of ascorbic acid (AA) was constructed based on the Ag2S quantum dots (QDs) and multifunctional hydroxyl cobalt oxide nanoflakes (CoOOH NFs). Ag2S QDs can be assembled on the surface of CoOOH NFs by electrostatic adsorption, resulting in the quenching of the NIR fluorescence emission of Ag2S QDs at 680 nm effectively through the inner filter effect (IFE). o-Phenylenediamine (OPD), a common substrate of oxidase-like (OXD) mimic, is rapidly oxidized into the fluorescent product of 2,3-diaminophenazine (DAP) with the appearance of an emission peak at 575 nm under the catalysis of CoOOH NFs. After AA was added, the fluorescence emission of DAP declined because of the decline in the OXD-like activity of CoOOH NFs due to the transformation of Co2+. Simultaneously, Ag2S QDs were released, accompanied by the recovery of red fluorescence. These two fluorescent signals can be excited at the same excitation wavelength, simplifying the detection procedure. Using F575/F680 as the readout, the quantification of AA can be realized with the linear range and detection limit of 0.2 μM-20 mM and 0.014 μM, respectively. The ratiometric fluorescence sensor can be effectively used to determine the content of AA in real samples such as juice and serum. This work integrates the in-situ formation of the fluorescent species via the catalysis of the nanozyme and the redox reaction to destroy the CoOOH NFs nanozyme as well as the two dimensional nanoflake induced turn-off-on strategy for Ag2S QDs, which provides a specific strategy for the selective detection of AA and may offer a reliable approach for the construction of other biosensing platforms.
Collapse
Affiliation(s)
- Haoyu Chen
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Zifu Cai
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Jialing Gui
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Ying Tang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Peng Yin
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Xiaohua Zhu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Youyu Zhang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Haitao Li
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Meiling Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| |
Collapse
|
10
|
Wang J, Luo D, Cai Y, Li XL, Chen HY, Xu JJ. A plasmonic Au-Ag janus nanoprobe for monitoring endogenous hydrogen sulfide generation in living cells. Biosens Bioelectron 2022; 213:114422. [DOI: 10.1016/j.bios.2022.114422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/14/2022] [Accepted: 05/22/2022] [Indexed: 11/02/2022]
|
11
|
Abstract
Due to the complexity of heterogeneous reactions and heterogeneities of individual catalyst particles in size, morphology, and the surrounding medium, it is very important to characterize the structure of nanocatalysts and measure the reaction process of nanocatalysis at the single-particle level. Traditional ensemble measurements, however, only provide averaged results of billions of nanoparticles (NPs), which do not help reveal structure–activity relationships and may overlook a few NPs with high activity. The advent of dark-field microscopy (DFM) combined with plasmonic resonance Rayleigh scattering (PRRS) spectroscopy provides a powerful means for directly recording the localized surface plasmon resonance (LSPR) spectrum of single plasmonic nanoparticles (PNPs), which also enables quantitative measurements. In recent years, DFM has developed rapidly for a series of single-particle catalytic reactions such as redox reactions, electrocatalytic reactions, and DNAzyme catalysis, with the ability to monitor the catalytic reaction process in real time and reveal the catalytic mechanism. This review provides a comprehensive overview of the fundamental principles and practical applications of DFM in measuring various kinds of catalysis (including chemocatalysis, electrocatalysis, photocatalysis, and biocatalysis) at the single-particle level. Perspectives on the remaining challenges and future trends in this field are also proposed.
Collapse
|
12
|
Liang X, Du X, Liu A, Cai Z, Li J, Zhang M, Wang Q, Zeng J. Au/Ag2S dimeric nanostructures for highly specific plasmonic sensing of mercury(II). CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Zhang J, Zhang Y, Guo Q, Wen G, Xiao H, Qi S, Wang Y, Zhang H, Wang L, Sun H. Photoacoustic/Fluorescence Dual-Modality Probe for Biothiol Discrimination and Tumor Diagnosis in Cells and Mice. ACS Sens 2022; 7:1105-1112. [PMID: 35357825 DOI: 10.1021/acssensors.2c00058] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Developing probes to simultaneously detect and discriminate biothiols is important, yet challenging. Activatable photoacoustic (PA) probes for discriminating biothiols in vivo are still lacking, and this hinders the diagnosis of thiol-related diseases. Herein we present the first PA and fluorescence dual-modality probe MB-NBD for discriminating different biothiol species. The probe has the advantages of both fluorescence imaging and PA imaging (high sensitivity and deep penetration) with distinct signal patterns toward hydrogen sulfide (H2S), cysteine/homocysteine (Cys/Hcy), and glutathione (GSH) treatment. The biothiol-activated product of MB-NBD exhibits enhancements in near-infrared fluorescence (NIRF) at 690 nm and absorbance/PA at 664 nm upon fast reaction, allowing it to selectively detect biothiol species over other reactive species. On the other hand, MB-NBD displays characteristic absorbance enhancement at 547 nm toward H2S, rendering specific detection of H2S. In addition, the specific enhancements in absorbance/PA at 470 nm and fluorescence at 550 nm toward Cys/Hcy treatment endows the probe with the capability of selectively detecting Cys/Hcy. Furthermore, MB-NBD is able to discriminate Cys and GSH by fluorescent imaging in live-cell and ratiometric PA imaging in mice experiments. MB-NBD has been successfully used to diagnose tumors by dual-channel ratiometric PA imaging.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Chemistry and COSADAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Yachao Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Qiang Guo
- Department of Chemistry and COSADAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Guohua Wen
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Hanyue Xiao
- Department of Chemistry and COSADAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Shuo Qi
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421200, China
| | - Yue Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Huatang Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Lidai Wang
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Hongyan Sun
- Department of Chemistry and COSADAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
14
|
The restructure of Au@Ag nanorods for cell imaging with dark-field microscope. Talanta 2022; 244:123403. [PMID: 35349839 DOI: 10.1016/j.talanta.2022.123403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 11/22/2022]
Abstract
The facile and noninjurious image of cells with high resolution and low toxicity is essential since imaging can offer rich and direct information and insights into metabolic activities, clinical diagnosis, drug delivery and cancer therapy. In this contribution, a smart imaging probe was employed as a contrast agent for dark-field cell imaging. Au core/Ag shell nanorods (Au@Ag NRs) that characterized by X-ray diffraction and X-ray photoelectron spectroscopy, formed Au@Ag@AgI NRs when exposed to iodine, which greatly enhanced the light scattering of nanorods. Herein, the silver shell acted as the response element for iodine as well as the protective agent for Au core. When conjugated with folate, the nanorods can be used to image human cervical cancer cells (HeLa cells) under a dark-field microscope. Nanorods were demonstrated with excellent tumor cellular uptake ability without obvious cytotoxicity, making them ideal candidates in biosensing and bioimaging applications.
Collapse
|
15
|
Xu S, Wang Y, Yao Y, Chen L, Xu J, Qiu B, Guo L. Toehold-mediated strand displacement coupled with single nanoparticle dark-field microscopy imaging for ultrasensitive biosensing. NANOSCALE 2022; 14:3496-3503. [PMID: 35171195 DOI: 10.1039/d1nr08030j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Highly sensitive detection of biomarkers is essential for disease prevention and early diagnosis. Herein, a highly sensitive strategy was proposed for microRNA-21 (miRNA-21) detection by the incorporation of programmable toehold-mediated strand displacement (TMSD) and dark-field microscopy imaging. Firstly, efficient and specific TSMD was carried out via hybridization between the substrate strand (Sub) and two short probe strands (P1, P2). Then, miRNA-21 could specifically hybridize with Sub due to the toehold that existed on its tail, which triggered the amplification with the help of the assist strands, and forming a large number of Sub-assist double-stranded DNA (dsDNA). This process realized the targeted highly specific recognition of miRNA-21 and the amplification of the trace target to high-output dsDNA. Additionally, as glucose oxidase (Gox) was modified on the end of the assist strands in advance, hydrogen peroxide was generated after adding glucose to the system, which further etched gold-silver core-shell nanocubes (Au@Ag NCs). As a result, the size of Au@Ag NCs decreased and the scattering intensity reduced simultaneously. The scattering intensity reduction value of Au@Ag NCs has a linear relationship with miRNA-21 concentration in the range of 1.0 to 100.0 fM with a limit of detection of 1.0 fM. Finally, the proposed method has been successfully demonstrated for the determination of miRNA-21 in lung cancer cell A549 lysate.
