1
|
Roy S, Wang S, Ullah Z, Hao H, Xu R, Roy J, Gong T, Hasan I, Jiang W, Li M, Mondal D, Li J, Jin J, Zhang Y, Xia W, Guo B. Defect-Engineered Biomimetic Piezoelectric Nanocomposites With Enhanced ROS Production, Macrophage Re-polarization, and Ca 2+ Channel Activation for Therapy of MRSA-Infected Wounds and Osteomyelitis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411906. [PMID: 39887853 DOI: 10.1002/smll.202411906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/05/2025] [Indexed: 02/01/2025]
Abstract
Antibiotic-resistant bacteria often cause lethal infections in both the surficial and deep organs of humans. Failure of antibiotics in resistant infections leads to more effective alternative therapies, like spatiotemporally controllable piezodynamic therapy (PZDT) with deep penetration. Currently, PZDT demands further investigation for improved treatment outcomes and the corresponding therapeutic mechanisms. Herein, a nanocomposite cloaked is reported with a biomimetic coating of TLR-upregulated macrophage membrane for targeted PZDT against MRSA-induced skin wound infection and osteomyelitis, representing surficial and deep infection models, respectively. To boost the therapeutic efficacy, crystal defect engineering is applied by impregnating Fe2+ into bismuth oxy-iodide nanosheets to increase the crystal defects. This results in a significantly higher piezoelectric coefficient than in previous reports, contributing to an amplified reactive oxygen species generation for bacterial killing. More importantly, the notable piezoelectric effect not only re-programs the macrophages into an anti-inflammatory M2 phenotype for accelerating bacterial wound healing but also stimulates the opening of the piezo-stimulated Ca2+ channels and boosts the differentiation of mesenchymal stem cells into osteoblasts for expediting bone tissue repair in osteomyelitis model. Moreover, the Fe-doping supplements T2-magnetic resonance imaging for real-time visualization of nanocomposite distribution. This theranostic system opens a new avenue for future treatment of drug-resistant bacteria-caused diseases.
Collapse
Affiliation(s)
- Shubham Roy
- School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Shaohua Wang
- Laboratory Diagnosis Center for Infectious Disease, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Zia Ullah
- School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Huiyao Hao
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Renhao Xu
- Hebei Key Laboratory of Vascular Homeostasis, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Jhilik Roy
- Department of Physics, Jadavpur University, Kolkata, 700032, India
| | - Tingting Gong
- Department of Radiology, Shenzhen Nanshan People's Hospital (NSPH), 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, China
| | - Ikram Hasan
- School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Wei Jiang
- Laboratory Diagnosis Center for Infectious Disease, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Menglong Li
- Department of Radiology, Shenzhen Nanshan People's Hospital (NSPH), 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, China
| | - Dhananjoy Mondal
- Department of Physics, Jadavpur University, Kolkata, 700032, India
| | - Jihong Li
- Laboratory Diagnosis Center for Infectious Disease, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Jian Jin
- Education Center and Experiments and Innovations, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Yinghe Zhang
- School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Wujiong Xia
- School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| |
Collapse
|
2
|
Lesieur R, Drochon A, Durand M. Mechanical properties of decellularized porcine esophagus: Preliminary results. Med Eng Phys 2025; 137:104294. [PMID: 40057355 DOI: 10.1016/j.medengphy.2025.104294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/12/2024] [Accepted: 02/04/2025] [Indexed: 05/13/2025]
Abstract
Esophageal tissue engineering is a promising approach to create an esophageal substitute after surgical resection of a part of the organ. Regeneration of esophageal tissue may be achieved using some synthetic or biological scaffolds. In the present study, scaffolds are obtained through the decellularization of porcine esophagi. In view of future implantation, it is important to test the mechanical properties of the decellularized matrices and to compare them with the data obtained for native pig esophagi. Results of longitudinal and circumferential traction experiments as well as inflation and burst tests are presented. The results obtained for the compliance of porcine decellularized matrices are novel. It is concluded that the decellularized matrices are suitable for use as esophageal substitutes.
Collapse
Affiliation(s)
- Romane Lesieur
- University of Bordeaux, INSERM, Institut Bergonié, CIC 1401, F-33000 Bordeaux, France; CHU Bordeaux, CIC 1401, F-33000, Bordeaux, France; University of Bordeaux, INSERM, F-33000, BIOTIS UMR 1026, Bordeaux, France
| | - Agnès Drochon
- CNRS, University of Bordeaux, Arts et Métiers Institute of Technology, Bordeaux INP, INRAE, I2M Bordeaux, F-33400 Talence, France.
| | - Marlène Durand
- University of Bordeaux, INSERM, Institut Bergonié, CIC 1401, F-33000 Bordeaux, France; CHU Bordeaux, CIC 1401, F-33000, Bordeaux, France; University of Bordeaux, INSERM, F-33000, BIOTIS UMR 1026, Bordeaux, France
| |
Collapse
|
3
|
Di Filippo F, Brevini TAL, Pennarossa G, Gandolfi F. Generation of bovine decellularized testicular bio-scaffolds as a 3D platform for testis bioengineering. Front Bioeng Biotechnol 2025; 12:1532107. [PMID: 39877269 PMCID: PMC11772495 DOI: 10.3389/fbioe.2024.1532107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
Accelerating the genetic selection to obtain animals more resilient to climate changes, and with a lower environmental impact, would greatly benefit by a substantial shortening of the generation interval. One way to achieve this goal is to generate male gametes directly from embryos. However, spermatogenesis is a complex biological process that, at present, can be partially reproduced in vitro only in the mouse. The development of reliable 3D in vitro models able to mimic the architecture and the physiological microenvironment of the testis, represents a possible strategy to facilitate ex vivo haploid male gamete generation in domestic species. Here we describe the creation of bovine testicular bio-scaffolds and their successful repopulation in vitro with bovine testicular cells. In particular, bovine testes are subjected to three different decellularization protocols. Cellular compartment removal and extracellular matrix preservation are evaluated. The generated bio-scaffolds are then repopulated with bovine testicular fibroblasts. The results obtained demonstrate that the decellularization protocol involving the use of 0.3% sodium dodecyl sulfate (SDS) for 12 h efficiently eliminates native cells, while preserving intact ECM composition and microstructure. Its subsequent repopulation with bovine fibroblasts demonstrates successful cell homing, colonization and growth, consistent with the scaffold ability to sustain cell adherence and proliferation. Overall, the generated 3D bio-scaffolds may constitute a suitable artificial niche for ex vivo culture of testicular cells and may represent a possible strategy to reproduce spermatogenesis in vitro.
Collapse
Affiliation(s)
- Francesca Di Filippo
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Tiziana A. L. Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, Italy
| | - Georgia Pennarossa
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
4
|
Eaton S. I Walk the Line: Between Basic Science and Paediatric Surgery. J Pediatr Surg 2024; 59:172-176. [PMID: 37940464 DOI: 10.1016/j.jpedsurg.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
The role of a basic scientist working with paediatric surgeons is not an obvious one. However, there are several levels at which science can contribute to the speciality, and also ways that scientists can learn useful lessons from paediatric surgery. As most conditions treated by paediatric surgeons have low case numbers, we need to find ways of defining optimal treatment and developing novel therapies within a challenging number of patients.
Collapse
Affiliation(s)
- Simon Eaton
- UCL Great Ormond Street Institute of Child Health, London, UK.
| |
Collapse
|
5
|
Vasanthan KS, Srinivasan V, Pandita D. Extracellular matrix extraction techniques and applications in biomedical engineering. Regen Med 2021; 16:775-802. [PMID: 34427104 DOI: 10.2217/rme-2021-0021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The concept of tissue engineering involves regeneration and repair of damaged tissue and organs using various combinations of cells, growth factors and scaffolds. The extracellular matrix (ECM) forms the integral part of the scaffold to induce cell proliferation thereby leading to new tissue formation. Decellularization technique provides decellularized ECM (dECM), free of cells while preserving the in vivo biomolecules. In this review, we focus on the detailed methodology of diverse decellularization techniques for various organs of different animals, and the biomedical applications employing the dECM. A culmination of different methods of decellularization is optimized, which offers a suitable microenvironment mimicking the native in vivo topography for in vitro organ regeneration. A detailed assessment of the dECM provides information on the microarchitecture, presence of ECM proteins, biocompatibility and cell proliferation. dECM has also been processed as scaffolds and drug-delivery vehicles, and utilized for regeneration.
