1
|
Qiao L, Ma B, Jiang Y, Pan X, Mao Z, Zhang Y, Sheldon RA, Wang A. Turning the band alignment of carbon dots for visible-light-driven enzymatic asymmetric reduction of aromatic ketone. Int J Biol Macromol 2025; 295:139444. [PMID: 39761903 DOI: 10.1016/j.ijbiomac.2024.139444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
Keto reductases are crucial NAD(P)H-dependent enzymes used for the enantioselective synthesis of alcohols from prochiral ketones. Typically, the NADPH cofactor is regenerated through a second enzyme and/or substrate. However, photocatalytic cofactor regeneration using water as a sacrificial electron and hydrogen donor presents a promising alternative, albeit a challenging one. Herein we fabricated several nitrogen-doped carbon dots (CDs) with visible light absorption properties, good water solubility and biocompatibility for photocatalytic regeneration of NADPH. The CD with a smaller size and suitable redox potential gave the highest NADPH yield (55.7 %). Based on this, NADPH-dependent aldo-keto reductase crosslinked aggregates (AKR-CLEs) were initially applied as a stable biocatalyst to reduce the prochiral ketone. (S)-1-(2-Chlorophenyl) ethanol, an intermediate for LPA1R antagonists, was obtained in 65.3 % yield and 99.99 % enantiomeric excess (ee) under visible light irradiation. The isotope tracer experiment confirmed that water is the hydrogen donor in this light-driven, photo-enzymatic asymmetric hydrogenation system. This method is useful for the sustainable synthesis of chiral alcohols. Moreover, the general principle of utilizing water as the sacrificial hydrogen and electron donor holds potential for application in other redox cofactor regeneration systems.
Collapse
Affiliation(s)
- Li Qiao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education; College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Bianqin Ma
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education; College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yongjian Jiang
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education; College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiaoting Pan
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education; College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhili Mao
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education; College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China.
| | - Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits, 2050 Johannesburg, South Africa; Department of Biotechnology, Section BOC, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, the Netherlands.
| | - Anming Wang
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education; College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
2
|
Mori S, Hashimoto R, Hisatomi T, Domen K, Saito S. Artificial photosynthesis directed toward organic synthesis. Nat Commun 2025; 16:1797. [PMID: 40016180 PMCID: PMC11868534 DOI: 10.1038/s41467-025-56374-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/15/2025] [Indexed: 03/01/2025] Open
Abstract
In nature, plants convert solar energy into chemical energy via water oxidation. Inspired by natural photosynthesis, artificial photosynthesis has been gaining increasing interest in the field of sustainability/green science and technology as a non-natural and thermodynamically endergonic (ΔG° > 0, uphill) solar-energy-driven reaction that uses water as an electron donor and a source material. Among the artificial-photosynthesis processes, inorganic-synthesis reactions via water oxidation, including water splitting and CO2-to-fuel conversion, have been attracting much attention. In contrast, the synthesis of high-value functionalized organic compounds via artificial photosynthesis, which we have termed artificial photosynthesis directed toward organic synthesis (APOS), remains a great challenge. Herein, we report a synthetically pioneering and meaningful strategy of APOS, where the carbohydroxylation of C = C double bonds is accomplished via a three-component coupling with H2 evolution using dual functions of semiconductor photocatalysts, i.e., silver-loaded titanium dioxide (Ag/TiO2) and rhodium-chromium-cobalt-loaded aluminum-doped strontium titanate (RhCrCo/SrTiO3:Al).
Collapse
Affiliation(s)
- Shogo Mori
- Integrated Research Consortium on Chemical Sciences, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Riku Hashimoto
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Takashi Hisatomi
- Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano, 380-8553, Japan
| | - Kazunari Domen
- Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano, 380-8553, Japan
- Office of University Professors, The University of Tokyo, 2-11-16 Yayoi, Bunkyo, Tokyo, 113-8656, Japan
| | - Susumu Saito
- Integrated Research Consortium on Chemical Sciences, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.
| |
Collapse
|
3
|
Das S, Roy A, Chakrabarti N, Mukhopadhyay N, Sarkar A, Sen Gupta S. Self-sensitized Cu(ii)-complex catalyzed solar driven CO 2 reduction. Chem Sci 2025; 16:3114-3123. [PMID: 39829977 PMCID: PMC11736929 DOI: 10.1039/d4sc06354f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
Developing a self-sensitized catalyst from earth-abundant elements, capable of efficient light harvesting and electron transfer, is crucial for enhancing the efficacy of CO2 transformation, a critical step in environmental cleanup and advancing clean energy prospects. Traditional approaches relying on external photosensitizers, comprising 4d/5d metal complexes, involve intermolecular electron transfer, and attachment of photosensitizing arms to the catalyst necessitates intramolecular electron transfer, underscoring the need for a more integrated solution. We report a new Cu(ii) complex, K[CuNDPA] (1[K(18-crown-6)]), bearing a dipyrrin amide-based trianionic tetradentate ligand, NDPA (H3L), which is capable of harnessing light energy, despite having a paramagnetic Cu(ii) centre, without any external photosensitizer and photocatalytically reducing CO2 to CO in acetonitrile : water (19 : 1 v/v) with a TON as high as 1132, a TOF of 566 h-1 and a selectivity of 99%. This complex also shows hemilability in the presence of water, which not only plays a role in the proton relay mechanism but also helps stabilize a crucial Cu(i)-NDPA intermediate. The hemilability was justified by the formation of N3O (2) and N2O2 (3) coordinated congeners of the N4 bound complex 1. The overall mechanism was further investigated via spectroscopic techniques such as EPR, UV-vis, and spectroelectrochemistry, culminating in the justification of a single electron-reduced Cu(i)NDPA species as a proposed intermediate. In the next step, the binding of CO2 to the Cu(i) complex and subsequent electron transfer to form Cu(ii)-COO·- was indirectly probed by a radical trapping experiment via the addition of p-methoxy-2,6-di-tert-butylphenol that led to the formation of a phenoxyl radical. This work provides new strategies for designing earth-abundant robust molecular catalysts that can function as photocatalysts without the aid of any external photosensitizers.
Collapse
Affiliation(s)
- Soumadip Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur 741246 Kolkata India
| | - Aritra Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur 741246 Kolkata India
| | - Navonil Chakrabarti
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur 741246 Kolkata India
| | - Narottam Mukhopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur 741246 Kolkata India
| | - Aniruddha Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur 741246 Kolkata India
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur 741246 Kolkata India
| |
Collapse
|
4
|
Wei D, Xu S, Wang X, Wu W, Liu Z, Wu X, Yang J, Xu Y, Li Y, Luo Y. Photoinduced electron transfer enables cytochrome P450 enzyme-catalyzed reaction cycling. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109412. [PMID: 39708699 DOI: 10.1016/j.plaphy.2024.109412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/08/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Cytochrome P450 enzymes (CYPs), the members of the largest superfamily of enzymes in plant kingdom, catalyze a variety of functional group transformations involved in metabolite biosynthesis, end-product derivatization, and exogeneous molecule detoxification. Nevertheless, CYPs' functional characterization and practically industrial application have been largely encumbered by their critical dependency on the reducing equivalent for the catalytic cycling, driven by the tedious electron relay mediated by CYP reductase (CPR). Here, we report a photoinduced electron transfer system that initiates and sustains the CYP-catalyzed reaction cycling. Using Camptotheca acuminata CYP72A565-catalyzed carbon-carbon cleavage reaction, a key biosynthetic reaction in the biosynthesis of plant-derived antitumor monoterpene indole alkaloid camptothecin, as a representative CYP-catalyzed reaction model, we identified eosin Y (EY) and triethanolamine (TEOA) as an efficient photosensitizer/sacrificial reagent pair for the photoinduced electron generating system. The C. acuminata camptothecin 10-hydroxylase-catalyzed regioselective C10-hydroxylation of camptothecin into 10-hydroxycamptothecin could be enabled by the photoinduced electron transfer system, demonstrating that the EY/TEOA pair serves as an efficient surrogate for membranous CPR and can be expanded to other CYP-catalyzed reaction cycling. The catalytic efficiency of the photoinduced electron transfer-driven CYP-catalyzed cycling exceeds that of the native NADPH-dependent CPR-supported CYP-catalyzed reaction, thereby circumventing the dependency on both NADPH and the reductase CPR. The present study provides a photoinduced electron generating and transferring system as an efficient and facile alternative to membranous NADPH-dependent CPR, offering a new avenue for CYP-mediated conversion of complex bioactive natural products using synthetic biology approaches.