Collapse
Affiliation(s)
- Shaohua Xu
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China.
- Integrated Chinese and Western Medicine Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Yueliang Wang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China.
| | - Yuanyuan Yao
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China.
| | - Lifen Chen
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China.
| | - Jiahui Xu
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China.
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Longhua Guo
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China.
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
16
|
Zhou Y, Mazur F, Fan Q, Chandrawati R. Synthetic nanoprobes for biological hydrogen sulfide detection and imaging. VIEW 2022. [DOI: 10.1002/viw.20210008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Yingzhu Zhou
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN) The University of New South Wales (UNSW Sydney) Sydney New South Wales Australia
| | - Federico Mazur
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN) The University of New South Wales (UNSW Sydney) Sydney New South Wales Australia
| | - Qingqing Fan
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN) The University of New South Wales (UNSW Sydney) Sydney New South Wales Australia
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN) The University of New South Wales (UNSW Sydney) Sydney New South Wales Australia
| |
Collapse
|
17
|
Filbrun SL, Zhao F, Chen K, Huang TX, Yang M, Cheng X, Dong B, Fang N. Imaging Dynamic Processes in Multiple Dimensions and Length Scales. Annu Rev Phys Chem 2022; 73:377-402. [PMID: 35119943 DOI: 10.1146/annurev-physchem-090519-034100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Optical microscopy has become an invaluable tool for investigating complex samples. Over the years, many advances to optical microscopes have been made that have allowed us to uncover new insights into the samples studied. Dynamic changes in biological and chemical systems are of utmost importance to study. To probe these samples, multidimensional approaches have been developed to acquire a fuller understanding of the system of interest. These dimensions include the spatial information, such as the three-dimensional coordinates and orientation of the optical probes, and additional chemical and physical properties through combining microscopy with various spectroscopic techniques. In this review, we survey the field of multidimensional microscopy and provide an outlook on the field and challenges that may arise. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Seth L Filbrun
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Fei Zhao
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Kuangcai Chen
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA.,Imaging Core Facility, Georgia State University, Atlanta, Georgia, USA
| | - Teng-Xiang Huang
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Meek Yang
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA;
| | - Xiaodong Cheng
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen Key Laboratory of Analytical Molecular Nanotechnology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, China; ,
| | - Bin Dong
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA;
| | - Ning Fang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen Key Laboratory of Analytical Molecular Nanotechnology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, China; ,
| |
Collapse
|
18
|
Xu W, Ouyang M, Luo H, Xu D, Lin Q. Single Au@MnO 2 nanoparticle imaging for sensitive glucose detection based on H 2O 2-mediated etching of the MnO 2 layer. NEW J CHEM 2022. [DOI: 10.1039/d2nj03107h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The glucose assay based on high-throughput single Au@MnO2 nanoparticle color imaging with the dark-field microscopy (DFM).
Collapse
Affiliation(s)
- Weizhen Xu
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, Hunan, 410004, China
| | - Min Ouyang
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, Hunan, 410004, China
| | - Hongmei Luo
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, Hunan, 410004, China
| | - Dong Xu
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, Hunan, 410004, China
| | - Qinlu Lin
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, Hunan, 410004, China
| |
Collapse
|
19
|
Shi Y, Chen Q, Liu Y, Wang G. Capability of Au nano-rhombic dodecahedra in a label-free colorimetric assay: application in the determination of S 2− and Hg 2+. Analyst 2022; 147:3578-3584. [DOI: 10.1039/d2an00852a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Au nano-rhombic dodecahedra with high sensitivity to the environmental refractive index afford sensitive detection of S2- and Hg2+.
Collapse
Affiliation(s)
- Yali Shi
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Qianyuan Chen
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yuejun Liu
- Qingdao Yuanxin Testing Technology Co., Ltd, 59 Xinyue Road, Qingdao, China
| | - Guoqing Wang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
20
|
Xu S, Deng X, Ji S, Chen L, Zhao T, Luo F, Qiu B, Lin Z, Guo L. An algorithm-assisted automated identification and enumeration system for sensitive hydrogen sulfide sensing under dark field microscopy. Analyst 2022; 147:1492-1498. [DOI: 10.1039/d2an00149g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A sensitive H2S sensing strategy has been developed based on the automated identification and enumeration algorithm.
Collapse
Affiliation(s)
- Shaohua Xu
- Jiangxi Engineering Research Centre for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Xiaoyu Deng
- Ministry of Education Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Shuyi Ji
- Fujian Key Lab for Intelligent Processing and Wireless Transmission of Media Information, College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Lifen Chen
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Tiesong Zhao
- Fujian Key Lab for Intelligent Processing and Wireless Transmission of Media Information, College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Longhua Guo
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| |
Collapse
|
21
|
Yang Q, Shang J, Chen Y, Tang D, Ouyang Y, Xiong B, Zhang X. Plasmonic Imaging of Dynamic Interactions between Membrane Receptor Clusters beyond the Diffraction Limit in Live Cells. Anal Chem 2021; 93:16571-16580. [PMID: 34847664 DOI: 10.1021/acs.analchem.1c03843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As a general mechanism, ligand-induced receptor clustering on cell membrane plays determinative roles in pattern recognition and transmembrane signaling. Nevertheless, probing the dynamic characteristics for the complicated interactions between receptor clusters remains difficult because of the lack of strategy for receptor cluster labeling and long-term monitoring in live cells. Herein, we proposed a data-mining-integrated plasmon coupling microscopy to study the dynamic cluster-cluster interactions on cell surface. The receptor clusters were activated and labeled with multivalent plasmonic nanoprobes, which enables the real-time monitoring of individual receptor clusters and the measurement of cluster-cluster interactions from the analysis of plasmonic coupling for the nanoprobe pairs beyond the diffraction limit. Using this method, we found that the protease-activated receptor 1 (PAR1) clusters would experience an initial contact and then form a weakly bound cluster-cluster complex, followed by cluster fusion to generate large-sized signaling complexes. The underlying state transitions for the cluster-cluster fusion process were uncovered using a data-mining technique named the K-means-based hidden Markov model with the scattering intensity of coupled nanoprobe pairs as observations. All of the findings from single-particle analysis and bulk measurements suggested that the allosteric inhibitors could suppress the dynamic transitions from the weakly bound cluster-cluster complexes to fused signaling complexes, leading to the subsequent downregulation of intracellular calcium signaling pathways. We believe that this strategy is promising for imaging and monitoring receptor clustering as well as protein phase separation on the cell surface in various biological and physiological processes.