Collapse
Affiliation(s)
- Kirthanashri S Vasanthan
- Amity Institute of Molecular Medicine & Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | | | - Deepti Pandita
- Delhi Pharmaceutical Science & Research University, Government of NCT of Delhi, New Delhi, 110017, India
| |
Collapse
|
6
|
Ovarian Decellularized Bioscaffolds Provide an Optimal Microenvironment for Cell Growth and Differentiation In Vitro. Cells 2021; 10:cells10082126. [PMID: 34440895 PMCID: PMC8393799 DOI: 10.3390/cells10082126] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
Ovarian failure is the most common cause of infertility. Although numerous strategies have been proposed, a definitive solution for recovering ovarian functions and restoring fertility is currently unavailable. One innovative alternative may be represented by the development of an “artificial ovary” that could be transplanted in patients for re-establishing reproductive activities. Here, we describe a novel approach for successful repopulation of decellularized ovarian bioscaffolds in vitro. Porcine whole ovaries were subjected to a decellularization protocol that removed the cell compartment, while maintaining the macrostructure and microstructure of the original tissue. The obtained bioscaffolds were then repopulated with porcine ovarian cells or with epigenetically erased porcine and human dermal fibroblasts. The results obtained demonstrated that the decellularized extracellular matrix (ECM)-based scaffold may constitute a suitable niche for ex vivo culture of ovarian cells. Furthermore, it was able to properly drive epigenetically erased cell differentiation, fate, and viability. Overall, the method described represents a powerful tool for the in vitro creation of a bioengineered ovary that may constitute a promising solution for hormone and fertility restoration. In addition, it allows for the creation of a suitable 3D platform with useful applications both in toxicological and transplantation studies.
Collapse
|
7
|
Creation of a Bioengineered Ovary: Isolation of Female Germline Stem Cells for the Repopulation of a Decellularized Ovarian Bioscaffold. Methods Mol Biol 2021; 2273:139-149. [PMID: 33604850 DOI: 10.1007/978-1-0716-1246-0_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ovarian failure is the most common cause of infertility and affects about 1% of young women. One innovative strategy to restore ovarian function may be represented by the development of a bioprosthetic ovary, obtained through the combination of tissue engineering and regenerative medicine.We here describe the two main steps required for bioengineering the ovary and for its ex vivo functional reassembling. The first step aims at producing a 3D bioscaffold, which mimics the natural ovarian milieu in vitro. This is obtained with a whole organ decellularization technique that allows the maintenance of microarchitecture and biological signals of the original tissue. The second step involves the use of magnetic activated cell sorting (MACS) to isolate purified female germline stem cells (FGSCs). These cells are able to differentiate in ovarian adult mature cells, when subjected to specific stimuli, and can be used them to repopulate ovarian decellularized bioscaffolds. The combination of the two techniques represents a powerful tool for in vitro recreation of a bioengineered ovary that may constitute a promising solution for hormone and fertility function restoring. In addition, the procedures here described allow for the creation of a suitable 3D platform with useful applications both in toxicological and transplantation studies.
Collapse
|
8
|
Kanetaka K, Eguchi S. Regenerative medicine for the upper gastrointestinal tract. Regen Ther 2020; 15:129-137. [PMID: 33426211 PMCID: PMC7770370 DOI: 10.1016/j.reth.2020.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/21/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
The main surgical strategy for gastrointestinal tract malignancy is en bloc resection, which consists of not only resection of the involved organs but also simultaneous resection of the surrounding or adjacent mesenteries that contain lymph vessels and nodes. After resection of the diseased organs, the defect of the gastrointestinal conduit is replaced with organs located downstream, such as the stomach and jejunum. However, esophageal and gastric reconstruction using these natural substitutes is associated with a diminished quality of life due to the loss of the reserve function, damage to the antireflux barrier, and dumping syndrome. Thus, replacement of the deficit after resection with the patient's own regenerated tissue to compensate for the lost function and tissue using regenerative medicine will be an ideal treatment. Many researchers have been trying to construct artificial organs through tissue engineering techniques; however, none have yet succeeded in growing a whole organ because of the complicated functions these organs perform, such as the processing and absorption of nutrients. While exciting results have been reported with regard to tissue engineering techniques concerning the upper gastrointestinal tract, such as the esophagus and stomach, most of these achievements have been observed in animal models, and few successful approaches in the clinical setting have been reported for the replacement of mucosal defects. We review the recent progress in regenerative medicine in relation to the upper gastrointestinal tract, such as the esophagus and stomach. We also focus on the functional capacity of regenerated tissue and its role as a culture system to recapitulate the mechanisms underlying infectious disease. With the emergence of technology such as the fabrication of decellularized constructs, organoids and cell sheet medicine, collaboration between gastrointestinal surgery and regenerative medicine is expected to help establish novel therapeutic modalities in the future.
Collapse
Affiliation(s)
- Kengo Kanetaka
- Tissue Engineering and Regenerative Therapeutics in Gastrointestinal Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| |
Collapse
|
9
|
Sitthisang S, Leong MF, Chian KS. Perfusion decellularization of porcine esophagus: Study of two processing factors affecting the folded mucosal structure of the esophageal scaffold. J Biomed Mater Res A 2020; 109:745-753. [PMID: 32677207 DOI: 10.1002/jbm.a.37060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/24/2022]
Abstract
Acellular scaffolds from decellularized donor organs are showing promising clinical results in tissue and organ repair and regeneration. A successful decellularization process is determined by (a) its capability to decellularize complete organs of large animals, (b) retention of the extracellular matrix (ECM) structures and morphologies, and (c) minimal loss of ECM proteins. In this study, porcine esophagi were perfused in full thickness with 0.25% w/v sodium dodecyl sulfate at perfusion rates 0.1-0.2 ml/min for up to 5 days. Decellularized tissues were characterized for their residual DNA, histological staining for their matrix structures, immunohistochemical staining for collagen type IV and laminin, and scanning electron microscopy for structural integrity. Our results showed that full thickness esophageal tissues treated using the horizontal perfusion setup were decellularized with good structural and biochemical integrity in the ECM. Residual DNA content in decellularized tissues was found to be 36 ± 12 ng/mg of tissues (n = 6) which was significantly lower than that of native tissues (p = .00022). Our study showed that the organ must be decellularized in full thickness and perfusion pressure must be controlled to minimize radial expansion. These factors were found to be critical in preserving the folded mucosa in the decellularized tissues.
Collapse
Affiliation(s)
- Sonthikan Sitthisang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Meng Fatt Leong
- School of Applied Science, Temasek Polytechnic, Singapore, Singapore
| | - Kerm Sin Chian
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
10
|
Gao Y, Jin SZ. Strategies for treating oesophageal diseases with stem cells. World J Stem Cells 2020; 12:488-499. [PMID: 32742566 PMCID: PMC7360987 DOI: 10.4252/wjsc.v12.i6.488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/02/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
There is a wide range of oesophageal diseases, the most general of which are inflammation, injury and tumours, and treatment methods are constantly being developed and updated. With an increasingly comprehensive understanding of stem cells and their characteristics of multilineage differentiation, self-renewal and homing as well as the combination of stem cells with regenerative medicine, tissue engineering and gene therapy, stem cells are playing an important role in the treatment of a variety of diseases. Mesenchymal stem cells have many advantages and are most commonly applied; however, most of these applications have been in experimental studies, with few related clinical trials for comparison. Therefore, the methods, positive significance and limitations of stem cells in the treatment of oesophageal diseases remain incompletely understood. Thus, the purpose of this paper is to review the current literature and summarize the efficacy of stem cells in the treatment of oesophageal diseases, including oesophageal ulceration, acute radiation-induced oesophageal injury, corrosive oesophageal injury, oesophageal stricture formation after endoscopic submucosal dissection and oesophageal reconstruction, as well as gene therapy for oesophageal cancer.
Collapse
Affiliation(s)
- Yang Gao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Shi-Zhu Jin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| |
Collapse
|
11
|
Pennarossa G, Ghiringhelli M, Gandolfi F, Brevini TAL. Whole-ovary decellularization generates an effective 3D bioscaffold for ovarian bioengineering. J Assist Reprod Genet 2020; 37:1329-1339. [PMID: 32361917 PMCID: PMC7311562 DOI: 10.1007/s10815-020-01784-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
PURPOSE To develop a new protocol for whole-ovary decellularization for the production of a 3D bioscaffold suitable for in vitro/ex vivo studies and for the reconstruction of a bioengineered ovary. METHODS Porcine ovaries were subjected to the decellularization process (DECELL; n = 20) that involved a freeze-thaw cycle, followed by sequential incubations in 0.5% SDS for 3 h, 1% Triton X-100 for 9 h, and 2% deoxycholate for 12 h. Untreated ovaries were used as a control (CTR; n = 6). Both groups were analyzed to evaluate cell and DNA removal as well as ECM preservation. DECELL bioscaffolds were assessed for cytotoxicity and cell homing ability. RESULTS DECELL ovaries maintained shape and homogeneity without any deformation, while their color turned from red to white. Histological staining and DNA quantification confirmed a decrease of 98.11% in DNA content, compared with the native tissue (CTR). Histochemical assessments demonstrated the preservation of intact ECM microarchitecture after the decellularization process. This was also confirmed by quantitative analysis of collagen, elastin, and GAG contents. DECELL bioscaffold showed no cytotoxic effects in co-culture and, when re-seeded with homologous fibroblasts, encouraged a rapid cell adhesion and migration, with repopulating cells increasing in number and aggregating in cluster-like structures, consistent with its ability to sustain cell adherence, proliferation, and differentiation. CONCLUSION The protocol described allows for the generation of a 3D bioscaffold that may constitute a suitable model for ex vivo culture of ovarian cells and follicles, as well as a promising tool for the reconstruction of a bioengineered ovary.