Collapse
Affiliation(s)
- Daijing Wei
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuangyu Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuefei Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenlin Wu
- Chengdu Institute of Food Inspection, Chengdu, 611130, China
| | - Zhan Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xudong Wu
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, 644000, China
| | - Jing Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yinggang Luo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China.
| |
Collapse
|
5
|
Sheldon RA. Waste Valorization in a Sustainable Bio-Based Economy: The Road to Carbon Neutrality. Chemistry 2024; 30:e202402207. [PMID: 39240026 DOI: 10.1002/chem.202402207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Indexed: 09/07/2024]
Abstract
The development of sustainable chemistry underlying the quest to minimize and/or valorize waste in the carbon-neutral manufacture of chemicals is followed over the last four to five decades. Both chemo- and biocatalysis have played an indispensable role in this odyssey. in particular developments in protein engineering, metagenomics and bioinformatics over the preceding three decades have played a crucial supporting role in facilitating the widespread application of both whole cell and cell-free biocatalysis. The pressing need, driven by climate change mitigation, for a drastic reduction in greenhouse gas (GHG) emissions, has precipitated an energy transition based on decarbonization of energy and defossilization of organic chemicals production. The latter involves waste biomass and/or waste CO2 as the feedstock and green electricity generated using solar, wind, hydroelectric or nuclear energy. The use of waste polysaccharides as feedstocks will underpin a renaissance in carbohydrate chemistry with pentoses and hexoses as base chemicals and bio-based solvents and polymers as environmentally friendly downstream products. The widespread availability of inexpensive electricity and solar energy has led to increasing attention for electro(bio)catalysis and photo(bio)catalysis which in turn is leading to myriad innovations in these fields.
Collapse
Affiliation(s)
- Roger A Sheldon
- Department of Biotechnology, Delft University of Technology, Netherlands
- Department of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
6
|
Lim G, Calabrese D, Wolder A, Cordero PRF, Rother D, Mulks FF, Paul CE, Lauterbach L. H 2-driven biocatalysis for flavin-dependent ene-reduction in a continuous closed-loop flow system utilizing H 2 from water electrolysis. Commun Chem 2024; 7:200. [PMID: 39244618 PMCID: PMC11380674 DOI: 10.1038/s42004-024-01288-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
Despite the increasing demand for efficient and sustainable chemical processes, the development of scalable systems using biocatalysis for fine chemical production remains a significant challenge. We have developed a scalable flow system using immobilized enzymes to facilitate flavin-dependent biocatalysis, targeting as a proof-of-concept asymmetric alkene reduction. The system integrates a flavin-dependent Old Yellow Enzyme (OYE) and a soluble hydrogenase to enable H2-driven regeneration of the OYE cofactor FMNH2. Molecular hydrogen was produced by water electrolysis using a proton exchange membrane (PEM) electrolyzer and introduced into the flow system via a designed gas membrane addition module at a high diffusion rate. The flow system shows remarkable stability and reusability, consistently achieving >99% conversion of ketoisophorone to levodione. It also demonstrates versatility and selectivity in reducing various cyclic enones and can be extended to further flavin-based biocatalytic approaches and gas-dependent reactions. This electro-driven continuous flow system, therefore, has significant potential for advancing sustainable processes in fine chemical synthesis.
Collapse
Affiliation(s)
- Guiyeoul Lim
- Institute of Applied Microbiology-iAMB RWTH Aachen University, Aachen, Germany
| | - Donato Calabrese
- Institute of Applied Microbiology-iAMB RWTH Aachen University, Aachen, Germany
| | - Allison Wolder
- Biocatalysis Section, Department Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Paul R F Cordero
- Institute of Applied Microbiology-iAMB RWTH Aachen University, Aachen, Germany
| | - Dörte Rother
- Institute of Applied Microbiology-iAMB RWTH Aachen University, Aachen, Germany
- Institute for Bio-and Geosciences 1: Biotechnology Forschungzentrum Jülich GmbH, Jülich, Germany
| | - Florian F Mulks
- Institute of Organic Chemistry-iOC RWTH Aachen University, Aachen, Germany
| | - Caroline E Paul
- Biocatalysis Section, Department Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Lars Lauterbach
- Institute of Applied Microbiology-iAMB RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
7
|
Carceller JM, Arias KS, Climent MJ, Iborra S, Corma A. One-pot chemo- and photo-enzymatic linear cascade processes. Chem Soc Rev 2024; 53:7875-7938. [PMID: 38965865 DOI: 10.1039/d3cs00595j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The combination of chemo- and photocatalyses with biocatalysis, which couples the flexible reactivity of the photo- and chemocatalysts with the highly selective and environmentally friendly nature of enzymes in one-pot linear cascades, represents a powerful tool in organic synthesis. However, the combination of photo-, chemo- and biocatalysts in one-pot is challenging because the optimal operating conditions of the involved catalyst types may be rather different, and the different stabilities of catalysts and their mutual deactivation are additional problems often encountered in one-pot cascade processes. This review explores a large number of transformations and approaches adopted for combining enzymes and chemo- and photocatalytic processes in a successful way to achieve valuable chemicals and valorisation of biomass. Moreover, the strategies for solving incompatibility issues in chemo-enzymatic reactions are analysed, introducing recent examples of the application of non-conventional solvents, enzyme-metal hybrid catalysts, and spatial compartmentalization strategies to implement chemo-enzymatic cascade processes.
Collapse
Affiliation(s)
- J M Carceller
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - K S Arias
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - M J Climent
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - S Iborra
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - A Corma
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| |
Collapse
|
8
|
Broumidis E, Paradisi F. Engineering a Dual-Functionalized PolyHIPE Resin for Photobiocatalytic Flow Chemistry. Angew Chem Int Ed Engl 2024; 63:e202401912. [PMID: 38507522 DOI: 10.1002/anie.202401912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
The use of a dual resin for photobiocatalysis, encompassing both a photocatalyst and an immobilized enzyme, brings several challenges, including effective immobilization, maintaining photocatalyst and enzyme activity and ensuring sufficient light penetration. However, the benefits, such as integrated processes, reusability, easier product separation, and potential for scalability, can outweigh these challenges, making dual resin systems promising for efficient and sustainable photobiocatalytic applications. In this study, we employed a photosensitizer-containing porous emulsion-templated polymer as a functional support that is used to covalently anchor a chloroperoxidase from Curvularia inaequalis (CiVCPO). We demonstrate the versatility of this heterogeneous photobiocatalytic material, which enables the bromination of four aromatic substrates, including rutin-a natural occurring flavonol-under blue light (456 nm) irradiation and continuous flow conditions.
Collapse
Affiliation(s)
- Emmanouil Broumidis
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH3012, Bern, Switzerland
| | - Francesca Paradisi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH3012, Bern, Switzerland
| |
Collapse
|
9
|
Kushnarenko A, Zabelina A, Guselnikova O, Miliutina E, Vokatá B, Zabelin D, Burtsev V, Valiev R, Kolska Z, Paidar M, Sykora V, Postnikov P, Svorcik V, Lyutakov O. Merging gold plasmonic nanoparticles and L-proline inside a MOF for plasmon-induced visible light chiral organocatalysis at low temperature. NANOSCALE 2024; 16:5313-5322. [PMID: 38372626 DOI: 10.1039/d3nr04707e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Light-driven asymmetric photocatalysis represents a straightforward approach in modern organic chemistry. In comparison to the homogeneous one, heterogeneous asymmetric photocatalysis has the advantages of easy catalyst separation, recovery, and reuse, thus being cost- and time-effective. Here, we demonstrate how plasmon-active centers (gold nanoparticles - AuNPs) allow visible light triggering of chiral catalyst (proline) in model aldol reaction between acetone and benzaldehyde. The metal-organic framework UiO-66-NH2 was used as an advanced host platform for the loading of proline and AuNPs and their stabilization in spatial proximity. Aldol reactions were carried out at a low temperature (-20 °C) under light illumination which resulted in 91% ee with a closed-to-quantitative yield, 4.5 times higher than that without light (i.e. in the absence of plasmon triggering). A set of control experiments and quantum chemical modeling revealed that the plasmon assistance proceeds through hot electron excitation followed by an interaction with an enamine with the formation of anion radical species. We also demonstrated the high stability of the proposed system in multiple catalytic cycles without leaching metal ions, which makes our approach especially promising for heterogeneous asymmetric photocatalysis.