Collapse
Affiliation(s)
- Qian Yang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, P. R. China
| | - Jinhui Shang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, P. R. China
| | - Yancao Chen
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, P. R. China
| | - Decui Tang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, P. R. China
| | - Yuzhi Ouyang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, P. R. China
| | - Bin Xiong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, P. R. China
| | - Xiaobing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, P. R. China
| |
Collapse
|
22
|
Zhang D, Wei W, Liu Y, Pu Y, Liu S. Dual Imaging of Poly(ADP-ribose) Polymerase-1 and Endogenous H 2O 2 for the Diagnosis of Cancer Cells Using Silver-Coated Gold Nanorods. Anal Chem 2021; 93:16248-16256. [PMID: 34839666 DOI: 10.1021/acs.analchem.1c04155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The imaging of tumor-related multitarget molecules is of great significance to raise the diagnostic accuracy for malignant tumors. Poly(ADP-ribose) polymerase-1 (PARP-1) has emerged as a potential clinical biomarker for tumor diagnosis due to its specific overexpression in cancer cells. High levels of H2O2 in the tumor microenvironment play vital roles in driving cancer progression. Inspired by these achievements, we employed a silver-coated gold nanorod (Au@Ag NR) as a plasmonic probe for dual imaging of intracellular PARP-1 and H2O2 under a dark-field microscope (DFM). Au@Ag NR was used not only to distinguish tumor cells from normal cells but also to induce the apoptosis of cancer cells owing to the etching of Ag shell by H2O2, accompanied by the color change from green to orange. On the other hand, Au@Ag NRs modified with active double-stranded DNA (dsDNA) could be utilized to image PARP-1 in cancer cells and quantitatively detect PARP-1 in vitro by naked eyes or DFM. The reason is that PARP-1 polymerized nicotinamideadenine dinucleotide (NAD+) into large and hyperbranched poly(ADP-ribose) polymer (PAR) on the surface of Au@Ag NRs, preventing the Ag shell from being etched by H2O2. As the PARP-1 activity increased, a blue-shift of the adsorption peak occurred along with a color change from pale pink to green, which could be recognized by naked eyes. Under DFM, its scattering light varied obviously from red to green. The proposed dual-imaging strategy holds good prospects in cancer diagnosis.
Collapse
Affiliation(s)
- Duoduo Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Wei Wei
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yong Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Songqin Liu
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
23
|
Huang W, Li H, Yu L, Lin Y, Lei Y, Jin L, Yu H, He Y. Imaging adsorption of iodide on single Cu 2O microparticles reveals the acid activation mechanism. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126539. [PMID: 34252657 DOI: 10.1016/j.jhazmat.2021.126539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/31/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Imaging an adsorption reaction taking place at the single-particle level is a promising avenue for fundamentally understanding the adsorption mechanism. Here, we employ a dark-field microscopy (DFM) method for in situ imaging the adsorption process of I- on single Cu2O microparticles to reveal the acid activation mechanism. Using the time-lapsed DMF imaging, we find that a relatively strong acid is indispensable to trigger the adsorption reaction of I- on single Cu2O microparticle. A hollow microparticle with the increase in size is obtained after the adsorption reaction, causing the enhancement of the scattering intensity. Correlating the change of the scattering light intensity or particle size with adsorption capacity of I-, we quantitatively analyze the selective uptake, slightly heterogeneous adsorption behavior, pH/temperature-dependent adsorption capacity, and adsorption kinetics as well as isotherms of individual Cu2O microparticles for I-. Our observations demonstrate that the acid-initiated Kirkendall effect is responsible for the high-reaction activity of single Cu2O microparticles for adsorption of I- in the acidic environment, through breaking the unfavorable lattice energy between Cu2O and CuI as well as generating high-active hollow intermediate microparticle.
Collapse
Affiliation(s)
- Wei Huang
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Hua Li
- SUSTech Core Research Facilities, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Ling Yu
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Ying Lin
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Yuting Lei
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Luyue Jin
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Haili Yu
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Yi He
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, PR China.
| |
Collapse
|
24
|
Zhang D, Wang K, Wei W, Liu Y, Liu S. Multifunctional Plasmonic Core-Satellites Nanoprobe for Cancer Diagnosis and Therapy Based on a Cascade Reaction Induced by MicroRNA. Anal Chem 2021; 93:9521-9530. [PMID: 34190531 DOI: 10.1021/acs.analchem.1c01539] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Constructing multifunctional plasmonic core-satellites (CS) nanoassembly for clinical cancer diagnosis and therapy has gained vast attention. Herein, we reported a doxorubicin (Dox)-loaded CS nanoprobe for microRNA (miRNA) detection, targeting drug release, and therapy evaluation. The plasmonic CS nanoprobe was constructed with uniformly distributional 50 nm (core) and 13 nm (satellites) gold nanoparticles (AuNPs), which were functionally assembled with a specific sequence of DNA and peptides. Anticancer drug Dox was loaded by intercalating into the GC-rich double strands. In the presence of target miRNA (miRNA-21 used as model), the constructed CS nanostructure was disassembled, producing characteristic localized surface plasmon resonance (LSPR) signals and releasing Dox. With the increase of the miRNA-21 concentration ranging from 0.01 to 1000 fM, a distinct blue shift of scattering spectra peak occurred, along with obvious color change from orange to green under a dark-field microscope (DFM), which can be used to detect miRNA at single-particle level. Meanwhile, it released Dox-induced apoptosis. Caspase-3 involved in apoptosis was then activated to cleave the specific peptide substrate, releasing fluorophore FAM from AuNPs. As a result, caspase-3 was detected based on restored fluorescence intensity, which was used to evaluate the therapy effectiveness. In a word, the multifunctional plasmonic CS nanoprobe can be used not only to image cellular miRNA-21 to distinguish tumor cells from normal cells, but also to release drugs and monitor the apoptotic process in situ by confocal imaging.
Collapse
Affiliation(s)
- Duoduo Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Kan Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Wei Wei
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yong Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Songqin Liu
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| |
Collapse
|
25
|
Xu J, Liu Y, Li F, Deng L, Dong C, Ren J. In Situ Assay of Proteins Incorporated with Unnatural Amino Acids in Single Living Cells by Differenced Resonance Light Scattering Correlation Spectroscopy. Anal Chem 2021; 93:9329-9336. [PMID: 34171193 DOI: 10.1021/acs.analchem.0c04715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Site-specific incorporation of unnatural amino acids (UAAs) into target proteins (UAA-proteins) provides the unprecedented opportunities to study cell biology and biomedicine. However, it is a big challenge to in situ quantitatively determine the expression level of UAA-proteins due to serious interferences from autofluorescence, background scattering, and different viscosity in living cells. Here, we proposed a novel single nanoparticle spectroscopy method, differenced resonance light scattering correlation spectroscopy (D-RLSCS), to measure the UAA-proteins in single living cells. The D-RLSCS principle is based on the simultaneous measurement of the resonance scattering light fluctuation of a single gold nanoparticle (GNP) in two detection channels irradiated by two coaxial laser beams and then autocorrelation analysis on the differenced fluctuation signals between two channels. D-RLSCS can avoid the interferences from intracellular background scattering and provide the concentration and rotational and translational diffusion information of GNPs in solution or in living cells. Furthermore, we proposed a parameter, the ratiometric diffusion time and found that this parameter is proportional to the square of particle size. The theoretical and experimental results demonstrated that the ratiometric diffusion time was not influenced by the intracellular viscosity. This method was successfully applied for in situ quantification of the UAA-protein within single living cells based on the increase in the ratiometric diffusion time of nanoprobes bound with proteins. Using UAA-EGFP (enhanced green fluorescent protein) as a model, we observed the significant difference in the UAA-protein concentrations at different positions in single living cells.
