1
|
Duchêne DA, Chowdhury AA, Yang J, Iglesias-Carrasco M, Stiller J, Feng S, Bhatt S, Gilbert MTP, Zhang G, Tobias JA, Ho SYW. Drivers of avian genomic change revealed by evolutionary rate decomposition. Nature 2025:10.1038/s41586-025-08777-7. [PMID: 40108459 DOI: 10.1038/s41586-025-08777-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/12/2025] [Indexed: 03/22/2025]
Abstract
Modern birds have diversified into a striking array of forms, behaviours and ecological roles. Analyses of molecular evolutionary rates can reveal the links between genomic and phenotypic change1-4, but disentangling the drivers of rate variation at the whole-genome scale has been difficult. Using comprehensive estimates of traits and evolutionary rates across a family-level phylogeny of birds5,6, we find that genome-wide mutation rates across lineages are predominantly explained by clutch size and generation length, whereas rate variation across genes is driven by the content of guanine and cytosine. Here, to find the subsets of genes and lineages that dominate evolutionary rate variation in birds, we estimated the influence of individual lineages on decomposed axes of gene-specific evolutionary rates. We find that most of the rate variation occurs along recent branches of the tree, associated with present-day families of birds. Additional tests on axes of rate variation show rapid changes in microchromosomes immediately after the Cretaceous-Palaeogene transition. These apparent pulses of evolution are consistent with major changes in the genetic machineries for meiosis, heart performance, and RNA splicing, surveillance and translation, and correlate with the ecological diversity reflected in increased tarsus length. Collectively, our analyses paint a nuanced picture of avian evolution, revealing that the ancestors of the most diverse lineages of birds underwent major genomic changes related to mutation, gene usage and niche expansion in the early Palaeogene period.
Collapse
Affiliation(s)
- David A Duchêne
- Section of Health Data Science and AI, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Al-Aabid Chowdhury
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Jingyi Yang
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Maider Iglesias-Carrasco
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Doñana Biological Station-Spanish Research Council CSIC, Seville, Spain
| | - Josefin Stiller
- Centre for Biodiversity Genomics, University of Copenhagen, Copenhagen, Denmark
| | - Shaohong Feng
- Center for Evolutionary and Organismal Biology, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Department of General Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Hangzhou, China
| | - Samir Bhatt
- Section of Health Data Science and AI, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- MRC Centre for Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London, London, UK
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Natural History, University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Guojie Zhang
- Center for Evolutionary and Organismal Biology, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Hangzhou, China
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Joseph A Tobias
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Johannes F. Allometric scaling of somatic mutation and epimutation rates in trees. Evolution 2024; 79:1-5. [PMID: 39432579 DOI: 10.1093/evolut/qpae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
How long-lived trees escape "mutational meltdown" despite centuries of continuous growth remains puzzling. Here we integrate recent studies to show that the yearly rate of somatic mutations and epimutations (μY) scales inversely with generation time (G), and follows the same allometric power law found in mammals (μY ∝ G-1). Deeper insights into the scaling function may permit predictions of somatic (epi)mutation rates from life-history traits without the need for genomic data.
Collapse
Affiliation(s)
- Frank Johannes
- Plant Epigenomics, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| |
Collapse
|
3
|
Bromham L. Combining Molecular, Macroevolutionary, and Macroecological Perspectives on the Generation of Diversity. Cold Spring Harb Perspect Biol 2024; 16:a041453. [PMID: 38503506 PMCID: PMC11368193 DOI: 10.1101/cshperspect.a041453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Charles Darwin presented a unified process of diversification driven by the gradual accumulation of heritable variation. The growth in DNA databases and the increase in genomic sequencing, combined with advances in molecular phylogenetic analyses, gives us an opportunity to realize Darwin's vision, connecting the generation of variation to the diversification of lineages. The rate of molecular evolution is correlated with the rate of diversification across animals and plants, but the relationship between genome change and speciation is complex: Mutation rates evolve in response to life history and niche; substitution rates are influenced by mutation, selection, and population size; rates of acquisition of reproductive isolation vary between populations; and traits, niches, and distribution can influence diversification rates. The connection between mutation rate and diversification rate is one part of the complex and varied story of speciation, which has theoretical importance for understanding the generation of biodiversity and also practical impacts on the use of DNA to understand the dynamics of speciation over macroevolutionary timescales.
Collapse
Affiliation(s)
- Lindell Bromham
- Macroevolution and Macroecology, Research School of Biology, Australian National University, ACT 0200, Australia
| |
Collapse
|
4
|
Zhang R, Drummond AJ, Mendes FK. Fast Bayesian Inference of Phylogenies from Multiple Continuous Characters. Syst Biol 2024; 73:102-124. [PMID: 38085256 PMCID: PMC11129596 DOI: 10.1093/sysbio/syad067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/23/2023] [Accepted: 11/07/2023] [Indexed: 05/28/2024] Open
Abstract
Time-scaled phylogenetic trees are an ultimate goal of evolutionary biology and a necessary ingredient in comparative studies. The accumulation of genomic data has resolved the tree of life to a great extent, yet timing evolutionary events remain challenging if not impossible without external information such as fossil ages and morphological characters. Methods for incorporating morphology in tree estimation have lagged behind their molecular counterparts, especially in the case of continuous characters. Despite recent advances, such tools are still direly needed as we approach the limits of what molecules can teach us. Here, we implement a suite of state-of-the-art methods for leveraging continuous morphology in phylogenetics, and by conducting extensive simulation studies we thoroughly validate and explore our methods' properties. While retaining model generality and scalability, we make it possible to estimate absolute and relative divergence times from multiple continuous characters while accounting for uncertainty. We compile and analyze one of the most data-type diverse data sets to date, comprised of contemporaneous and ancient molecular sequences, and discrete and continuous morphological characters from living and extinct Carnivora taxa. We conclude by synthesizing lessons about our method's behavior, and suggest future research venues.
Collapse
Affiliation(s)
- Rong Zhang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School 169857, Singapore
| | - Alexei J Drummond
- Centre for Computational Evolution, The University of Auckland, Auckland 1010, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Fábio K Mendes
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
5
|
Qian ZH, Li W, Wang QF, Liang SC, Wu S, Li ZZ, Chen JM. The chromosome-level genome of the submerged plant Cryptocoryne crispatula provides insights into the terrestrial-freshwater transition in Araceae. DNA Res 2024; 31:dsae003. [PMID: 38245835 PMCID: PMC10873505 DOI: 10.1093/dnares/dsae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 01/22/2024] Open
Abstract
Plant terrestrialization (i.e. the transition to a terrestrial environment) is a significant evolutionary event that has been intensively studied. While certain plant lineages, particularly in angiosperms, have re-adapted to freshwater habitats after colonizing terrene, however, the molecular mechanism of the terrestrial-freshwater (T-F) transition remains limited. Here, the basal monocot Araceae was selected as the study object to explore the T-F transition adaptation mechanism by comparative genomic analysis. Our findings revealed that the substitution rates significantly increased in the lineage of freshwater Araceae, which may promote their adaptation to the freshwater habitat. Additionally, 20 gene sets across all four freshwater species displayed signs of positive selection contributing to tissue development and defense responses in freshwater plants. Comparative synteny analysis showed that genes specific to submerged plants were enriched in cellular respiration and photosynthesis. In contrast, floating plants were involved in regulating gene expression, suggesting that gene and genome duplications may provide the original material for plants to adapt to the freshwater environment. Our study provides valuable insights into the genomic aspects of the transition from terrestrial to aquatic environments in Araceae, laying the groundwork for future research in the angiosperm.
Collapse
Affiliation(s)
- Zhi-Hao Qian
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Qing-Feng Wang
- Plant Diversity Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Shi-Chu Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541006, China
| | - Shuang Wu
- Guangxi Association for Science and Technology, Nanning 530023, China
| | - Zhi-Zhong Li
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jin-Ming Chen
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
6
|
Huang Y, Guo L, Xie L, Shang N, Wu D, Ye C, Rudell EC, Okada K, Zhu QH, Song BK, Cai D, Junior AM, Bai L, Fan L. A reference genome of Commelinales provides insights into the commelinids evolution and global spread of water hyacinth (Pontederia crassipes). Gigascience 2024; 13:giae006. [PMID: 38486346 PMCID: PMC10938897 DOI: 10.1093/gigascience/giae006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/20/2023] [Accepted: 02/08/2024] [Indexed: 03/18/2024] Open
Abstract
Commelinales belongs to the commelinids clade, which also comprises Poales that includes the most important monocot species, such as rice, wheat, and maize. No reference genome of Commelinales is currently available. Water hyacinth (Pontederia crassipes or Eichhornia crassipes), a member of Commelinales, is one of the devastating aquatic weeds, although it is also grown as an ornamental and medical plant. Here, we present a chromosome-scale reference genome of the tetraploid water hyacinth with a total length of 1.22 Gb (over 95% of the estimated size) across 8 pseudochromosome pairs. With the representative genomes, we reconstructed a phylogeny of the commelinids, which supported Zingiberales and Commelinales being sister lineages of Arecales and shed lights on the controversial relationship of the orders. We also reconstructed ancestral karyotypes of the commelinids clade and confirmed the ancient commelinids genome having 8 chromosomes but not 5 as previously reported. Gene family analysis revealed contraction of disease-resistance genes during polyploidization of water hyacinth, likely a result of fitness requirement for its role as a weed. Genetic diversity analysis using 9 water hyacinth lines from 3 continents (South America, Asia, and Europe) revealed very closely related nuclear genomes and almost identical chloroplast genomes of the materials, as well as provided clues about the global dispersal of water hyacinth. The genomic resources of P. crassipes reported here contribute a crucial missing link of the commelinids species and offer novel insights into their phylogeny.