Collapse
Affiliation(s)
- A Kushnarenko
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic.
| | - A Zabelina
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic.
| | - O Guselnikova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Russian Federation.
| | - E Miliutina
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic.
| | - B Vokatá
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic.
| | - D Zabelin
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic.
| | - V Burtsev
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic.
| | - R Valiev
- Kazan Federal University, 420008 Kazan, Russian Federation
| | - Z Kolska
- Centre for Nanomaterials and Biotechnology, J. E. Purkyne University, 40096 Usti nad Labem, Czech Republic
| | - M Paidar
- Department of Inorganic Technology, University of Chemistry and Technology, 16628 Prague, Czech Republic
| | - V Sykora
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - P Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Russian Federation.
| | - V Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic.
| | - O Lyutakov
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic.
| |
Collapse
|
10
|
Emmanuel MA, Bender SG, Bilodeau C, Carceller JM, DeHovitz JS, Fu H, Liu Y, Nicholls BT, Ouyang Y, Page CG, Qiao T, Raps FC, Sorigué DR, Sun SZ, Turek-Herman J, Ye Y, Rivas-Souchet A, Cao J, Hyster TK. Photobiocatalytic Strategies for Organic Synthesis. Chem Rev 2023; 123:5459-5520. [PMID: 37115521 PMCID: PMC10905417 DOI: 10.1021/acs.chemrev.2c00767] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Biocatalysis has revolutionized chemical synthesis, providing sustainable methods for preparing various organic molecules. In enzyme-mediated organic synthesis, most reactions involve molecules operating from their ground states. Over the past 25 years, there has been an increased interest in enzymatic processes that utilize electronically excited states accessed through photoexcitation. These photobiocatalytic processes involve a diverse array of reaction mechanisms that are complementary to one another. This comprehensive review will describe the state-of-the-art strategies in photobiocatalysis for organic synthesis until December 2022. Apart from reviewing the relevant literature, a central goal of this review is to delineate the mechanistic differences between the general strategies employed in the field. We will organize this review based on the relationship between the photochemical step and the enzymatic transformations. The review will include mechanistic studies, substrate scopes, and protein optimization strategies. By clearly defining mechanistically-distinct strategies in photobiocatalytic chemistry, we hope to illuminate future synthetic opportunities in the area.
Collapse
Affiliation(s)
- Megan A Emmanuel
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Sophie G Bender
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Catherine Bilodeau
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jose M Carceller
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Institute of Chemical Technology (ITQ), Universitat Politècnica de València, València 46022,Spain
| | - Jacob S DeHovitz
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Haigen Fu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Yi Liu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Bryce T Nicholls
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yao Ouyang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Claire G Page
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Tianzhang Qiao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Felix C Raps
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Damien R Sorigué
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Shang-Zheng Sun
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Joshua Turek-Herman
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yuxuan Ye
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ariadna Rivas-Souchet
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jingzhe Cao
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Todd K Hyster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
11
|
Liu L, Corma A. Bimetallic Sites for Catalysis: From Binuclear Metal Sites to Bimetallic Nanoclusters and Nanoparticles. Chem Rev 2023; 123:4855-4933. [PMID: 36971499 PMCID: PMC10141355 DOI: 10.1021/acs.chemrev.2c00733] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 03/29/2023]
Abstract
Heterogeneous bimetallic catalysts have broad applications in industrial processes, but achieving a fundamental understanding on the nature of the active sites in bimetallic catalysts at the atomic and molecular level is very challenging due to the structural complexity of the bimetallic catalysts. Comparing the structural features and the catalytic performances of different bimetallic entities will favor the formation of a unified understanding of the structure-reactivity relationships in heterogeneous bimetallic catalysts and thereby facilitate the upgrading of the current bimetallic catalysts. In this review, we will discuss the geometric and electronic structures of three representative types of bimetallic catalysts (bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles) and then summarize the synthesis methodologies and characterization techniques for different bimetallic entities, with emphasis on the recent progress made in the past decade. The catalytic applications of supported bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles for a series of important reactions are discussed. Finally, we will discuss the future research directions of catalysis based on supported bimetallic catalysts and, more generally, the prospective developments of heterogeneous catalysis in both fundamental research and practical applications.
Collapse
Affiliation(s)
- Lichen Liu
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Avelino Corma
- Instituto
de Tecnología Química, Universitat
Politècnica de València−Consejo Superior de Investigaciones
Científicas (UPV-CSIC), Avenida de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
12
|
Wang J, Shirvani H, Zhao H, Kibria MG, Hu J. Lignocellulosic biomass valorization via bio-photo/electro hybrid catalytic systems. Biotechnol Adv 2023; 66:108157. [PMID: 37084800 DOI: 10.1016/j.biotechadv.2023.108157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/23/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Lignocellulosic biomass valorization is regarded as a promising approach to alleviate energy crisis and achieve carbon neutrality. Bioactive enzymes have attracted great attention and been commonly applied for biomass valorization owing to their high selectivity and catalytic efficiency under environmentally benign reaction conditions. Same as biocatalysis, photo-/electro-catalysis also happens at mild conditions (i.e., near ambient temperature and pressure). Therefore, the combination of these different catalytic approaches to benefit from their resulting synergy is appealing. In such hybrid systems, harness of renewable energy from the photo-/electro-catalytic compartment can be combined with the unique selectivity of biocatalysts, therefore providing a more sustainable and greener approach to obtain fuels and value-added chemicals from biomass. In this review, we firstly introduce the pros/cons, classifications, and the applications of photo-/electro-enzyme coupled systems. Then we focus on the fundamentals and comprehensive applications of the most representative biomass-active enzymes including lytic polysaccharide monooxygenases (LPMOs), glucose oxidase (GOD)/dehydrogenase (GDH) and lignin peroxidase (LiP), together with other biomass-active enzymes in the photo-/electro- enzyme coupled systems. Finally, we propose current deficiencies and future perspectives of biomass-active enzymes to be applied in the hybrid catalytic systems for global biomass valorization.
Collapse
Affiliation(s)
- Jiu Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Hamed Shirvani
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada.
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada.
| |
Collapse
|
13
|
Shen J, Liu Y, Qiao L. Photodriven Chemical Synthesis by Whole-Cell-Based Biohybrid Systems: From System Construction to Mechanism Study. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6235-6259. [PMID: 36702806 DOI: 10.1021/acsami.2c19528] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
By simulating natural photosynthesis, the desirable high-value chemical products and clean fuels can be sustainably generated with solar energy. Whole-cell-based photosensitized biohybrid system, which innovatively couples the excellent light-harvesting capacity of semiconductor materials with the efficient catalytic ability of intracellular biocatalysts, is an appealing interdisciplinary creature to realize photodriven chemical synthesis. In this review, we summarize the constructed whole-cell-based biohybrid systems in different application fields, including carbon dioxide fixation, nitrogen fixation, hydrogen production, and other chemical synthesis. Moreover, we elaborate the charge transfer mechanism studies of representative biohybrids, which can help to deepen the current understanding of the synergistic process between photosensitizers and microorganisms, and provide schemes for building novel biohybrids with less electron transfer resistance, advanced productive efficiency, and functional diversity. Further exploration in this field has the prospect of making a breakthrough on the biotic-abiotic interface that will provide opportunities for multidisciplinary research.
Collapse
Affiliation(s)
- Jiayuan Shen
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| | - Yun Liu
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| | - Liang Qiao
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| |
Collapse
|
14
|
Sustainable organic synthesis promoted on titanium dioxide using coordinated water and renewable energies/resources. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Wang Z, Hu Y, Zhang S, Sun Y. Artificial photosynthesis systems for solar energy conversion and storage: platforms and their realities. Chem Soc Rev 2022; 51:6704-6737. [PMID: 35815740 DOI: 10.1039/d1cs01008e] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In natural photosynthesis, photosynthetic organisms such as green plants realize efficient solar energy conversion and storage by integrating photosynthetic components on the thylakoid membrane of chloroplasts. Inspired by natural photosynthesis, researchers have developed many artificial photosynthesis systems (APS's) that integrate various photocatalysts and biocatalysts to convert and store solar energy in the fields of resource, environment, food, and energy. To improve the system efficiency and reduce the operation cost, reaction platforms are introduced in APS's since they allow for great stability and continuous processing. A systematic understanding of how a reaction platform affects the performance of artificial photosynthesis is conducive for designing an APS with superb solar energy utilization. In this review, we discuss the recent APS's researches, especially those confined on/in platforms. The importance of different platforms and their influences on APS's performance are emphasized. Generally, confined platforms can enhance the stability and repeatability of both photocatalysts and biocatalysts in APS's as well as improve the photosynthetic performance due to the proximity effect. For functional platforms that can participate in the artificial photosynthesis reactions as active parts, a high integration of APS's components on/in these platforms can lead to efficient electron transfer, enhanced light-harvesting, or synergistic catalysis, resulting in superior photosynthesis performance. Therefore, the integration of APS's components is beneficial for the transfer of substrates and photoexcited electrons in artificial photosynthesis. We finally summarize the current challenges of APS's development and further efforts on the improvement of APS's.
Collapse
Affiliation(s)
- Zhenfu Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Yang Hu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
16
|
Boronat M, Climent MJ, Concepción P, Díaz U, García H, Iborra S, Leyva-Pérez A, Liu L, Martínez A, Martínez C, Moliner M, Pérez-Pariente J, Rey F, Sastre E, Serna P, Valencia S. A Career in Catalysis: Avelino Corma. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mercedes Boronat
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Maria J. Climent
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Patricia Concepción
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Urbano Díaz
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Hermenegildo García
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Sara Iborra
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Antonio Leyva-Pérez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Lichen Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Agustin Martínez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Cristina Martínez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Manuel Moliner
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Joaquín Pérez-Pariente
- Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Marie Curie 2, Madrid 28049, Spain
| | - Fernando Rey
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Enrique Sastre
- Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Marie Curie 2, Madrid 28049, Spain
| | - Pedro Serna
- ExxonMobil Technology and Engineering Company, Catalysis Fundamentals, Annandale, New Jersey 08801, United States
| | - Susana Valencia
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
17
|
Hagiwara H. Introduction of Chiral Centers to α- and/or β-Positions of Carbonyl Groups by Biocatalytic Asymmetric Reduction of α,β-Unsaturated Carbonyl Compounds. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221099054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biocatalytic asymmetric reductions of acyclic and cyclic α,β-unsaturated carbonyl compounds are favorable protocols for introduction of chiral centers to α- and/or β-positions of the carbonyl groups. Representative biocatalytic reductions of electron deficient olefins are compiled from a synthetic point of view according to compound types from the papers in 2012 to early 2022. Applications to syntheses of some enantiomericaly enriched perfumery ingredients are presented to show the feasibility of the biocatalytic reductions.