Collapse
Affiliation(s)
- Jinchun Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 China
| | - Yaoqi Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 China
| | - Fucai Li
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 China
| | - Liyun Deng
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 China
| | - Chaoqing Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 China
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 China
| |
Collapse
|
26
|
Liu Q, Zhong Y, Su Y, Zhao L, Peng J. Real-Time Imaging of Hepatic Inflammation Using Hydrogen Sulfide-Activatable Second Near-Infrared Luminescent Nanoprobes. NANO LETTERS 2021; 21:4606-4614. [PMID: 34014668 DOI: 10.1021/acs.nanolett.1c00548] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The sensing and visualized monitoring of hydrogen sulfide (H2S) in vivo is crucial to understand its physiological and pathological roles in human health and diseases. Common methods for H2S detection require the destruction of the biosamples and are not suitable to be applied in vivo. In this Communication, we report a "turn-on" second near-infrared (NIR-II) luminescent approach for sensitive, real-time, and in situ H2S detection, which is based on the absorption competition between the H2S-responsive chromophores (compound 1) and the NIR-II luminescent lanthanide nanoparticles. Specifically, the luminescence was suppressed by compound 1 due to the competitive absorption of the incident light. In the presence of H2S, the compound 1 was bleached to recover the luminescence. Thanks to the deep tissue penetration depth and the low absorbance/scattering on biological samples of the NIR-II nanoprobes, the monitoring of the endogenous H2S in lipopolysaccharide-induced liver inflammation was achieved, which is unattainable by the conventional histopathological and serological approaches.
Collapse
Affiliation(s)
- Qin Liu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yang Zhong
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yaoquan Su
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Lingzhi Zhao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Juanjuan Peng
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| |
Collapse
|
27
|
Yu L, Li H, Huang W, Yu H, He Y. In Situ Visualizing Oxidase-Mimicking Activity of Single MnOOH Nanotubes with Mie Scattering-Based Absorption Microscopy. Inorg Chem 2021; 60:5264-5270. [PMID: 33719433 DOI: 10.1021/acs.inorgchem.1c00250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Imaging the catalytic activity at the single-particle level can greatly promote the screening and rational design of highly efficient nanozymes, but conventional techniques are based on ensemble analysis. Here, we present a new absorption microscopy for in situ visualizing oxidase-mimicking activity of single MnOOH nanotubes. The particle with a size more than 700 nm roughly equally scatters all wavelengths of visible light via Mie scattering, and the scattering light is collected by dark-field optical microscopy. When the particles absorb a single color of the scattering light, each individual nanoparticle shows its complementary color, enabling a form of absorption microscopy that we name Mie scattering-based absorption microscopy. We find that MnOOH nanotubes can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to generate polyTMB nanowires at their tips. There are multiple active sites on the surface of the individual nanotube, and the nanozyme activity shows a large heterogeneity as well as pH-dependent characteristic.
Collapse
Affiliation(s)
- Ling Yu
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Hua Li
- SUSTech Core Research Facilities, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wei Huang
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Haili Yu
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Yi He
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| |
Collapse
|
28
|
Tao Y, Lin Y, Luo F, Fu C, Lin C, He Y, Cai Z, Qiu B, Lin Z. Convenient detection of H 2S based on the photothermal effect of Au@Ag nanocubes using a handheld thermometer as readout. Anal Chim Acta 2021; 1149:338211. [PMID: 33551050 DOI: 10.1016/j.aca.2021.338211] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S), as a hazardous gas, is often found around dump areas. Long term exposure can cause harm to health, it is highly necessary to develop some simple and sensitive methods for on-site H2S detection. Herein, a convenient photothermal assay has been designed for the quantitation of H2S using a handheld thermometer as readout. Au@Ag nanocubes (Au@Ag NCs), a core-shell nanocomposite with strong light absorption at ∼450 nm, was chosen as a novel photothermal agent in this study. Under the laser irradiation at 450 nm, the Au@Ag NCs show a strong photothermal effect, and a significant temperature enhancement can be measured by the thermometer easily. The presence of H2S can lead to the deposition of sulfur onto Au@Ag NCs, altering the localized surface plasmon resonance absorption, size, surface composition, and morphology of Au@Ag NCs and hence leading to the reduction of photothermal effect. The change of the temperature has a linear relationship with the H2S concentration in the range of 0.5-80.0 μM with a detection limit of 0.35 μM. By combining with simple sample purification procedures, the developed method has been applied to detect H2S in garbage odor gas with satisfactory results.
Collapse
Affiliation(s)
- Yingzhou Tao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Yisheng Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Fang Luo
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Caili Fu
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing, 100048, China
| | - Cuiying Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China.
| | - Yu He
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Bin Qiu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Zhenyu Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
29
|
Aryal GM, Aryal B, Kandel KP, Neupane BB. Cellulose-based micro-fibrous materials imaged with a home-built smartphone microscope. Microsc Res Tech 2021; 84:1794-1801. [PMID: 33608938 DOI: 10.1002/jemt.23736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/21/2021] [Accepted: 02/01/2021] [Indexed: 12/29/2022]
Abstract
Micro-fibrous materials are one of the highly explored materials and form a major component of composite materials. In resource-limited settings, an affordable and easy to implement method that can characterize such material would be important. In this study, we report on a smartphone microscopic system capable of imaging a sample in transmission mode. As a proof of concept, we implemented the method to image handmade paper samples-cellulosic micro-fibrous material of different thickness. With 1 mm diameter ball lens, individual cellulose fibers, fiber web, and micro-porous regions were resolved in the samples. Imaging performance of the microscopic system was also compared with a commercial bright field microscope. For thin samples, we found the image quality comparable to commercial system. Also, the diameter of cellulose fiber measured from both methods was found to be similar. We also used the system to image surfaces of a three ply surgical facemask. Finally, we explored the application of the system in the study of chemical induced fiber damage. This study suggested that the smartphone microscope system can be an affordable alternative in imaging thin micro-fibrous material in resource limited setting.
Collapse
Affiliation(s)
- Girja Mani Aryal
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal.,Research Centre for Applied Science and Technology, Tribhuvan University, Kathmandu, Nepal
| | - Bishwa Aryal
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
| | | | | |
Collapse
|
30
|
Ma J, Wang X, Feng J, Huang C, Fan Z. Individual Plasmonic Nanoprobes for Biosensing and Bioimaging: Recent Advances and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004287. [PMID: 33522074 DOI: 10.1002/smll.202004287] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/27/2020] [Indexed: 06/12/2023]
Abstract
With the advent of nanofabrication techniques, plasmonic nanoparticles (PNPs) have been widely applied in various research fields ranging from photocatalysis to chemical and bio-sensing. PNPs efficiently convert chemical or physical stimuli in their local environment into optical signals. PNPs also have excellent properties, including good biocompatibility, large surfaces for the attachment of biomolecules, tunable optical properties, strong and stable scattering light, and good conductivity. Thus, single optical biosensors with plasmonic properties enable a broad range of uses of optical imaging techniques in biological sensing and imaging with high spatial and temporal resolution. This work provides a comprehensive overview on the optical properties of single PNPs, the description of five types of commonly used optical imaging techniques, including surface plasmon resonance (SPR) microscopy, surface-enhanced Raman scattering (SERS) technique, differential interference contrast (DIC) microscopy, total internal reflection scattering (TIRS) microscopy, and dark-field microscopy (DFM) technique, with an emphasis on their single plasmonic nanoprobes and mechanisms for applications in biological imaging and sensing, as well as the challenges and future trends of these fields.