Collapse
Affiliation(s)
- Yujie Huang
- Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhongyuan Institute of Zhejiang University, Zhengzhou 450000, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Lingjuan Xie
- Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Nianmin Shang
- Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Dongya Wu
- Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chuyu Ye
- Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Eduardo Carlos Rudell
- Department of Crop Sciences, Agricultural School, Federal University of Rio Grande do Sul, Porto Alegre, RS 68011, Brazil
| | - Kazunori Okada
- Agro-Biotechnology Research Center (AgTECH), University of Tokyo, Tokyo 113-8657, Japan
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, Black Mountain Laboratories, Canberra, ACT 2601, Australia
| | - Beng-Kah Song
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor 46150, Malaysia
| | - Daguang Cai
- Department of Molecular Phytopathology and Biotechnology, Christian Albrechts University of Kiel, Kiel D-24118, Germany
| | - Aldo Merotto Junior
- Department of Crop Sciences, Agricultural School, Federal University of Rio Grande do Sul, Porto Alegre, RS 68011, Brazil
| | - Lianyang Bai
- Hunan Weed Science Key Laboratory, Hunan Academy of Agriculture Science, Changsha 410125, China
| | - Longjiang Fan
- Institute of Crop Sciences & Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhongyuan Institute of Zhejiang University, Zhengzhou 450000, China
| |
Collapse
|
7
|
Smith SA, Walker-Hale N, Parins-Fukuchi CT. Compositional shifts associated with major evolutionary transitions in plants. THE NEW PHYTOLOGIST 2023; 239:2404-2415. [PMID: 37381083 DOI: 10.1111/nph.19099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/04/2023] [Indexed: 06/30/2023]
Abstract
Heterogeneity in gene trees, morphological characters, and composition has been associated with several major plant clades. Here, we examine heterogeneity in composition across a large transcriptomic dataset of plants to better understand whether locations of shifts in composition are shared across gene regions and whether directions of shifts within clades are shared across gene regions. We estimate mixed models of composition for both nucleotide and amino acids across a recent large-scale transcriptomic dataset for plants. We find shifts in composition across both nucleotide and amino acid datasets, with more shifts detected in nucleotides. We find that Chlorophytes and lineages within experience the most shifts. However, many shifts occur at the origins of land, vascular, and seed plants. While genes in these clades do not typically share the same composition, they tend to shift in the same direction. We discuss potential causes of these patterns. Compositional heterogeneity has been highlighted as a potential problem for phylogenetic analysis, but the variation presented here highlights the need to further investigate these patterns for the signal of biological processes.
Collapse
Affiliation(s)
- Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48103, USA
| | | | | |
Collapse
|
8
|
Hongo JA, de Castro GM, Albuquerque Menezes AP, Rios Picorelli AC, Martins da Silva TT, Imada EL, Marchionni L, Del-Bem LE, Vieira Chaves A, Almeida GMDF, Campelo F, Lobo FP. CALANGO: A phylogeny-aware comparative genomics tool for discovering quantitative genotype-phenotype associations across species. PATTERNS (NEW YORK, N.Y.) 2023; 4:100728. [PMID: 37409050 PMCID: PMC10318336 DOI: 10.1016/j.patter.2023.100728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/08/2022] [Accepted: 03/15/2023] [Indexed: 07/07/2023]
Abstract
Living species vary significantly in phenotype and genomic content. Sophisticated statistical methods linking genes with phenotypes within a species have led to breakthroughs in complex genetic diseases and genetic breeding. Despite the abundance of genomic and phenotypic data available for thousands of species, finding genotype-phenotype associations across species is challenging due to the non-independence of species data resulting from common ancestry. To address this, we present CALANGO (comparative analysis with annotation-based genomic components), a phylogeny-aware comparative genomics tool to find homologous regions and biological roles associated with quantitative phenotypes across species. In two case studies, CALANGO identified both known and previously unidentified genotype-phenotype associations. The first study revealed unknown aspects of the ecological interaction between Escherichia coli, its integrated bacteriophages, and the pathogenicity phenotype. The second identified an association between maximum height in angiosperms and the expansion of a reproductive mechanism that prevents inbreeding and increases genetic diversity, with implications for conservation biology and agriculture.
Collapse
Affiliation(s)
- Jorge Augusto Hongo
- Instituto de Computação, Universidade Estadual de Campinas, Campinas, Sao Paulo 13083-872, Brazil
| | - Giovanni Marques de Castro
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Alison Pelri Albuquerque Menezes
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Agnello César Rios Picorelli
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Thieres Tayroni Martins da Silva
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Eddie Luidy Imada
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Luiz-Eduardo Del-Bem
- Department of Botany, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Anderson Vieira Chaves
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Gabriel Magno de Freitas Almeida
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT The Arctic University of Norway, 9019 Tromsø, Norway
| | - Felipe Campelo
- Department of Computer Science, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK
| | - Francisco Pereira Lobo
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| |
Collapse
|
9
|
Roberts M, Josephs EB. Weaker selection on genes with treatment-specific expression consistent with a limit on plasticity evolution in Arabidopsis thaliana. Genetics 2023; 224:iyad074. [PMID: 37094602 PMCID: PMC10484170 DOI: 10.1093/genetics/iyad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/06/2023] [Accepted: 04/07/2023] [Indexed: 04/26/2023] Open
Abstract
Differential gene expression between environments often underlies phenotypic plasticity. However, environment-specific expression patterns are hypothesized to relax selection on genes, and thus limit plasticity evolution. We collated over 27 terabases of RNA-sequencing data on Arabidopsis thaliana from over 300 peer-reviewed studies and 200 treatment conditions to investigate this hypothesis. Consistent with relaxed selection, genes with more treatment-specific expression have higher levels of nucleotide diversity and divergence at nonsynonymous sites but lack stronger signals of positive selection. This result persisted even after controlling for expression level, gene length, GC content, the tissue specificity of expression, and technical variation between studies. Overall, our investigation supports the existence of a hypothesized trade-off between the environment specificity of a gene's expression and the strength of selection on said gene in A. thaliana. Future studies should leverage multiple genome-scale datasets to tease apart the contributions of many variables in limiting plasticity evolution.
Collapse
Affiliation(s)
- Miles Roberts
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, MI 48824, USA
| | - Emily B Josephs
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
10
|
Lee C, Ruhlman TA, Jansen RK. Rate accelerations in plastid and mitochondrial genomes of Cyperaceae occur in the same clades. Mol Phylogenet Evol 2023; 182:107760. [PMID: 36921696 DOI: 10.1016/j.ympev.2023.107760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/28/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Cyperaceae, the second largest family in the monocot order Poales, comprises >5500 species and includes the genus Eleocharis with ∼ 250 species. A previous study of complete plastomes of two Eleocharis species documented extensive structural heteroplasmy, gene order changes, high frequency of dispersed repeats along with gene losses and duplications. To better understand the phylogenetic distribution of gene and intron content as well as rates and patterns of sequence evolution within and between mitochondrial and plastid genomes of Eleocharis and Cyperaceae, an additional 29 Eleocharis organelle genomes were sequenced and analyzed. Eleocharis experienced extensive gene loss in both genomes while loss of introns was mitochondria-specific. Eleocharis has higher rates of synonymous (dS) and nonsynonymous (dN) substitutions in the plastid and mitochondrion than most sampled angiosperms, and the pattern was distinct from other eudicot lineages with accelerated rates. Several clades showed higher dS and dN in mitochondrial genes than in plastid genes. Furthermore, nucleotide substitution rates of mitochondrial genes were significantly accelerated on the branch leading to Cyperaceae compared to most angiosperms. Mitochondrial genes of Cyperaceae exhibited dramatic loss of RNA editing sites and a negative correlation between RNA editing and dS values was detected among angiosperms. Mutagenic retroprocessing and dysfunction of DNA replication, repair and recombination genes are the most likely cause of striking rate accelerations and loss of edit sites and introns in Eleocharis and Cyperaceae organelle genomes.
Collapse
Affiliation(s)
- Chaehee Lee
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA; Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA.
| | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
11
|
Xie J, Ma Y, Li X, Wu J, Martin F, Zhang D. Multifeature analysis of age-related microbiome structures reveals defense mechanisms of Populus tomentosa trees. THE NEW PHYTOLOGIST 2023; 238:1636-1650. [PMID: 36856329 DOI: 10.1111/nph.18847] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Root microbiota composition shifts during the development of most annual plants. Although some perennial plants can live for centuries, the host-microbiome partnerships and interaction mechanisms underlying their longevity remain unclear. To address this gap, we investigated age-related changes in the root metabolites, transcriptomes, and microbiome compositions of 1- to 35-yr-old Populus tomentosa trees. Ten co-response clusters were obtained according to their accumulation patterns, and members of each cluster displayed a uniform and clear pattern of abundance. Multi-omics network analysis demonstrated that the increased abundance of Actinobacteria with tree age was strongly associated with the flavonoid biosynthesis. Using genetic approaches, we demonstrate that the flavonoid biosynthesis regulator gene Transparent Testa 8 is associated with the recruitment of flavonoid-associated Actinobacteria. Further inoculation experiments of Actinobacteria isolates indicated that their colonization could significantly improve the host's phenotype. Site-directed mutagenesis revealed that the hyBl gene cluster, involved in biosynthesis of an aminocyclitol hygromycin B analog in Streptomyces isolate bj1, is associated with disease suppression. We hypothesize that interactions between perennial plants and soil microorganisms lead to gradual enrichment of a subset of microorganisms that may harbor a wealth of currently unknown functional traits.
Collapse
Affiliation(s)
- Jianbo Xie
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Yuchao Ma
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Xian Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Jiadong Wu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Francis Martin
- INRA-Université de Lorraine, INRAe, UMR 1136, Interactions Arbres/Microorganismes, INRAe-Grand Est-Nancy, 54280, Champenoux, France
| | - Deqiang Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| |
Collapse
|
12
|
Anderson B, Pannell J, Billiard S, Burgarella C, de Boer H, Dufay M, Helmstetter AJ, Méndez M, Otto SP, Roze D, Sauquet H, Schoen D, Schönenberger J, Vallejo-Marin M, Zenil-Ferguson R, Käfer J, Glémin S. Opposing effects of plant traits on diversification. iScience 2023; 26:106362. [PMID: 37034980 PMCID: PMC10074578 DOI: 10.1016/j.isci.2023.106362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Species diversity can vary dramatically across lineages due to differences in speciation and extinction rates. Here, we explore the effects of several plant traits on diversification, finding that most traits have opposing effects on diversification. For example, outcrossing may increase the efficacy of selection and adaptation but also decrease mate availability, two processes with contrasting effects on lineage persistence. Such opposing trait effects can manifest as differences in diversification rates that depend on ecological context, spatiotemporal scale, and associations with other traits. The complexity of pathways linking traits to diversification suggests that the mechanistic underpinnings behind their correlations may be difficult to interpret with any certainty, and context dependence means that the effects of specific traits on diversification are likely to differ across multiple lineages and timescales. This calls for taxonomically and context-controlled approaches to studies that correlate traits and diversification.