Collapse
Affiliation(s)
- Hisahiro Hagiwara
- Graduate School of Science and Technology, Niigata University, 8050, 2-Nocho, Ikarashi, Nishi-ku, Niigata, 950-2181, Japan
| |
Collapse
|
18
|
Sheldon RA, Brady D. Green Chemistry, Biocatalysis, and the Chemical Industry of the Future. CHEMSUSCHEM 2022; 15:e202102628. [PMID: 35026060 DOI: 10.1002/cssc.202102628] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/11/2022] [Indexed: 06/14/2023]
Abstract
In the movement to decarbonize our economy and move away from fossil fuels we will need to harness the waste products of our activities, such as waste lignocellulose, methane, and carbon dioxide. Our wastes need to be integrated into a circular economy where used products are recycled into a manufacturing carbon cycle. Key to this will be the recycling of plastics at the resin and monomer levels. Biotechnology is well suited to a future chemical industry that must adapt to widely distributed and diverse biological chemical feedstocks. Our increasing mastery of biotechnology is allowing us to develop enzymes and organisms that can synthesize a widening selection of desirable bulk chemicals, including plastics, at commercially viable productivities. Integration of bioreactors with electrochemical systems will permit new production opportunities with enhanced productivities and the advantage of using a low-carbon electricity from renewable and sustainable sources.
Collapse
Affiliation(s)
- Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg, 2000, South Africa
- Department of Biotechnology, Delft University of Technology, Section BOC, van der Maasweg 9, 2629 HZ, Delft, Netherlands
| | - Dean Brady
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg, 2000, South Africa
| |
Collapse
|
19
|
Wei W, Mazzotta F, Lieberwirth I, Landfester K, Ferguson CTJ, Zhang KAI. Aerobic Photobiocatalysis Enabled by Combining Core-Shell Nanophotoreactors and Native Enzymes. J Am Chem Soc 2022; 144:7320-7326. [PMID: 35363487 PMCID: PMC9052756 DOI: 10.1021/jacs.2c00576] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Biocatalysis has become a powerful tool in synthetic chemistry, where enzymes are used to produce highly selective products under mild conditions. Using photocatalytically regenerated cofactors in synergistic combination with enzymes in a cascade fashion offers an efficient synthetic route to produce specific compounds. However, the combination of enzymes and photocatalysts has been limited due to the rapid degradation of the biomaterials by photogenerated reactive oxygen species, which denature and deactivate the enzymatic material. Here, we design core-shell structured porous nano-photoreactors for highly stable and recyclable photobiocatalysis under aerobic conditions. The enzymatic cofactor NAD+ from NADH can be efficiently regenerated by the photoactive organosilica core, while photogenerated active oxygen species are trapped and deactivated through the non-photoactive shell, protecting the enzymatic material. The versatility of these photocatalytic core-shell nanoreactors was demonstrated in tandem with two different enzymatic systems, glycerol dehydrogenase and glucose 1-dehydrogenase, where long-term enzyme stability was observed for the core-shell photocatalytic system.
Collapse
Affiliation(s)
- Wenxin Wei
- Max
Planck institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Francesca Mazzotta
- Max
Planck institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Ingo Lieberwirth
- Max
Planck institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max
Planck institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany,
| | - Calum T. J. Ferguson
- Max
Planck institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany,
| | - Kai A. I. Zhang
- Max
Planck institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany,Department
of Materials Science, Fudan University, 200433 Shanghai, People’s Republic of China,;
| |
Collapse
|
20
|
Casadevall C, Pascual D, Aragón J, Call A, Casitas A, Casademont-Reig I, Lloret-Fillol J. Light-driven reduction of aromatic olefins in aqueous media catalysed by aminopyridine cobalt complexes. Chem Sci 2022; 13:4270-4282. [PMID: 35509462 PMCID: PMC9006965 DOI: 10.1039/d1sc06608k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/09/2022] [Indexed: 12/15/2022] Open
Abstract
A catalytic system based on earth-abundant elements that efficiently hydrogenates aryl olefins using visible light as the driving-force and H2O as the sole hydrogen atom source is reported. The catalytic system involves a robust and well-defined aminopyridine cobalt complex and a heteroleptic Cu photoredox catalyst. The system shows the reduction of styrene in aqueous media with a remarkable selectivity (>20 000) versus water reduction (WR). Reactivity and mechanistic studies support the formation of a [Co–H] intermediate, which reacts with the olefin via a hydrogen atom transfer (HAT). Synthetically useful deuterium-labelled compounds can be straightforwardly obtained by replacing H2O with D2O. Moreover, the dual photocatalytic system and the photocatalytic conditions can be rationally designed to tune the selectivity for aryl olefin vs. aryl ketone reduction; not only by changing the structural and electronic properties of the cobalt catalysts, but also by modifying the reduction properties of the photoredox catalyst. A dual catalytic system based on earth-abundant elements reduces aryl olefins to alkanes in aqueous media under visible light. Mechanistic studies allow for rational tunning of the system for the selective reduction of aryl olefins vs ketones and vice versa.![]()
Collapse
Affiliation(s)
- Carla Casadevall
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology Avinguda Països Catalans 16 43007 Tarragona Spain
| | - David Pascual
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology Avinguda Països Catalans 16 43007 Tarragona Spain
| | - Jordi Aragón
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology Avinguda Països Catalans 16 43007 Tarragona Spain
| | - Arnau Call
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology Avinguda Països Catalans 16 43007 Tarragona Spain
| | - Alicia Casitas
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology Avinguda Països Catalans 16 43007 Tarragona Spain
| | - Irene Casademont-Reig
- Donostia International Physics Center (DIPC), Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU P.K. 1072 20080 Donostia Euskadi Spain
| | - Julio Lloret-Fillol
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology Avinguda Països Catalans 16 43007 Tarragona Spain .,Catalan Institution for Research and Advanced Studies (ICREA) Passeig Lluïs Companys, 23 08010 Barcelona Spain
| |
Collapse
|
21
|
Sattayapanich K, Chaiwat W, Boonmark S, Bureekaew S, Sutthasupa S. Alginate-based hydrogels embedded with ZnO nanoparticles as highly responsive colorimetric oxygen indicators. NEW J CHEM 2022. [DOI: 10.1039/d2nj04164b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Simple fabrication of hydrogel-based colorimetric oxygen indicators as alternative smart materials for oxygen sensitive products and systems.