Collapse
Affiliation(s)
- Jun Ma
- Department of Vasculocardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xinyu Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jian Feng
- Department of Vasculocardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Chengzhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Zhongcai Fan
- Department of Vasculocardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
| |
Collapse
|
31
|
Luo N, Chen Y, Zhang D, Guo M, Xue Z, Wang X, Cheng Z, Xu J. High-Sensitive MEMS Hydrogen Sulfide Sensor made from PdRh Bimetal Hollow Nanoframe Decorated Metal Oxides and Sensitization Mechanism Study. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56203-56215. [PMID: 33272011 DOI: 10.1021/acsami.0c18369] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Here we report the fabrication of a high performance metal oxide semiconductor (MOS) sensor for the detection of hydrogen sulfide (H2S) using PdRh bimetal hollow nanocube (HC) with Rh-rich hollow frame and Pd-rich core frame as sensitizing materials. PdRh bimetal HC with the edge-length about 10 nm was prepared by chemical etching PdRh bimetal solid nanocube (SC) in HNO3 aqueous solution. The results of gas-sensing tests indicate that the response value order of the MEMS gas sensors based on MOSs (including ZnO, MoO3 and SnO2) is as follows: RPdRh HC/MOS > RPdRh SC/MOS > RMOS. First, in the system of ZnO, gas sensor modified by PdRh (PdRh SC/ZnO and PdRh HC/ZnO) possess enhanced H2S sensing performance with a better response and excellent low-concentration detection capability (down to 15 ppb) comparing to pure ZnO. The improved H2S sensing performance could be attributed to the good conductivity of Rh-rich frame, the high catalytic activity of PdRh bimetal and formation of Schottky barrier-type junctions and defect. Second, PdRh HC/ZnO sensor shows better response (185-1 ppm of H2S) compared to PdRh SC/ZnO sensor (108-1 ppm of H2S), which is due to the higher specific surface area of PdRh HC/ZnO and good gas diffusion of the hollow structure. This work indicate that the sensitization characteristics of PdRh bimetal HC will provide new paradigms for the future development of the high performance sensor.
Collapse
Affiliation(s)
- Na Luo
- NEST lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yang Chen
- NEST lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Dan Zhang
- NEST lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Mengmeng Guo
- NEST lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Zhenggang Xue
- NEST lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Xiaohong Wang
- NEST lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Zhixuan Cheng
- NEST lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Jiaqiang Xu
- NEST lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
32
|
Mi H, Wang S, Yin H, Wang L, Mei L, Zhu X, Zhang N, Jiang R. (Gold triangular nanoplate core)@(silver shell) nanostructures as highly sensitive and selective plasmonic nanoprobes for hydrogen sulfide detection. NANOSCALE 2020; 12:20250-20257. [PMID: 33026023 DOI: 10.1039/d0nr05728b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydrogen sulfide plays a significant role in living beings, while its abnormal concentration is related to many diseases. Besides, H2S gas is harmful to human beings and the environment. The detection of H2S has therefore attracted much attention in the past several decades. Herein, highly sensitive and selective H2S plasmonic nanoprobes (gold triangular nanoplate core)@(silver shell) (AuTNP@Ag) are reported. By virtue of the high refractive index sensitivity of Au TNPs to the surrounding medium and facile sulfurization of silver by sulfur ions, AuTNP@Ag exhibits great sensitivity to both sulfur ions and H2S gas. The shifts of the plasmon peak are as large as 16 nm for the ventilation of 1 ppm hydrogen sulfide. AuTNP@Ag nanoprobes also exhibit very good sensing linearity at low concentrations of sulfur ions. Moreover, excellent sensing selectivity for sulfur ions is obtained. A type of test gel, which can produce a naked-eye observable color change when exposed to 1-100 ppm hydrogen sulfide gas, is developed using AuTNP@Ag nanoprobes. Owing to the high sensitivity, linearity, and selectivity of the Au TNP@Ag nanoprobes for hydrogen sulfide sensing, this work paves the way for the plasmonic detection of hydrogen sulfide in both biological and environmental applications.
Collapse
Affiliation(s)
- Hua Mi
- Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Shengyan Wang
- Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Hang Yin
- Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Le Wang
- Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Lin Mei
- Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Xingzhong Zhu
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Nan Zhang
- Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Ruibin Jiang
- Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China. and The State Key Laboratory of Optoelectronic Materials and Technologies (Sun Yat-sen University), China
| |
Collapse
|
33
|
Tian Y, Chen Y, Chen M, Song ZL, Xiong B, Zhang XB. Peroxidase-like Au@Pt nanozyme as an integrated nanosensor for Ag + detection by LSPR spectroscopy. Talanta 2020; 221:121627. [PMID: 33076154 DOI: 10.1016/j.talanta.2020.121627] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
Here we report the peroxidase-like Au@Pt nanozyme as an integrated nanosensor for selective detection of silver ions (Ag+), where the nanozyme plays the roles as both the signal trigger and reporter simultaneously. This method relies on two critical chemical reactions, including (1) the unique inhibitory effect of Ag+ on the nanozyme triggered H2O2 decomposition at weak acid environment and (2) H2O2 induced Ag+ reduction onto the nanozyme surface at basic environment, leading to a blueshift in the localized surface plasmonic resonance wavelength (LSPR λmax) of the nanosensor. With this simple strategy, we demonstrated the sensitive and selective detection of Ag+ over a dynamic range from 0.5 to 1000 μM with a limit of detection (LOD) of 500 nM by UV-visible spectroscopy, which is below the permitted level of Ag+ in drinking water by U.S. Environmental Protection Agency (EPA). This method also exhibits satisfying recovery efficiency for Ag+ detection both in tap water and spring water from the Yuelu Mountain. With this satisfying sensing performance and excellent stability of nanoprobes, this strategy is promising for the detection of Ag+ in environment monitoring and food safety analysis.
Collapse
Affiliation(s)
- Yueyue Tian
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yancao Chen
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Mei Chen
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Zhi-Ling Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Bin Xiong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xiao-Bing Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
34
|
Li X, Zhang T, Yu J, Xing C, Li X, Cai W, Li Y. Highly Selective and Sensitive Detection of Hydrogen Sulfide by the Diffraction Peak of Periodic Au Nanoparticle Array with Silver Coating. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40702-40710. [PMID: 32814430 DOI: 10.1021/acsami.0c12557] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The two-dimensional (2D) periodic Au nanosphere array with silver coating was prepared by using a colloidal monolayer template to obtain a Au nanosphere array and subsequently depositing silver thin coating on it, which could be used as an optical sensor to effectively detect H2S. Such periodic Au nanosphere array with silver coating displayed a surface plasmonic resonance (SPR) peak and an optical diffraction peak. Compared with the SPR peak, the diffraction peak, originated from the periodic arrangements of the obtained array, demonstrated a more sensitive optical change to detect H2S with a significant redshift as the H2S concentration increased. It was attributed to the increase of the refractive index of the environment around the Au nanosphere arrays with silver coating due to the partial formation of Ag2S after detecting H2S. Furthermore, the H2S sensor based on the change of the optical diffraction peak, showed an excellent selectivity and it was very sensitive to detect H2S from 2 to 30 μM. This method was investigated by the analysis in H2S-spiked blood samples, which indicates that the method has the potential to detect H2S in blood samples. The presented work provides a new strategy of utilizing the optical diffraction peak of the periodic array to develop promising sensors.