Collapse
|
13
|
Genome structure-based Juglandaceae phylogenies contradict alignment-based phylogenies and substitution rates vary with DNA repair genes. Nat Commun 2023; 14:617. [PMID: 36739280 PMCID: PMC9899254 DOI: 10.1038/s41467-023-36247-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 01/20/2023] [Indexed: 02/06/2023] Open
Abstract
In lineages of allopolyploid origin, sets of homoeologous chromosomes may coexist that differ in gene content and syntenic structure. Presence or absence of genes and microsynteny along chromosomal blocks can serve to differentiate subgenomes and to infer phylogenies. We here apply genome-structural data to infer relationships in an ancient allopolyploid lineage, the walnut family (Juglandaceae), by using seven chromosome-level genomes, two of them newly assembled. Microsynteny and gene-content analyses yield identical topologies that place Platycarya with Engelhardia as did a 1980s morphological-cladistic study. DNA-alignment-based topologies here and in numerous earlier studies instead group Platycarya with Carya and Juglans, perhaps misled by past hybridization. All available data support a hybrid origin of Juglandaceae from extinct or unsampled progenitors nested within, or sister to, Myricaceae. Rhoiptelea chiliantha, sister to all other Juglandaceae, contains proportionally more DNA repair genes and appears to evolve at a rate 2.6- to 3.5-times slower than the remaining species.
Collapse
|
14
|
Liu X, Wang Z, Wang W, Huang Q, Zeng Y, Jin Y, Li H, Du S, Zhang J. Origin and evolutionary history of Populus (Salicaceae): Further insights based on time divergence and biogeographic analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:1031087. [PMID: 36618663 PMCID: PMC9815717 DOI: 10.3389/fpls.2022.1031087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Populus (Salicaceae) species harbour rich biodiversity and are widely distributed throughout the Northern Hemisphere. However, the origin and biogeography of Populus remain poorly understood. METHODS We infer the divergence times and the historical biogeography of the genus Populus through phylogenetic analysis of 34 chloroplast fragments based on a large sample. RESULTS AND DISCUSSION Eurasia is the likely location of the early divergences of Salicaceae after the Cretaceous-Paleogene (K-Pg) mass extinction, followed by recurrent spread to the remainder of the Old World and the New World beginning in the Eocene; the extant Populus species began to diversity during the early Oligocene (approximately 27.24 Ma), climate changes during the Oligocene may have facilitated the diversification of modern poplar species; three separate lineages of Populus from Eurasia colonized North America in the Cenozoic via the Bering Land Bridges (BLB); We hypothesize that the present day disjunction in Populus can be explained by two scenarios: (i) Populus likely originated in Eurasia and subsequently colonized other regions, including North America; and (ii) the fact that the ancestor of the genus Populus that was once widely distributed in the Northern Hemisphere and eventually wiped out due to the higher extinction rates in North America, similar to the African Rand flora. We hypothesize that disparities in extinction across the evolutionary history of Populus in different regions shape the modern biogeography of Populus. Further studies with dense sampling and more evidence are required to test these hypotheses. Our research underscores the significance of combining phylogenetic analyses with biogeographic interpretations to enhance our knowledge of the origin, divergence, and distribution of biodiversity in temperate plant floras.
Collapse
Affiliation(s)
- Xia Liu
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, China
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Zhaoshan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Wei Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Qinqin Huang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Yanfei Zeng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yu Jin
- Henan Academy of Forestry/Quality Testing Center for Forestry Products of National and Grassland Administration, Zhengzhou, China
| | - Honglei Li
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, China
| | - Shuhui Du
- Forestry College, Shanxi Agricultural University, Shanxi, China
| | - Jianguo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
15
|
Wang J, Yuan M, Feng Y, Zhang Y, Bao S, Hao Y, Ding Y, Gao X, Yu Z, Xu Q, Zhao J, Zhu Q, Wang P, Wu C, Wang J, Li Y, Xu C, Wang J. A common whole-genome paleotetraploidization in Cucurbitales. PLANT PHYSIOLOGY 2022; 190:2430-2448. [PMID: 36053177 PMCID: PMC9706448 DOI: 10.1093/plphys/kiac410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/10/2022] [Indexed: 06/01/2023]
Abstract
Cucurbitales are an important order of flowering plants known for encompassing edible plants of economic and medicinal value and numerous ornamental plants of horticultural value. By reanalyzing the genomes of two representative families (Cucurbitaceae and Begoniaceae) in Cucurbitales, we found that the previously identified Cucurbitaceae common paleotetraploidization that occurred shortly after the core-eudicot-common hexaploidization event is shared by Cucurbitales, including Begoniaceae. We built a multigenome alignment framework for Cucurbitales by identifying orthologs and paralogs and systematically redating key evolutionary events in Cucurbitales. Notably, characterizing the gene retention levels and genomic fractionation patterns between subgenomes generated from different polyploidizations in Cucurbitales suggested the autopolyploid nature of the Begoniaceae common tetraploidization and the allopolyploid nature of the Cucurbitales common tetraploidization and the Cucurbita-specific tetraploidization. Moreover, we constructed the ancestral Cucurbitales karyotype comprising 17 proto-chromosomes, confirming that the most recent common ancestor of Cucurbitaceae contained 15 proto-chromosomes and rejecting the previous hypothesis for an ancestral Cucurbitaceae karyotype with 12 proto-chromosomes. In addition, we found that the polyploidization and tandem duplication events promoted the expansion of gene families involved in the cucurbitacin biosynthesis pathway; however, gene loss and chromosomal rearrangements likely limited the expansion of these gene families.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Min Yuan
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Yishan Feng
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Yan Zhang
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Shoutong Bao
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Yanan Hao
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Yue Ding
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Xintong Gao
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Zijian Yu
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Qiang Xu
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Junxin Zhao
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Qianwen Zhu
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Ping Wang
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Chunyang Wu
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Jianyu Wang
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | | | | | | |
Collapse
|
16
|
Chen Y, Wu Y, Dong Y, Li Y, Ge Z, George O, Feng G, Mao L. Extinction risk of Chinese angiosperms varies between woody and herbaceous species. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Yuheng Chen
- Co‐Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment Nanjing Forestry University Nanjing China
| | - Yongbin Wu
- College of Forestry and Landscape Architecture South China Agricultural University Guangzhou China
| | - Yuran Dong
- Co‐Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment Nanjing Forestry University Nanjing China
| | - Yao Li
- Co‐Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment Nanjing Forestry University Nanjing China
| | - Zhiwei Ge
- Co‐Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment Nanjing Forestry University Nanjing China
| | - Oduro George
- Co‐Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment Nanjing Forestry University Nanjing China
| | - Gang Feng
- School of Ecology and Environment Inner Mongolia University Hohhot China
| | - Lingfeng Mao
- Co‐Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment Nanjing Forestry University Nanjing China
| |
Collapse
|
17
|
Fehrer J, Bertrand YJK, Hartmann M, Caklová P, Josefiová J, Bräutigam S, Chrtek J. A Multigene Phylogeny of Native American Hawkweeds ( Hieracium Subgen. Chionoracium, Cichorieae, Asteraceae): Origin, Speciation Patterns, and Migration Routes. PLANTS (BASEL, SWITZERLAND) 2022; 11:2584. [PMID: 36235450 PMCID: PMC9571344 DOI: 10.3390/plants11192584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Native American hawkweeds are mainly mountainous species that are distributed all over the New World. They are severely understudied with respect to their origin, colonization of the vast distribution area, and species relationships. Here, we attempt to reconstruct the evolutionary history of the group by applying seven molecular markers (plastid, nuclear ribosomal and low-copy genes). Phylogenetic analyses revealed that Chionoracium is a subgenus of the mainly Eurasian genus Hieracium, which originated from eastern European hawkweeds about 1.58-2.24 million years ago. Plastid DNA suggested a single origin of all Chionoracium species. They colonized the New World via Beringia and formed several distinct lineages in North America. Via one Central American lineage, the group colonized South America and radiated into more than a hundred species within about 0.8 million years, long after the closure of the Isthmus of Panama and the most recent uplift of the Andes. Despite some incongruences shown by different markers, most of them revealed the same crown groups of closely related taxa, which were, however, largely in conflict with traditional sectional classifications. We provide a basic framework for further elucidation of speciation patterns. A thorough taxonomic revision of Hieracium subgen. Chionoracium is recommended.
Collapse
Affiliation(s)
- Judith Fehrer
- Institute of Botany, Czech Academy of Sciences, 25243 Průhonice, Czech Republic
| | - Yann J. K. Bertrand
- Institute of Botany, Czech Academy of Sciences, 25243 Průhonice, Czech Republic
| | - Matthias Hartmann
- Institute of Botany, Czech Academy of Sciences, 25243 Průhonice, Czech Republic
- Department of Geobotany & Botanical Garden, Institute of Biology, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany
- Thünen Institute of Biodiversity, Bundesallee 65, 38116 Braunschweig, Germany
| | - Petra Caklová
- Institute of Botany, Czech Academy of Sciences, 25243 Průhonice, Czech Republic
| | - Jiřina Josefiová
- Institute of Botany, Czech Academy of Sciences, 25243 Průhonice, Czech Republic
| | | | - Jindřich Chrtek
- Institute of Botany, Czech Academy of Sciences, 25243 Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, 12801 Prague, Czech Republic
| |
Collapse
|
18
|
Montoya P, Cadena CD, Claramunt S, Duchêne DA. Environmental niche and flight intensity are associated with molecular evolutionary rates in a large avian radiation. BMC Ecol Evol 2022; 22:95. [PMID: 35918644 PMCID: PMC9347078 DOI: 10.1186/s12862-022-02047-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/20/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Metabolic activity and environmental energy are two of the most studied putative drivers of molecular evolutionary rates. Their extensive study, however, has resulted in mixed results and has rarely included the exploration of interactions among various factors impacting molecular evolutionary rates across large clades. Taking the diverse avian family Furnariidae as a case study, we examined the association between several estimates of molecular evolutionary rates with proxies of metabolic demands imposed by flight (wing loading and wing shape) and proxies of environmental energy across the geographic ranges of species (temperature and UV radiation). RESULTS We found weak evidence of a positive effect of environmental and morphological variables on mitochondrial substitution rates. Additionally, we found that temperature and UV radiation interact to explain molecular rates at nucleotide sites affected by selection and population size (non-synonymous substitutions), contrary to the expectation of their impact on sites associated with mutation rates (synonymous substitutions). We also found a negative interaction between wing shape (as described by the hand-wing index) and body mass explaining mitochondrial molecular rates, suggesting molecular signatures of positive selection or reduced population sizes in small-bodied species with greater flight activity. CONCLUSIONS Our results suggest that the demands of flight and environmental energy pose multiple evolutionary pressures on the genome either by driving mutation rates or via their association with natural selection or population size. Data from whole genomes and detailed physiology across taxa will bring a more complete picture of the impact of metabolism, population size, and the environment on avian genome evolution.
