1
|
Schöfer N, Saxinger N, Braumandl K, Ruther J. Four Neurotoxic Insecticides Impair Partner and Host Finding in the Parasitoid Leptopilina heterotoma and Bioactive Doses Can Be Taken up Via the Host. J Chem Ecol 2025; 51:14. [PMID: 39880987 PMCID: PMC11779754 DOI: 10.1007/s10886-025-01554-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 01/31/2025]
Abstract
In modern agriculture, control of insect pests is achieved by using insecticides that can also have lethal and sublethal effects on beneficial non-target organisms. Here, we investigate acute toxicity and sublethal effects of four insecticides on the males' sex pheromone response and the female host finding ability of the Drosophila parasitoid Leptopilina heterotoma. The nicotinic acetylcholine receptor antagonists acetamiprid, flupyradifurone and sulfoxaflor, as well as the acetylcholinesterase inhibitor dimethoate were applied topically as acetone solutions. Males treated with all four insecticides no longer preferred the female sex pheromone in a T-olfactometer. Duration of wing fanning, an element of the pheromone-mediated male courtship behavior, was also reduced by all four insecticides. The ability of females to orientate towards host-infested feeding substrate was not affected by acetamiprid in the tested dose range. However, treatment with dimethoate, flupyradifurone and sulfoxaflor resulted in the loss of the females' preference for host odor. At the lowest doses interfering with olfactory abilities of L. heterotoma in this study (acetamiprid: 0.21 ng, dimethoate: 0.105 ng, flupyradifurone: 2.1 ng and sulfoxaflor: 0.21 ng), ≥ 90% of the wasps survive insecticide treatment. Male pheromone responses and female host finding were also disturbed in those L. heterotoma that had developed in D. melanogaster larvae reared on dimethoate-treated feeding medium at sublethal levels. Hence, doses of this insecticide sufficient to interfere with chemical orientation of L. heterotoma can be taken up by the parasitoid via the food chain.
Collapse
Affiliation(s)
- Nils Schöfer
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Nathalie Saxinger
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Katrin Braumandl
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Joachim Ruther
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| |
Collapse
|
2
|
Sadanandappa MK, Ahmad S, Mohanraj R, Ratnaparkhi M, Sathyanarayana SH. Defensive tactics: lessons from Drosophila. Biol Open 2024; 13:bio061609. [PMID: 39718046 PMCID: PMC11695572 DOI: 10.1242/bio.061609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
Parasitoid wasps exert strong selective pressure on their hosts, driving the evolution of diverse defense strategies. Drosophila, a widely studied model organism, hosts a wide range of parasites, including parasitoid wasps, and has evolved immune and behavioral mechanisms to mitigate the risk of parasitization. These defenses range from avoidance and evasion to post-infection immune responses, such as melanotic encapsulation. In response, parasitoid wasps have developed countermeasures, contributing to an ongoing arms race between host and parasite. This article reviews the anti-parasitoid behaviors of Drosophila, focusing on their role in reducing parasitization and enhancing host survival and fitness. It also explores the molecular and neuronal circuit mechanisms that underlie these behaviors, using Drosophila as an ecologically relevant model for studying host-parasitoid interactions. Furthermore, the article discusses the potential applications of these findings in biological pest control and highlights key unresolved questions in the field.
Collapse
Affiliation(s)
- Madhumala K. Sadanandappa
- Laboratory for Clinical Genomics and Advanced Technology, Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center,Lebanon, NH 03756, USA
| | | | - Robinson Mohanraj
- Biomedical Science, Nitte University for Science Education and Research, Mangalore, Karnataka 575018, India
| | | | - Shivaprasad H. Sathyanarayana
- Laboratory for Clinical Genomics and Advanced Technology, Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center,Lebanon, NH 03756, USA
| |
Collapse
|
3
|
Tao YX, Shan S, Dewer Y, Wang SN, Khashaveh A, Li RJ, Zhang YJ. n-octyl acrylate is a candidate sex pheromone component involved in courtship in parasitoid wasp Microplitis mediator. INSECT SCIENCE 2024; 31:1200-1210. [PMID: 37969037 DOI: 10.1111/1744-7917.13297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 11/17/2023]
Abstract
Sex pheromones are considered to play critical roles in partner communication of most parasitic Hymenoptera. However, the identification of sex pheromone components remains limited to a few families of parasitoid wasps. In this study, we functionally characterized a candidate sex pheromone component in Microplitis mediator (Hymenoptera: Braconidae), a solitary parasitoid of Noctuidae insects. We found that the body surface extract from female wasps could significantly stimulate courtship behavior of males. Gas chromatography-electroantennographic detection (GC-EAD) analysis revealed that a candidate semiochemical from extract triggered significant electrophysiological response of antennae of males. By performing gas chromatography-mass spectrometer (GC-MS) measurement, GC-EAD active compound was identified as n-octyl acrylate, a candidate sex pheromone component in female M. mediator. In electroantennogram (EAG) tests, antennae of male wasps showed significantly higher electrophysiological responses to n-octyl acrylate than those of females. Y-tube olfactometer assays indicated that male wasps significantly chose n-octyl acrylate compared with the control. Furthermore, male wasps showed a remarkable preference for n-octyl acrylate in a simulated field condition behavioral trial; simultaneously, n-octyl acrylate standard could also trigger significant courtship behavior in males. We propose that n-octyl acrylate, as a candidate vital sex pheromone component, could be utilized to design behavioral regulators of M. mediator to implement the protection and utilization of natural enemies.
Collapse
Affiliation(s)
- Yu-Xiao Tao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Plant Protection, Agricultural University of Hebei, Baoding, Hebei Province, China
| | - Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youssef Dewer
- Bioassay Research Department, Central Agricultural Pesticide Laboratory, Sabahia Plant Protection Research Station, Agricultural Research Center, Alexandria, Egypt
| | - Shan-Ning Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rui-Jun Li
- College of Plant Protection, Agricultural University of Hebei, Baoding, Hebei Province, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Liu Y, Zhang S, Cao S, Jacquin-Joly E, Zhou Q, Liu Y, Wang G. An odorant receptor mediates the avoidance of Plutella xylostella against parasitoid. BMC Biol 2024; 22:61. [PMID: 38475722 DOI: 10.1186/s12915-024-01862-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Ecosystems are brimming with myriad compounds, including some at very low concentrations that are indispensable for insect survival and reproduction. Screening strategies for identifying active compounds are typically based on bioassay-guided approaches. RESULTS Here, we selected two candidate odorant receptors from a major pest of cruciferous plants-the diamondback moth Plutella xylostella-as targets to screen for active semiochemicals. One of these ORs, PxylOR16, exhibited a specific, sensitive response to heptanal, with both larvae and adult P. xylostella displaying heptanal avoidance behavior. Gene knockout studies based on CRISPR/Cas9 experimentally confirmed that PxylOR16 mediates this avoidance. Intriguingly, rather than being involved in P. xylostella-host plant interaction, we discovered that P. xylostella recognizes heptanal from the cuticular volatiles of the parasitoid wasp Cotesia vestalis, possibly to avoid parasitization. CONCLUSIONS Our study thus showcases how the deorphanization of odorant receptors can drive discoveries about their complex functions in mediating insect survival. We also demonstrate that the use of odorant receptors as a screening platform could be efficient in identifying new behavioral regulators for application in pest management.