Collapse
Affiliation(s)
- Georgia Pennarossa
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, via Celoria 10, 20133, Milan, Italy
| | - Matteo Ghiringhelli
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, via Celoria 10, 20133, Milan, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy and Center for Stem Cell Research, Università degli Studi di Milano, via Celoria 2, 20133, Milan, Italy
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, via Celoria 10, 20133, Milan, Italy.
| |
Collapse
|
12
|
Ohki T, Yamamoto M. Esophageal regenerative therapy using cell sheet technology. Regen Ther 2020; 13:8-17. [PMID: 33490318 PMCID: PMC7794050 DOI: 10.1016/j.reth.2020.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/20/2020] [Accepted: 04/19/2020] [Indexed: 12/13/2022] Open
Abstract
We have been conducting research on esophageal regenerative therapy using cell sheet technology. In particular, in the endoscopic field, we have pushed forward clinical research on endoscopic transplantation of cultured autologous oral mucosal epithelial cell sheets to esophageal ulcer after endoscopic submucosal dissection (ESD). We started research in this direction using animal models in 2004 and performed clinical research in 2012 in collaboration with Nagasaki University and Karolinska Institute. Although in full-circumferential cases it was difficult to prevent esophageal stricture after ESD, there were no complications and stricture could be suppressed. The cell sheet technology is still in its infancy. However, we are convinced that it has a high potential for application in various areas of gastrointestinal science. In this review, we focus on the pre-clinical and clinical trial results obtained and on the theoretical aspects of (1) stricture prevention, (2) esophageal tissue engineering research, and (3) endoscopic transplantation, and review the esophageal regenerative therapy by cell sheet technology.
Collapse
Key Words
- CMC, carboxymethyl cellulose
- CPC, cell-processing center
- Cell sheet technology
- EBD, endoscopic balloon dilation
- ECM, extracellular matrix
- EMR, endoscopic mucosal dissection
- ESD, endoscopic submucosal dissection
- Endoscopic submucosal dissection (ESD)
- Endoscopic transplantation
- Esophageal stricture
- GMP, good manufacturing practice
- OMECS, oral mucosal epithelial cell sheet
- PGA, polyglycolic acid
- PIPAAm, poly(N-isopropylacrylamide)
- PVDF, polyvinylidene difluoride
- Regenerative medicine
- SEMS, self-expandable metallic stent
- TAC, triamcinolone
- Tissue-engineered oral mucosal
Collapse
Affiliation(s)
- Takeshi Ohki
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University (TWIns), 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Masakazu Yamamoto
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
13
|
Decellularized cartilage matrix scaffolds with laser-machined micropores for cartilage regeneration and articular cartilage repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110139. [PMID: 31546425 DOI: 10.1016/j.msec.2019.110139] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 08/04/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022]
Abstract
Decellularized allogeneic and xenogeneic articular cartilage matrix scaffolds (CMS) are considered ideal scaffolds for cartilage regeneration owing to their heterogeneous architecture, and biochemical and biomechanical properties of native articular cartilage. However, the dense structure of the articular cartilage extracellular matrix, particularly the arrangement of collagen fibers, limits cellular infiltration, leading to poor cartilage regeneration. In addition, the incomplete removal of xenograft cells is associated with immunogenic reaction in the host. To facilitate the migration of chondrocytes into scaffolds and the rate of decellularization processing, we applied a carbon dioxide laser technique to modify the surface of porcine CMS while retaining major properties of the scaffold. By optimizing the laser parameters, we introduced orderly, lattice-arranged conical micropores of suitable depth and diameter onto the cartilage scaffold surface without affecting the cartilage shape or mechanical properties. We found that laser-modified CMS (LM-CMS) could enhance the degree of decellularization and were conducive to cell adhesion, as compared with the intact CMS. Decellularized scaffolds were seeded with rabbit-derived chondrocytes and cultured for 8 weeks in vitro. We found that cell-scaffold constructs formed cartilage-like tissue within the micropores and on the scaffold surface. In vivo, we found that cell-scaffold constructs subcutaneously implanted into the flanks of nude mice formed ivory-white neocartilage with high contents of DNA and cartilage matrix components, as well as good mechanical strength as compared with native CMS. Furthermore, scaffolds combined with autogenous chondrocytes induced neocartilage and better structural restoration at 8 weeks after transplantation into rabbit knee articular cartilage defects. In conclusion, decellularized xenogeneic CMS with laser-machined micropores offers an ideal scaffold with high fidelity for the functional reconstruction of articular cartilage.
Collapse
|
14
|
Wu Y, Kang YG, Kim IG, Kim JE, Lee EJ, Chung EJ, Shin JW. Mechanical stimuli enhance simultaneous differentiation into oesophageal cell lineages in a double-layered tubular scaffold. J Tissue Eng Regen Med 2019; 13:1394-1405. [PMID: 31066514 DOI: 10.1002/term.2881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/13/2019] [Accepted: 04/29/2019] [Indexed: 01/02/2023]
Abstract
The tissue-engineered oesophagus serves as an alternative and promising therapeutic approach for long-gap oesophageal replacement. This study proposes an advanced in vitro culture platform focused on construction of the oesophagus by combining an electrospun double-layered tubular scaffold, stem cells, biochemical reagents, and biomechanical factors. Human mesenchymal stem cells were seeded onto the inner and outer surfaces of the scaffold. Mechanical stimuli were applied with a hollow organ bioreactor along with different biochemical reagents inside and outside of the scaffold. Electrospun fibres in a tubular scaffold were found to be randomly and circumferentially oriented for the inner and outer surfaces, respectively. Amongst the two types of mechanical stimuli, the intermittent shear flow that can simultaneously cause circumferential stretching due to hydrostatic pressure, and shear stress caused by flow on the inner surface, was found to be more effective for simultaneous differentiation into epithelial and muscle lineage than steady shear flow. Under these conditions, the expression of epithelial markers on the inner surface was significantly observed, although it was minimal on the outer surface. Muscle differentiation showed the opposite expression pattern. Meanwhile, the mechanical tests showed that the strength of the scaffold was improved after incubation for 14 days. We have developed a potential platform for tissue-engineered oesophagus construction. Specifically, simultaneous differentiation into epithelial and muscle lineages can be achieved by utilizing the double-layered scaffold and appropriate mechanical stimulation.