Collapse
Affiliation(s)
- Paola Montoya
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Avenida Circunvalar # 16-20, Bogotá, Colombia.
- Departamento de Ciencias Biológicas, Universidad de los Andes, Apartado, 4976, Bogotá, Colombia.
| | - Carlos Daniel Cadena
- Departamento de Ciencias Biológicas, Universidad de los Andes, Apartado, 4976, Bogotá, Colombia
| | - Santiago Claramunt
- Department of Natural History, Royal Ontario Museum, 100 Queen's Park Crescent, Toronto, ON, M5S 2C6, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - David Alejandro Duchêne
- Centre for Evolutionary Hologenomics, University of Copenhagen, Øster Farimagsgade 5A, 1352, Copenhagen, Denmark
| |
Collapse
|
19
|
Skeels A, Bach W, Hagen O, Jetz W, Pellissier L. Temperature-dependent evolutionary speed shapes the evolution of biodiversity patterns across tetrapod radiations. Syst Biol 2022:6637530. [PMID: 35809070 DOI: 10.1093/sysbio/syac048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Biodiversity varies predictably with environmental energy around the globe, but the underlaying mechanisms remain incompletely understood. The evolutionary speed hypothesis predicts that environmental kinetic energy shapes variation in speciation rates through temperature- or life history-dependent rates of evolution. To test whether variation in evolutionary speed can explain the relationship between energy and biodiversity in birds, mammals, amphibians, and reptiles, we simulated diversification over 65 million years of geological and climatic change with a spatially explicit eco-evolutionary simulation model. We modelled four distinct evolutionary scenarios in which speciation-completion rates were dependent on temperature (M1), life history (M2), temperature and life history (M3), or were independent of temperature and life-history (M0). To assess the agreement between simulated and empirical data, we performed model selection by fitting supervised machine learning models to multidimensional biodiversity patterns. We show that a model with temperature-dependent rates of speciation (M1) consistently had the strongest support. In contrast to statistical inferences, which showed no general relationships between temperature and speciation rates in tetrapods, we demonstrate how process-based modelling can disentangle the causes behind empirical biodiversity patterns. Our study highlights how environmental energy has played a fundamental role in the evolution of biodiversity over deep time.
Collapse
Affiliation(s)
- A Skeels
- Department of Environmental Systems Sciences, Landscape Ecology, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich 8092, Switzerland.,Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland
| | - W Bach
- Department of Environmental Systems Sciences, Landscape Ecology, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich 8092, Switzerland.,Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland
| | - O Hagen
- Department of Environmental Systems Sciences, Landscape Ecology, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich 8092, Switzerland.,Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany
| | - W Jetz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520, USA.,Center for Biodiversity and Global Change, Yale University, New Haven, CT 06520, USA
| | - L Pellissier
- Department of Environmental Systems Sciences, Landscape Ecology, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich 8092, Switzerland.,Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland
| |
Collapse
|
20
|
Dong W, Li E, Liu Y, Xu C, Wang Y, Liu K, Cui X, Sun J, Suo Z, Zhang Z, Wen J, Zhou S. Phylogenomic approaches untangle early divergences and complex diversifications of the olive plant family. BMC Biol 2022; 20:92. [PMID: 35468824 PMCID: PMC9040247 DOI: 10.1186/s12915-022-01297-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/13/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Deep-branching phylogenetic relationships are often difficult to resolve because phylogenetic signals are obscured by the long history and complexity of evolutionary processes, such as ancient introgression/hybridization, polyploidization, and incomplete lineage sorting (ILS). Phylogenomics has been effective in providing information for resolving both deep- and shallow-scale relationships across all branches of the tree of life. The olive family (Oleaceae) is composed of 25 genera classified into five tribes with tribe Oleeae consisting of four subtribes. Previous phylogenetic analyses showed that ILS and/or hybridization led to phylogenetic incongruence in the family. It was essential to distinguish phylogenetic signal conflicts, and explore mechanisms for the uncertainties concerning relationships of the olive family, especially at the deep-branching nodes. RESULTS We used the whole plastid genome and nuclear single nucleotide polymorphism (SNP) data to infer the phylogenetic relationships and to assess the variation and rates among the main clades of the olive family. We also used 2608 and 1865 orthologous nuclear genes to infer the deep-branching relationships among tribes of Oleaceae and subtribes of tribe Oleeae, respectively. Concatenated and coalescence trees based on the plastid genome, nuclear SNPs and multiple nuclear genes suggest events of ILS and/or ancient introgression during the diversification of Oleaceae. Additionally, there was extreme heterogeneity in the substitution rates across the tribes. Furthermore, our results supported that introgression/hybridization, rather than ILS, is the main factor for phylogenetic discordance among the five tribes of Oleaceae. The tribe Oleeae is supported to have originated via ancient hybridization and polyploidy, and its most likely parentages are the ancestral lineage of Jasmineae or its sister group, which is a "ghost lineage," and Forsythieae. However, ILS and ancient introgression are mainly responsible for the phylogenetic discordance among the four subtribes of tribe Oleeae. CONCLUSIONS This study showcases that using multiple sequence datasets (plastid genomes, nuclear SNPs and thousands of nuclear genes) and diverse phylogenomic methods such as data partition, heterogeneous models, quantifying introgression via branch lengths (QuIBL) analysis, and species network analysis can facilitate untangling long and complex evolutionary processes of ancient introgression, paleopolyploidization, and ILS.
Collapse
Affiliation(s)
- Wenpan Dong
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China.
| | - Enze Li
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Yanlei Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yushuang Wang
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Kangjia Liu
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Xingyong Cui
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Jiahui Sun
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Zhili Suo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhixiang Zhang
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA.
| | - Shiliang Zhou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
21
|
Sensalari C, Maere S, Lohaus R. ksrates: positioning whole-genome duplications relative to speciation events in KS distributions. Bioinformatics 2022; 38:530-532. [PMID: 34406368 DOI: 10.1093/bioinformatics/btab602] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/07/2021] [Accepted: 08/17/2021] [Indexed: 02/03/2023] Open
Abstract
SUMMARY We present ksrates, a user-friendly command-line tool to position ancient whole-genome duplication events with respect to speciation events in a phylogeny by comparing paralog and ortholog KS distributions derived from genomic or transcriptomic sequences, while adjusting for substitution rate differences among the lineages involved. AVAILABILITY AND IMPLEMENTATION ksrates is implemented in Python 3 and as a Nextflow pipeline. The source code, Singularity and Docker containers, documentation and tutorial are available via https://github.com/VIB-PSB/ksrates. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Cecilia Sensalari
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium.,VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Steven Maere
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium.,VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Rolf Lohaus
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium.,VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| |
Collapse
|
22
|
Ametrano CG, Lumbsch HT, Di Stefano I, Sangvichien E, Muggia L, Grewe F. Should we hail the Red King? Evolutionary consequences of a mutualistic lifestyle in genomes of lichenized ascomycetes. Ecol Evol 2022; 12:e8471. [PMID: 35136549 PMCID: PMC8809443 DOI: 10.1002/ece3.8471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
The Red Queen dynamic is often brought into play for antagonistic relationships. However, the coevolutionary effects of mutualistic interactions, which predict slower evolution for interacting organisms (Red King), have been investigated to a lesser extent. Lichens are a stable, mutualistic relationship of fungi and cyanobacteria and/or algae, which originated several times independently during the evolution of fungi. Therefore, they represent a suitable system to investigate the coevolutionary effect of mutualism on the fungal genome. We measured substitution rates and selective pressure of about 2000 protein-coding genes (plus the rDNA region) in two different classes of Ascomycota, each consisting of closely related lineages of lichenized and non-lichenized fungi. Our results show that independent lichenized clades are characterized by significantly slower rates for both synonymous and non-synonymous substitutions. We hypothesize that this evolutionary pattern is connected to the lichen life cycle (longer generation time of lichenized fungi) rather than a result of different selection strengths, which is described as the main driver for the Red Kind dynamic. This first empirical evidence of slower evolution in lichens provides an important insight on how biotic cooperative interactions are able to shape the evolution of symbiotic organisms.
Collapse
Affiliation(s)
- Claudio G. Ametrano
- Grainger Bioinformatics Center and Negaunee Integrative Research Center, Science and EducationField Museum of Natural HistoryChicagoIllinoisUSA
| | - H. Thorsten Lumbsch
- Grainger Bioinformatics Center and Negaunee Integrative Research Center, Science and EducationField Museum of Natural HistoryChicagoIllinoisUSA
| | - Isabel Di Stefano
- Grainger Bioinformatics Center and Negaunee Integrative Research Center, Science and EducationField Museum of Natural HistoryChicagoIllinoisUSA
| | - Ek Sangvichien
- Department of BiologyFaculty of ScienceRamkhamhaeng UniversityBangkokThailand
| | | | - Felix Grewe
- Grainger Bioinformatics Center and Negaunee Integrative Research Center, Science and EducationField Museum of Natural HistoryChicagoIllinoisUSA
| |
Collapse
|
23
|
Ping J, Hao J, Li J, Yang Y, Su Y, Wang T. Loss of the IR region in conifer plastomes: Changes in the selection pressure and substitution rate of protein-coding genes. Ecol Evol 2022; 12:e8499. [PMID: 35136556 PMCID: PMC8809450 DOI: 10.1002/ece3.8499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 11/10/2022] Open
Abstract
Plastid genomes (plastomes) have a quadripartite structure, but some species have drastically reduced or lost inverted repeat (IR) regions. IR regions are important for genome stability and the evolution rate. In the evolutionary process of gymnosperms, the typical IRs of conifers were lost, possibly affecting the evolutionary rate and selection pressure of genomic protein-coding genes. In this study, we selected 78 gymnosperm species (51 genera, 13 families) for evolutionary analysis. The selection pressure analysis results showed that negative selection effects were detected in all 50 common genes. Among them, six genes in conifers had higher ω values than non-conifers, and 12 genes had lower ω values. The evolutionary rate analysis results showed that 9 of 50 common genes differed between conifers and non-conifers. It is more obvious that in non-conifers, the rates of psbA (trst, trsv, ratio, dN, dS, and ω) were 2.6- to 3.1-fold of conifers. In conifers, trsv, ratio, dN, dS, and ω of ycf2 were 1.2- to 3.6-fold of non-conifers. In addition, the evolution rate of ycf2 in the IR was significantly reduced. psbA is undergoing dynamic change, with an abnormally high evolution rate as a small portion of it enters the IR region. Although conifers have lost the typical IR regions, we detected no change in the substitution rate or selection pressure of most protein-coding genes due to gene function, plant habitat, or newly acquired IRs.