Collapse
Affiliation(s)
- Yipeng Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Sai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Song Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Emmanuelle Jacquin-Joly
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, UPEC, UniversitéParis Cité, 78026, Versailles, IRD, France
| | - Qiong Zhou
- College of Life Sciences, Hunan Normal University, Changsha, 410006, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
5
|
Quicray M, Wilhelm L, Enriquez T, He S, Scheifler M, Visser B. The Drosophila-parasitizing wasp Leptopilina heterotoma: A comprehensive model system in ecology and evolution. Ecol Evol 2023; 13:e9625. [PMID: 36703713 PMCID: PMC9871341 DOI: 10.1002/ece3.9625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 01/25/2023] Open
Abstract
The parasitoid Leptopilina heterotoma has been used as a model system for more than 70 years, contributing greatly to diverse research areas in ecology and evolution. Here, we synthesized the large body of work on L. heterotoma with the aim to identify new research avenues that could be of interest also for researchers studying other parasitoids and insects. We start our review with a description of typical L. heterotoma characteristics, as well as that of the higher taxonomic groups to which this species belongs. We then continue discussing host suitability and immunity, foraging behaviors, as well as fat accumulation and life histories. We subsequently shift our focus towards parasitoid-parasitoid interactions, including L. heterotoma coexistence within the larger guild of Drosophila parasitoids, chemical communication, as well as mating and population structuring. We conclude our review by highlighting the assets of L. heterotoma as a model system, including its intermediate life history syndromes, the ease of observing and collecting natural hosts and wasps, as well as recent genomic advances.
Collapse
Affiliation(s)
- Maude Quicray
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary EntomologyUniversity of Liège ‐ Gembloux Agro‐Bio TechGemblouxBelgium
| | - Léonore Wilhelm
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary EntomologyUniversity of Liège ‐ Gembloux Agro‐Bio TechGemblouxBelgium
| | - Thomas Enriquez
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary EntomologyUniversity of Liège ‐ Gembloux Agro‐Bio TechGemblouxBelgium
| | - Shulin He
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary EntomologyUniversity of Liège ‐ Gembloux Agro‐Bio TechGemblouxBelgium
| | - Mathilde Scheifler
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary EntomologyUniversity of Liège ‐ Gembloux Agro‐Bio TechGemblouxBelgium
| | - Bertanne Visser
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary EntomologyUniversity of Liège ‐ Gembloux Agro‐Bio TechGemblouxBelgium
| |
Collapse
|
6
|
Rebholz Z, Lancaster J, Larose H, Khrimian A, Luck K, Sparks ME, Gendreau KL, Shewade L, Köllner TG, Weber DC, Gundersen-Rindal DE, O'Maille P, Morozov AV, Tholl D. Ancient origin and conserved gene function in terpene pheromone and defense evolution of stink bugs and hemipteran insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 152:103879. [PMID: 36470318 DOI: 10.1016/j.ibmb.2022.103879] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Insects use diverse arrays of small molecules such as metabolites of the large class of terpenes for intra- and inter-specific communication and defense. These molecules are synthesized by specialized metabolic pathways; however, the origin of enzymes involved in terpene biosynthesis and their evolution in insect genomes is still poorly understood. We addressed this question by investigating the evolution of isoprenyl diphosphate synthase (IDS)-like genes with terpene synthase (TPS) function in the family of stink bugs (Pentatomidae) within the large order of piercing-sucking Hemipteran insects. Stink bugs include species of global pest status, many of which emit structurally related 15-carbon sesquiterpenes as sex or aggregation pheromones. We provide evidence for the emergence of IDS-type TPS enzymes at the onset of pentatomid evolution over 100 million years ago, coinciding with the evolution of flowering plants. Stink bugs of different geographical origin maintain small IDS-type families with genes of conserved TPS function, which stands in contrast to the diversification of TPS genes in plants. Expanded gene mining and phylogenetic analysis in other hemipteran insects further provides evidence for an ancient emergence of IDS-like genes under presumed selection for terpene-mediated chemical interactions, and this process occurred independently from a similar evolution of IDS-type TPS genes in beetles. Our findings further suggest differences in TPS diversification in insects and plants in conjunction with different modes of gene functionalization in chemical interactions.
Collapse
Affiliation(s)
- Zarley Rebholz
- Department of Biological Sciences, Virginia Tech, Latham Hall, 220 Ag Quad Lane, Blacksburg, VA, 24061, USA
| | - Jason Lancaster
- Department of Biological Sciences, Virginia Tech, Latham Hall, 220 Ag Quad Lane, Blacksburg, VA, 24061, USA
| | - Hailey Larose
- Department of Biological Sciences, Virginia Tech, Latham Hall, 220 Ag Quad Lane, Blacksburg, VA, 24061, USA
| | - Ashot Khrimian
- Invasive Insect Biocontrol and Behavior Laboratory, USDA Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Katrin Luck
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany
| | - Michael E Sparks
- Invasive Insect Biocontrol and Behavior Laboratory, USDA Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Kerry L Gendreau
- Department of Biological Sciences, Virginia Tech, Latham Hall, 220 Ag Quad Lane, Blacksburg, VA, 24061, USA
| | - Leena Shewade
- SRI International, Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA, 94025-3493, USA
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany
| | - Donald C Weber
- Invasive Insect Biocontrol and Behavior Laboratory, USDA Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Dawn E Gundersen-Rindal
- Invasive Insect Biocontrol and Behavior Laboratory, USDA Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Paul O'Maille
- SRI International, Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA, 94025-3493, USA
| | - Alexandre V Morozov
- Department of Physics & Astronomy and Center for Quantitative Biology, Rutgers University, 136 Frelinghuysen Rd., Piscataway, NJ, 08854-8019, USA
| | - Dorothea Tholl
- Department of Biological Sciences, Virginia Tech, Latham Hall, 220 Ag Quad Lane, Blacksburg, VA, 24061, USA.
| |
Collapse
|
7
|
Abstract
Sex pheromones are pivotal for insect reproduction. However, the mechanism of sex pheromone communication remains enigmatic in hymenopteran parasitoids. Here we have identified the sex pheromone and elucidated the olfactory basis of sex pheromone communication in Campoletis chlorideae (Ichneumonidae), a solitary larval endoparasitoid of over 30 lepidopteran pests. Using coupled gas chromatography-electroantennogram detection, we identified two female-derived pheromone components, tetradecanal (14:Ald) and 2-heptadecanone (2-Hep) (1:4.6), eliciting strong antennal responses from males but weak responses from females. We observed that males but not females were attracted to both single components and the blend. The hexane-washed female cadavers failed to arouse males, and replenishing 14:Ald and 2-Hep could partially restore the sexual attraction of males. We further expressed six C. chlorideae male-biased odorant receptors in Drosophila T1 neurons and found that CchlOR18 and CchlOR47 were selectively tuned to 14:Ald and 2-Hep, respectively. To verify the biological significance of this data, we knocked down CchlOR18 and CchlOR47 individually or together in vivo and show that the attraction of C. chlorideae to their respective ligands was abolished. Moreover, the parasitoids defective in either of the receptors were less likely to court and copulate. Finally, we show that the sex pheromone and (Z)-jasmone, a potent female attractant, can synergistically affect behaviors of virgin males and virgin females and ultimately increase the parasitic efficiency of C. chlorideae. Our study provides new insights into the molecular mechanism of sex pheromone communication in C. chlorideae that may permit manipulation of parasitoid behavior for pest control.