Collapse
Affiliation(s)
- Yanru Wu
- Department of Health Science and Technology, Inje University, Gimhae, Republic of Korea
| | - Yun Gyeong Kang
- Department of Biomedical Engineering, Inje University, Gimhae, Republic of Korea
| | - In Gul Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ji Eun Kim
- Department of Biomedical Engineering, Inje University, Gimhae, Republic of Korea
| | - Eun Jin Lee
- Department of Biomedical Engineering, Inje University, Gimhae, Republic of Korea
| | - Eun-Jae Chung
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jung-Woog Shin
- Department of Health Science and Technology, Inje University, Gimhae, Republic of Korea.,Department of Biomedical Engineering, Inje University, Gimhae, Republic of Korea.,Cardiovascular and Metabolic Disease Center/Institute of Aged Life Redesign/UHARC, Inje University, Gimhae, Republic of Korea
| |
Collapse
|
15
|
Eivazkhani F, Abtahi NS, Tavana S, Mirzaeian L, Abedi F, Ebrahimi B, Montazeri L, Valojerdi MR, Fathi R. Evaluating two ovarian decellularization methods in three species. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:670-682. [PMID: 31147040 DOI: 10.1016/j.msec.2019.04.092] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 03/28/2019] [Accepted: 04/29/2019] [Indexed: 11/26/2022]
Abstract
Since there is dearth of practical ways to obtain mature follicles from cryopreserved or native ovarian tissues, especially in patients suffering from ovarian dysfunction, tissue engineering may help in restoring ovarian function and/or fertility. In the present study, the effects of sodium dodecyl sulfate (SDS) and sodium hydroxide (NaOH) on the decellularization of ovarian tissues were studied in order to ascertain their suitability in creating suitable bioscaffolds. Cells were removed from the ovarian tissues of mouse, sheep and human. The samples were distributed among three groups, viz., control (not treated), SDS and NaOH treated. Qualitative histological evaluations, quantitative assessments (nuclear contents, collagen and glycosaminoglycan), immunohistochemistry staining (for laminin, fibronectin and Collagen I), cell viability and scanning electron microscopic (SEM) assays were performed for all experimental groups. Finally, suspensions of mouse ovarian cells were injected into human NaOH treated scaffolds and subsequently auto-transplanted to ovariectomized mice. H&E and IHC staining (GDF-9) were performed on human recellularized NaOH treated scaffolds 1 month after auto-transplantation. Although histological studies and quantitative evaluations confirmed the successful decellularization and presence of key factors in ovarian scaffolds under both treatment methods, NaOH showed more interesting outcomes. Cell metabolic activity in sheep and human ovaries treated with NaOH was statistically (p < 0.05) higher than for SDS treated samples after 72 h. Moreover, spherical associations with cuboidal cells in human NaOH treated scaffolds were observed and this follicular reconstruction was also confirmed by GDF-9. NaOH was found to be more suitable than SDS for the decellularization of ovarian tissues and it supports follicular reconstruction better than SDS. This is a valuable finding in tissue engineering research and can help in the creation of appropriate ovarian bioscaffolds.
Collapse
Affiliation(s)
- Farideh Eivazkhani
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Naeimeh Sadat Abtahi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Somayeh Tavana
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Leila Mirzaeian
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Fatemeh Abedi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Bita Ebrahimi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Leila Montazeri
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mojtaba Rezazadeh Valojerdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Department of Anatomy, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
16
|
Huang J, Ren Y, Wu X, Li Z, Ren J. Gut bioengineering promotes gut repair and pharmaceutical research: a review. J Tissue Eng 2019; 10:2041731419839846. [PMID: 31037215 PMCID: PMC6475831 DOI: 10.1177/2041731419839846] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/05/2019] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal (GI) tract has a diverse set of physiological functions, including peristalsis, immune defense, and nutrient absorptions. These functions are mediated by various intestinal cells such as epithelial cells, interstitial cells, smooth muscle cells, and neurocytes. The loss or dysfunction of specific cells directly results in GI disease, while supplementation of normal cells promotes gut healing. Gut bioengineering has been developing for this purpose to reconstruct the damaged tissues. Moreover, GI tract provides an accessible route for drug delivery, but the collateral damages induced by side effects cannot be ignored. Bioengineered intestinal tissues provide three-dimensional platforms that mimic the in vivo environment to study drug functions. Given the importance of gut bioengineering in current research, in this review, we summarize the advances in the technologies of gut bioengineering and their applications. We were able to identify several ground-breaking discoveries in our review, while more work is needed to promote the clinical translation of gut bioengineering.
Collapse
Affiliation(s)
- Jinjian Huang
- School of Medicine, Southeast University, Nanjing, China.,Laboratory for Trauma and Surgical Infections, Department of Surgery, Jinling Hospital, Nanjing, China
| | - Yanhan Ren
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Xiuwen Wu
- Laboratory for Trauma and Surgical Infections, Department of Surgery, Jinling Hospital, Nanjing, China
| | - Zongan Li
- School of NARI Electrical and Automation Engineering, Nanjing Normal University, Nanjing, China
| | - Jianan Ren
- School of Medicine, Southeast University, Nanjing, China.,Laboratory for Trauma and Surgical Infections, Department of Surgery, Jinling Hospital, Nanjing, China
| |
Collapse
|
17
|
Biological properties of a bionic scaffold for esophageal tissue engineering research. Colloids Surf B Biointerfaces 2019; 179:208-217. [PMID: 30959233 DOI: 10.1016/j.colsurfb.2019.03.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/24/2019] [Accepted: 03/31/2019] [Indexed: 12/26/2022]
Abstract
Polyurethane is a good matrix material with wide application prospects in tissue engineering because of its adjustable and mechanical properties. A novel biodegradable crosslinked poly(ester urethane) (CPU) with flexible poly(caprolactone) (PCL) and hydrophilic poly(ethylene glycol) (PEG) components has been synthesized using a ferric iron catalyst in our laboratory. In the present study, to promote the interaction between the CPU material and cells, the material was superficially modified by silk fibroin (SF) grafting using an aminolysis and glutaraldehyde crosslinking method to achieve a biocompatible material, CPU-SF. Considering the esophageal-specific architecture, three types of scaffolds were fabricated. S1 was a CPU-SF channel (200 μm in diameter and 30 μm in depth with 30 μm of wall thickness) to support muscle regeneration; S2 was the decellularized matrix of the esophageal mucosa/submucosa obtained by enzyme treatment; and S3 was a combination of S1 and S2, aiming to promote esophageal regeneration with histological structure and function. The biological properties and functions of the materials and scaffolds were investigated by qualitative and quantitative analyses using scanning electron microscopy, immunofluorescence staining, cell adhesion and proliferation measurements, and western blotting technology. The results showed that esophageal smooth muscle cells (SMCs) and epithelial cells (ECs) were very well supported by the scaffolds. In particular, SMCs exhibited guided directional growth and ECs infiltrated the acellular mucosa with retained biological functions when co-cultured on the composite scaffold S3. These findings suggest that the composite bionic scaffold will be a good alternative for esophageal replacement.
Collapse
|
18
|
Zakhem E, Raghavan S, Suhar RA, Bitar KN. Bioengineering and regeneration of gastrointestinal tissue: where are we now and what comes next? Expert Opin Biol Ther 2019; 19:527-537. [PMID: 30880502 DOI: 10.1080/14712598.2019.1595579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION The field of tissue engineering and regenerative medicine has been applied to the gastrointestinal (GI) tract for a couple decades. Several achievements have been accomplished that provide promising tools for treating diseases of the GI tract. AREAS COVERED The work described in this review covers the traditional aspect of using cells and scaffolds to replace parts of the tract. Several studies investigated different types of biomaterials and different types of cells. A more recent approach involved the use of gut-derived organoid units that can differentiate into all gut cell layers. The most recent approach introduced the use of organ-on-a-chip concept to understand the physiology and pathophysiology of the GI system. EXPERT OPINION The different approaches tackle the diseases of the GI tract from different perspectives. While all these different approaches provide a promising and encouraging future for this field, the translational aspect is yet to be studied.