Collapse
Affiliation(s)
- Jingyao Ping
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Jing Hao
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Jinye Li
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yiqing Yang
- College of Life Science and TechnologyCentral South University of Forestry and TechnologyChangshaChina
| | - Yingjuan Su
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- Research Institute of Sun Yat‐sen UniversityShenzhenChina
| | - Ting Wang
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
24
|
An N, Lu N, Fu B, Wang M, He N. Distinct Responses of Leaf Traits to Environment and Phylogeny Between Herbaceous and Woody Angiosperm Species in China. FRONTIERS IN PLANT SCIENCE 2021; 12:799401. [PMID: 34950176 PMCID: PMC8688848 DOI: 10.3389/fpls.2021.799401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Leaf traits play key roles in plant resource acquisition and ecosystem processes; however, whether the effects of environment and phylogeny on leaf traits differ between herbaceous and woody species remains unclear. To address this, in this study, we collected data for five key leaf traits from 1,819 angiosperm species across 530 sites in China. The leaf traits included specific leaf area, leaf dry matter content, leaf area, leaf N concentration, and leaf P concentration, all of which are closely related to trade-offs between resource uptake and leaf construction. We quantified the relative contributions of environment variables and phylogeny to leaf trait variation for all species, as well as for herbaceous and woody species separately. We found that environmental factors explained most of the variation (44.4-65.5%) in leaf traits (compared with 3.9-23.3% for phylogeny). Climate variability and seasonality variables, in particular, mean temperature of the warmest and coldest seasons of a year (MTWM/MTWQ and MTCM/MTCQ) and mean precipitation in the wettest and driest seasons of a year (MPWM/MPWQ and MPDM/MPDQ), were more important drivers of leaf trait variation than mean annual temperature (MAT) and mean annual precipitation (MAP). Furthermore, the responses of leaf traits to environment variables and phylogeny differed between herbaceous and woody species. Our study demonstrated the different effects of environment variables and phylogeny on leaf traits among different plant growth forms, which is expected to advance the understanding of plant adaptive strategies and trait evolution under different environmental conditions.
Collapse
Affiliation(s)
- Nannan An
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nan Lu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bojie Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Mengyu Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nianpeng He
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Lesaffre T. Population-level consequences of inheritable somatic mutations and the evolution of mutation rates in plants. Proc Biol Sci 2021; 288:20211127. [PMID: 34493080 DOI: 10.1098/rspb.2021.1127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Inbreeding depression, that is the decrease in fitness of inbred relative to outbred individuals, was shown to increase strongly as life expectancy increases in plants. Because plants are thought to not have a separated germline, it was proposed that this pattern could be generated by somatic mutations accumulating during growth, since larger and more long-lived species have more opportunities for mutations to accumulate. A key determinant of the role of somatic mutations is the rate at which they occur, which probably differs between species because mutation rates may evolve differently in species with constrasting life histories. In this paper, I study the evolution of the mutation rates in plants, and consider the population-level consequences of inheritable somatic mutations given this evolution. I show that despite substantially lower somatic and meiotic mutation rates, more long-lived species still tend to accumulate larger amounts of deleterious mutations because of the increased number of opportunities they have to acquire mutations during growth, leading to higher levels of inbreeding depression in these species. However, the magnitude of this increase depends strongly on how mutagenic meiosis is relative to growth, to the point of being close to non-existent in some situations.
Collapse
Affiliation(s)
- Thomas Lesaffre
- CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| |
Collapse
|
26
|
Linde AM, Eklund DM, Cronberg N, Bowman JL, Lagercrantz U. Rates and patterns of molecular evolution in bryophyte genomes, with focus on complex thalloid liverworts, Marchantiopsida. Mol Phylogenet Evol 2021; 165:107295. [PMID: 34438050 DOI: 10.1016/j.ympev.2021.107295] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/30/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
Plants commonly referred to as "bryophytes" belong to three major lineages of non-vascular plants: the liverworts, the hornworts and the mosses. They are unique among land plants in having a dominant haploid generation and a short-lived diploid sporophytic generation. The dynamics of selection acting on a haploid genome differs from those acting on a diploid genome: new mutations are directly exposed to selection. The general aim of this paper is to investigate the diversification rateof bryophytes - measured as silent site substitution rate representing neutral evolution (mutation rate) and the nonsynonymous to synonymous substitution rate ratio (dN/dS) representing selective evolution - and compare it with earlier studies on vascular plants. Results show that the silent site substitution rate is lower for liverworts as compared to angiosperms, but not as low as for gymnosperms. The selection pressure, measured as dN/dS, isnot remarkably lower for bryophytes as compared to other diploid dominant plants as would be expected by the masking hypothesis, indicating that other factors are more important than ploidy.
Collapse
Affiliation(s)
- Anna-Malin Linde
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236 Uppsala, Sweden
| | - D Magnus Eklund
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236 Uppsala, Sweden
| | - Nils Cronberg
- Biodiversity, Department of Biology, Lund University, Ecology Building, SE-223 62 Lund, Sweden.
| | - John L Bowman
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Ulf Lagercrantz
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236 Uppsala, Sweden
| |
Collapse
|
27
|
Yoder AD, Tiley GP. The challenge and promise of estimating the de novo mutation rate from whole-genome comparisons among closely related individuals. Mol Ecol 2021; 30:6087-6100. [PMID: 34062029 DOI: 10.1111/mec.16007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/22/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022]
Abstract
Germline mutations are the raw material for natural selection, driving species evolution and the generation of earth's biodiversity. Without this driver of genetic diversity, life on earth would stagnate. Yet, it is a double-edged sword. An excess of mutations can have devastating effects on fitness and population viability. It is therefore one of the great challenges of molecular ecology to determine the rate and mechanisms by which these mutations accrue across the tree of life. Advances in high-throughput sequencing technologies are providing new opportunities for characterizing the rates and mutational spectra within species and populations thus informing essential evolutionary parameters such as the timing of speciation events, the intricacies of historical demography, and the degree to which lineages are subject to the burdens of mutational load. Here, we will focus on both the challenge and promise of whole-genome comparisons among parents and their offspring from known pedigrees for the detection of germline mutations as they arise in a single generation. The potential of these studies is high, but the field is still in its infancy and much uncertainty remains. Namely, the technical challenges are daunting given that pedigree-based genome comparisons are essentially searching for needles in a haystack given the very low signal to noise ratio. Despite the challenges, we predict that rapidly developing methods for whole-genome comparisons hold great promise for integrating empirically derived estimates of de novo mutation rates and mutation spectra across many molecular ecological applications.
Collapse
Affiliation(s)
- Anne D Yoder
- Department of Biology, Duke University, Durham, NC, USA
| | | |
Collapse
|
28
|
Bezmenova AV, Zvyagina EA, Fedotova AV, Kasianov AS, Neretina TV, Penin AA, Bazykin GA, Kondrashov AS. Rapid Accumulation of Mutations in Growing Mycelia of a Hypervariable Fungus Schizophyllum commune. Mol Biol Evol 2021; 37:2279-2286. [PMID: 32243532 PMCID: PMC7403608 DOI: 10.1093/molbev/msaa083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The basidiomycete Schizophyllum commune has the highest level of genetic polymorphism known among living organisms. In a previous study, it was also found to have a moderately high per-generation mutation rate of 2×10−8, likely contributing to its high polymorphism. However, this rate has been measured only in an experiment on Petri dishes, and it is unclear how it translates to natural populations. Here, we used an experimental design that measures the rate of accumulation of de novo mutations in a linearly growing mycelium. We show that S. commune accumulates mutations at a rate of 1.24×10−7 substitutions per nucleotide per meter of growth, or ∼2.04×10−11 per nucleotide per cell division. In contrast to what has been observed in a number of species with extensive vegetative growth, this rate does not decline in the course of propagation of a mycelium. As a result, even a moderate per-cell-division mutation rate in S. commune can translate into a very high per-generation mutation rate when the number of cell divisions between consecutive meiosis is large.
Collapse
Affiliation(s)
| | | | - Anna V Fedotova
- Center of Life Sciences, Skoltech, Moscow, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Artem S Kasianov
- Kharkevich Institute for Information Transmission Problems, Moscow, Russia.,Vavilov Institute of General Genetics, Moscow, Russia
| | - Tatiana V Neretina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Kharkevich Institute for Information Transmission Problems, Moscow, Russia.,N. A. Pertsov White Sea Biological Station, Lomonosov Moscow State University, Primorskiy, Russia
| | - Aleksey A Penin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Kharkevich Institute for Information Transmission Problems, Moscow, Russia
| | - Georgii A Bazykin
- Center of Life Sciences, Skoltech, Moscow, Russia.,Kharkevich Institute for Information Transmission Problems, Moscow, Russia
| | - Alexey S Kondrashov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
29
|
Lyu T, Wang Y, Luo A, Li Y, Peng S, Cai H, Zeng H, Wang Z. Effects of Climate, Plant Height, and Evolutionary Age on Geographical Patterns of Fruit Type. FRONTIERS IN PLANT SCIENCE 2021; 12:604272. [PMID: 33796123 PMCID: PMC8007967 DOI: 10.3389/fpls.2021.604272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Fruit type is a key reproductive trait associated with plant evolution and adaptation. However, large-scale geographical patterns in fruit type composition and the mechanisms driving these patterns remain to be established. Contemporary environment, plant functional traits and evolutionary age may all influence fruit type composition, while their relative importance remains unclear. Here, using data on fruit types, plant height and distributions of 28,222 (∼ 90.1%) angiosperm species in China, we analyzed the geographical patterns in the proportion of fleshy-fruited species for all angiosperms, trees, shrubs, and herbaceous species separately, and compared the relative effects of contemporary climate, ecosystem primary productivity, plant height, and evolutionary age on these patterns. We found that the proportion of fleshy-fruited species per grid cell for all species and different growth forms all showed significant latitudinal patterns, being the highest in southeastern China. Mean plant height per grid cell and actual evapotranspiration (AET) representing ecosystem primary productivity were the strongest drivers of geographical variations in the proportion of fleshy-fruited species, but their relative importance varied between growth forms. From herbaceous species to shrubs and trees, the relative effects of mean plant height decreased. Mean genus age had significant yet consistently weaker effects on proportion of fleshy-fruited species than mean plant height and AET, and environmental temperature and precipitation contributed to those of only trees and shrubs. These results suggest that biotic and environmental factors and evolutionary age of floras jointly shape the pattern in proportion of fleshy-fruited species, and improve our understanding of the mechanisms underlying geographical variations in fruit type composition. Our study also demonstrates the need of integrating multiple biotic and abiotic factors to fully understand the drivers of large-scale patterns of plant reproductive traits.