Collapse
|
8
|
Hernández-Fernández A, Torre IG. Compression principle and Zipf's Law of brevity in infochemical communication. Biol Lett 2022; 18:20220162. [PMID: 35892209 PMCID: PMC9326285 DOI: 10.1098/rsbl.2022.0162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Compression has been presented as a general principle of animal communication. Zipf's Law of brevity is a manifestation of this postulate and can be generalized as the tendency of more frequent communicative elements to be shorter. Previous works supported this claim, showing evidence of Zipf's Law of brevity in animal acoustical communication and human language. However, a significant part of the communicative effort in biological systems is carried out in other transmission channels, such as those based on infochemicals. To fill this gap, we seek, for the first time, evidence of this principle in infochemical communication by analysing the statistical tendency of more frequent infochemicals to be chemically shorter and lighter. We analyse data from the largest and most comprehensive open-access infochemical database known as Pherobase, recovering Zipf's Law of brevity in interspecific communication (allelochemicals) but not in intraspecific communication (pheromones). Moreover, these results are robust even when addressing different magnitudes of study or mathematical approaches. Therefore, different dynamics from the compression principle would dominate intraspecific chemical communication, defying the universality of Zipf's Law of brevity. To conclude, we discuss the exception found for pheromones in the light of other potential communicative paradigms such as pressures on successful communication or the Handicap principle.
Collapse
Affiliation(s)
- Antoni Hernández-Fernández
- Complexity and Quantitative Linguistics Lab, Institut de Ciències de l'Educació, Universitat Politècnica de Catalunya, Av. Doctor Marañón 44-50, Barcelona 08028, Catalonia, Spain
| | - Iván G Torre
- Language and Speech Laboratory, Universidad del País Vasco, Justo Vélez de Elorriaga Kalea, 1, 01006 Vitoria, Spain.,Departamento de Matemática Aplicada, Universidad Politécnica de Madrid, Avda. Puerta de Hierro, 2-4, 28040 Madrid, Spain
| |
Collapse
|
9
|
Paul SC, Müller C. Fighting over defense chemicals disrupts mating behavior. Behav Ecol 2021; 33:329-335. [PMID: 35444493 PMCID: PMC9015217 DOI: 10.1093/beheco/arab117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 09/02/2021] [Accepted: 10/11/2021] [Indexed: 11/30/2022] Open
Abstract
Studies on intraspecific contest behavior predominantly focus on contests between individuals of the same sex, however contest behavior is also expected to occur between individuals of the opposite sex including possible mates. Here we investigate potential trade-offs between mating and fighting behavior in the turnip sawfly (Athalia rosae). Adults of this species collect chemical defense compounds (clerodanoids) directly from plants but also indirectly by nibbling on conspecifics that have already obtained clerodanoids, a highly aggressive behavioral interaction. An A. rosae individual without clerodanoids may therefore be the potential mate or attacker of an individual of the opposite sex that has gained clerodanoids. To test the effect of clerodanoids on agonistic and mating behavior we paired females and males with or without clerodanoid access in a two-way factorial design. We show that asymmetrical clerodanoid acquisition between female-male pairs causes an increase in agonistic nibbling behavior, irrespective of sex, and moreover that conflict between individuals delays mating behavior. Our study highlights the importance of investigating agonistic intersex interactions, which can occur when adults are able to acquire valuable non-reproductive resources from a potential partner.
Collapse
Affiliation(s)
- Sarah Catherine Paul
- Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Caroline Müller
- Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| |
Collapse
|
10
|
Faal H, Silk PJ, Mayo PD, Teale SA. Courtship behavior and identification of a sex pheromone in Ibalia leucospoides (Hymenoptera: Ibaliidae), a larval parasitoid of Sirex noctilio (Hymenoptera: Siricidae). PeerJ 2021; 9:e12266. [PMID: 34760353 PMCID: PMC8572519 DOI: 10.7717/peerj.12266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 09/16/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Ibalia leucospoides (Hymenoptera: Ibaliidae) is a larval parasitoid that has been widely introduced as a biological control agent for the invasive woodwasp,Sirex noctilio (Hymenoptera: Siricidae) in the Southern Hemisphere. In this study, the courtship behavior and identificaion of sex pheromones are described for I. leucospoides under laboratory conditions. METHODS For courtship behavior, both sexes were observed in a wire mesh observation cylinder (75 cm length ×10 cm diameter) for 15 minutes. The female body washes were analyzed using Gas Chromatography- Electroantennographic Detection (GC-EAD). Then the EAD-active compounds were tentatively identified using GC-Mass Spectrometry (GC-MS) and examined in olfactometer assays. RESULTS The courtship behavior included rhythmic lateral movements, mounting, head-nodding cycles in males, and wing-fanning in females. GC-EAD analysis of female body washes with male antennae revealed seven compounds which elicited antennal responses, four of which are straight-chain alkanes (C23, C25, C26, and C27). The identities of these alkanes were confirmed by matching the retention times, mass spectra, and male antennal activity to those of commercially obtained chemicals. In olfactometer assays, a blend of the four straight-chain alkanes was attractive to I. leucospoides males, and there was no response to blends that lacked any of these four compounds. Female body wash was no more attractive than the four-component blend. The ratios of EAD-active components differ between hydrocarbon profiles from males and females. CONCLUSION This study is the first investigation of cuticular hydrocarbons in the family Ibaliidae. It provides evidence that the ubiquitous alkanes (C23, C25, C26, and C27) in sex-specific ratios attract I. leucospoides males.
Collapse
Affiliation(s)
- Hajar Faal
- Department of Environmental and Forest Biology, State University of New York-Environmental Science and Forestry, Syracuse, NY, USA
- Forest Pest Methods Laboratory (Otis Laboratory), USDA-APHIS-PPQ-CPHST, Buzzards Bay, MA, United States of America
| | - Peter J. Silk
- Natural Resources Canada, Atlantic Forestry Centre, Fredericton, New Brunswick, Canada
| | - Peter D. Mayo
- Natural Resources Canada, Atlantic Forestry Centre, Fredericton, New Brunswick, Canada
| | - Stephen A. Teale
- Department of Environmental and Forest Biology, State University of New York-Environmental Science and Forestry, Syracuse, NY, USA
| |
Collapse
|
11
|
Rizvi SAH, George J, Reddy GVP, Zeng X, Guerrero A. Latest Developments in Insect Sex Pheromone Research and Its Application in Agricultural Pest Management. INSECTS 2021; 12:insects12060484. [PMID: 34071020 PMCID: PMC8224804 DOI: 10.3390/insects12060484] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023]
Abstract
Since the first identification of the silkworm moth sex pheromone in 1959, significant research has been reported on identifying and unravelling the sex pheromone mechanisms of hundreds of insect species. In the past two decades, the number of research studies on new insect pheromones, pheromone biosynthesis, mode of action, peripheral olfactory and neural mechanisms, and their practical applications in Integrated Pest Management has increased dramatically. An interdisciplinary approach that uses the advances and new techniques in analytical chemistry, chemical ecology, neurophysiology, genetics, and evolutionary and molecular biology has helped us to better understand the pheromone perception mechanisms and its practical application in agricultural pest management. In this review, we present the most recent developments in pheromone research and its application in the past two decades.