Collapse
Affiliation(s)
- Xuejiao Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HIPS, Chinese Academy of Sciences, Hefei 230031, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Tao Zhang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HIPS, Chinese Academy of Sciences, Hefei 230031, P.R. China
| | - Jie Yu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HIPS, Chinese Academy of Sciences, Hefei 230031, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Changchang Xing
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HIPS, Chinese Academy of Sciences, Hefei 230031, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Xinyang Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HIPS, Chinese Academy of Sciences, Hefei 230031, P.R. China
| | - Weiping Cai
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HIPS, Chinese Academy of Sciences, Hefei 230031, P.R. China
| | - Yue Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HIPS, Chinese Academy of Sciences, Hefei 230031, P.R. China
| |
Collapse
|
35
|
Mehta N, Sahu SP, Shaik S, Devireddy R, Gartia MR. Dark-field hyperspectral imaging for label free detection of nano-bio-materials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1661. [PMID: 32755036 DOI: 10.1002/wnan.1661] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/21/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022]
Abstract
Nanomaterials are playing an increasingly important role in cancer diagnosis and treatment. Nanoparticle (NP)-based technologies have been utilized for targeted drug delivery during chemotherapies, photodynamic therapy, and immunotherapy. Another active area of research is the toxicity studies of these nanomaterials to understand the cellular uptake and transport of these materials in cells, tissues, and environment. Traditional techniques such as transmission electron microscopy, and mass spectrometry to analyze NP-based cellular transport or toxicity effect are expensive, require extensive sample preparation, and are low-throughput. Dark-field hyperspectral imaging (DF-HSI), an integration of spectroscopy and microscopy/imaging, provides the ability to investigate cellular transport of these NPs and to quantify the distribution of them within bio-materials. DF-HSI also offers versatility in non-invasively monitoring microorganisms, single cell, and proteins. DF-HSI is a low-cost, label-free technique that is minimally invasive and is a viable choice for obtaining high-throughput quantitative molecular analyses. Multimodal imaging modalities such as Fourier transform infrared and Raman spectroscopy are also being integrated with HSI systems to enable chemical imaging of the samples. HSI technology is being applied in surgeries to obtain molecular information about the tissues in real-time. This article provides brief overview of fundamental principles of DF-HSI and its application for nanomaterials, protein-detection, single-cell analysis, microbiology, surgical procedures along with technical challenges and future integrative approach with other imaging and measurement modalities. This article is categorized under: Diagnostic Tools > in vitro Nanoparticle-Based Sensing Diagnostic Tools > in vivo Nanodiagnostics and Imaging Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery.
Collapse
Affiliation(s)
- Nishir Mehta
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Sushant P Sahu
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Shahensha Shaik
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Ram Devireddy
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
36
|
Chen Y, Tian Y, Yang Q, Shang J, Tang D, Xiong B, Zhang XB. Single-Particle Mobility Analysis Enables Ratiometric Detection of Cancer Markers under Darkfield Tracking Microscopy. Anal Chem 2020; 92:10233-10240. [PMID: 32633118 DOI: 10.1021/acs.analchem.9b05512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we introduced a single-particle mobility analysis-based ratiometric strategy for quantitative detection of disease-related biomarkers using antibody-conjugated gold nanoparticles (AuNPs) as probes under darkfield tracking microscopy (DFTM). On the basis of the capability of discriminating nanoparticles with different hydrodynamic sizes and detecting the changes in hydrodynamic effect, single-particle mobility analysis enables us to determine the amount of aggregated and monodispersed nanoprobes for the sandwich-like immunoassay strategy, making it possible to quantify the biotargets by analyzing the relative changes in the aggregate-to-monomer ratio of nanoprobes. By using capture antibody and detection antibody conjugated AuNPs as nanoprobes, we demonstrated ratiometric detection of carcinoembryonic antigen (CEA) over a linear dynamic range from 50 to 750 pM, which is acceptable for clinical diagnostic analysis of CEA in tumor patients. This ratiometric detection technique exhibited excellent anti-interference ability in the presence of nonspecific proteins or complicated protein mixtures. It can be anticipated that this robust technique is promising for the accurate detection of disease biomarkers and other biomolecules for biochemical and diagnostic applications.
Collapse
Affiliation(s)
- Yancao Chen
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Yueyue Tian
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Qian Yang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Jinhui Shang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Decui Tang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Bin Xiong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
37
|
Tian M, Yuan Z, Liu Y, Lu C, Ye Z, Xiao L. Recent advances of plasmonic nanoparticle-based optical analysis in homogeneous solution and at the single-nanoparticle level. Analyst 2020; 145:4737-4752. [PMID: 32500906 DOI: 10.1039/d0an00609b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Plasmonic nanoparticles with special localized surface plasmon resonance (LSPR) characters have been widely applied for optical sensing of various targets. With the combination of single nanoparticle imaging techniques, dynamic information of reactions and biological processes is obtained, facilitating the deep understanding of their principle and design of outstanding nanomaterials. In this review, we summarize the recently adopted optical analysis of diverse analytes based on plasmonic nanoparticles both in homogeneous solution and at the single-nanoparticle level. A brief introduction of LSPR is first discussed. Colorimetric and fluorimetric homogeneous detection examples by using different sensing mechanisms and strategies are provided. Single plasmonic nanoparticle-based analysis is concluded in two aspects: visualization of chemical reactions and understanding of biological processes. The basic sensing mechanisms and performances of these systems are introduced. Finally, this review highlights the challenges and future trend of plasmonic nanoparticle-based optical analysis systems.
Collapse
Affiliation(s)
- Mingce Tian
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Zhiqin Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Ying Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Zhongju Ye
- College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Lehui Xiao
- College of Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
38
|
Wu S, Ma C, Gao Y, Su Y, Xia Q, Chen Z, Zhu JJ. Dynamic Detection of Endogenous Hydroxyl Radicals at Single-Cell Level with Individual Ag-Au Nanocages. Anal Chem 2020; 92:9940-9947. [PMID: 32567299 DOI: 10.1021/acs.analchem.0c01501] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hydroxyl radicals (•OH) are a type of short-lived radical which is the most aggressive reactive oxygen species due to its high reactivity to biomolecules. Dynamic measurement of •OH level in living cells is critical for understanding cell physiology and pathology. In this manuscript, we prepare individual Ag-Au@PEG/RGD nanocages for in situ determination of endogenous •OH at single-cell level, whose spectral shift rate correlate to the •OH concentration. The high-selective response to •OH relies on the specific oxidization of the conjugated PEG/RGD outside and the silver etching inside the nanocages that resulted in a significant LSPR signal and scattered color changes. The spectral red-shift rate of LSPR has a linear relationship with the logarithm of •OH concentration in range of 100 pM to 1 μM, suitable for the measurement of endogenous •OH. Thus, the individual nanocages were successfully used to monitor the dynamic intracellular •OH level of single tumor cells under oxidative stress. This strategy has great potential in promoting •OH mediated cell homeostasis and injury research.
Collapse
Affiliation(s)
- Shaojun Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Cheng Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yu Su
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Qing Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zixuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
39
|
Rapid ultrasensitive monitoring the single-particle surface-enhanced Raman scattering (SERS) using a dark-field microspectroscopy assisted system. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.07.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Lu L, Yu J, Liu X, Yang X, Zhou Z, Jin Q, Xiao R, Wang C. Rapid, quantitative and ultra-sensitive detection of cancer biomarker by a SERRS-based lateral flow immunoassay using bovine serum albumin coated Au nanorods. RSC Adv 2020; 10:271-281. [PMID: 35492524 PMCID: PMC9047559 DOI: 10.1039/c9ra09471g] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/14/2019] [Indexed: 12/26/2022] Open
Abstract
A rapid, sensitive, and stable SERRS-LFIA strip was developed for AFP detection using BSA-coated AuNRs as SERRS nanotags.