Collapse
Affiliation(s)
- Kodchakorn Sattayapanich
- Division of Packaging Technology, Faculty of Agro-Industry Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Weerawut Chaiwat
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Sininart Boonmark
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan, Rayong, 21210, Thailand
| | - Sareeya Bureekaew
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan, Rayong, 21210, Thailand
| | - Sutthira Sutthasupa
- Division of Packaging Technology, Faculty of Agro-Industry Chiang Mai University, Chiang Mai, 50100, Thailand
- Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
22
|
Grosu E, Girardon J, Carja G, Froidevaux R. NADH Regeneration Promoted by Solar Light Using Gold Nanoparticles/Layered Double Hydroxides as Novel Photocatalytic Nanoplatforms. ChemistrySelect 2021. [DOI: 10.1002/slct.202102221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Elena‐Florentina Grosu
- EA7394-ICV-Institut Charles Viollette UMR Transfrontalière 1158 BioEcoAgro Univ. Lille INRAE Univ. Liège UPJV JUNIA Univ. Artois Univ. Littoral Côte d'Opale ICV-Institut Charles Viollette F-59000 Lille France
- Department of Chemical Engineering Gheorghe Asachi Technical University Bul. Profesor Dimitrie Mangeron 73 Iasi 700554 Romania
| | - Jean‐Sébastien Girardon
- UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide Lille University CNRS Centrale Lille ENSCL Artois University Avenue Paul Langevin 59655 Villeneuve d'Ascq Cedex France
| | - Gabriela Carja
- Department of Chemical Engineering Gheorghe Asachi Technical University Bul. Profesor Dimitrie Mangeron 73 Iasi 700554 Romania
| | - Renato Froidevaux
- EA7394-ICV-Institut Charles Viollette UMR Transfrontalière 1158 BioEcoAgro Univ. Lille INRAE Univ. Liège UPJV JUNIA Univ. Artois Univ. Littoral Côte d'Opale ICV-Institut Charles Viollette F-59000 Lille France
| |
Collapse
|
23
|
Rotilio L, Swoboda A, Ebner K, Rinnofner C, Glieder A, Kroutil W, Mattevi A. Structural and biochemical studies enlighten the unspecific peroxygenase from Hypoxylon sp. EC38 as an efficient oxidative biocatalyst. ACS Catal 2021; 11:11511-11525. [PMID: 34540338 DOI: 10.1021/acscatal.1c03065] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Unspecific peroxygenases (UPO) are glycosylated fungal enzymes that can selectively oxidize C-H bonds. UPOs employ hydrogen peroxide as oxygen donor and reductant. With such an easy-to-handle co-substrate and without the need of a reducing agent, UPOs are emerging as convenient oxidative biocatalysts. Here, an unspecific peroxygenase from Hypoxylon sp. EC38 (HspUPO) was identified in an activity-based screen of six putative peroxygenase enzymes that were heterologously expressed in Pichia pastoris. The enzyme was found to tolerate selected organic solvents such as acetonitrile and acetone. HspUPO is a versatile catalyst performing various reactions, such as the oxidation of prim- and sec-alcohols, epoxidations and hydroxylations. Semi-preparative biotransformations were demonstrated for the non-enantioselective oxidation of racemic 1-phenylethanol rac -1b (TON = 13000), giving the product with 88% isolated yield, and the oxidation of indole 6a to give indigo 6b (TON = 2800) with 98% isolated yield. HspUPO features a compact and rigid three-dimensional conformation that wraps around the heme and defines a funnel-shaped tunnel that leads to the heme iron from the protein surface. The tunnel extends along a distance of about 12 Å with a fairly constant diameter in its innermost segment. Its surface comprises both hydrophobic and hydrophilic groups for dealing with small-to-medium size substrates of variable polarities. The structural investigation of several protein-ligand complexes revealed that the active site of HspUPO is accessible to molecules of varying bulkiness and polarity with minimal or no conformational changes, explaining the relatively broad substrate scope of the enzyme. With its convenient expression system, robust operational properties, relatively small size, well-defined structural features, and diverse reaction scope, HspUPO is an exploitable candidate for peroxygenase-based biocatalysis.
Collapse
Affiliation(s)
- Laura Rotilio
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Alexander Swoboda
- Austrian Centre of Industrial Biotechnology, c/o Institute of Chemistry, University of Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Katharina Ebner
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Claudia Rinnofner
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Anton Glieder
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Austrian Centre of Industrial Biotechnology, c/o Institute of Chemistry, University of Graz, Heinrichstraße 28, 8010 Graz, Austria
- Institute of Chemistry, University of Graz, NAWI Gaz, BioTechMed Graz, Heinrichstraße 28, 8010 Graz, Austria
- Field of Excellence BioHealth-University of Graz, 8010 Graz, Austria
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
24
|
Li Y, Yuan B, Sun Z, Zhang W. C–H bond functionalization reactions enabled by photobiocatalytic cascades. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
25
|
Yang N, Tian Y, Zhang M, Peng X, Li F, Li J, Li Y, Fan B, Wang F, Song H. Photocatalyst-enzyme hybrid systems for light-driven biotransformation. Biotechnol Adv 2021; 54:107808. [PMID: 34324993 DOI: 10.1016/j.biotechadv.2021.107808] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/26/2021] [Accepted: 07/21/2021] [Indexed: 11/02/2022]
Abstract
Enzymes catalyse target reactions under mild conditions with high efficiency, as well as excellent regional-, stereo-, and enantiomeric selectivity. Photocatalysis utilises sustainable and environment-friendly light power to realise efficient chemical conversion. By combining the interdisciplinary advantages of photo- and enzymatic catalysis, the photocatalyst-enzyme hybrid systems have proceeded various light-driven biotransformation with high efficiency under environmentally benign conditions, thus, attracting unparalleled focus during the last decades. It has also been regarded as a promising pathway towards green chemistry utilising ubiquitous solar energy. This systematic review gives insight into this research field by classifying the existing photocatalyst-enzyme hybrid systems into three sections based on different hybridizing modes between photo- and enzymatic catalysis. Furthermore, existing challenges and proposed strategies are discussed within this context. The first system summarised is the cofactor-mediated hybrid system, in which natural/artificial cofactors act as reducing equivalents that connect photocatalysts with enzymes for light-driven enzymatic biotransformation. Second, the direct contact-based photocatalyst-enzyme hybrid systems are described, including two different kinds of electron exchange sites on the enzyme molecules. Third, some cases where photocatalysts and enzymes are integrated into a reaction cascade with specific intermediates will be discussed in the following chapter. Finally, we provide perspective concerning the future of this field.
Collapse
Affiliation(s)
- Nan Yang
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Yao Tian
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Mai Zhang
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Xiting Peng
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Feng Li
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Jianxun Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Yi Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China.
| | - Hao Song
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
26
|
Knorrscheidt A, Soler J, Hünecke N, Püllmann P, Garcia-Borràs M, Weissenborn MJ. Accessing Chemo- and Regioselective Benzylic and Aromatic Oxidations by Protein Engineering of an Unspecific Peroxygenase. ACS Catal 2021; 11:7327-7338. [PMID: 34631225 PMCID: PMC8496131 DOI: 10.1021/acscatal.1c00847] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/21/2021] [Indexed: 01/12/2023]
Abstract
![]()
Unspecific
peroxygenases (UPOs) enable oxyfunctionalizations of
a broad substrate range with unparalleled activities. Tailoring these
enzymes for chemo- and regioselective transformations represents a
grand challenge due to the difficulties in their heterologous productions.
Herein, we performed protein engineering in Saccharomyces
cerevisiae using the MthUPO from Myceliophthora thermophila. More than 5300 transformants
were screened. This protein engineering led to a significant reshaping
of the active site as elucidated by computational modelling. The reshaping
was responsible for the increased oxyfunctionalization activity, with
improved kcat/Km values of up to 16.5-fold for the model substrate 5-nitro-1,3-benzodioxole.
Moreover, variants were identified with high chemo- and regioselectivities
in the oxyfunctionalization of aromatic and benzylic carbons, respectively.
The benzylic hydroxylation was demonstrated to perform with enantioselectivities
of up to 95% ee. The proposed evolutionary protocol
and rationalization of the enhanced activities and selectivities acquired
by MthUPO variants represent a step forward toward
the use and implementation of UPOs in biocatalytic synthetic pathways
of industrial interest.
Collapse
Affiliation(s)
- Anja Knorrscheidt
- Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Jordi Soler
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Nicole Hünecke
- Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Pascal Püllmann
- Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Marc Garcia-Borràs
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Martin J. Weissenborn
- Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle, Germany
| |
Collapse
|
27
|
Transferring Plasmon Effect on a Biological System: Expression of Biological Polymers in Chronic Rejection and Inflammatory Rat Model. Polymers (Basel) 2021; 13:polym13111827. [PMID: 34072966 PMCID: PMC8199201 DOI: 10.3390/polym13111827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 01/08/2023] Open
Abstract
The plasmon-activated water (PAW) that reduces hydrogen bonds is made of deionized reverse osmosis water (ROW). However, compared with ROW, PAW has a significantly higher diffusion coefficient and electron transfer rate constant in electrochemical reactions. PAW has a boiling point of 97 °C and specific heat of0.94; the energy of PAW is also 1121 J/mol higher than ordinary water. The greater the force of hydrogen bonds between H2O, the larger the volume of the H2O cluster, and the easier it is to lose the original characteristics. The hydrogen bonding force of PAW is weak, so the volume of its cluster is small, and it exists in a state very close to a single H2O. PAW has a high permeability and diffusion rate, which can improve the needs of biological applications and meet the dependence of biological organisms on H2O when performing physiological functions. PAW can successfully remove free radicals, and efficiently reduce lipopolysaccharide (LPS)-induced monocytes to release nitric oxide. PAW can induce expression of the antioxidant gene Nrf2 in human gingival fibroblasts, lower amyloid burden in mice with Alzheimer’s disease, and decrease metastasis in mice grafted with Lewis lung carcinoma cells. Because the transferring plasmon effect may improve the abnormality of physiological activity in a biological system, we aimed to evaluate the influence of PAW on orthotopic allograft transplantation (OAT)-induced vasculopathy in this study. Here, we demonstrated that daily intake of PAW lowered the progression of vasculopathy in OAT-recipient ACI/NKyo rats by inhibiting collagen accumulation, proliferation of smooth muscle cells and fibroblasts, and T lymphocyte infiltration in the vessel wall. The results showed reduced T and B lymphocytes, plasma cells, and macrophage activation in the spleen of the OAT-recipient ACI/NKyo rats that were administered PAW. In contrast to the control group, the OAT-recipient ACI/NKyo rats that were administered PAW exhibited higher mobilization and levels of circulating endothelial progenitor cells associated with vessel repair. We use the transferring plasmon effect to adjust and maintain the biochemical properties of water, and to meet the biochemical demand of organisms. Therefore, this study highlights the therapeutic roles of PAW and provides more biomedical applicability for the transferring plasmon effect.