Collapse
Affiliation(s)
| | - Justin George
- Southern Insect Management Research Unit, USDA-ARS, Stoneville, MS 38776, USA; (J.G.); (G.V.P.R.)
| | - Gadi V. P. Reddy
- Southern Insect Management Research Unit, USDA-ARS, Stoneville, MS 38776, USA; (J.G.); (G.V.P.R.)
| | - Xinnian Zeng
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (X.Z.); (A.G.)
| | - Angel Guerrero
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia-CSIC, 08034 Barcelona, Spain
- Correspondence: (X.Z.); (A.G.)
| |
Collapse
|
12
|
Sadanandappa MK, Sathyanarayana SH, Kondo S, Bosco G. Neuropeptide F signaling regulates parasitoid-specific germline development and egg-laying in Drosophila. PLoS Genet 2021; 17:e1009456. [PMID: 33770070 PMCID: PMC8026082 DOI: 10.1371/journal.pgen.1009456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/07/2021] [Accepted: 03/01/2021] [Indexed: 01/08/2023] Open
Abstract
Drosophila larvae and pupae are at high risk of parasitoid infection in nature. To circumvent parasitic stress, fruit flies have developed various survival strategies, including cellular and behavioral defenses. We show that adult Drosophila females exposed to the parasitic wasps, Leptopilina boulardi, decrease their total egg-lay by deploying at least two strategies: Retention of fully developed follicles reduces the number of eggs laid, while induction of caspase-mediated apoptosis eliminates the vitellogenic follicles. These reproductive defense strategies require both visual and olfactory cues, but not the MB247-positive mushroom body neuronal function, suggesting a novel mode of sensory integration mediates reduced egg-laying in the presence of a parasitoid. We further show that neuropeptide F (NPF) signaling is necessary for both retaining matured follicles and activating apoptosis in vitellogenic follicles. Whereas previous studies have found that gut-derived NPF controls germ stem cell proliferation, we show that sensory-induced changes in germ cell development specifically require brain-derived NPF signaling, which recruits a subset of NPFR-expressing cell-types that control follicle development and retention. Importantly, we found that reduced egg-lay behavior is specific to parasitic wasps that infect the developing Drosophila larvae, but not the pupae. Our findings demonstrate that female fruit flies use multimodal sensory integration and neuroendocrine signaling via NPF to engage in parasite-specific cellular and behavioral survival strategies.
Collapse
Affiliation(s)
- Madhumala K. Sadanandappa
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Shivaprasad H. Sathyanarayana
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Shu Kondo
- Invertebrate Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Giovanni Bosco
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
13
|
Mitaka Y, Akino T. A Review of Termite Pheromones: Multifaceted, Context-Dependent, and Rational Chemical Communications. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.595614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Termite colonies, composed of large numbers of siblings, develop an important caste-based division of labor; individuals in these societies interact via intra- or intercaste chemical communications. For more than 50 years, termites have been known to use a variety of pheromones to perform tasks necessary for maintenance of their societies, similar to eusocial hymenopterans. Although trail-following pheromones have been chemically identified in various termites, other types of pheromones have not been elucidated chemically or functionally. In the past decade, however, chemical compositions and biological functions have been successfully identified for several types of termite pheromones; accordingly, the details of the underlying pheromone communications have been gradually revealed. In this review, we summarize both the functions of all termite pheromones identified so far and the chemical interactions among termites and other organisms. Subsequently, we argue how termites developed their sophisticated pheromone communication. We hypothesize that termites have diverted defensive and antimicrobial substances to pheromones associated in caste recognition and caste-specific roles. Furthermore, termites have repeatedly used a pre-existing pheromone or have added supplementary compounds to it in accordance with the social context, leading to multifunctionalization of pre-existing pheromones and emergence of new pheromones. These two mechanisms may enable termites to transmit various context-dependent information with a small number of chemicals, thus resulting in formation of coordinated, complex, and rational chemical communication systems.
Collapse
|
14
|
Mate attraction, chemical defense, and competition avoidance in the parasitoid wasp Leptopilina pacifica. CHEMOECOLOGY 2020. [DOI: 10.1007/s00049-020-00331-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractA major hypothesis for the evolution of chemical signals is that pheromones arise from non-communicative precursor compounds. However, data supporting this hypothesis are rare, primarily because the original functions of the antecedent compounds often have been lost. A notable exception, however, is the parasitoid wasp species Leptopilina heterotoma, whose compound (−)-iridomyrmecin is used as a defensive secretion, a cue for females to avoid competition with con- and hetero-specific females, and as the primary component of the females’ sex pheromone. To better understand the evolution of sex pheromones from defensive compounds, we examined the chemical ecology of L. pacifica, the sister species of L. heterotoma. Here, we show that L. pacifica also produces a defensive secretion containing a species-specific mixture of mostly iridoid compounds. However, the composition of the secretion is more complex than in L. heterotoma, and iridomyrmecin is only a minor component. Moreover, in contrast to L. heterotoma, conspecific female competitors were not avoided by female subjects, and a role of the iridoids in the female sex pheromone of L. pacifica can be excluded, as only the females’ cuticular hydrocarbons (CHCs) resulted in the elicitation of courtship by males. Although closely related, the two sister species show substantial differences in the use of the defensive secretion for communicative purposes. Variation in pheromone usage in this genus still presents a conundrum, highlighting the need for additional studies to understand the selective forces shaping the evolution of pheromone composition.
Collapse
|
15
|
Böttinger LC, Stökl J. Dispersal From Natal Patch Correlates With the Volatility of Female Sex Pheromones in Parasitoid Wasps. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.557527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Würf J, Pokorny T, Wittbrodt J, Millar JG, Ruther J. Cuticular Hydrocarbons as Contact Sex Pheromone in the Parasitoid Wasp Urolepis rufipes. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
17
|
|
18
|
Arif MA, Guarino S, Colazza S, Peri E. The Role of ( E)-2-octenyl Acetate as a Pheromone of Bagrada hilaris (Burmeister): Laboratory and Field Evaluation. INSECTS 2020; 11:insects11020109. [PMID: 32050411 PMCID: PMC7074293 DOI: 10.3390/insects11020109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 11/16/2022]
Abstract
The pentatomid bug Bagrada hilaris is a key pest of brassicaceous crops in several areas of the world. Previous studies suggest that mate location of this species is mediated by volatile chemicals produced by males, among which the main compound is (E)-2-octenyl acetate. However, the possible attraction of males, females, and nymphs to this compound has not yet been specifically tested. In this study, we tested the response of B. hilaris females, males, and nymphs to (E)-2-octenyl acetate using an electroantennogram (EAG) and olfactometer in the presence or absence of a host plant. Moreover, (E)-2-octenyl acetate as an attractant lure in field trap bioassays was evaluated. EAG recordings showed that this compound evokes antennal responses in B. hilaris females. Olfactometer behavioral responses showed that females and nymphs were attracted to (E)-2-octenyl acetate, while males showed no attraction. In the field trap bioassays, captures were obtained in traps baited with 5 and 10 mg of (E)-2-octenyl acetate, while in traps loaded with 2 mg and control traps, there were no recorded catches. These results suggest the involvement of (E)-2-octenyl acetate in intraspecific interactions of this species.