Collapse
Affiliation(s)
- Tong Lyu
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, China
- Institute of Ecology and Key Laboratory of Earth Surface Processes of Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yunyun Wang
- Institute of Ecology and Key Laboratory of Earth Surface Processes of Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in Southern China, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
| | - Ao Luo
- Institute of Ecology and Key Laboratory of Earth Surface Processes of Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yaoqi Li
- Institute of Ecology and Key Laboratory of Earth Surface Processes of Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Shijia Peng
- Institute of Ecology and Key Laboratory of Earth Surface Processes of Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Hongyu Cai
- Institute of Ecology and Key Laboratory of Earth Surface Processes of Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Hui Zeng
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Zhiheng Wang
- Institute of Ecology and Key Laboratory of Earth Surface Processes of Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
30
|
Yu Y, Li HT, Wu YH, Li DZ. Correlation Analysis Reveals an Important Role of GC Content in Accumulation of Deletion Mutations in the Coding Region of Angiosperm Plastomes. J Mol Evol 2021; 89:73-80. [PMID: 33433638 DOI: 10.1007/s00239-020-09987-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
Variation in GC content is assumed to correlate with various processes, including mutation biases, recombination, and environmental parameters. To date, most genomic studies exploring the evolution of GC content have focused on nuclear genomes, but relatively few have concentrated on organelle genomes. We explored the mechanisms maintaining the GC content in angiosperm plastomes, with a particular focus on the hypothesis of phylogenetic dependence and the correlation with deletion mutations. We measured three genetic traits, namely, GC content, A/T tracts, and G/C tracts, in the coding region of plastid genomes for 1382 angiosperm species representing 350 families and 64 orders, and tested the phylogenetic signal. Then, we performed correlation analyses and revealed the variation in evolutionary rate of selected traits using RRphylo. The plastid GC content in the coding region varied from 28.10% to 43.20% across angiosperms, with a few non-photosynthetic species showing highly reduced values, highlighting the significance of functional constraints. We found strong phylogenetic signal in A/T tracts, but weak ones in GC content and G/C tracts, indicating adaptive potential. GC content was positively and negatively correlated with G/C and A/T tracts, respectively, suggesting a trade-off between these two deletion events. GC content evolved at various rates across the phylogeny, with significant increases in monocots and Lamiids, and a decrease in Fabids, implying the effects of some other factors. We hypothesize that variation in plastid GC content might be a mixed strategy of species to optimize fitness in fluctuating climates, partly through influencing the trade-off between AT → GC and GC → AT mutations.
Collapse
Affiliation(s)
- Ying Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Hong-Tao Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yu-Huan Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
31
|
Carruthers T, Sanderson MJ, Scotland RW. The Implications of Lineage-Specific Rates for Divergence Time Estimation. Syst Biol 2021; 69:660-670. [PMID: 31808929 PMCID: PMC7302051 DOI: 10.1093/sysbio/syz080] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 11/28/2019] [Accepted: 12/01/2019] [Indexed: 11/29/2022] Open
Abstract
Rate variation adds considerable complexity to divergence time estimation in molecular phylogenies. Here, we evaluate the impact of lineage-specific rates—which we define as among-branch-rate-variation that acts consistently across the entire genome. We compare its impact to residual rates—defined as among-branch-rate-variation that shows a different pattern of rate variation at each sampled locus, and gene-specific rates—defined as variation in the average rate across all branches at each sampled locus. We show that lineage-specific rates lead to erroneous divergence time estimates, regardless of how many loci are sampled. Further, we show that stronger lineage-specific rates lead to increasing error. This contrasts to residual rates and gene-specific rates, where sampling more loci significantly reduces error. If divergence times are inferred in a Bayesian framework, we highlight that error caused by lineage-specific rates significantly reduces the probability that the 95% highest posterior density includes the correct value, and leads to sensitivity to the prior. Use of a more complex rate prior—which has recently been proposed to model rate variation more accurately—does not affect these conclusions. Finally, we show that the scale of lineage-specific rates used in our simulation experiments is comparable to that of an empirical data set for the angiosperm genus Ipomoea. Taken together, our findings demonstrate that lineage-specific rates cause error in divergence time estimates, and that this error is not overcome by analyzing genomic scale multilocus data sets. [Divergence time estimation; error; rate variation.]
Collapse
Affiliation(s)
- Tom Carruthers
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Michael J Sanderson
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 East Lowell, Tucson, AZ 85721-0088, USA
| | - Robert W Scotland
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
32
|
Abstract
Understanding and representing uncertainty is crucial in academic research because it enables studies to build on the conclusions of previous studies, leading to robust advances in a particular field. Here, we evaluate the nature of uncertainty and the manner by which it is represented in divergence time estimation, a field that is fundamental to many aspects of macroevolutionary research, and where there is evidence that uncertainty has been seriously underestimated. We address this issue in the context of methods used in divergence time estimation, and with respect to the manner by which time-calibrated phylogenies are interpreted. With respect to methods, we discuss how the assumptions underlying different methods may not adequately reflect uncertainty about molecular evolution, the fossil record, or diversification rates. Therefore, divergence time estimates may not adequately reflect uncertainty and may be directly contradicted by subsequent findings. For the interpretation of time-calibrated phylogenies, we discuss how the use of time-calibrated phylogenies for reconstructing general evolutionary timescales leads to inferences about macroevolution that are highly sensitive to methodological limitations in how uncertainty is accounted for. By contrast, we discuss how the use of time-calibrated phylogenies to test specific hypotheses leads to inferences about macroevolution that are less sensitive to methodological limitations. Given that many biologists wish to use time-calibrated phylogenies to reconstruct general evolutionary timescales, we conclude that the development of methods of divergence time estimation that adequately account for uncertainty is necessary. [Divergence time estimation; macroevolution; uncertainty.].
Collapse
Affiliation(s)
- Tom Carruthers
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens Kew, Richmond, London, TW9 3AE, UK
| | - Robert W Scotland
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
33
|
Condamine FL, Silvestro D, Koppelhus EB, Antonelli A. The rise of angiosperms pushed conifers to decline during global cooling. Proc Natl Acad Sci U S A 2020; 117:28867-28875. [PMID: 33139543 PMCID: PMC7682372 DOI: 10.1073/pnas.2005571117] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Competition among species and entire clades can impact species diversification and extinction, which can shape macroevolutionary patterns. The fossil record shows successive biotic turnovers such that a dominant group is replaced by another. One striking example involves the decline of gymnosperms and the rapid diversification and ecological dominance of angiosperms in the Cretaceous. It is generally believed that angiosperms outcompeted gymnosperms, but the macroevolutionary processes and alternative drivers explaining this pattern remain elusive. Using extant time trees and vetted fossil occurrences for conifers, we tested the hypotheses that clade competition or climate change led to the decline of conifers at the expense of angiosperms. Here, we find that both fossil and molecular data show high congruence in revealing 1) low diversification rates, punctuated by speciation pulses, during warming events throughout the Phanerozoic and 2) that conifer extinction increased significantly in the Mid-Cretaceous (100 to 110 Ma) and remained high ever since. Their extinction rates are best explained by the rise of angiosperms, rejecting alternative models based on either climate change or time alone. Our results support the hypothesis of an active clade replacement, implying that direct competition with angiosperms increased the extinction of conifers by pushing their remaining species diversity and dominance out of the warm tropics. This study illustrates how entire branches on the Tree of Life may actively compete for ecological dominance under changing climates.
Collapse
Affiliation(s)
- Fabien L Condamine
- CNRS, UMR 5554 Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier), 34095 Montpellier, France;
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Daniele Silvestro
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, SE-405 30 Gothenburg, Sweden
| | - Eva B Koppelhus
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, SE-405 30 Gothenburg, Sweden
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, United Kingdom
| |
Collapse
|
34
|
Wisselink M, Aanen DK, van ’t Padje A. The Longevity of Colonies of Fungus-Growing Termites and the Stability of the Symbiosis. INSECTS 2020; 11:E527. [PMID: 32823564 PMCID: PMC7469218 DOI: 10.3390/insects11080527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 01/10/2023]
Abstract
The agricultural mutualistic symbiosis between macrotermitine termites and Termitomyces fungi is obligate for both partners. The termites provide a protective growth environment for the fungus by cultivating it inside their colony and providing it with foraged plant material. The termites use the fungus for plant substrate degradation, and the production of asexual fruiting bodies for nourishment and re-inoculation of the fungus garden. The termite colony can reach an age of up to several decades, during which time it is believed that a single fungal monoculture is asexually propagated by the offspring of a single founding royal pair. The termite-fungus mutualism has a long evolutionary history dating back more than 30 million years. Both on the time-scale of a termite colony lifespan and that of the mutualistic symbiosis, questions arise about stability. We address the physical stability of the mound, the termite colony and the monoculture fungal garden during a colony's lifetime. On the long-term evolutionary scale, we address the stability of the symbiosis, where horizontal transmission of the symbiotic fungus raises the question of how the mutualistic interaction between host and symbiont persists over generations.
Collapse
Affiliation(s)
| | - Duur K. Aanen
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (M.W.); (A.v.P.)
| | | |
Collapse
|
35
|
Wang Y, Lyu T, Luo A, Li Y, Liu Y, Freckleton RP, Liu S, Wang Z. Spatial Patterns and Drivers of Angiosperm Sexual Systems in China Differ Between Woody and Herbaceous Species. FRONTIERS IN PLANT SCIENCE 2020; 11:1222. [PMID: 32849756 PMCID: PMC7432134 DOI: 10.3389/fpls.2020.01222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Plant sexual systems play an important role in the evolution of angiosperm diversity. However, large-scale patterns in the frequencies of sexual systems (i.e. dioecy, monoecy, and hermaphroditism) and their drivers for species with different growth forms remain poorly known. Here, using a newly compiled database on the sexual systems and distributions of 19780 angiosperm species in China, we map the large-scale geographical patterns in frequencies of the sexual systems of woody and herbaceous species separately. We use these data to test the following two hypotheses: (1) the prevalence of sexual systems differs between woody and herbaceous assemblies because woody plants have taller canopies and are found in warm and humid climates; (2) the relative contributions of different drivers (specifically climate, evolutionary age, and mature plant height) to these patterns differ between woody and herbaceous species. We show that geographical patterns in proportions of different sexual systems (especially dioecy) differ between woody and herbaceous species. Geographical variations in sexual systems of woody species were influenced by climate, evolutionary age and plant height. In contrast, these have only weakly significant effects on the patterns of sexual systems of herbaceous species. We suggest that differences between species with woody and herbaceous growth forms in terms of biogeographic patterns of sexual systems, and their drivers, may reflect their differences in physiological and ecological adaptions, as well as the coevolution of sexual system with vegetative traits in response to environmental changes.
