1
|
Hu K, Dong B, Wang Y, Meng X. The role of sperm protein in mammal fertilization: insights into gamete adhesion, membrane fusion and oocyte activation. ZYGOTE 2025:1-11. [PMID: 40356503 DOI: 10.1017/s0967199425000085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Globally, numerous infertile couples have been assisted by extensive research on mammalian fertilization and the rapid development of Assisted Reproductive Technology (ART). However, 5%-15% of the couples that are selected for in vitro fertilization (IVF) experience a total fertilization failure (TFF), where no zygotes develop despite oocytes and semen parameters appear to be normal. Notably, an essential early event in fertilization is the binding of spermatozoa to the oocyte's external envelope, which followed by the spermatozoa-oocyte fusion. Meanwhile, oocyte activation is a crucial cellular process necessary to block polyspermy and start the development of the zygote. Improper membrane fusion of gametes has been demonstrated to be one of the mechanisms of TFF. Moreover, considering the large amount of research on sperm proteins in recent years, thus in this review, we characterize the role and molecular mechanisms of sperm proteins in the three key processes of gamete adhesion and fusion and oocyte activation, which would provide a comprehensive understanding of the role of sperm proteins in fertilization in mammals and a favourable reference for future studies in assisted reproduction due to FF.
Collapse
Affiliation(s)
- Kaiyue Hu
- Department of Reproductive Medicine, Luoyang maternal and child health hospital, Luoyang, 471000, China
- Luoyang branch of the National Center for assisted reproduction and eugenics, Luoyang, China
- Key Laboratory of reproduction and genetics, Luoyang, China
- Institute of Reproductive Medicine, Luoyang, China
| | - Bo Dong
- Department of Reproductive Medicine, Luoyang maternal and child health hospital, Luoyang, 471000, China
- Luoyang branch of the National Center for assisted reproduction and eugenics, Luoyang, China
- Key Laboratory of reproduction and genetics, Luoyang, China
- Institute of Andrology, Luoyang, China
| | - Yugang Wang
- Department of Reproductive Medicine, Luoyang maternal and child health hospital, Luoyang, 471000, China
- Luoyang branch of the National Center for assisted reproduction and eugenics, Luoyang, China
- Key Laboratory of reproduction and genetics, Luoyang, China
- Institute of Andrology, Luoyang, China
| | - Xiangrui Meng
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
2
|
Thomalla JM, Wolfner MF. No transcription, no problem: Protein phosphorylation changes and the transition from oocyte to embryo. Curr Top Dev Biol 2025; 162:165-205. [PMID: 40180509 DOI: 10.1016/bs.ctdb.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Although mature oocytes are arrested in a differentiated state, they are provisioned with maternally-derived macromolecules that will start embryogenesis. The transition to embryogenesis, called 'egg activation', occurs without new transcription, even though it includes major cell changes like completing stalled meiosis, translating stored mRNAs, cytoskeletal remodeling, and changes to nuclear architecture. In most animals, egg activation is triggered by a rise in free calcium in the egg's cytoplasm, but we are only now beginning to understand how this induces the egg to transition to totipotency and proliferation. Here, we discuss the model that calcium-dependent protein kinases and phosphatases modify the phosphorylation landscape of the maternal proteome to activate the egg. We review recent phosphoproteomic mass spectrometry analyses that revealed broad phospho-regulation during egg activation, both in number of phospho-events and classes of regulated proteins. Our interspecies comparisons of these proteins pinpoints orthologs and protein families that are phospho-regulated in activating eggs, many of which function in hallmark events of egg activation, and others whose regulation and activity warrant further study. Finally, we discuss key phospho-regulating enzymes that may act apically or as intermediates in the phosphorylation cascades during egg activation. Knowing the regulators, targets, and effects of phospho-regulation that cause an egg to initiate embryogenesis is crucial at both fundamental and applied levels for understanding female fertility, embryo development, and cell-state transitions.