Collapse
Affiliation(s)
- Mokhtar Abdulsattar Arif
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Science Ed. 5, 90128 Palermo, Italy; (M.A.A.); (S.C.); (E.P.)
| | - Salvatore Guarino
- Institute of Biosciences and Bioresources (IBBR), National Research Council of Italy (CNR), Corso Calatafimi 414, 90129 Palermo, Italy
- Correspondence:
| | - Stefano Colazza
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Science Ed. 5, 90128 Palermo, Italy; (M.A.A.); (S.C.); (E.P.)
| | - Ezio Peri
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Science Ed. 5, 90128 Palermo, Italy; (M.A.A.); (S.C.); (E.P.)
| |
Collapse
|
19
|
Distinct Roles of Cuticular Aldehydes as Pheromonal Cues in Two Cotesia Parasitoids. J Chem Ecol 2020; 46:128-137. [PMID: 31907752 DOI: 10.1007/s10886-019-01142-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/04/2019] [Accepted: 12/20/2019] [Indexed: 10/25/2022]
Abstract
Cuticular compounds (CCs) that cover the surface of insects primarily serve as protection against entomopathogens, harmful substances, and desiccation. However, CCs may also have secondary signaling functions. By studying the role of CCs in intraspecific interactions, we may advance our understanding of the evolution of pheromonal communication in insects. We previously found that the gregarious parasitoid, Cotesia glomerata (L.), uses heptanal as a repellent pheromone to help avoid mate competition among sibling males, whereas another cuticular aldehyde, nonanal, is part of the female-produced attractive sex pheromone. Here, we show that the same aldehydes have different pheromonal functions in a related solitary parasitoid, Cotesia marginiventris (Cresson). Heptanal enhances the attractiveness of the female's sex pheromone, whereas nonanal does not affect a female's attractiveness. Hence, these common aldehydes are differentially used by the two Cotesia species to mediate, synergistically, the attractiveness of the main constituents of their respective sex pheromones. The specificity of the complete sex pheromone blend is apparently regulated by two specific, less volatile compounds, which evoke strong electroantennographic (EAG) responses. This is the first demonstration that volatile CCs have evolved distinct pheromonal functions to aid divergent mating strategies in closely related species. We discuss the possibility that additional compounds are involved in attraction and that, like the aldehydes, they are likely oxidative products of unsaturated cuticular hydrocarbons.
Collapse
|
20
|
Günther CS, Knight SJ, Jones R, Goddard MR. Are Drosophila preferences for yeasts stable or contextual? Ecol Evol 2019; 9:8075-8086. [PMID: 31380072 PMCID: PMC6662392 DOI: 10.1002/ece3.5366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 01/12/2023] Open
Abstract
Whether there are general mechanisms, driving interspecific chemical communication is uncertain. Saccharomycetaceae yeast and Drosophila fruit flies, both extensively studied research models, share the same fruit habitat, and it has been suggested their interaction comprises a facultative mutualism that is instigated and maintained by yeast volatiles. Using choice tests, experimental evolution, and volatile analyses, we investigate the maintenance of this relationship and reveal little consistency between behavioral responses of two isolates of sympatric Drosophila species. While D. melanogaster was attracted to a range of different Saccharomycetaceae yeasts and this was independent of fruit type, D. simulans preference appeared specific to a particular S. cerevisiae genotype isolated from a vineyard fly population. This response, however, was not consistent across fruit types and is therefore context-dependent. In addition, D. simulans attraction to an individual S. cerevisiae isolate was pliable over ecological timescales. Volatile candidates were analyzed to identify a common signal for yeast attraction, and while D. melanogaster generally responded to fermentation profiles, D. simulans preference was more discerning and likely threshold-dependent. Overall, there is no strong evidence to support the idea of bespoke interactions with specific yeasts for either of these Drosophila genotypes. Rather the data support the idea Drosophila are generally adapted to sense and locate fruits infested by a range of fungal microbes and/or that yeast-Drosophila interactions may evolve rapidly.
Collapse
Affiliation(s)
- Catrin S. Günther
- Joseph Banks Laboratories, School of Life SciencesUniversity of LincolnLincolnUK
| | - Sarah J. Knight
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
| | - Rory Jones
- Joseph Banks Laboratories, School of Life SciencesUniversity of LincolnLincolnUK
| | - Matthew R. Goddard
- Joseph Banks Laboratories, School of Life SciencesUniversity of LincolnLincolnUK
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
| |
Collapse
|
21
|
The Combined Use of an Attractive and a Repellent Sex Pheromonal Component by a Gregarious Parasitoid. J Chem Ecol 2019; 45:559-569. [DOI: 10.1007/s10886-019-01066-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/05/2019] [Accepted: 03/11/2019] [Indexed: 10/27/2022]
|
22
|
Böttinger LC, Hofferberth J, Ruther J, Stökl J. Semiochemicals Mediating Defense, Intraspecific Competition, and Mate Finding in Leptopilina ryukyuensis and L. japonica (Hymenoptera: Figitidae), Parasitoids of Drosophila. J Chem Ecol 2019; 45:241-252. [PMID: 30756216 DOI: 10.1007/s10886-019-01052-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 11/24/2022]
Abstract
Deciphering the processes driving the evolution of the diverse pheromone-mediated chemical communication system of insects is a fascinating and challenging task. Understanding how pheromones have arisen has been supported by studies with the model organism Leptopilina heterotoma, a parasitoid wasp whose defensive compound (-)-iridomyrmecin also evolved as a component of the female sex pheromone and as a cue to avoid competition with other females during host search. To understand how compounds can evolve from being non-communicative to having a communicative function and to shed light on the evolution of the multi-functional use of iridomyrmecin in the genus Leptopilina, the chemical communication of two additional species, L. ryukyuensis and L. japonica, was studied. We demonstrate that in both species a species-specific mixture of iridoids is produced and emitted by wasps upon being attacked, consistent with their putative role as defensive compounds. In L. ryukyuensis these iridoids are also used by females to avoid host patches already exploited by other conspecific females. However, females of L. japonica do not avoid the odor of conspecific females during host search. We also show that the sex pheromone of female L. ryukyuensis consists of cuticular hydrocarbons (CHCs), as males showed strong courtship behavior (wing fanning) towards these compounds, but not towards the iridoid compounds. In contrast, males of L. japonica prefer their females' iridoids but CHCs also elicit some courtship behavior. The use of iridoid compounds as defensive allomones seems to be common in the genus Leptopilina, while their communicative functions appear to have evolved in a species-specific manner.
Collapse
Affiliation(s)
- Lea C Böttinger
- Department of Evolutionary Animal Ecology, Bayreuth University, Bayreuth, Germany
| | | | - Joachim Ruther
- Institute for Zoology, University of Regensburg, Regensburg, Germany
| | - Johannes Stökl
- Department of Evolutionary Animal Ecology, Bayreuth University, Bayreuth, Germany.
| |
Collapse
|
23
|
Ruther J, Wittman T, Grimm C, Feichtner FS, Fleischmann S, Kiermaier J, King BH, Kremer W, Kalbitzer HR, Schulz S. Male Sex Pheromone of the Parasitoid Wasp Urolepis rufipes Demonstrates Biosynthetic Switch Between Fatty Acid and Isoprenoid Metabolism Within the Nasonia Group. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
24
|
D’Eustacchio D, Centorame M, Fanfani A, Senczuk G, Jiménez-Alemán GH, Vasco-Vidal A, Méndez Y, Ehrlich A, Wessjohann L, Francioso A. Iridoids and volatile pheromones of Tapinoma darioi ants: chemical differences to the closely related species Tapinoma magnum. CHEMOECOLOGY 2019. [DOI: 10.1007/s00049-018-00275-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Environmentally vulnerable noble chafers exhibit unusual pheromone-mediated behaviour. PLoS One 2018; 13:e0206526. [PMID: 30383860 PMCID: PMC6211686 DOI: 10.1371/journal.pone.0206526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/08/2018] [Indexed: 11/19/2022] Open
Abstract
Conserving populations of environmentally vulnerable insect species requires a greater understanding of the factors that determine their abundance and distribution, which requires detailed knowledge of their population and community ecology. Chemical ecological tools such as pheromones can be used for non-destructive monitoring of scarab beetle populations, enabling European countries to detect and, in some cases, map the range of some of these species, proving a valuable technique for monitoring elusive saproxylic beetles. In this paper, we investigated the behavioural and chemical ecology of the noble chafer, Gnorimus nobilis L., a model insect species of conservation concern across a Europe-wide distribution, and a red-listed UK Biodiversity Action Plan priority species. We identified a potential pheromone of adult beetles using electrophysiological recordings, behavioural measurements and field trials in the UK. Gnorimus nobilis is highly unusual in that although both sexes produce, at high metabolic cost, the natural product 2-propyl (E)-3-hexenoate, it only attracts males. This pattern of chemical signalling makes the classification of the compound, based on current semiochemical terminology, somewhat problematic, but in our view, it should be termed an aggregation pheromone as a consequence of the production pattern. Since both sexes emit it, but apparently only males respond positively to it, 2-propyl (E)-3-hexenoate may reflect an intermediate evolutionary stage towards developing into a sex-specific signal. From an applied perspective, our study provides a model for the non-invasive surveillance of cryptic vulnerable insect species, without the need for habitat searching or disturbance, and continuous human monitoring.