Collapse
Affiliation(s)
- Yunyun Wang
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in Southern China, and College of Life Science and Technology, Central South University of Forest and Technology, Changsha, China
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Tong Lyu
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Ao Luo
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yaoqi Li
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yunpeng Liu
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Robert P. Freckleton
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Shuguang Liu
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in Southern China, and College of Life Science and Technology, Central South University of Forest and Technology, Changsha, China
| | - Zhiheng Wang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
36
|
Molecular Clocks without Rocks: New Solutions for Old Problems. Trends Genet 2020; 36:845-856. [PMID: 32709458 DOI: 10.1016/j.tig.2020.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/02/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
Molecular data have been used to date species divergences ever since they were described as documents of evolutionary history in the 1960s. Yet, an inadequate fossil record and discordance between gene trees and species trees are persistently problematic. We examine how, by accommodating gene tree discordance and by scaling branch lengths to absolute time using mutation rate and generation time, multispecies coalescent (MSC) methods can potentially overcome these challenges. We find that time estimates can differ - in some cases, substantially - depending on whether MSC methods or traditional phylogenetic methods that apply concatenation are used, and whether the tree is calibrated with pedigree-based mutation rates or with fossils. We discuss the advantages and shortcomings of both approaches and provide practical guidance for data analysis when using these methods.
Collapse
|
37
|
Shafir A, Azouri D, Goldberg EE, Mayrose I. Heterogeneity in the rate of molecular sequence evolution substantially impacts the accuracy of detecting shifts in diversification rates. Evolution 2020; 74:1620-1639. [PMID: 32510165 DOI: 10.1111/evo.14036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/17/2020] [Indexed: 12/01/2022]
Abstract
As species richness varies along the tree of life, there is a great interest in identifying factors that affect the rates by which lineages speciate or go extinct. To this end, theoretical biologists have developed a suite of phylogenetic comparative methods that aim to identify where shifts in diversification rates had occurred along a phylogeny and whether they are associated with some traits. Using these methods, numerous studies have predicted that speciation and extinction rates vary across the tree of life. In this study, we show that asymmetric rates of sequence evolution lead to systematic biases in the inferred phylogeny, which in turn lead to erroneous inferences regarding lineage diversification patterns. The results demonstrate that as the asymmetry in sequence evolution rates increases, so does the tendency to select more complicated models that include the possibility of diversification rate shifts. These results thus suggest that any inference regarding shifts in diversification pattern should be treated with great caution, at least until any biases regarding the molecular substitution rate have been ruled out.
Collapse
Affiliation(s)
- Anat Shafir
- School of Plant Sciences and Food security, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Dana Azouri
- School of Plant Sciences and Food security, Tel Aviv University, Ramat Aviv, 69978, Israel.,School of Molecular Cell Biology & Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | | | - Itay Mayrose
- School of Plant Sciences and Food security, Tel Aviv University, Ramat Aviv, 69978, Israel
| |
Collapse
|
38
|
Soto Gomez M, Lin Q, Silva Leal E, Gallaher TJ, Scherberich D, Mennes CB, Smith SY, Graham SW. A bi‐organellar phylogenomic study of Pandanales: inference of higher‐order relationships and unusual rate‐variation patterns. Cladistics 2020; 36:481-504. [DOI: 10.1111/cla.12417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Affiliation(s)
- Marybel Soto Gomez
- Department of Botany University of British Columbia 6270 University Boulevard Vancouver BC V6T 1Z4 Canada
- UBC Botanical Garden & Centre for Plant Research University of British Columbia 6804 Marine Drive SW Vancouver BC V6T 1Z4 Canada
| | - Qianshi Lin
- Department of Botany University of British Columbia 6270 University Boulevard Vancouver BC V6T 1Z4 Canada
- UBC Botanical Garden & Centre for Plant Research University of British Columbia 6804 Marine Drive SW Vancouver BC V6T 1Z4 Canada
| | - Eduardo Silva Leal
- Universidade Federal Rural da Amazônia, Campus Capanema Avenida Barão de Capanema s/n Capanema68700-665 PA Brazil
| | | | - David Scherberich
- Jardin Botanique de la Ville de Lyon Mairie de Lyon69205 Lyon Cedex 01 France
| | | | - Selena Y. Smith
- Department of Earth & Environmental Sciences and Museum of Paleontology University of Michigan Ann Arbor MI 48109 USA
| | - Sean W. Graham
- Department of Botany University of British Columbia 6270 University Boulevard Vancouver BC V6T 1Z4 Canada
- UBC Botanical Garden & Centre for Plant Research University of British Columbia 6804 Marine Drive SW Vancouver BC V6T 1Z4 Canada
| |
Collapse
|
39
|
Abstract
The mutation rate is a fundamental factor in evolutionary genetics. Recently, mutation rates were found to be strongly reduced at high density in a wide range of unicellular organisms, prokaryotic and eukaryotic. Independently, cell division was found to become more asymmetrical at increasing density in diverse organisms; some 'mother' cells continue dividing, while their 'offspring' cells do not divide further. Here, we investigate how this increased asymmetry in cell division at high density can be reconciled with reduced mutation-rate estimates. We calculated the expected number of mutant cells due to replication errors under various modes of segregation of template-DNA strands and copy-DNA strands, both under symmetrical (exponential) and asymmetrical (linear) growth. We show that the observed reduction in the mutation rate at high density can be explained if mother cells preferentially retain the template-DNA strands, since new mutations are then confined to non-dividing daughter cells, thus reducing the spread of mutant cells. Any other inheritance mode results in an increase in the number of mutant cells at higher density. The proposed hypothesis that patterns of DNA-strand segregation are density-dependent fundamentally challenges our current understanding of mutation-rate estimates and extends the distinction between germline and soma to unicellular organisms.
Collapse
Affiliation(s)
- Duur K Aanen
- Department of Plant Sciences, Laboratory of Genetics, Wageningen University , 6708 PB Wageningen , The Netherlands
| | - Alfons J M Debets
- Department of Plant Sciences, Laboratory of Genetics, Wageningen University , 6708 PB Wageningen , The Netherlands
| |
Collapse
|
40
|
Leroy T, Plomion C, Kremer A. Oak symbolism in the light of genomics. THE NEW PHYTOLOGIST 2020; 226:1012-1017. [PMID: 31183874 PMCID: PMC7166128 DOI: 10.1111/nph.15987] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/31/2019] [Indexed: 05/09/2023]
Abstract
Throughout the Northern Hemisphere, human societies, political systems, and religions have appropriated oaks in symbolic representations. In this review, we explore the possible associations between recent genetic and genomic findings and the symbolic representations of oaks. We first consider the ways in which evolutionary history during the Holocene has tightened links between humans and oaks in Europe, and how this may have led to symbolic representations. We then show how recent findings concerning the structure and evolution of the oak genome have provided additional knowledge about symbolic representations, such as longevity, cohesiveness, and robustness.
Collapse
Affiliation(s)
- Thibault Leroy
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095 Montpellier, France
- BIOGECO, INRA, Université de Bordeaux, 69 Route d'Arcachon, 33612 Cestas, France
| | - Christophe Plomion
- BIOGECO, INRA, Université de Bordeaux, 69 Route d'Arcachon, 33612 Cestas, France
| | - Antoine Kremer
- BIOGECO, INRA, Université de Bordeaux, 69 Route d'Arcachon, 33612 Cestas, France
| |
Collapse
|
41
|
Orr AJ, Padovan A, Kainer D, Külheim C, Bromham L, Bustos-Segura C, Foley W, Haff T, Hsieh JF, Morales-Suarez A, Cartwright RA, Lanfear R. A phylogenomic approach reveals a low somatic mutation rate in a long-lived plant. Proc Biol Sci 2020; 287:20192364. [PMID: 32156194 PMCID: PMC7126060 DOI: 10.1098/rspb.2019.2364] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Somatic mutations can have important effects on the life history, ecology, and evolution of plants, but the rate at which they accumulate is poorly understood and difficult to measure directly. Here, we develop a method to measure somatic mutations in individual plants and use it to estimate the somatic mutation rate in a large, long-lived, phenotypically mosaic Eucalyptus melliodora tree. Despite being 100 times larger than Arabidopsis, this tree has a per-generation mutation rate only ten times greater, which suggests that this species may have evolved mechanisms to reduce the mutation rate per unit of growth. This adds to a growing body of evidence that illuminates the correlated evolutionary shifts in mutation rate and life history in plants.
Collapse
Affiliation(s)
- Adam J Orr
- The Biodesign Institute and the School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Amanda Padovan
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia.,CSIRO Black Mountain Science and Innovation Park, Canberra, ACT 2601, Australia
| | - David Kainer
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia
| | - Carsten Külheim
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia.,School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Lindell Bromham
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia
| | - Carlos Bustos-Segura
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia
| | - William Foley
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia
| | - Tonya Haff
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia
| | - Ji-Fan Hsieh
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia
| | | | - Reed A Cartwright
- The Biodesign Institute and the School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Robert Lanfear
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia.,Department of Biological Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
42
|
Valencia-D J, Murillo-A J, Orozco CI, Parra-O C, Neubig KM. -Complete plastid genome sequences of two species of the Neotropical genus Brunellia (Brunelliaceae). PeerJ 2020; 8:e8392. [PMID: 32025370 PMCID: PMC6993752 DOI: 10.7717/peerj.8392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/13/2019] [Indexed: 11/20/2022] Open
Abstract
Here we present the first two complete plastid genomes for Brunelliaceae, a Neotropical family with a single genus, Brunellia. We surveyed the entire plastid genome in order to find variable cpDNA regions for further phylogenetic analyses across the family. We sampled morphologically different species, B. antioquensis and B. trianae, and found that the plastid genomes are 157,685 and 157,775 bp in length and display the typical quadripartite structure found in angiosperms. Despite the clear morphological distinction between both species, the molecular data show a very low level of divergence. The amount of nucleotide substitutions per site is one of the lowest reported to date among published congeneric studies (π = 0.00025). The plastid genomes have gene order and content coincident with other COM (Celastrales, Oxalidales, Malpighiales) relatives. Phylogenetic analyses of selected superrosid representatives show high bootstrap support for the ((C,M)O) topology. The N-fixing clade appears as the sister group of the COM clade and Zygophyllales as the sister to the rest of the fabids group.