Collapse
Affiliation(s)
- Luchun Lu
- College of Life Sciences
- Anhui Agricultural University
- Hefei 230036
- PR China
- Beijing Institute of Radiation Medicine
| | - Jiangliu Yu
- College of Life Sciences
- Anhui Agricultural University
- Hefei 230036
- PR China
| | - Xiaoxian Liu
- College of Life Sciences
- Anhui Agricultural University
- Hefei 230036
- PR China
| | - Xingsheng Yang
- College of Life Sciences
- Anhui Agricultural University
- Hefei 230036
- PR China
| | - Zihui Zhou
- Anhui Provincial Key Laboratory of Veterinary Pathobiology and Disease Control
- Anhui Agricultural University
- Hefei 230036
- PR China
| | - Qing Jin
- College of Life Sciences
- Anhui Agricultural University
- Hefei 230036
- PR China
| | - Rui Xiao
- College of Life Sciences
- Anhui Agricultural University
- Hefei 230036
- PR China
- Beijing Institute of Radiation Medicine
| | - Chongwen Wang
- College of Life Sciences
- Anhui Agricultural University
- Hefei 230036
- PR China
- Beijing Institute of Radiation Medicine
| |
Collapse
|
41
|
Wang H, Zhang T, Zhou X. Dark-field spectroscopy: development, applications and perspectives in single nanoparticle catalysis. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:473001. [PMID: 31315095 DOI: 10.1088/1361-648x/ab330a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dark-field microscopy (DFM) is an effective method to detect the scattering signal from single nanoparticles. This technique could break through the 200 nm limit resolution of ordinary optical microscopes. It even can observe the submicron particles of 20-200 nm. Moreover, from 2000, DFM was coupled with a spectrometer to measure the scattering spectra of single silver nanoparticles. Then, dark-field spectroscopy becomes a very important plasmon spectroscopy technique for single nanoparticles. Usually, plasmonic nanoparticles are the major research target, because they have unique optical properties due to their localized surface plasmon resonance (LSPR), which can be influenced by many factors, such as composition, size, morphology, the refractive index of the surrounding medium etc. When surface chemical reactions occur on a single nanoparticle, it could induce the variation of these factors. Then, the structure-activity relationship for these nanoparticle catalysts can be studied at a single nanoparticle level and in real time. This review mainly summarized the development of dark-field spectroscopy, spectrometers, light sources, and other accessories, which greatly improved the imaging capabilities of dark-field spectroscopy. Meanwhile, the applications of dark-field spectroscopy in single-particle catalysis such as chemocatalysis, photocatalysis, electrocatalysis and biocatalysis are also reviewed.
Collapse
Affiliation(s)
- Huihui Wang
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China. Division of Advanced Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, People's Republic of China
| | | | | |
Collapse
|
42
|
Chen W, Ni D, Rosenkrans ZT, Cao T, Cai W. Smart H 2S-Triggered/Therapeutic System (SHTS)-Based Nanomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901724. [PMID: 31763153 PMCID: PMC6864508 DOI: 10.1002/advs.201901724] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/13/2019] [Indexed: 05/02/2023]
Abstract
Hydrogen sulfide (H2S) is of vital importance in several biological and physical processes. The significance of H2S-specific detection and monitoring is emphasized by its elevated levels in various diseases such as cancer. Nanotechnology enhances the performance of chemical sensing nanoprobes due to the enhanced efficiency and sensitivity. Recently, extensive research efforts have been dedicated to developing novel smart H2S-triggered/therapeutic system (SHTS) nanoplatforms for H2S-activated sensing, imaging, and therapy. Herein, the latest SHTS-based nanomaterials are summarized and discussed in detail. In addition, therapeutic strategies mediated by endogenous H2S as a trigger or exogenous H2S delivery are also included. A comprehensive understanding of the current status of SHTS-based strategies will greatly facilitate innovation in this field. Lastly, the challenges and key issues related to the design and development of SHTS-based nanomaterials (e.g., morphology, surface modification, therapeutic strategies, appropriate application, and selection of nanomaterials) are outlined.
Collapse
Affiliation(s)
- Weiyu Chen
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWI53705USA
| | - Dalong Ni
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWI53705USA
| | - Zachary T. Rosenkrans
- Department of Pharmaceutical SciencesUniversity of Wisconsin‐MadisonMadisonWI53705USA
| | - Tianye Cao
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWI53705USA
| | - Weibo Cai
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWI53705USA
- Department of Pharmaceutical SciencesUniversity of Wisconsin‐MadisonMadisonWI53705USA
| |
Collapse
|
43
|
Shen J, Zhang L, Liu L, Wang B, Bai J, Shen C, Chen Y, Fan Q, Chen S, Wu W, Feng X, Wang L, Huang W. Revealing Lectin-Sugar Interactions with a Single Au@Ag Nanocube. ACS APPLIED MATERIALS & INTERFACES 2019; 11:40944-40950. [PMID: 31597422 DOI: 10.1021/acsami.9b15349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An individual nanoparticle-based plasmonic nanotechnology was used for real-time monitoring of lectin-sugar interactions, which could be designed as novel plasmonic nanobiosensors for the detection of trace concanavalin A (ConA) with high sensitivity and selectivity. The localized surface plasmon resonance (LSPR) spectra of Au@Ag nanocubes (NCs) are linearly shifted to a long wavelength with an increasing concentration of ConA. In fact, each Au@Ag NC can act as a nanobiosensor for the quantified detection of trace ConA, which enables the miniaturization of the biosensor system to nanoscale. Furthermore, the results demonstrated the perfect biosensing ability with the dual channel of dark-field microscopy images and LSPR spectra. We expect that this nanobiosensor system can provide an alternative important method for monitoring the specific binding of lectin-sugar at a single nanoparticle surface.
Collapse
Affiliation(s)
- Jingjing Shen
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergistic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , China
| | - Lei Zhang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergistic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , China
| | - Li Liu
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergistic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , China
| | - Bin Wang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergistic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , China
| | - Jieqiong Bai
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergistic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , China
| | - Chao Shen
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergistic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , China
| | - Yu Chen
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergistic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergistic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , China
| | - Shufen Chen
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergistic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , China
| | - Weibing Wu
- Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology , Nanjing Forestry University , Nanjing 210037 , P. R. China
| | - Xiaomiao Feng
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergistic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergistic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergistic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , China
- Shaanxi Institute of Flexible Electronics (SIFE) , Northwestern Polytechnical University (NPU) , Xi'an 710072 , China
| |
Collapse
|
44
|
Liu F, Guo Y, Hu Y, Zhang X, Zheng X. Intracellular dark-field imaging of ATP and photothermal therapy using a colorimetric assay based on gold nanoparticle aggregation via tetrazine/trans-cyclooctene cycloaddition. Anal Bioanal Chem 2019; 411:5845-5854. [PMID: 31278549 DOI: 10.1007/s00216-019-01966-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/22/2019] [Accepted: 06/06/2019] [Indexed: 12/23/2022]
Abstract
In this study, we developed a colorimetric ATP assay based on the ATP-induced aggregation of Au nanoparticles (AuNPs). This aggregation modified the local surface plasmon resonance (LSPR) of the AuNPs, which was used to detect and localize ATP in cells via dark-field imaging. The AuNP aggregation process involved the reaction of two types of functionalized AuNPs with each other: tetrazine-modified AuNPs (Au3-N4) and asymmetrically functionalized trans-cyclooctene-modified AuNPs (Au1-(E)-cyclooctene). This cycloaddition reaction occurs without the need for a catalyst such as the Cu ions that are used in the "click" reactions often employed in assays of this type. Initially, we asymmetrically functionalized both types of AuNPs and let them dimerize, which permitted us to explore the resulting wavelength shift in the LSPR of the AuNPs. Then, to facilitate the specific recognition of ATP, a designed DNA (DNA1) containing an ATP aptamer sequence was attached to carboxyl polystyrene microbeads (MBs). After attaching a different DNA (DNA2, which hybridizes with DNA1) to Au1-(E)-cyclooctene, the assay probe MB/DNA1/DNA2/Au1-(E)-cyclooctene (MB/Au1) was generated. While bound to MB/DNA1, the DNA2/Au1-(E)-cyclooctene cannot react with Au3-N4 due to steric hindrance from the MB. However, in the presence of ATP, the probe MB/Au1 dissociates, and the resulting free DNA2/Au1-(E)-cyclooctene can then react with the Au3-N4, leading to the formation of AuNP aggregates. Dark-field microscopy (DFM) images showed that the LSPR of the AuNPs shifted from the green region (AuNP monomers) to the orange-red region (AuNP aggregates) in the presence of intracellular ATP. Moreover, the AuNP aggregates were found to exhibit significant photothermal effects under 808-nm laser irradiation. Upon introducing the probe MB/Au1 and Au3-N4 into HeLa cells in vitro and in vivo, and then irradiating the cells with a 808-nm NIR laser, the resulting AuNP aggregates showed promising photothermal cancer therapy performance. This assay therefore has the potential to be widely used for the identification and determination of nanoparticles in biological DFM and in tumor theranostics. Graphical abstract.