Collapse
|
26
|
Carabidae Semiochemistry: Current and Future Directions. J Chem Ecol 2018; 44:1069-1083. [PMID: 30232615 DOI: 10.1007/s10886-018-1011-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/14/2018] [Accepted: 08/23/2018] [Indexed: 12/27/2022]
Abstract
Ground beetles (Carabidae) are recognized for their diverse, chemically-mediated defensive behaviors. Produced using a pair of pygidial glands, over 250 chemical constituents have been characterized across the family thus far, many of which are considered allomones. Over the past century, our knowledge of Carabidae exocrine chemistry has increased substantially, yet the role of these defensive compounds in mediating behavior other than repelling predators is largely unknown. It is also unclear whether non-defensive compounds produced by ground beetles mediate conspecific and heterospecific interactions, such as sex-aggregation pheromones or kairomones, respectively. Here we review the current state of non-exocrine Carabidae semiochemistry and behavioral research, discuss the importance of semiochemical research including but not limited to allomones, and describe next-generation methods for elucidating the underlying genetics and evolution of chemically-mediated behavior.
Collapse
|
27
|
Otte T, Hilker M, Geiselhardt S. Phenotypic Plasticity of Cuticular Hydrocarbon Profiles in Insects. J Chem Ecol 2018; 44:235-247. [PMID: 29468480 DOI: 10.1007/s10886-018-0934-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/05/2018] [Accepted: 02/08/2018] [Indexed: 12/28/2022]
Abstract
The insect integument is covered by cuticular hydrocarbons (CHCs) which provide protection against environmental stresses, but are also used for communication. Here we review current knowledge on environmental and insect-internal factors which shape phenotypic plasticity of solitary living insects, especially herbivorous ones. We address the dynamics of changes which may occur within minutes, but may also last weeks, depending on the species and conditions. Two different modes of changes are suggested, i.e. stepwise and gradual. A switch between two distinct environments (e.g. host plant switch by phytophagous insects) results in stepwise formation of two distinct adaptive phenotypes, while a gradual environmental change (e.g. temperature gradients) induces a gradual change of numerous adaptive CHC phenotypes. We further discuss the ecological and evolutionary consequences of phenotypic plasticity of insect CHC profiles by addressing the question at which conditions is CHC phenotypic plasticity beneficial. The high plasticity of CHC profiles might be a trade-off for insects using CHCs for communication. We discuss how insects cope with the challenge to produce and "understand" a highly plastic, environmentally dependent CHC pattern that conveys reliable and comprehensible information. Finally, we outline how phenotypic plasticity of CHC profiles may promote speciation in insects that rely on CHCs for mate recognition.
Collapse
Affiliation(s)
- Tobias Otte
- Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
| | - Monika Hilker
- Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
| | - Sven Geiselhardt
- Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany.
| |
Collapse
|
28
|
Interference of chemical defence and sexual communication can shape the evolution of chemical signals. Sci Rep 2018; 8:321. [PMID: 29321506 PMCID: PMC5762818 DOI: 10.1038/s41598-017-18376-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/11/2017] [Indexed: 11/08/2022] Open
Abstract
According to current evolutionary theory, insect pheromones can originate from extant precursor compounds being selected for information transfer. This is exemplified by females of the parasitoid wasp Leptopilina heterotoma whose defensive secretion consisting mainly of (−)-iridomyrmecin has evolved secondary functions as cue to avoid other females during host search and as female sex pheromone. To promote our understanding of pheromone evolution from defensive secretions we studied the chemical ecology of Leptopilina clavipes. We show here that L. clavipes also produces a defensive secretion that contains (−)-iridomyrmecin as major component and that females use it to detect and avoid host patches occupied by other females. However, the female sex pheromone of L. clavipes consists solely of cuticular hydrocarbons (CHCs) and males did not respond to female CHCs if presented in combination with the defensive secretion containing (−)-iridomyrmecin. This is in contrast to other species of Leptopilina, in which the iridoid compounds have no inhibiting effect or even function as sex pheromone triggering courtship behaviour. This indicates that Leptopilina species differ in the cost-benefit ratio for males searching for females, which might explain the strong divergence in the composition of the sex pheromone in the genus.
Collapse
|
29
|
Stökl J, Steiger S. Evolutionary origin of insect pheromones. CURRENT OPINION IN INSECT SCIENCE 2017; 24:36-42. [PMID: 29208221 DOI: 10.1016/j.cois.2017.09.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/11/2017] [Accepted: 09/06/2017] [Indexed: 06/07/2023]
Abstract
Communication via chemical signals, that is, pheromones, is of pivotal importance for most insects. According to current evolutionary theory, insect pheromones originated either from extant precursor compounds being selected for information transfer or by the pheromone components exploiting a pre-existing sensory bias in the receiver. Here, we review the available experimental evidence for both hypotheses. Existing data indicate that most insect pheromones evolved from precursor compounds that were emitted as metabolic by-products or that previously had other non-communicative functions. Many studies have investigated cuticular hydrocarbons that have evolved a communicative function, although examples of pheromones exist that have arisen from defensive secretions, hormones or dietary compounds. We summarize and discuss the selective pressures shaping the pheromone during signal evolution.
Collapse
Affiliation(s)
- Johannes Stökl
- Institute of Insect Biotechnology, Justus-Liebig-University Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany.
| | - Sandra Steiger
- Institute of Insect Biotechnology, Justus-Liebig-University Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| |
Collapse
|
30
|
Stökl J, Herzner G. Morphology and ultrastructure of the allomone and sex-pheromone producing mandibular gland of the parasitoid wasp Leptopilina heterotoma (Hymenoptera: Figitidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2016; 45:333-340. [PMID: 27349419 DOI: 10.1016/j.asd.2016.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
Chemical communication by the parasitoid wasp Leptopilina heterotoma is based largely on (-)-iridomyrmecin. The female wasps use (-)-iridomyrmecin as a defensive allomone, a chemical cue to avoid competition with con- and heterospecific females, and as a major component of their sex pheromone to attract males. Males of L. heterotoma produce (+)-isoiridomyrmecin, which is also used for chemical defense. In this study we show that females and males of L. heterotoma produce the iridomyrmecins in a pair of mandibular glands. Each gland consists of a secretory part composed of class 3 gland cells and their accompanying duct cells, as well as a reservoir bordered by a thin intima. The gland discharges between the mandible base and the clypeus. Males have considerably smaller glands than females, which corresponds to the lower amount of iridomyrmecins produced by males. Chemical analyses of the mandibular gland contents showed that the gland of females contained mainly (-)-iridomyrmecin, as well as low amounts of the other previously described iridoid pheromone compounds, while the glands of males contained only (+)-isoiridomyrmecin. The morphology and sizes of the mandibular glands of males and females of L. heterotoma have evolved to the multi-functional use of iridomyrmecin.