Collapse
Affiliation(s)
- Janice Valencia-D
- School of Biological Sciences, Southern Illinois University at Carbondale, Carbondale, IL, United States of America
| | - José Murillo-A
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Clara Inés Orozco
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Carlos Parra-O
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Kurt M. Neubig
- School of Biological Sciences, Southern Illinois University at Carbondale, Carbondale, IL, United States of America
| |
Collapse
|
43
|
Wang W, Chen S, Guo W, Li Y, Zhang X. Tropical plants evolve faster than their temperate relatives: a case from the bamboos (Poaceae: Bambusoideae) based on chloroplast genome data. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1773312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Wencai Wang
- Molecular Genetics Group, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, PR China
- Molecular Genetics Group, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, PR China
| | - Siyun Chen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan Province, PR China
| | - Wei Guo
- Department of Horticulture, College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, PR China
| | - Yongquan Li
- Department of Horticulture, College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, PR China
| | - Xianzhi Zhang
- Department of Horticulture, College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, PR China
| |
Collapse
|
44
|
Gorné LD, Díaz S. Meta-analysis Shows That Rapid Phenotypic Change in Angiosperms in Response to Environmental Change Is Followed by Stasis. Am Nat 2019; 194:840-853. [PMID: 31738096 DOI: 10.1086/705680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The amount and rate of phenotypic change at ecological timescales varies widely, but there has not been a comprehensive quantitative synthesis of the patterns and causes of such variation for plants. Present knowledge is based predominantly on animals, whose differences with plants in the origin of germ cells and the level of modularity (among others) could make it invalid for plants. We synthesized data on contemporary phenotypic responses of angiosperms to environmental change and show that if extinction does not occur, quantitative traits change quickly in the first few years following the environmental novelty and then remain stable. This general pattern is independent from life span, growth form, spatial scale, or the type of trait. Our work shows that high amounts and rates of phenotypic change at contemporary timescales observed in plants are consistent with the pattern of stasis and bounded evolution previously observed over longer time frames. We also found evidence that may contradict some common ideas about phenotypic evolution: (1) the total amount of phenotypic change observed does not differ significantly according to growth form or life span; (2) greater and faster divergence tends to occur between populations connected at the local scale, where gene flow could be intense, rather than between distant populations; and (3) traits closely related to fitness change as much and as fast as other traits.
Collapse
|
45
|
Schoen DJ, Schultz ST. Somatic Mutation and Evolution in Plants. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2019. [DOI: 10.1146/annurev-ecolsys-110218-024955] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Somatic mutations are common in plants, and they may accumulate and be passed on to gametes. The determinants of somatic mutation accumulation include the intraorganismal selective effect of mutations, the number of cell divisions that separate the zygote from the formation of gametes, and shoot apical meristem structure and branching. Somatic mutations can promote the evolution of diploidy, polyploidy, sexual recombination, outcrossing, clonality, and separate sexes, and they may contribute genetic variability in many other traits. The amplification of beneficial mutations via intraorganismal selection may relax selection to reduce the genomic mutation rate or to protect the germline in plants. The total rate of somatic mutation, the distribution of selective effects and fates in the plant body, and the degree to which the germline is sheltered from somatic mutations are still poorly understood. Our knowledge can be improved through empirical estimates of mutation rates and effects on cell lineages and whole organisms, such as estimates of the reduction in fitness of progeny produced by within- versus between-flower crosses on the same plant, mutation coalescent studies within the canopy, and incorporation of somatic mutation into theoretical models of plant evolutionary genetics.
Collapse
Affiliation(s)
- Daniel J. Schoen
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Stewart T. Schultz
- Department of Ecology, Agronomy, and Aquaculture, University of Zadar, 23000 Zadar, Croatia
| |
Collapse
|
46
|
Maintenance of High Genome Integrity over Vegetative Growth in the Fairy-Ring Mushroom Marasmius oreades. Curr Biol 2019; 29:2758-2765.e6. [PMID: 31402298 DOI: 10.1016/j.cub.2019.07.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/25/2019] [Accepted: 07/09/2019] [Indexed: 01/06/2023]
Abstract
Most mutations in coding regions of the genome are deleterious, causing selection to favor mechanisms that minimize the mutational load over time [1-5]. DNA replication during cell division is a major source of new mutations. It is therefore important to limit the number of cell divisions between generations, particularly for large and long-lived organisms [6-9]. The germline cells of animals and the slowly dividing cells in plant meristems are adaptations to control the number of mutations that accumulate over generations [9-11]. Fungi lack a separated germline while harboring species with very large and long-lived individuals that appear to maintain highly stable genomes within their mycelia [8, 12, 13]. Here, we studied genomic mutation accumulation in the fairy-ring mushroom Marasmius oreades. We generated a chromosome-level genome assembly using a combination of cutting-edge DNA sequencing technologies and re-sequenced 40 samples originating from six individuals of this fungus. The low number of mutations recovered in the sequencing data suggests the presence of an unknown mechanism that works to maintain extraordinary genome integrity over vegetative growth in M. oreades. The highly structured growth pattern of M. oreades allowed us to estimate the number of cell divisions leading up to each sample [14, 15], and from this data, we infer an incredibly low per mitosis mutation rate (3.8 × 10-12 mutations per site and cell division) as one of several possible explanations for the low number of identified mutations.
Collapse
|
47
|
Smith‐Ferguson J, Beekman M. Can't see the colony for the bees: behavioural perspectives of biological individuality. Biol Rev Camb Philos Soc 2019; 94:1935-1946. [DOI: 10.1111/brv.12542] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Jules Smith‐Ferguson
- School of Life and Environmental SciencesUniversity of Sydney Sydney New South Wales 2006 Australia
| | - Madeleine Beekman
- School of Life and Environmental SciencesUniversity of Sydney Sydney New South Wales 2006 Australia
| |
Collapse
|
48
|
Dates and rates in grape's plastomes: evolution in slow motion. Curr Genet 2019; 66:123-140. [PMID: 31201544 DOI: 10.1007/s00294-019-01004-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/02/2019] [Accepted: 06/05/2019] [Indexed: 01/08/2023]
Abstract
The family Vitaceae includes the domesticated grapevine (Vitis vinifera), one of the most economically important crops in the world. Despite the importance of Vitaceae, there is still considerable controversy surrounding their phylogenetic relationships and evolutionary timescales. Moreover, variation in rates of molecular evolution among Vitaceae remains mostly unexplored. The present research aims to fill these knowledge gaps through the analysis of plastome sequences. Thirteen newly sequenced grape plastomes are presented and their phylogenetic relationships examined. Divergence times and absolute substitution rates are inferred under different molecular clocks by the analysis of 95 non-coding plastid regions and 43 representative accessions of the major lineages of Vitaceae. Furthermore, the phylogenetic informativeness of non-coding plastid regions is investigated. We find strong evidence in favor of the random local clock model and rate heterogeneity within Vitaceae. Substitution rates decelerate in Ampelocissus, Ampelopsis, Nekemias, Parthenocissus, Rhoicissus, and Vitis, with genus Vitis showing the lowest values up to a minimum of ~ 4.65 × 10-11 s/s/y. We suggest that liana-like species of Vitaceae evolve slower than erect growth habit plants and we invoke the "rate of mitosis hypothesis" to explain the observed pattern of the substitution rates. We identify a reduced set of 20 non-coding regions able to accurately reconstruct the phylogeny of Vitaceae and we provide a detailed description of all 152 non-coding regions identified in the plastomes of subg. Vitis. These polymorphic regions will find their applications in phylogenetics, phylogeography, and population genetics as well in grapes identification through DNA barcoding techniques.
Collapse
|
49
|
Phylogenomics recovers monophyly and early Tertiary diversification of Dipteronia (Sapindaceae). Mol Phylogenet Evol 2019; 130:9-17. [DOI: 10.1016/j.ympev.2018.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 11/23/2022]
|
50
|
Dornburg A, Su Z, Townsend JP. Optimal Rates for Phylogenetic Inference and Experimental Design in the Era of Genome-Scale Data Sets. Syst Biol 2018; 68:145-156. [PMID: 29939341 DOI: 10.1093/sysbio/syy047] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/13/2018] [Indexed: 02/02/2023] Open
Abstract
With the rise of genome-scale data sets, there has been a call for increased data scrutiny and careful selection of loci that are appropriate to use in an attempt to resolve a phylogenetic problem. Such loci should maximize phylogenetic information content while minimizing the risk of homoplasy. Theory posits the existence of characters that evolve at an optimum rate, and efforts to determine optimal rates of inference have been a cornerstone of phylogenetic experimental design for over two decades. However, both theoretical and empirical investigations of optimal rates have varied dramatically in their conclusions: spanning no relationship to a tight relationship between the rate of change and phylogenetic utility. Herein, we synthesize these apparently contradictory views, demonstrating both empirical and theoretical conditions under which each is correct. We find that optimal rates of characters-not genes-are generally robust to most experimental design decisions. Moreover, consideration of site rate heterogeneity within a given locus is critical to accurate predictions of utility. Factors such as taxon sampling or the targeted number of characters providing support for a topology are additionally critical to the predictions of phylogenetic utility based on the rate of character change. Further, optimality of rates and predictions of phylogenetic utility are not equivalent, demonstrating the need for further development of comprehensive theory of phylogenetic experimental design. [Divergence time; GC bias; homoplasy; incongruence; information content; internode length; optimal rates; phylogenetic informativeness; phylogenetic theory; phylogenetic utility; phylogenomics; signal and noise; subtending branch length; state space; taxon and character sampling.].
Collapse
Affiliation(s)
- Alex Dornburg
- North Carolina Museum of Natural Sciences, Raleigh, 1671 Goldstar Drive, NC 27601, USA
| | - Zhuo Su
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, 165 Prospect Street, CT 06525, USA
| | - Jeffrey P Townsend
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, 165 Prospect Street, CT 06525, USA
- Department of Biostatistics, Yale University, New Haven, 60 College Street, CT 06510, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, 300 George Street, CT 06511, USA
| |
Collapse
|