Collapse
Affiliation(s)
- Elie Zakhem
- a Wake Forest Institute for Regenerative Medicine , Wake Forest School of Medicine , Winston Salem , NC , USA.,b Section on Gastroenterology , Wake Forest School of Medicine , Winston Salem , NC , USA
| | - Shreya Raghavan
- c Department of Materials Science and Engineering , University of Michigan , Ann Arbor , MI , USA
| | - Riley A Suhar
- d Department of Materials Science and Engineering , Stanford University , Stanford , CA , USA
| | - Khalil N Bitar
- a Wake Forest Institute for Regenerative Medicine , Wake Forest School of Medicine , Winston Salem , NC , USA.,b Section on Gastroenterology , Wake Forest School of Medicine , Winston Salem , NC , USA.,e Virginia Tech-Wake Forest School of Biomedical Engineering Sciences , Winston-Salem , NC , USA
| |
Collapse
|
19
|
Scientific misconduct at an elite medical institute: The role of competing institutional logics and fragmented control. RESEARCH POLICY 2019. [DOI: 10.1016/j.respol.2018.03.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
Wu Y, Kang YG, Cho H, Kim IG, Chung EJ, Shin JW. Combinational effects of mechanical forces and substrate surface characteristics on esophageal epithelial differentiation. J Biomed Mater Res A 2018; 107:552-560. [DOI: 10.1002/jbm.a.36571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/11/2018] [Accepted: 10/27/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Yanru Wu
- Department of Health Science and Technology; Inje University; Gimhae Republic of Korea
| | - Yun Gyeong Kang
- Department of Biomedical Engineering; Inje University; Gimhae Republic of Korea
| | - Hana Cho
- Department of Otorhinolaryngology-Head and Neck Surgery; Seoul National University Hospital; Seoul Republic of Korea
| | - In Gul Kim
- Department of Otorhinolaryngology-Head and Neck Surgery; Seoul National University Hospital; Seoul Republic of Korea
| | - Eun-Jae Chung
- Department of Otorhinolaryngology-Head and Neck Surgery; Seoul National University Hospital; Seoul Republic of Korea
| | - Jung-Woog Shin
- Department of Health Science and Technology; Inje University; Gimhae Republic of Korea
- Department of Biomedical Engineering; Inje University; Gimhae Republic of Korea
- Cardiovascular and Metabolic Disease Center/Institute of Aged Life Redesign/UHARC, Inje University; Gimhae Republic of Korea
| |
Collapse
|
21
|
Kanetaka K, Kobayashi S, Eguchi S. Regenerative medicine for the esophagus. Surg Today 2018; 48:739-747. [PMID: 29214351 DOI: 10.1007/s00595-017-1610-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/06/2017] [Indexed: 12/29/2022]
Abstract
Advances in tissue engineering techniques have made it possible to use human cells as biological material. This has enabled pharmacological studies to be conducted to investigate drug effects and toxicity, to clarify the mechanisms underlying diseases, and to elucidate how they compensate for impaired organ function. Many researchers have tried to construct artificial organs using these techniques, but none has succeeded in growing a whole organ. Unlike other digestive organs with complicated functions, such as the processing and absorption of nutrients, the esophagus has the relatively simple function of transporting content, which can be replicated easily by a substitute. In regenerative medicine, various combinations of materials have been applied, including scaffolding, cell sources, and bioreactors. Exciting results of tissue engineering techniques for the esophagus have been reported. In animal models, replacing full-thickness and full-circumferential defects remains challenging because of stenosis and leakage after implantation. Although many reports have manipulated various scaffolds, most have emphasized the importance of both epithelial and mesenchymal cells for the prevention of stenosis. However, the results of repair of partial full-thickness defects and mucosal defects have been promising. Two successful approaches for the replacement of mucosal defects in a clinical setting have been reported, although in contrast to the many animal models, there are few pilot studies in humans. We review the recent results and evaluate the future of regenerative medicine for the esophagus.
Collapse
Affiliation(s)
- Kengo Kanetaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Shinichiro Kobayashi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
22
|
Mousa HM, Abdal-hay A, Bartnikowski M, Mohamed IMA, Yasin AS, Ivanovski S, Park CH, Kim CS. A Multifunctional Zinc Oxide/Poly(Lactic Acid) Nanocomposite Layer Coated on Magnesium Alloys for Controlled Degradation and Antibacterial Function. ACS Biomater Sci Eng 2018; 4:2169-2180. [DOI: 10.1021/acsbiomaterials.8b00277] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hamouda M. Mousa
- Department of Bionanosystem Engineering, Division of Mechanical Design Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
- Department of Engineering Materials and Mechanical Design, Faculty of Engineering, South Valley University, Qena 83523, Egypt
| | - Abdalla Abdal-hay
- Department of Engineering Materials and Mechanical Design, Faculty of Engineering, South Valley University, Qena 83523, Egypt
- The University of Queensland, School of Dentistry, Oral Health Centre Herston, 288 Herston Road, Herston QLD 4006, Australia
| | - Michal Bartnikowski
- The University of Queensland, School of Dentistry, Oral Health Centre Herston, 288 Herston Road, Herston QLD 4006, Australia
| | - Ibrahim M. A. Mohamed
- Department of Bionanosystem Engineering, Division of Mechanical Design Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Ahmed S. Yasin
- Department of Bionanosystem Engineering, Division of Mechanical Design Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Sašo Ivanovski
- The University of Queensland, School of Dentistry, Oral Health Centre Herston, 288 Herston Road, Herston QLD 4006, Australia
| | - Chan Hee Park
- Department of Bionanosystem Engineering, Division of Mechanical Design Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering, Division of Mechanical Design Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| |
Collapse
|
23
|
Chung EJ, Ju HW, Yeon YK, Lee JS, Lee YJ, Seo YB, Chan Hum P. Development of an omentum-cultured oesophageal scaffold reinforced by a 3D-printed ring: feasibility of an in vivo bioreactor. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:885-895. [PMID: 29446982 DOI: 10.1080/21691401.2018.1439039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Current treatments of oesophageal diseases, such as carcinoma, congenital abnormality or trauma, require surgical intervention and oesophageal reconstruction with the stomach, jejunum or colon. However, serious side effects are possible with each treatment option. Despite tissue engineering promising to be an effective regenerative strategy, no functional solution currently exists for oesophageal reconstruction. Here, we developed an omentum-cultured oesophageal scaffold reinforced by a 3D-printed ring. The nano-structured scaffolds were wrapped into the omentum of rats and orthotopically transplanted for the repair of circumferential oesophageal defects two weeks later. The artificial oesophagus exhibited complete healing of the surgically created circumferential defects by the second week. The integration of the omentum-cultured oesophageal scaffold and the regenerative tissue remained intact. Macroscopically, there was no evidence of a fistula, perforation, abscess formation or surrounding soft-tissue necrosis. The omentum-cultured nano-structure scaffold reinforced by a 3D-printed ring is a more practical model with better vascularization for artificial neo-oesophagus reconstruction in a rat model.
Collapse
Affiliation(s)
- Eun-Jae Chung
- a Department of Otorhinolaryngology-Head and Neck Surgery , College of Medicine, Seoul National University , Korea
| | - Hyung Woo Ju
- b Nano-Bio Regenerative Medical Institute , Collage of Medicine, Hallym University , Chuncheon , Korea
| | - Yeung Kyu Yeon
- b Nano-Bio Regenerative Medical Institute , Collage of Medicine, Hallym University , Chuncheon , Korea
| | - Ji Seung Lee
- b Nano-Bio Regenerative Medical Institute , Collage of Medicine, Hallym University , Chuncheon , Korea
| | - Young Jin Lee
- b Nano-Bio Regenerative Medical Institute , Collage of Medicine, Hallym University , Chuncheon , Korea
| | - Ye Been Seo
- b Nano-Bio Regenerative Medical Institute , Collage of Medicine, Hallym University , Chuncheon , Korea
| | - Park Chan Hum
- b Nano-Bio Regenerative Medical Institute , Collage of Medicine, Hallym University , Chuncheon , Korea.,c Department of Otorhinolaryngology-Head and Neck Surgery , Collage of Medicine, Hallym University , Chuncheon , Korea
| |
Collapse
|
24
|
Seo Y, Jung Y, Kim SH. Decellularized heart ECM hydrogel using supercritical carbon dioxide for improved angiogenesis. Acta Biomater 2018; 67:270-281. [PMID: 29223704 DOI: 10.1016/j.actbio.2017.11.046] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/08/2017] [Accepted: 11/28/2017] [Indexed: 12/30/2022]
Abstract
Initial angiogenesis within the first 3 days is critical for healing ischemic diseases such as myocardial infarction. Recently, decellularized extracellular matrix (dECM) has been reported to provide tissue-derived ECM components and can be used as a scaffold for cell delivery for angiogenesis in tissue engineering. Decellularization by various detergents such as sodium dodecyl sulfate (SDS) and triton X-100 can remove the cell nuclei in tissue organs. However, this leads to ECM structure denaturation, decreased presence of various ECM proteins and cytokines, and loss of mechanical properties. To overcome these limitations, in this study, we developed a supercritical carbon dioxide and ethanol co-solvent (scCO2-EtOH) decellularization method, which is a detergent-free system that prevents ECM structure disruption and retains various angiogenic proteins in the heart dECM, and tested on rat heart tissues. The heart tissue was placed into the scCO2 reactor and decellularized at 37 °C and 350 bar. After scCO2-EtOH treatment, the effects were evaluated by DNA, collagen, and glycosaminoglycan (GAG) quantification and hematoxylin and eosin and immunofluorescence staining to determine the absence of nucleic acids and preservation of heart ECM components. Similar to the native group, the scCO2-EtOH group contained more ECM components such as collagen, GAGs, collagen I, laminin, and fibronectin and angiogenic factors including vascular endothelial growth factor, fibroblast growth factor, and platelet-derived growth factor and others in comparison to the detergent group. In addition, to estimate angiogenesis of the dECM hydrogels, the neutralized dECM solution was injected in a rat subcutaneous layer (n = 6 in each group: collagen, scCO2-EOH, and detergent group), after which the solution naturally formed gelation in the subcutaneous layer. After 3 days, the gels were harvested and estimated by immunofluorescence staining and the ImageJ program for angiogenesis analysis. Consequently, blood vessel formation and density of vWF and α-SMA in the scCO2-EtOH group were significantly greater than that in the collagen group. Here we suggest that heart-derived decellularized extracellular matrix (dECM) with scCO2-EtOH treatment is a highly promising angiogenic material for healing in ischemic disease. STATEMENT OF SIGNIFICANCE Supercritical carbon dioxide (scCO2) in a supercritical phase has low viscosity and high diffusivity between gas and liquid properties and is known to be affordable, non-toxic, and eco-friendly. Therefore, scCO2 extraction technology has been extensively used in commercial and industrial fields. Recently, decellularized extracellular matrix (dECM) was applied to tissue engineering and regenerative medicine as a scaffold, therapeutic material, and bio-ink for 3D printing. Moreover, the general decellularization method using detergents has limitations including eliminating tissue-derived ECM components and disrupting their structures after decellularization. To overcome these limitations, heart tissues were treated with scCO2-EtOH for decellularization, resulting in preserving of tissue due to the various ECM and angiogenic factors derived. In addition, initiation of angiogenesis was highly induced even after 3 days of injection.