Collapse
|
28
|
Özgen FF, Runda ME, Schmidt S. Photo-biocatalytic Cascades: Combining Chemical and Enzymatic Transformations Fueled by Light. Chembiochem 2021; 22:790-806. [PMID: 32961020 PMCID: PMC7983893 DOI: 10.1002/cbic.202000587] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/22/2020] [Indexed: 12/13/2022]
Abstract
In the field of green chemistry, light - an attractive natural agent - has received particular attention for driving biocatalytic reactions. Moreover, the implementation of light to drive (chemo)enzymatic cascade reactions opens up a golden window of opportunities. However, there are limitations to many current examples, mostly associated with incompatibility between the enzyme and the photocatalyst. Additionally, the formation of reactive radicals upon illumination and the loss of catalytic activities in the presence of required additives are common observations. As outlined in this review, the main question is how to overcome current challenges to the exploitation of light to drive (chemo)enzymatic transformations. First, we highlight general concepts in photo-biocatalysis, then give various examples of photo-chemoenzymatic (PCE) cascades, further summarize current synthetic examples of PCE cascades and discuss strategies to address the limitations.
Collapse
Affiliation(s)
- Fatma Feyza Özgen
- Groningen Research Institute of PharmacyDepartment of Chemical and Pharmaceutical BiologyAntonius Deusinglaan 19713 AVGroningen (TheNetherlands
| | - Michael E. Runda
- Groningen Research Institute of PharmacyDepartment of Chemical and Pharmaceutical BiologyAntonius Deusinglaan 19713 AVGroningen (TheNetherlands
| | - Sandy Schmidt
- Groningen Research Institute of PharmacyDepartment of Chemical and Pharmaceutical BiologyAntonius Deusinglaan 19713 AVGroningen (TheNetherlands
| |
Collapse
|
29
|
Qiu X, Zhang Y, Zhu Y, Long C, Su L, Liu S, Tang Z. Applications of Nanomaterials in Asymmetric Photocatalysis: Recent Progress, Challenges, and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2001731. [PMID: 32672886 DOI: 10.1002/adma.202001731] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Asymmetric catalysis is one of the most attractive strategies to obtain important enantiomerically pure chemicals with high quality and production. In addition, thanks to the abundant and sustainable advantages of solar energy, photocatalysis possesses great potential in environmentally benign reactions. Undoubtedly, asymmetric photocatalysis meets the strict demand of modern chemistry: environmentally friendly and energy-sustainable alternatives. Compared with homogeneous asymmetric photocatalysis, heterogeneous catalysis has features of easy separation, recovery, and reuse merits, thus being cost- and time-effective. Herein, the state-of-the-art progress in asymmetric photocatalysis by heterogeneous nanomaterials is addressed. The discussion comprises two sections based on the type of nanomaterials: typical inorganic semiconductors like TiO2 and quantum dots and emerging porous materials including metal-organic frameworks, porous organic polymers, and organic cages. Finally, the challenges and future developments of heterogeneous asymmetric photocatalysis are proposed.
Collapse
Affiliation(s)
- Xueying Qiu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
- MOE Key Laboratory of Micro-systems and Micro-structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yin Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yanfei Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chang Long
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
- MOE Key Laboratory of Micro-systems and Micro-structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lina Su
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaoqin Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
- MOE Key Laboratory of Micro-systems and Micro-structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
30
|
In situ H 2O 2 generation methods in the context of enzyme biocatalysis. Enzyme Microb Technol 2021; 145:109744. [PMID: 33750536 DOI: 10.1016/j.enzmictec.2021.109744] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 11/22/2022]
Abstract
Hydrogen peroxide is a versatile oxidant that has use in medical and biotechnology industries. Many enzymes require this oxidant as a reaction mediator in order to undergo their oxygenation chemistries. While there is a reliable method for generating hydrogen peroxide via an anthraquinone cycle, there are several advantages for generating hydrogen in situ. As highlighted in this review, this is particularly beneficial in the case of biocatalysts that require hydrogen peroxide as a reaction mediator because the exogenous addition of hydrogen peroxide can damage their reactive heme centers and render them inactive. In addition, generation of hydrogen peroxide in situ does not dilute the reaction mixture and cause solution parameters to change. The environment would also benefit from a hydrogen peroxide synthesis cycle that does not rely on nonrenewable chemicals obtained from fossil fuels. Generation of hydrogen peroxide in situ for biocatalysis using enzymes, bioelectrocatalyis, photocatalysis, and cold temperature plasmas are addressed. Particular emphasis is given to reaction processes that support high total turnover numbers (TTNs) of the hydrogen peroxide-requiring enzymes. Discussion of innovations in the use of hydrogen peroxide-producing enzyme cascades for antimicrobial activity, wastewater effluent treatment, and biosensors are also included.
Collapse
|
31
|
Li Y, Zhang R, Xu Y. Structure-based mechanisms: On the way to apply alcohol dehydrogenases/reductases to organic-aqueous systems. Int J Biol Macromol 2020; 168:412-427. [PMID: 33316337 DOI: 10.1016/j.ijbiomac.2020.12.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022]
Abstract
Alcohol dehydrogenases/reductases catalyze enantioselective syntheses of versatile chiral compounds relying on direct hydride transfer from cofactor to substrates, or to an intermediate and then to substrates. Since most of the substrates catalyzed by alcohol dehydrogenases/reductases are insoluble in aqueous solutions, increasing interest has been turning to organic-aqueous systems. However, alcohol dehydrogenases/reductases are normally instable in organic solvents, leading to the unsatisfied enantioselective synthesis efficiency. The behaviors of these enzymes in organic solvents at an atomic level are unclear, thus it is of great importance to understand its structure-based mechanisms in organic-aqueous systems to improve their relative stability. Here, we summarized the accessible structures of alcohol dehydrogenases/reductases in Protein Data Bank crystallized in organic-aqueous systems, and compared the structures of alcohol dehydrogenases/reductases which have different tolerance towards organic solvents. By understanding the catalytic behaviors and mechanisms of these enzymes in organic-aqueous systems, the efficient enantioselective syntheses mediated by alcohol dehydrogenases/reductases and further challenges are also discussed through solvent engineering and enzyme-immobilization in the last decade.
Collapse
Affiliation(s)
- Yaohui Li
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Department of Biological Science, Columbia University, New York, NY 10025, United States
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
32
|
Yu Y, Lu WF, Yang ZJ, Wang N, Yu XQ. Combining photo-redox and enzyme catalysis for the synthesis of 4H-pyrimido[2,1-b] benzothiazole derivatives in one pot. Bioorg Chem 2020; 107:104534. [PMID: 33339664 DOI: 10.1016/j.bioorg.2020.104534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
A novel strategy combining visible-light and enzyme catalysis in one pot for the synthesis of 4H-pyrimido[2,1-b] benzothiazole derivatives from alcohols is described for the first time. Fourteen 4H-pyrimido[2,1-b] benzothiazole derivatives were prepared with yields of up to 98% under mild reaction conditions by a simple operation. The photoorgano catalyst rose Bengal (rB) was employed to oxyfunctionalise alcohols to aldehydes. Compared with aldehydes, alcohols with more stable properties and lower cost, thus we used photocatalysis to oxidize alcohols into aldehydes. Next, the enzyme was used to further catalyze the reaction of Biginelli to produce the target product of 4H-pyrimidine [2,1-b] benzothiazole. Experimental results show that this method provides a more efficient and eco-friendly strategy for the synthesis of 4H-pyrimido[2,1-b] benzothiazole derivatives.
Collapse
Affiliation(s)
- Yuan Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Wei-Fan Lu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Zeng-Jie Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Na Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China.
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
33
|
Smolentsev N, Roke S. Self-Assembly at Water Nanodroplet Interfaces Quantified with Nonlinear Light Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9317-9322. [PMID: 32654491 DOI: 10.1021/acs.langmuir.0c01887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The interfaces of water micro- and nanodroplets drive environmental, medical, catalytic, biological, and chemical biphasic processes. The interfacial droplet structure and electrostatics greatly determine the reactivity and efficiency of these processes. Droplet interfacial properties are elusive and generally inferred from bulk measurements and are therefore anything but exact. Here, we quantify the interfacial ordering of water and the electrostatic surface potential of nanoscale water droplets in an apolar liquid using angle-resolved polarimetric second-harmonic scattering. We also present a method to determine the amount of free charges in the hydrophobic phase, reaching a sensitivity that is 3 orders of magnitude better than conductivity measurements. Investigating the structural and surface electrostatic changes induced by AOT surfactant adsorption, we find that both the hydrogen bonding as well as the electrostatics strongly depend on the surfactant concentration. Above the critical micelle concentration, the interface mediates micelle self-assembly.