Collapse
Affiliation(s)
- Johannes Stökl
- Institute of Zoology, University of Regensburg, Germany.
| | | |
Collapse
|
31
|
Ambrosio LJ, Baeza JA. Territoriality and Conflict Avoidance Explain Asociality (Solitariness) of the Endosymbiotic Pea Crab Tunicotheres moseri. PLoS One 2016; 11:e0148285. [PMID: 26910474 PMCID: PMC4766240 DOI: 10.1371/journal.pone.0148285] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 01/16/2016] [Indexed: 11/19/2022] Open
Abstract
Host monopolization theory predicts symbiotic organisms inhabiting morphologically simple, relatively small and scarce hosts to live solitarily as a result of territorial behaviors. We tested this prediction with Tunicotheres moseri, an endosymbiotic crab dwelling in the atrial chamber of the morphologically simple, small, and relatively scarce ascidian Styela plicata. As predicted, natural populations of T. moseri inhabit ascidian hosts solitarily with greater frequency than expected by chance alone. Furthermore, laboratory experiments demonstrated that intruder crabs take significantly longer to colonize previously infected compared to uninfected hosts, indicating as expected, that resident crabs exhibit monopolization behaviors. While territoriality does occur, agonistic behaviors employed by T. moseri do not mirror the overt behaviors commonly reported for other territorial crustaceans. Documented double and triple cohabitations in the field coupled with laboratory observations demonstrating the almost invariable success of intruder crabs colonizing occupied hosts, suggest that territoriality is ineffective in completely explaining the solitary social habit of this species. Additional experiments showed that T. moseri juveniles and adults, when searching for ascidians use chemical cues to avoid hosts occupied by conspecifics. This conspecific avoidance behavior reported herein is a novel strategy most likely employed to preemptively resolve costly territorial conflicts. In general, this study supports predictions central to host monopolization theory, but also implies that alternative behavioral strategies (i.e., conflict avoidance) may be more important than originally thought in explaining the host use pattern of symbiotic organisms.
Collapse
Affiliation(s)
- Louis J. Ambrosio
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - J. Antonio Baeza
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- Smithsonian Marine Station at Fort Pierce, Fort Pierce, Florida, United States of America
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo, Coquimbo, Chile
| |
Collapse
|
32
|
Species Specificity of the Putative Male Antennal Aphrodisiac Pheromone in Leptopilina heterotoma, Leptopilina boulardi, and Leptopilina victoriae. BIOMED RESEARCH INTERNATIONAL 2015; 2015:202965. [PMID: 26839881 PMCID: PMC4709611 DOI: 10.1155/2015/202965] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/09/2015] [Indexed: 11/30/2022]
Abstract
Male antennal aphrodisiac pheromones have been suggested to elicit female receptiveness in several parasitic Hymenoptera, including Leptopilina boulardi. None of the proposed pheromones, however, has been fully identified to date. It is also unknown whether these antennal pheromones are species specific, because the species specificity of mate recognition and courtship elicitation in Leptopilina prevented such experiments. In this study we present an experimental design that allows the investigation of the species specificity of the putative male aphrodisiac pheromone of L. heterotoma, L. boulardi, and L. victoriae. This is achieved by chemical manipulation of the odour profile of heterospecific females, so that males perceive them as conspecifics and show antennal courtship behaviour. Males courted the manipulated heterospecific females and antennal contact between the male and the female was observed. However, males elicited receptiveness only in conspecific females, never in the manipulated heterospecific females. Chemical analysis showed the presence of species specific unsaturated hydrocarbons on the antennae of males. Only trace amounts of these hydrocarbons are found on the antennae of females. Our results are an important step towards the understanding and identification of antennal pheromones of parasitic wasps.
Collapse
|
33
|
Brant CO, Johnson NS, Li K, Buchinger TJ, Li W. Female sea lamprey shift orientation toward a conspecific chemical cue to escape a sensory trap. Behav Ecol 2015. [DOI: 10.1093/beheco/arv224] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Ebrahim SAM, Dweck HKM, Stökl J, Hofferberth JE, Trona F, Weniger K, Rybak J, Seki Y, Stensmyr MC, Sachse S, Hansson BS, Knaden M. Drosophila Avoids Parasitoids by Sensing Their Semiochemicals via a Dedicated Olfactory Circuit. PLoS Biol 2015; 13:e1002318. [PMID: 26674493 PMCID: PMC4687525 DOI: 10.1371/journal.pbio.1002318] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/05/2015] [Indexed: 11/19/2022] Open
Abstract
Detecting danger is one of the foremost tasks for a neural system. Larval parasitoids constitute clear danger to Drosophila, as up to 80% of fly larvae become parasitized in nature. We show that Drosophila melanogaster larvae and adults avoid sites smelling of the main parasitoid enemies, Leptopilina wasps. This avoidance is mediated via a highly specific olfactory sensory neuron (OSN) type. While the larval OSN expresses the olfactory receptor Or49a and is tuned to the Leptopilina odor iridomyrmecin, the adult expresses both Or49a and Or85f and in addition detects the wasp odors actinidine and nepetalactol. The information is transferred via projection neurons to a specific part of the lateral horn known to be involved in mediating avoidance. Drosophila has thus developed a dedicated circuit to detect a life-threatening enemy based on the smell of its semiochemicals. Such an enemy-detecting olfactory circuit has earlier only been characterized in mice and nematodes.
Collapse
Affiliation(s)
| | | | - Johannes Stökl
- Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - John E. Hofferberth
- Department of Chemistry, Kenyon College, Gambier, Ohio, United States of America
| | - Federica Trona
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Jürgen Rybak
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yoichi Seki
- Laboratory of Cellular Neurobiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | | | - Silke Sachse
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Markus Knaden
- Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
35
|
Sexy Mouth Odour? Male Oral Gland Pheromone in the Grain Beetle Parasitoid Lariophagus distinguendus (Förster) (Hymenoptera: Pteromalidae). BIOMED RESEARCH INTERNATIONAL 2015; 2015:216952. [PMID: 26579532 PMCID: PMC4633539 DOI: 10.1155/2015/216952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/29/2015] [Indexed: 11/19/2022]
Abstract
Throughout the animal kingdom, sexual pheromones are used for the attraction of mates and as courtship signals but also enable sexual isolation between species. In the parasitic wasp Lariophagus distinguendus, male courtship behaviour consisting of wing fanning, antennal stroking of the female antenna, and head nodding stimulates female receptivity leading to copulation. Recently L. distinguendus was reported to consist of two different lineages, which are sexually isolated because males fail to elicit receptivity in foreign females. It is unclear, however, which part of the courtship behaviour triggers female receptivity and therefore could be a mechanism causing sexual isolation. Here we show that in L. distinguendus a nonvolatile male oral pheromone is essential to release the female receptivity signal. In contrast, male wing fanning and antennal contact play a minor role. Additionally, the composition of the oral pheromone depends on the developmental host and females learn the composition upon emergence from the host substrate. These results will enable more detailed work on oral sexual pheromones to answer the question of how they are involved in the speciation process of L. distinguendus and other parasitoid species, for a better understanding of the huge biodiversity in this group.
Collapse
|
36
|
Behavioural flexibility of the chemical defence in the parasitoid wasp Leptopilina heterotoma. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2015; 102:67. [DOI: 10.1007/s00114-015-1317-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/09/2015] [Accepted: 10/11/2015] [Indexed: 11/26/2022]
|
37
|
Abstract
A wide variety of organisms communicate via the chemical channel using small molecules. A structural feature quite often found is the lactone motif. In the present paper, the current knowledge on such lactones will be described, concentrating on the structure, chemistry, function, biosynthesis and synthesis of these compounds. Lactone semiochemicals from insects, vertebrates and bacteria, which this article will focus on, are particularly well investigated. In addition, some ideas on the advantageous use of lactones as volatile signals, which promoted their evolutionary development, will be discussed.