Collapse
Affiliation(s)
- Fei Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China.,Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Markers, Shusheng Zhang Innovation Studio for Science and Technology Leader of Shandong Province, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| | - Yingshu Guo
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Markers, Shusheng Zhang Innovation Studio for Science and Technology Leader of Shandong Province, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China.
| | - Yinhua Hu
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Markers, Shusheng Zhang Innovation Studio for Science and Technology Leader of Shandong Province, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| | - Xiaoru Zhang
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiangjiang Zheng
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Markers, Shusheng Zhang Innovation Studio for Science and Technology Leader of Shandong Province, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| |
Collapse
|
45
|
Luo Y, Zhu C, Du D, Lin Y. A review of optical probes based on nanomaterials for the detection of hydrogen sulfide in biosystems. Anal Chim Acta 2019; 1061:1-12. [DOI: 10.1016/j.aca.2019.02.045] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/22/2019] [Accepted: 02/18/2019] [Indexed: 02/08/2023]
|
46
|
Liu T, Liu S, Jiang W, Wang W. Tracking Sub-Nanometer Shift in the Scattering Centroid of Single Gold Nanorods during Electrochemical Charging. ACS NANO 2019; 13:6279-6286. [PMID: 30995004 DOI: 10.1021/acsnano.8b09636] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
While conventional wisdom suggests the scattering centroid of a plasmonic nanoparticle reflects its geometric center, here we uncover the dependence of a scattering centroid of a single gold nanorod (AuNR) on its electron density when the geometric features (position and morphology) do not change at all. When periodically altering the electron density of a single AuNR during nonfaradaic charging and discharging processes, the optical centroid of the scattering dot in a series of dark-field images was found to reversibly shift back and forth by ∼0.4 nm, in pace with the sweeping potential. A Fourier-transform-based demodulation method was proposed to determine the centroid displacement as small as 0.1 nm, allowing for validating the generality of the observed phenomenon. The dependence of an optical centroid on the potential was attributed to the displacement of the electron density center as a result of inhomogeneous accumulation of injected electrons on the surface of a single AuNR. Not only does the present work shed light on studying the photon-electron interactions at sub-nanoparticle level, Fourier transform-based demodulation also provides a superior strategy for other fast and reversible processes such as electrochromic and photothermal conversions.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Shasha Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Wenxuan Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
47
|
Wang C, Wang C, Wang X, Wang K, Zhu Y, Rong Z, Wang W, Xiao R, Wang S. Magnetic SERS Strip for Sensitive and Simultaneous Detection of Respiratory Viruses. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19495-19505. [PMID: 31058488 DOI: 10.1021/acsami.9b03920] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Rapid and early diagnosis of respiratory viruses is key to preventing infections from spreading and guiding treatments. Here, we developed a sensitive and quantitative surface-enhanced Raman scattering-based lateral flow immunoassay (SERS-based LFIA) strip for simultaneous detection of influenza A H1N1 virus and human adenovirus (HAdV) by using Fe3O4@Ag nanoparticles as magnetic SERS nanotags. The new type of Fe3O4@Ag magnetic tags, which were conjugated with dual-layer Raman dye molecules and target virus-capture antibodies, performs the following functions: specific recognition and magnetic enrichment of target viruses in the solution and SERS detection of the viruses on the strip. Based on this strategy, the magnetic SERS strip can directly be used for real biological samples without any sample pretreatment steps. The limits of detection for H1N1 and HAdV were 50 and 10 pfu/mL, respectively, which were 2000 times more sensitive than those from the standard colloidal gold strip method. Moreover, the proposed strip is easy to operate, rapid, stable, and can achieve high throughput and is thus a potential tool for early detection of virus infection.
Collapse
Affiliation(s)
- Chongwen Wang
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | - Chaoguang Wang
- College of Mechatronics Engineering and Automation , National University of Defense Technology , Changsha 410073 , P. R. China
| | - Xiaolong Wang
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research , Shandong University of Traditional Chinese Medicine , Jinan 250355 , P. R. China
| | - Keli Wang
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | - Yanhui Zhu
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | - Zhen Rong
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | | | - Rui Xiao
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | - Shengqi Wang
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research , Shandong University of Traditional Chinese Medicine , Jinan 250355 , P. R. China
| |
Collapse
|
48
|
Liu H, Ye Z, Wang X, Wei L, Xiao L. Molecular and living cell dynamic assays with optical microscopy imaging techniques. Analyst 2019; 144:859-871. [PMID: 30444498 DOI: 10.1039/c8an01420e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Generally, the message elucidated by the conventional analytical methods overlooks the heterogeneity of single objects, where the behavior of individual molecules is shielded. With the advent of optical microscopy imaging techniques, it is possible to identify, visualize and track individual molecules or nanoparticles under a biological environment with high temporal and spatial resolution. In this work, we summarize the commonly adopted optical microscopy techniques for bio-analytical assays in living cells, including total internal reflection fluorescence microscopy (TIRFM), super-resolution optical microscopy (SRM), and dark-field optical microscopy (DFM). The basic principles of these methods and some recent interesting applications in molecular detection and single-particle tracking are introduced. Moreover, the development in high-dimensional optical microscopy to achieve three-dimensional (3-D) as well as sub-diffraction localization and tracking of biomolecules is also highlighted.
Collapse
Affiliation(s)
- Hua Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | | | | | | | | |
Collapse
|
49
|
Gahlaut SK, Kalyani N, Sharan C, Mishra P, Singh J. Smartphone based dual mode in situ detection of viability of bacteria using Ag nanorods array. Biosens Bioelectron 2019; 126:478-484. [DOI: 10.1016/j.bios.2018.11.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/05/2018] [Accepted: 11/15/2018] [Indexed: 01/01/2023]
|
50
|
Chen L, Li R, Yang P. Plasmonic nanoprobes based on the shape transition of Au/Ag core–shell nanorods to dumbbells for sensitive Hg-ion detection. RSC Adv 2019; 9:17783-17790. [PMID: 35520588 PMCID: PMC9064665 DOI: 10.1039/c9ra02168j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/20/2019] [Indexed: 11/21/2022] Open
Abstract
Sensitive plasmonic nanoprobes for the sensitive detection of mercury ions based on a “rod-like to dumbbell or not” morphology transition of the Au/Ag core–shell hybrid nanorods.
Collapse
Affiliation(s)
- Ling Chen
- School of Materials Science and Engineering
- University of Jinan
- Jinan 250022
- China
| | - Rui Li
- School of Materials Science and Engineering
- University of Jinan
- Jinan 250022
- China
| | - Ping Yang
- School of Materials Science and Engineering
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|