Collapse
Affiliation(s)
- N Smolentsev
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - S Roke
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
34
|
Yuan B, Mahor D, Fei Q, Wever R, Alcalde M, Zhang W, Hollmann F. Water-Soluble Anthraquinone Photocatalysts Enable Methanol-Driven Enzymatic Halogenation and Hydroxylation Reactions. ACS Catal 2020; 10:8277-8284. [PMID: 32802571 PMCID: PMC7418218 DOI: 10.1021/acscatal.0c01958] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/30/2020] [Indexed: 02/06/2023]
Abstract
![]()
Peroxyzymes
simply use H2O2 as a cosubstrate
to oxidize a broad range of inert C–H bonds. The lability of
many peroxyzymes against H2O2 can be addressed
by a controlled supply of H2O2, ideally in situ.
Here, we report a simple, robust, and water-soluble anthraquinone
sulfonate (SAS) as a promising organophotocatalyst to drive both haloperoxidase-catalyzed
halogenation and peroxygenase-catalyzed oxyfunctionalization reactions.
Simple alcohols, methanol in particular, can be used both as a cosolvent
and an electron donor for H2O2 generation. Very
promising turnover numbers for the biocatalysts of up to 318 000
have been achieved.
Collapse
Affiliation(s)
- Bo Yuan
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Durga Mahor
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Ron Wever
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, 28049 Madrid, Spain
| | - Wuyuan Zhang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| |
Collapse
|
35
|
Thermal, electrochemical and photochemical reactions involving catalytically versatile ene reductase enzymes. Enzymes 2020; 47:491-515. [PMID: 32951833 DOI: 10.1016/bs.enz.2020.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Successful exploitation of biocatalytic processes employing flavoproteins requires the implementation of cost-effective solutions to circumvent the need to supply costly nicotinamide coenzymes as reducing equivalents. Chemical syntheses harnessing the power of the flavoprotein ene reductases will likely increase the range and/or optical purity of available fine chemicals and pharmaceuticals due to their ability to catalyze asymmetric bioreductions. This review will outline current progress in the design of alternative routes to ene reductase flavin activation, most notably within the Old Yellow Enzyme family. A variety of chemical, enzymatic, electrochemical and photocatalytic routes have been employed, designed to eliminate the need for nicotinamide coenzymes or provide cost-effective alternatives to efficient recycling. Photochemical approaches have also enabled novel mechanistic routes of ene reductases to become available, opening up the possibility of accessing a wider range of non-natural chemical diversity.
Collapse
|
36
|
Fan J, Peng Y, Xu W, Wang A, Xu J, Yu H, Lin X, Wu Q. Double Enzyme-Catalyzed One-Pot Synthesis of Enantiocomplementary Vicinal Fluoro Alcohols. Org Lett 2020; 22:5446-5450. [PMID: 32635737 DOI: 10.1021/acs.orglett.0c01825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A double-enzyme-catalyzed strategy for the synthesis of enantiocomplementary vicinal fluoro alcohols through a one-pot, three-step process including lipase-catalyzed hydrolysis, spontaneous decarboxylative fluorination, and subsequent ketoreductase-catalyzed reduction was developed. With this approach, β-ketonic esters were converted to the corresponding vicinal fluoro alcohols with high isolated yields (up to 92%) and stereoselectivities (up to 99%). This new cascade process addresses some issues in comparison with traditional methods such as environmentally hazardous reaction conditions and low stereoselectivity outcome.
Collapse
Affiliation(s)
- Jiajie Fan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China
| | - Yongzhen Peng
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China
| | - Weihua Xu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China
| | - Anlin Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Jian Xu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China
| | - Huilei Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Xianfu Lin
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China
| | - Qi Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China
| |
Collapse
|
37
|
Choi DS, Kim J, Hollmann F, Park CB. Solar‐Assisted eBiorefinery: Photoelectrochemical Pairing of Oxyfunctionalization and Hydrogenation Reactions. Angew Chem Int Ed Engl 2020; 59:15886-15890. [DOI: 10.1002/anie.202006893] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Da Som Choi
- Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology 335 Science Road Daejeon 34141 Republic of Korea
| | - Jinhyun Kim
- Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology 335 Science Road Daejeon 34141 Republic of Korea
| | - Frank Hollmann
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629HZ Delft The Netherlands
| | - Chan Beum Park
- Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology 335 Science Road Daejeon 34141 Republic of Korea
| |
Collapse
|
38
|
Choi DS, Kim J, Hollmann F, Park CB. Solar‐Assisted eBiorefinery: Photoelectrochemical Pairing of Oxyfunctionalization and Hydrogenation Reactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Da Som Choi
- Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology 335 Science Road Daejeon 34141 Republic of Korea
| | - Jinhyun Kim
- Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology 335 Science Road Daejeon 34141 Republic of Korea
| | - Frank Hollmann
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629HZ Delft The Netherlands
| | - Chan Beum Park
- Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology 335 Science Road Daejeon 34141 Republic of Korea
| |
Collapse
|
39
|
Jo SM, Zhang KAI, Wurm FR, Landfester K. Mimic of the Cellular Antioxidant Defense System for a Sustainable Regeneration of Nicotinamide Adenine Dinucleotide (NAD). ACS APPLIED MATERIALS & INTERFACES 2020; 12:25625-25632. [PMID: 32383848 PMCID: PMC7303963 DOI: 10.1021/acsami.0c05588] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The prolonged use of enzymes under oxidative stress is a major challenge in enabling effective enzymatic reaction pathways. Herein, we report a biomimetic antioxidant defensive strategy capable of providing adequate protection of enzymes against superoxide-mediated oxidation. Superoxide dismutase (SOD) and catalase (CAT) were chosen as scavengers and covalently encapsulated into silica nanoreactors, together with glucose dehydrogenase (GDH), which simultaneously should produce the coenzyme nicotinamide adenine dinucleotide (NADH, reduced form). By the enzymatic reactions of SOD and CAT, the interior of silica nanoreactors becomes a "ROS safe zone" to protect the glucose-dependent NADH production of coencapsulated GDH. We further combined this protected NADH-producing module with photocatalytic nanoparticles that enable the light-triggered oxidation of NADH back to NAD+ (oxidized form). In combination, these two modules allow interconversion between NAD+ and NADH by the addition of glucose or by light irradiation (LED lamp or sunlight). This protection and regeneration strategy is a versatile tool for enzyme applications for biological reactors, catalysis, or prototypes of artificial organelles or building blocks that contains fragile biomolecules and rely on the coenzyme NAD+/NADH.
Collapse
Affiliation(s)
- Seong-Min Jo
- Max Planck Institute
for Polymer Research, Ackermannweg 10, Mainz D-55128, Germany
| | - Kai A. I. Zhang
- Max Planck Institute
for Polymer Research, Ackermannweg 10, Mainz D-55128, Germany
- Department of Materials
Science, Fudan University, Shanghai 200433, China
| | - Frederik R. Wurm
- Max Planck Institute
for Polymer Research, Ackermannweg 10, Mainz D-55128, Germany
- (F.R.W.)
| | - Katharina Landfester
- Max Planck Institute
for Polymer Research, Ackermannweg 10, Mainz D-55128, Germany
- (K.L.)
| |
Collapse
|
40
|
Rauch MCR, Gallou Y, Delorme L, Paul CE, Arends IWCE, Hollmann F. Metals in Biotechnology: Cr-Driven Stereoselective Reduction of Conjugated C=C Double Bonds. Chembiochem 2020; 21:1112-1115. [PMID: 31713969 PMCID: PMC7217005 DOI: 10.1002/cbic.201900685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Indexed: 11/13/2022]
Abstract
Elemental metals are shown to be suitable sacrificial electron donors to drive the stereoselective reduction of conjugated C=C double bonds using Old Yellow Enzymes as catalysts. Both direct electron transfer from the metal to the enzyme as well as mediated electron transfer is feasible, although the latter excels by higher reaction rates. The general applicability of this new chemoenzymatic reduction method is demonstrated, and current limitations are outlined.
Collapse
Affiliation(s)
- Marine C. R. Rauch
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| | - Yann Gallou
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| | - Léna Delorme
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| | | | - Frank Hollmann
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| |
Collapse
|
41
|
Utterback JK, Ruzicka JL, Keller HR, Pellows LM, Dukovic G. Electron Transfer from Semiconductor Nanocrystals to Redox Enzymes. Annu Rev Phys Chem 2020; 71:335-359. [PMID: 32074472 DOI: 10.1146/annurev-physchem-050317-014232] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review summarizes progress in understanding electron transfer from photoexcited nanocrystals to redox enzymes. The combination of the light-harvesting properties of nanocrystals and the catalytic properties of redox enzymes has emerged as a versatile platform to drive a variety of enzyme-catalyzed reactions with light. Transfer of a photoexcited charge from a nanocrystal to an enzyme is a critical first step for these reactions. This process has been studied in depth in systems that combine Cd-chalcogenide nanocrystals with hydrogenases. The two components can be assembled in close proximity to enable direct interfacial electron transfer or integrated with redox mediators to transport charges. Time-resolved spectroscopy and kinetic modeling have been used to measure the rates and efficiencies of the electron transfer. Electron transfer has been described within the framework of Marcus theory, providing insights into the factors that can be used to control the photochemical activity of these biohybrid systems. The range of potential applications and reactions that can be achieved using nanocrystal-enzyme systems is expanding, and numerous fundamental and practical questions remain to be addressed.