Collapse
Affiliation(s)
- Yoojin Seo
- NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Youngmee Jung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| | - Soo Hyun Kim
- NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
25
|
Rajabi S, Pahlavan S, Ashtiani MK, Ansari H, Abbasalizadeh S, Sayahpour FA, Varzideh F, Kostin S, Aghdami N, Braun T, Baharvand H. Human embryonic stem cell-derived cardiovascular progenitor cells efficiently colonize in bFGF-tethered natural matrix to construct contracting humanized rat hearts. Biomaterials 2018; 154:99-112. [DOI: 10.1016/j.biomaterials.2017.10.054] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 11/26/2022]
|
26
|
Chung EJ. Bioartificial Esophagus: Where Are We Now? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1064:313-332. [DOI: 10.1007/978-981-13-0445-3_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Trecartin A, Grikscheit T. Tissue Engineering Functional Gastrointestinal Regions: The Importance of Stem and Progenitor Cells. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a025700. [PMID: 28320829 DOI: 10.1101/cshperspect.a025700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The intestine shows extraordinary regenerative potential that might be harnessed to alleviate numerous morbid and lethal human diseases. The intestinal stem cells regenerate the epithelium every 5 days throughout an individual's lifetime. Understanding stem-cell signaling affords power to influence the niche environment for growing intestine. The manifold approaches to tissue engineering may be organized by variations of three basic components required for the transplantation and growth of stem/progenitor cells: (1) cell delivery materials or scaffolds; (2) donor cells including adult stem cells, induced pluripotent stem cells, and in vitro expansion of isolated or cocultured epithelial, smooth muscle, myofibroblasts, or nerve cells; and (3) environmental modulators or biopharmaceuticals. Tissue engineering has been applied to the regeneration of every major region of the gastrointestinal tract from esophagus to colon, with scientists around the world aiming to carry these techniques into human therapy.
Collapse
Affiliation(s)
- Andrew Trecartin
- Department of Pediatric Surgery, Children's Hospital Los Angeles, Los Angeles, California 90027
| | - Tracy Grikscheit
- Department of Pediatric Surgery, Children's Hospital Los Angeles, Los Angeles, California 90027
| |
Collapse
|
28
|
Abstract
This article focuses on esophageal replacement as a surgical option for pediatric patients with end-stage esophageal disease. While it is obvious that the patient׳s own esophagus is the best esophagus, persisting with attempts to retain a native esophagus with no function and at all costs are futile and usually detrimental to the overall well-being of the child. In such cases, the esophagus should be abandoned, and the appropriate esophageal replacement is chosen for definitive reconstruction. We review the various types of conduits used for esophageal replacement and discuss the unique advantages and disadvantages that are relevant for clinical decision-making.
Collapse
Affiliation(s)
- Shaun M Kunisaki
- Section of Pediatric Surgery, Department of Surgery, C.S. Mott Children׳s Hospital, University of Michigan Medical School, 1540 E. Hospital Dr, SPC 4211, Ann Arbor, Michigan.
| | - Arnold G Coran
- Section of Pediatric Surgery, Department of Surgery, C.S. Mott Children׳s Hospital, University of Michigan Medical School, 1540 E. Hospital Dr, SPC 4211, Ann Arbor, Michigan
| |
Collapse
|
29
|
Jensen TJ, Foster C, Sayej W, Finck CM. Conditional Reprogramming of Pediatric Human Esophageal Epithelial Cells for Use in Tissue Engineering and Disease Investigation. J Vis Exp 2017. [PMID: 28362412 DOI: 10.3791/55243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Identifying and expanding patient-specific cells in culture for use in tissue engineering and disease investigation can be very challenging. Utilizing various types of stem cells to derive cell types of interest is often costly, time consuming and highly inefficient. Furthermore, undesired cell types must be removed prior to using this cell source, which requires another step in the process. In order to obtain enough esophageal epithelial cells to engineer the lumen of an esophageal construct or to screen therapeutic approaches for treating esophageal disease, native esophageal epithelial cells must be expanded without altering their gene expression or phenotype. Conditional reprogramming of esophageal epithelial tissue offers a promising approach to expanding patient-specific esophageal epithelial cells. Furthermore, these cells do not need to be sorted or purified and will return to a mature epithelial state after removing them from conditional reprogramming culture. This technique has been described in many cancer screening studies and allows for indefinite expansion of these cells over multiple passages. The ability to perform esophageal screening assays would help revolutionize the treatment of pediatric esophageal diseases like eosinophilic esophagitis by identifying the trigger mechanism causing the patient's symptoms. For those patients who suffer from congenital defect, disease or injury of the esophagus, this cell source could be used as a means to seed a synthetic construct for implantation to repair or replace the affected region.
Collapse
Affiliation(s)
| | | | - Wael Sayej
- Department of Gastroenterology, Connecticut Children's Medical Center
| | | |
Collapse
|
30
|
Abstract
Functions of the gastrointestinal tract include motility, digestion and absorption of nutrients. These functions are mediated by several specialized cell types including smooth muscle cells, neurons, interstitial cells and epithelial cells. In gastrointestinal diseases, some of the cells become degenerated or fail to accomplish their normal functions. Surgical resection of the diseased segments of the gastrointestinal tract is considered the gold-standard treatment in many cases, but patients might have surgical complications and quality of life can remain low. Tissue engineering and regenerative medicine aim to restore, repair, or regenerate the function of the tissues. Gastrointestinal tissue engineering is a challenging process given the specific phenotype and alignment of each cell type that colonizes the tract - these properties are critical for proper functionality. In this Review, we summarize advances in the field of gastrointestinal tissue engineering and regenerative medicine. Although the findings are promising, additional studies and optimizations are needed for translational purposes.
Collapse
Affiliation(s)
- Khalil N Bitar
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way NE, Winston Salem, North Carolina 27101, USA.,Department of Molecular Medicine and Translational Sciences, Wake Forest School of Medicine, 1 Medical Center Blvd, Winston Salem, North Carolina 27157, USA.,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, 391 Technology Way NE, Winston Salem, North Carolina 27101, USA
| | - Elie Zakhem
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way NE, Winston Salem, North Carolina 27101, USA.,Department of Molecular Medicine and Translational Sciences, Wake Forest School of Medicine, 1 Medical Center Blvd, Winston Salem, North Carolina 27157, USA
| |
Collapse
|
31
|
Aho JM, Qiang B, Wigle DA, Tschumperlin DJ, Urban MW. Nondestructive measurement of esophageal biaxial mechanical properties utilizing sonometry. Phys Med Biol 2016; 61:4781-95. [PMID: 27272663 DOI: 10.1088/0031-9155/61/13/4781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Malignant esophageal pathology typically requires resection of the esophagus and reconstruction to restore foregut continuity. Reconstruction options are limited and morbid. The esophagus represents a useful target for tissue engineering strategies based on relative simplicity in comparison to other organs. The ideal tissue engineered conduit would have sufficient and ideally matched mechanical tolerances to native esophageal tissue. Current methods for mechanical testing of esophageal tissues both in vivo and ex vivo are typically destructive, alter tissue conformation, ignore anisotropy, or are not able to be performed in fluid media. The aim of this study was to investigate biomechanical properties of swine esophageal tissues through nondestructive testing utilizing sonometry ex vivo. This method allows for biomechanical determination of tissue properties, particularly longitudinal and circumferential moduli and strain energy functions. The relative contribution of mucosal-submucosal layers and muscular layers are compared to composite esophagi. Swine thoracic esophageal tissues (n = 15) were tested by pressure loading using a continuous pressure pump system to generate stress. Preconditioning of tissue was performed by pressure loading with the pump system and pre-straining the tissue to in vivo length before data was recorded. Sonometry using piezocrystals was utilized to determine longitudinal and circumferential strain on five composite esophagi. Similarly, five mucosa-submucosal and five muscular layers from thoracic esophagi were tested independently. This work on esophageal tissues is consistent with reported uniaxial and biaxial mechanical testing and reported results using strain energy theory and also provides high resolution displacements, preserves native architectural structure and allows assessment of biomechanical properties in fluid media. This method may be of use to characterize mechanical properties of tissue engineered esophageal constructs.