Collapse
Affiliation(s)
- Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, 38106 Braunschweig, Germany.
| | | |
Collapse
|
38
|
Günther CS, Goddard MR, Newcomb RD, Buser CC. The Context of Chemical Communication Driving a Mutualism. J Chem Ecol 2015; 41:929-36. [PMID: 26392279 DOI: 10.1007/s10886-015-0629-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/19/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
Abstract
Recent work suggests that Drosophila and Saccharomyces yeasts may establish a mutualistic association, and that this is driven by chemical communication. While individual volatiles have been implicated in the attraction of D. melanogaster, the semiochemicals affecting the behavior of the sibling species D. simulans are less well characterized. Here, we scrutinized a broad range of volatiles produced by attractive and repulsive yeasts to experimentally evaluate the chemical nature of communication between these species. When grown in liquid or on agar-solidified grape juice, attraction to S. cerevisiae was driven primarily by 3-methylbutyl acetate (isoamyl acetate) and repulsion by acetic acid, a known attractant to D. melanogaster (also known as vinegar fly). By using T-maze choice tests and synthetic compounds, we showed that these responses are strongly influenced by compound concentration. Moreover, the behavioral response is impacted further by the chemical context of the environment. Thus, chemical communication between yeasts and flies is complex, and is not driven simply by the presence of single volatiles, but modulated by compound interactions. The ecological context of chemical communication needs to be taken into consideration when testing for ecologically realistic responses.
Collapse
Affiliation(s)
- Catrin S Günther
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland mail centre, Auckland, 1142, New Zealand. .,School of Life Sciences, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, LN6 7DL, UK.
| | - Matthew R Goddard
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland mail centre, Auckland, 1142, New Zealand.,School of Life Sciences, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, LN6 7DL, UK
| | - Richard D Newcomb
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland mail centre, Auckland, 1142, New Zealand.,The New Zealand Institute for Plant & Food Research Ltd, Private Bag 92169, Auckland, 1142, New Zealand
| | - Claudia C Buser
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland mail centre, Auckland, 1142, New Zealand
| |
Collapse
|
39
|
Schulte LM, Krauss M, Lötters S, Schulze T, Brack W. Decoding and Discrimination of Chemical Cues and Signals: Avoidance of Predation and Competition during Parental Care Behavior in Sympatric Poison Frogs. PLoS One 2015; 10:e0129929. [PMID: 26132416 PMCID: PMC4488855 DOI: 10.1371/journal.pone.0129929] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/14/2015] [Indexed: 11/25/2022] Open
Abstract
The evolution of chemical communication and the discrimination between evolved functions (signals) and unintentional releases (cues) are among the most challenging issues in chemical ecology. The accurate classification of inter- or intraspecific chemical communication is often puzzling. Here we report on two different communication systems triggering the same parental care behavior in the poison frog Ranitomeya variabilis. This species deposits its tadpoles and egg clutches in phytotelmata and chemically recognizes and avoids sites with both predatory conspecific and non-predatory heterospecific tadpoles (of the species Hyloxalus azureiventris). Combining chemical analyses with in-situ bioassays, we identified the molecular formulas of the chemical compounds triggering this behavior. We found that both species produce distinct chemical compound combinations, suggesting two separate communication systems. Bringing these results into an ecological context, we classify the conspecific R. variabilis compounds as chemical cues, advantageous only to the receivers (the adult frogs), not the emitters (the tadpoles). The heterospecific compounds, however, are suggested to be chemical signals (or cues evolving into signals), being advantageous to the emitters (the heterospecific tadpoles) and likely also to the receivers (the adult frogs). Due to these assumed receiver benefits, the heterospecific compounds are possibly synomones which are advantageous to both emitter and receiver ‒ a very rare communication system between animal species, especially vertebrates.
Collapse
Affiliation(s)
- Lisa M. Schulte
- Department of Biogeography, Trier University, Trier, Germany
| | - Martin Krauss
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Stefan Lötters
- Department of Biogeography, Trier University, Trier, Germany
| | - Tobias Schulze
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Werner Brack
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research, Leipzig, Germany
| |
Collapse
|
40
|
Size Exclusion High Performance Liquid Chromatography: Re-Discovery of a Rapid and Versatile Method for Clean-Up and Fractionation in Chemical Ecology. J Chem Ecol 2015; 41:574-83. [DOI: 10.1007/s10886-015-0584-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/24/2015] [Accepted: 04/22/2015] [Indexed: 10/23/2022]
|
41
|
Weiss I, Hofferberth J, Ruther J, Stökl J. Varying importance of cuticular hydrocarbons and iridoids in the species-specific mate recognition pheromones of three closely related Leptopilina species. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
42
|
Maag D, Erb M, Köllner TG, Gershenzon J. Defensive weapons and defense signals in plants: Some metabolites serve both roles. Bioessays 2014; 37:167-74. [DOI: 10.1002/bies.201400124] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Daniel Maag
- Laboratory of Fundamental and Applied Research in Chemical Ecology; University of Neuchâtel; Neuchâtel Switzerland
- Laboratory of Phytochemistry and Bioactive Natural Products; University of Geneva; Geneva Switzerland
| | - Matthias Erb
- Institute of Plant Sciences; University of Bern; Bern Switzerland
| | - Tobias G. Köllner
- Department of Biochemistry; Max Planck Institute for Chemical Ecology; Jena Germany
| | - Jonathan Gershenzon
- Department of Biochemistry; Max Planck Institute for Chemical Ecology; Jena Germany
| |
Collapse
|
43
|
Steiger S, Stökl J. The Role of Sexual Selection in the Evolution of Chemical Signals in Insects. INSECTS 2014; 5:423-38. [PMID: 26462692 PMCID: PMC4592599 DOI: 10.3390/insects5020423] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/16/2014] [Accepted: 05/20/2014] [Indexed: 11/16/2022]
Abstract
Chemical communication is the most ancient and widespread form of communication. Yet we are only beginning to grasp the complexity of chemical signals and the role they play in sexual selection. Focusing on insects, we review here the recent progress in the field of olfactory-based sexual selection. We will show that there is mounting empirical evidence that sexual selection affects the evolution of chemical traits, but form and strength of selection differ between species. Studies indicate that some chemical signals are expressed in relation to an individual's condition and depend, for example, on age, immunocompetence, fertility, body size or degree of inbreeding. Males or females might benefit by choosing based on those traits, gaining resources or "good genes". Other chemical traits appear to reliably reflect an individual's underlying genotype and are suitable to choose a mating partner that matches best the own genotype.
Collapse
Affiliation(s)
- Sandra Steiger
- Institute of Experimental Ecology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Johannes Stökl
- Institute of Zoology, University of Regensburg, Universitätstraße 31, 93053 Regensburg, Germany.
| |
Collapse
|
44
|
Stökl J, Dandekar AT, Ruther J. High Chemical Diversity in a Wasp Pheromone: a Blend of Methyl 6-Methylsalicylate, Fatty Alcohol Acetates and Cuticular Hydrocarbons Releases Courtship Behavior in the Drosophila Parasitoid Asobara tabida. J Chem Ecol 2014; 40:159-68. [DOI: 10.1007/s10886-014-0378-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/18/2013] [Accepted: 01/01/2014] [Indexed: 11/25/2022]
|