Collapse
Affiliation(s)
- James K Utterback
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA; , , .,Current affiliation: Department of Chemistry, University of California, Berkeley, California 94720, USA;
| | - Jesse L Ruzicka
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA; , ,
| | - Helena R Keller
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, USA;
| | - Lauren M Pellows
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA; , ,
| | - Gordana Dukovic
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA; , ,
| |
Collapse
|
42
|
Fang X, Kalathil S, Reisner E. Semi-biological approaches to solar-to-chemical conversion. Chem Soc Rev 2020; 49:4926-4952. [DOI: 10.1039/c9cs00496c] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This review provides an overview of the cross-disciplinary field of semi-artificial photosynthesis, which combines strengths of biocatalysis and artificial photosynthesis to develop new concepts and approaches for solar-to-chemical conversion.
Collapse
Affiliation(s)
- Xin Fang
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| | - Shafeer Kalathil
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| | - Erwin Reisner
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| |
Collapse
|
43
|
Rauch MCR, Huijbers MME, Pabst M, Paul CE, Pešić M, Arends IWCE, Hollmann F. Photochemical regeneration of flavoenzymes - An Old Yellow Enzyme case-study. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140303. [PMID: 31678192 DOI: 10.1016/j.bbapap.2019.140303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/01/2022]
Abstract
Direct, NAD(P)H-independent regeneration of Old Yellow Enzymes represents an interesting approach for simplified reaction schemes for the stereoselective reduction of conjugated C=C-double bonds. Simply by illuminating the reaction mixtures with blue light in the presence of sacrificial electron donors enables to circumvent the costly and unstable nicotinamide cofactors and a corresponding regeneration system. In the present study, we characterise the parameters determining the efficiency of this approach and outline the current limitations. Particularly, the photolability of the flavin photocatalyst and the (flavin-containing) biocatalyst represent the major limitation en route to preparative application.
Collapse
Affiliation(s)
- M C R Rauch
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - M M E Huijbers
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - M Pabst
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - C E Paul
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - M Pešić
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - I W C E Arends
- Faculty of Science, Utrecht University, Budapestlaan 6, 3584 CD Utrecht, the Netherlands
| | - F Hollmann
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands.
| |
Collapse
|
44
|
Tomás‐Gamasa M, Mascareñas JL. TiO
2
‐Based Photocatalysis at the Interface with Biology and Biomedicine. Chembiochem 2019; 21:294-309. [DOI: 10.1002/cbic.201900229] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/11/2019] [Indexed: 01/06/2023]
Affiliation(s)
- María Tomás‐Gamasa
- Centro Singular de Investigación en Química Biolóxica, e Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela Campus Vida 15782 Santiago de Compostela Spain
| | - José Luis Mascareñas
- Centro Singular de Investigación en Química Biolóxica, e Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela Campus Vida 15782 Santiago de Compostela Spain
| |
Collapse
|
45
|
Kohtani S, Kawashima A, Miyabe H. Stereoselective Organic Reactions in Heterogeneous Semiconductor Photocatalysis. Front Chem 2019; 7:630. [PMID: 31620425 PMCID: PMC6759509 DOI: 10.3389/fchem.2019.00630] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/02/2019] [Indexed: 01/09/2023] Open
Abstract
The most significant feature of heterogeneous semiconductor photocatalysis is that both oxidation and reduction occur in a one-pot process. Thus, photocatalysis leads to unique redox organic reactions that cannot be achieved by conventional techniques using oxidants or reductants. Semiconductor photocatalysis is expected to be a new method for fine chemical syntheses of highly valuable molecules such as chiral medicines. However, the use of semiconductor photocatalysts in stereoselective reactions has been limited so far. This mini-review highlights recent progress in stereoselective organic reactions using semiconductor photocatalysts, briefly summarizing the enantio- and diastereoselective reactions based on the currently available literature.
Collapse
Affiliation(s)
- Shigeru Kohtani
- School of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan
| | - Akira Kawashima
- School of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan
| | - Hideto Miyabe
- School of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan
| |
Collapse
|
46
|
Seel CJ, Gulder T. Biocatalysis Fueled by Light: On the Versatile Combination of Photocatalysis and Enzymes. Chembiochem 2019; 20:1871-1897. [PMID: 30864191 DOI: 10.1002/cbic.201800806] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/11/2019] [Indexed: 12/11/2022]
Abstract
Enzymes catalyze a plethora of highly specific transformations under mild and environmentally benign reaction conditions. Their fascinating performances attest to high synthetic potential that is often hampered by operational obstacles such as in vitro cofactor supply and regeneration. Exploiting light and combining it with biocatalysis not only helps in overcoming these drawbacks, but the fruitful liaison of these two fields of "green chemistry" also offers opportunities to unlock new synthetic reactivities. In this review we provide an overview of the wide variety of photo-biocatalysis, ranging from the photochemical delivery of electrons required in redox biocatalysis and photochemical cofactor and reagent (re)generation to direct photoactivation of enzymes enabling reactions unknown in nature. We highlight synthetically relevant transformations such as asymmetric reactions facilitated by the combination of light as energy source and enzymes' catalytic power.
Collapse
Affiliation(s)
- Catharina J Seel
- Department of Chemistry and Catalysis Research Center (CRC), Technical University Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Tanja Gulder
- Department of Chemistry and Catalysis Research Center (CRC), Technical University Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| |
Collapse
|
47
|
Kim J, Lee SH, Tieves F, Paul CE, Hollmann F, Park CB. Nicotinamide adenine dinucleotide as a photocatalyst. SCIENCE ADVANCES 2019; 5:eaax0501. [PMID: 31334353 PMCID: PMC6641943 DOI: 10.1126/sciadv.aax0501] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/14/2019] [Indexed: 05/15/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a key redox compound in all living cells responsible for energy transduction, genomic integrity, life-span extension, and neuromodulation. Here, we report a new function of NAD+ as a molecular photocatalyst in addition to the biological roles. Our spectroscopic and electrochemical analyses reveal light absorption and electronic properties of two π-conjugated systems of NAD+. Furthermore, NAD+ exhibits a robust photostability under UV-Vis-NIR irradiation. We demonstrate photocatalytic redox reactions driven by NAD+, such as O2 reduction, H2O oxidation, and the formation of metallic nanoparticles. Beyond the traditional role of NAD+ as a cofactor in redox biocatalysis, NAD+ executes direct photoactivation of oxidoreductases through the reduction of enzyme prosthetic groups. Consequently, the synergetic integration of biocatalysis and photocatalysis using NAD+ enables solar-to-chemical conversion with the highest-ever-recorded turnover frequency and total turnover number of 1263.4 hour-1 and 1692.3, respectively, for light-driven biocatalytic trans-hydrogenation.
Collapse
Affiliation(s)
- Jinhyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Sahng Ha Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Florian Tieves
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, Netherlands
| | - Caroline E. Paul
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, Netherlands
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, Netherlands
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
- Corresponding author.
| |
Collapse
|
48
|
Xu J, Hu Y, Fan J, Arkin M, Li D, Peng Y, Xu W, Lin X, Wu Q. Light‐Driven Kinetic Resolution of α‐Functionalized Carboxylic Acids Enabled by an Engineered Fatty Acid Photodecarboxylase. Angew Chem Int Ed Engl 2019; 58:8474-8478. [DOI: 10.1002/anie.201903165] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/10/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Jian Xu
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Yujing Hu
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Jiajie Fan
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Mamatjan Arkin
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Danyang Li
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Yongzhen Peng
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Weihua Xu
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Xianfu Lin
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Qi Wu
- Department of ChemistryZhejiang University Hangzhou 310027 China
| |
Collapse
|
49
|
Xu J, Hu Y, Fan J, Arkin M, Li D, Peng Y, Xu W, Lin X, Wu Q. Light‐Driven Kinetic Resolution of α‐Functionalized Carboxylic Acids Enabled by an Engineered Fatty Acid Photodecarboxylase. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jian Xu
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Yujing Hu
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Jiajie Fan
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Mamatjan Arkin
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Danyang Li
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Yongzhen Peng
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Weihua Xu
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Xianfu Lin
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Qi Wu
- Department of ChemistryZhejiang University Hangzhou 310027 China
| |
Collapse
|
50
|
Schmermund L, Jurkaš V, Özgen FF, Barone GD, Büchsenschütz HC, Winkler CK, Schmidt S, Kourist R, Kroutil W. Photo-Biocatalysis: Biotransformations in the Presence of Light. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00656] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Luca Schmermund
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| | - Valentina Jurkaš
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| | - F. Feyza Özgen
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Giovanni D. Barone
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Hanna C. Büchsenschütz
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Christoph K. Winkler
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| | - Sandy Schmidt
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Robert Kourist
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| |
Collapse
|