Collapse
Affiliation(s)
- Johnathon M Aho
- Division of General Thoracic Surgery, Department of Surgery, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA. Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
32
|
Tan YJ, Yeong WY, Tan X, An J, Chian KS, Leong KF. Characterization, mechanical behavior and in vitro evaluation of a melt-drawn scaffold for esophageal tissue engineering. J Mech Behav Biomed Mater 2016; 57:246-59. [DOI: 10.1016/j.jmbbm.2015.12.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/10/2015] [Accepted: 12/14/2015] [Indexed: 12/28/2022]
|
33
|
Hagen CK, Maghsoudlou P, Totonelli G, Diemoz PC, Endrizzi M, Rigon L, Menk RH, Arfelli F, Dreossi D, Brun E, Coan P, Bravin A, De Coppi P, Olivo A. High contrast microstructural visualization of natural acellular matrices by means of phase-based x-ray tomography. Sci Rep 2015; 5:18156. [PMID: 26657471 PMCID: PMC4677348 DOI: 10.1038/srep18156] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/13/2015] [Indexed: 11/09/2022] Open
Abstract
Acellular scaffolds obtained via decellularization are a key instrument in regenerative medicine both per se and to drive the development of future-generation synthetic scaffolds that could become available off-the-shelf. In this framework, imaging is key to the understanding of the scaffolds’ internal structure as well as their interaction with cells and other organs, including ideally post-implantation. Scaffolds of a wide range of intricate organs (esophagus, lung, liver and small intestine) were imaged with x-ray phase contrast computed tomography (PC-CT). Image quality was sufficiently high to visualize scaffold microarchitecture and to detect major anatomical features, such as the esophageal mucosal-submucosal separation, pulmonary alveoli and intestinal villi. These results are a long-sought step for the field of regenerative medicine; until now, histology and scanning electron microscopy have been the gold standard to study the scaffold structure. However, they are both destructive: hence, they are not suitable for imaging scaffolds prior to transplantation, and have no prospect for post-transplantation use. PC-CT, on the other hand, is non-destructive, 3D and fully quantitative. Importantly, not only do we demonstrate achievement of high image quality at two different synchrotron facilities, but also with commercial x-ray equipment, which makes the method available to any research laboratory.
Collapse
Affiliation(s)
- Charlotte K Hagen
- University College London, Department of Medical Physics and Biomedical Engineering, London, WC1E 6BT, United Kingdom
| | | | - Giorgia Totonelli
- University College London, Institute of Child Health, London, WC1N 1EH, United Kingdom
| | - Paul C Diemoz
- University College London, Department of Medical Physics and Biomedical Engineering, London, WC1E 6BT, United Kingdom
| | - Marco Endrizzi
- University College London, Department of Medical Physics and Biomedical Engineering, London, WC1E 6BT, United Kingdom
| | - Luigi Rigon
- University of Trieste, Department of Physics, Trieste, 34127, Italy.,Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Trieste, 34127, Italy
| | | | - Fulvia Arfelli
- University of Trieste, Department of Physics, Trieste, 34127, Italy
| | - Diego Dreossi
- Sincrotrone Trieste SCpA, Basovizza/Trieste, 34012, Italy
| | - Emmanuel Brun
- European Synchrotron Radiation Facility, Grenoble, 38043, France
| | - Paola Coan
- Ludwig Maximilians University, Department of Physics, Garching, 85748, Germany.,Ludwig Maximilians University, Faculty of Medicine, Grosshadern-Munich, 81377, Germany
| | - Alberto Bravin
- European Synchrotron Radiation Facility, Grenoble, 38043, France
| | - Paolo De Coppi
- University College London, Institute of Child Health, London, WC1N 1EH, United Kingdom
| | - Alessandro Olivo
- University College London, Department of Medical Physics and Biomedical Engineering, London, WC1E 6BT, United Kingdom
| |
Collapse
|
34
|
Orthotopic transplantation of a tissue engineered diaphragm in rats. Biomaterials 2015; 77:320-35. [PMID: 26618750 DOI: 10.1016/j.biomaterials.2015.11.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/01/2015] [Accepted: 11/06/2015] [Indexed: 01/25/2023]
Abstract
The currently available surgical options to repair the diaphragm are associated with significant risks of defect recurrence, lack of growth potential and restored functionality. A tissue engineered diaphragm has the potential to improve surgical outcomes for patients with congenital or acquired disorders. Here we show that decellularized diaphragmatic tissue reseeded with bone marrow mesenchymal stromal cells (BM-MSCs) facilitates in situ regeneration of functional tissue. A novel bioreactor, using simultaneous perfusion and agitation, was used to rapidly decellularize rat diaphragms. The scaffolds retained architecture and mechanical properties and supported cell adhesion, proliferation and differentiation. Biocompatibility was further confirmed in vitro and in vivo. We replaced 80% of the left hemidiaphragm with reseeded diaphragmatic scaffolds. After three weeks, transplanted animals gained 32% weight, showed myography, spirometry parameters, and histological evaluations similar to native rats. In conclusion, our study suggested that reseeded decellularized diaphragmatic tissue appears to be a promising option for patients in need of diaphragmatic reconstruction.
Collapse
|
35
|
Piccoli M, Urbani L, Alvarez-Fallas ME, Franzin C, Dedja A, Bertin E, Zuccolotto G, Rosato A, Pavan P, Elvassore N, De Coppi P, Pozzobon M. Improvement of diaphragmatic performance through orthotopic application of decellularized extracellular matrix patch. Biomaterials 2015; 74:245-55. [PMID: 26461117 DOI: 10.1016/j.biomaterials.2015.10.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 12/15/2022]
Abstract
Muscle tissue engineering can provide support to large congenital skeletal muscle defects using scaffolds able to allow cell migration, proliferation and differentiation. Acellular extracellular matrix (ECM) scaffold can generate a positive inflammatory response through the activation of anti-inflammatory T-cell populations and M2 polarized macrophages that together lead to a local pro-regenerative environment. This immunoregulatory effect is maintained when acellular matrices are transplanted in a xenogeneic setting, but it remains unclear whether it can be therapeutic in a model of muscle diseases. We demonstrated here for the first time that orthotopic transplantation of a decellularized diaphragmatic muscle from wild animals promoted tissue functional recovery in an established atrophic mouse model. In particular, ECM supported a local immunoresponse activating a pro-regenerative environment and stimulating host muscle progenitor cell activation and migration. These results indicate that acellular scaffolds may represent a suitable regenerative medicine option for improving performance of diseased muscles.
Collapse
Affiliation(s)
- M Piccoli
- Stem Cells and Regenerative Medicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy.
| | - L Urbani
- Stem Cells & Regenerative Medicine Section, Developmental Biology & Cancer Programme, UCL Institute of Child Health and Great Ormond Street Hospital, London, United Kingdom.
| | - M E Alvarez-Fallas
- Stem Cells and Regenerative Medicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - C Franzin
- Stem Cells and Regenerative Medicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - A Dedja
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - E Bertin
- Stem Cells and Regenerative Medicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - G Zuccolotto
- Department of Medicine, University of Padua, Padua, Italy
| | - A Rosato
- Veneto Institute of Oncology IOV - IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - P Pavan
- Department of Industrial Engineering, University of Padua, Padua, Italy; Centre for Mechanics of Biological Materials, University of Padua, Padua, Italy
| | - N Elvassore
- Department of Industrial Engineering, University of Padua, and Venetian Institute of Molecular Medicine, Padua, Italy
| | - P De Coppi
- Stem Cells & Regenerative Medicine Section, Developmental Biology & Cancer Programme, UCL Institute of Child Health and Great Ormond Street Hospital, London, United Kingdom.
| | - M Pozzobon
- Stem Cells and Regenerative Medicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy.
| |
Collapse
|
36
|
Biomimetic and synthetic esophageal tissue engineering. Biomaterials 2015; 57:133-41. [DOI: 10.1016/j.biomaterials.2015.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/30/2015] [Accepted: 04/02/2015] [Indexed: 12/12/2022]
|
37
|
Jungebluth P, Haag J, Macchiarini P. Regenerative Medizin. ZEITSCHRIFT FUR HERZ THORAX UND GEFASSCHIRURGIE 2015. [DOI: 10.1007/s00398-014-1094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Jank BJ, Xiong L, Moser PT, Guyette JP, Ren X, Cetrulo CL, Leonard DA, Fernandez L, Fagan SP, Ott HC. Engineered composite tissue as a bioartificial limb graft. Biomaterials 2015; 61:246-56. [PMID: 26004237 DOI: 10.1016/j.biomaterials.2015.04.051] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/22/2015] [Accepted: 04/30/2015] [Indexed: 12/18/2022]
Abstract
The loss of an extremity is a disastrous injury with tremendous impact on a patient's life. Current mechanical prostheses are technically highly sophisticated, but only partially replace physiologic function and aesthetic appearance. As a biologic alternative, approximately 70 patients have undergone allogeneic hand transplantation to date worldwide. While outcomes are favorable, risks and side effects of transplantation and long-term immunosuppression pose a significant ethical dilemma. An autologous, bio-artificial graft based on native extracellular matrix and patient derived cells could be produced on demand and would not require immunosuppression after transplantation. To create such a graft, we decellularized rat and primate forearms by detergent perfusion and yielded acellular scaffolds with preserved composite architecture. We then repopulated muscle and vasculature with cells of appropriate phenotypes, and matured the composite tissue in a perfusion bioreactor under electrical stimulation in vitro. After confirmation of composite tissue formation, we transplanted the resulting bio-composite grafts to confirm perfusion in vivo.
Collapse
Affiliation(s)
- Bernhard J Jank
- Center for Regenerative Medicine, Massachusetts General Hospital, USA; Harvard Medical School, Boston, MA, USA
| | - Linjie Xiong
- Center for Regenerative Medicine, Massachusetts General Hospital, USA
| | - Philipp T Moser
- Center for Regenerative Medicine, Massachusetts General Hospital, USA; Harvard Medical School, Boston, MA, USA
| | - Jacques P Guyette
- Center for Regenerative Medicine, Massachusetts General Hospital, USA; Harvard Medical School, Boston, MA, USA
| | - Xi Ren
- Center for Regenerative Medicine, Massachusetts General Hospital, USA; Harvard Medical School, Boston, MA, USA
| | - Curtis L Cetrulo
- Harvard Medical School, Boston, MA, USA; Transplantation Biology Research Center, Department of Surgery, Massachusetts General Hospital, USA
| | - David A Leonard
- Harvard Medical School, Boston, MA, USA; Transplantation Biology Research Center, Department of Surgery, Massachusetts General Hospital, USA
| | | | - Shawn P Fagan
- Massachusetts General Hospital, Division of Burn Surgery, Harvard Medical School, USA
| | - Harald C Ott
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Londono R, Badylak SF. Regenerative Medicine Strategies for Esophageal Repair. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:393-410. [PMID: 25813694 DOI: 10.1089/ten.teb.2015.0014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pathologies that involve the structure and/or function of the esophagus can be life-threatening. The esophagus is a complex organ comprising nonredundant tissue that does not have the ability to regenerate. Currently available interventions for esophageal pathology have limited success and are typically associated with significant morbidity. Hence, there is currently an unmet clinical need for effective methods of esophageal repair. The present article presents a review of esophageal disease along with the anatomic and functional consequences of each pathologic process, the shortcomings associated with currently available therapies, and the latest advancements in the field of regenerative medicine with respect to strategies for esophageal repair from benchtop to bedside.
Collapse
Affiliation(s)
- Ricardo Londono
- 1 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Stephen F Badylak
- 1 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania.,4 Department of Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
40
|
Fan Y, Tajima A, Goh SK, Geng X, Gualtierotti G, Grupillo M, Coppola A, Bertera S, Rudert WA, Banerjee I, Bottino R, Trucco M. Bioengineering Thymus Organoids to Restore Thymic Function and Induce Donor-Specific Immune Tolerance to Allografts. Mol Ther 2015; 23:1262-1277. [PMID: 25903472 DOI: 10.1038/mt.2015.77] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 04/05/2015] [Indexed: 02/07/2023] Open
Abstract
One of the major obstacles in organ transplantation is to establish immune tolerance of allografts. Although immunosuppressive drugs can prevent graft rejection to a certain degree, their efficacies are limited, transient, and associated with severe side effects. Induction of thymic central tolerance to allografts remains challenging, largely because of the difficulty of maintaining donor thymic epithelial cells in vitro to allow successful bioengineering. Here, the authors show that three-dimensional scaffolds generated from decellularized mouse thymus can support thymic epithelial cell survival in culture and maintain their unique molecular properties. When transplanted into athymic nude mice, the bioengineered thymus organoids effectively promoted homing of lymphocyte progenitors and supported thymopoiesis. Nude mice transplanted with thymus organoids promptly rejected skin allografts and were able to mount antigen-specific humoral responses against ovalbumin on immunization. Notably, tolerance to skin allografts was achieved by transplanting thymus organoids constructed with either thymic epithelial cells coexpressing both syngeneic and allogenic major histocompatibility complexes, or mixtures of donor and recipient thymic epithelial cells. Our results demonstrate the technical feasibility of restoring thymic function with bioengineered thymus organoids and highlight the clinical implications of this thymus reconstruction technique in organ transplantation and regenerative medicine.
Collapse
Affiliation(s)
- Yong Fan
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Asako Tajima
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Saik Kia Goh
- Department of Chemical and Petroleum Engineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA
| | - Xuehui Geng
- Division of Immunogenetics, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Giulio Gualtierotti
- Division of Immunogenetics, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Maria Grupillo
- Division of Immunogenetics, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Antonina Coppola
- Division of Immunogenetics, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Current address: Section of Endocrinology, Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
| | - Suzanne Bertera
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - William A Rudert
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Ipsita Banerjee
- Department of Chemical and Petroleum Engineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA
| | - Rita Bottino
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Massimo Trucco
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
41
|
Chian KS, Leong MF, Kono K. Regenerative medicine for oesophageal reconstruction after cancer treatment. Lancet Oncol 2015; 16:e84-92. [PMID: 25638684 DOI: 10.1016/s1470-2045(14)70410-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Removal of malignant tissue in patients with oesophageal cancer and replacement with autologous grafts from the stomach and colon can lead to problems. The need to reduce stenosis and anastomotic leakage after oesophagectomy is a high priority. Developments in tissue-engineering methods and cell-sheet technology have improved scaffold materials for oesophageal repair. Despite the many successful animal studies, few tissue-engineering approaches have progressed to clinical trials. In this Review, we discuss the status of oesophagus reconstruction after surgery. In particular, we highlight two clinical trials that used decellularised constructs and epithelial cell sheets to replace excised tissues after endoscopic submucosal dissection or mucosal resection procedures. Results from the trials showed that both decellularised grafts and epithelial-cell sheets prevented stenosis. By contrast, animal studies have shown that the use of tissue-engineered constructs after oesophagectomy remains a challenge.
Collapse
Affiliation(s)
- Kerm Sin Chian
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Meng Fatt Leong
- Department of Cell and Tissue Engineering, Institute of Bioengineering and Nanotechnology, Singapore, Singapore
| | - Koji Kono
- Department of Surgery, National University of Singapore, Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Department of Organ Regulatory Surgery and Advanced Cancer Immunotherapy, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
42
|
Circulation and Lungs. Bioengineering (Basel) 2015. [DOI: 10.1007/978-3-319-10798-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
43
|
Tissue engineered scaffolds for an effective healing and regeneration: reviewing orthotopic studies. BIOMED RESEARCH INTERNATIONAL 2014; 2014:398069. [PMID: 25250319 PMCID: PMC4163448 DOI: 10.1155/2014/398069] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/22/2014] [Indexed: 12/20/2022]
Abstract
It is commonly stated that tissue engineering is the most promising approach to treat or replace failing tissues/organs. For this aim, a specific strategy should be planned including proper selection of biomaterials, fabrication techniques, cell lines, and signaling cues. A great effort has been pursued to develop suitable scaffolds for the restoration of a variety of tissues and a huge number of protocols ranging from in vitro to in vivo studies, the latter further differentiating into several procedures depending on the type of implantation (i.e., subcutaneous or orthotopic) and the model adopted (i.e., animal or human), have been developed. All together, the published reports demonstrate that the proposed tissue engineering approaches spread toward multiple directions. The critical review of this scenario might suggest, at the same time, that a limited number of studies gave a real improvement to the field, especially referring to in vivo investigations. In this regard, the present paper aims to review the results of in vivo tissue engineering experimentations, focusing on the role of the scaffold and its specificity with respect to the tissue to be regenerated, in order to verify whether an extracellular matrix-like device, as usually stated, could promote an expected positive outcome.
Collapse
|