Collapse
Affiliation(s)
- Jonathon M Thomalla
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States; Department of Biomedical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, NY, United States
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
3
|
Sun SM, Zhao BW, Li YY, Liu HY, Xu YH, Yang XM, Guo JN, Ouyang YC, Weng CJ, Guan YC, Sun QY, Wang ZB. Loss of UBE2S causes meiosis I arrest with normal spindle assembly checkpoint dynamics in mouse oocytes. Development 2024; 151:dev202285. [PMID: 38546043 DOI: 10.1242/dev.202285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/25/2024] [Indexed: 04/04/2024]
Abstract
The timely degradation of proteins that regulate the cell cycle is essential for oocyte maturation. Oocytes are equipped to degrade proteins via the ubiquitin-proteasome system. In meiosis, anaphase promoting complex/cyclosome (APC/C), an E3 ubiquitin-ligase, is responsible for the degradation of proteins. Ubiquitin-conjugating enzyme E2 S (UBE2S), an E2 ubiquitin-conjugating enzyme, delivers ubiquitin to APC/C. APC/C has been extensively studied, but the functions of UBE2S in oocyte maturation and mouse fertility are not clear. In this study, we used Ube2s knockout mice to explore the role of UBE2S in mouse oocytes. Ube2s-deleted oocytes were characterized by meiosis I arrest with normal spindle assembly and spindle assembly checkpoint dynamics. However, the absence of UBE2S affected the activity of APC/C. Cyclin B1 and securin are two substrates of APC/C, and their levels were consistently high, resulting in the failure of homologous chromosome separation. Unexpectedly, the oocytes arrested in meiosis I could be fertilized and the embryos could become implanted normally, but died before embryonic day 10.5. In conclusion, our findings reveal an indispensable regulatory role of UBE2S in mouse oocyte meiosis and female fertility.
Collapse
Affiliation(s)
- Si-Min Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Bing-Wang Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yuan-Yuan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Hong-Yang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yuan-Hong Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xue-Mei Yang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Jia-Ni Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chang-Jiang Weng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yi-Chun Guan
- Center for Reproductive Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
4
|
Zou X, Yu H, Li Q. Genome-wide identification and transcriptome-based expression profiling of E2 gene family: Implication for potential roles in gonad development of Crassostrea gigas. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101108. [PMID: 37418813 DOI: 10.1016/j.cbd.2023.101108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023]
Abstract
In this study, we investigated the role of E2 ubiquitin conjugating enzymes (E2) in the Pacific oyster Crassostrea gigas, with a focus on their involvement in gonad development. We identified 34 E2 genes clustered into nine subgroups and 24 subfamilies. The gene structure and intron-exon location were conserved within the same subfamily, but motif variation suggested functional diversity. Tissue transcriptome analyses revealed that most E2 genes were broadly expressed, with UBE2CL showing specific expression in the female gonad. Expression profiling of E2 genes during early embryo-larvae development stages suggested that five E2 genes were highly expressed in early embryo development, indicating their involvement in cell division processes. Furthermore, by profiling the expression of E2 genes in different gonadal developmental stages, we observed a gradual increase in expression for four genes during gametogenesis, with significantly higher expression in the female gonad at the maturation stage. Similarly, five E2 genes displayed elevated expression levels in the male gonad at the maturation stage, indicating their crucial roles in gonadal development and gametogenesis. Our study provides valuable insights into the potential functions of the E2 gene family in C. gigas, shedding light on the molecular mechanisms underlying gonad development in oysters.
Collapse
Affiliation(s)
- Xiaoyu Zou
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| |
Collapse
|
5
|
Jiang Y, Adhikari D, Li C, Zhou X. Spatiotemporal regulation of maternal mRNAs during vertebrate oocyte meiotic maturation. Biol Rev Camb Philos Soc 2023; 98:900-930. [PMID: 36718948 DOI: 10.1111/brv.12937] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023]
Abstract
Vertebrate oocytes face a particular challenge concerning the regulation of gene expression during meiotic maturation. Global transcription becomes quiescent in fully grown oocytes, remains halted throughout maturation and fertilization, and only resumes upon embryonic genome activation. Hence, the oocyte meiotic maturation process is largely regulated by protein synthesis from pre-existing maternal messenger RNAs (mRNAs) that are transcribed and stored during oocyte growth. Rapidly developing genome-wide techniques have greatly expanded our insights into the global translation changes and possible regulatory mechanisms during oocyte maturation. The storage, translation, and processing of maternal mRNAs are thought to be regulated by factors interacting with elements in the mRNA molecules. Additionally, posttranscriptional modifications of mRNAs, such as methylation and uridylation, have recently been demonstrated to play crucial roles in maternal mRNA destabilization. However, a comprehensive understanding of the machineries that regulate maternal mRNA fate during oocyte maturation is still lacking. In particular, how the transcripts of important cell cycle components are stabilized, recruited at the appropriate time for translation, and eliminated to modulate oocyte meiotic progression remains unclear. A better understanding of these mechanisms will provide invaluable insights for the preconditions of developmental competence acquisition, with important implications for the treatment of infertility. This review discusses how the storage, localization, translation, and processing of oocyte mRNAs are regulated, and how these contribute to oocyte maturation progression.
Collapse
Affiliation(s)
- Yanwen Jiang
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, China
| | - Deepak Adhikari
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Melbourne, VIC, 3800, Australia
| | - Chunjin Li
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, China
| | - Xu Zhou
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, China
| |
Collapse
|
6
|
Gupta A, Trigun SK. Cilostamide, a phosphodiesterase 3A inhibitor, sustains meiotic arrest of rat oocytes by modulating cyclic adenosine monophosphate level and the key regulators of maturation promoting factor. J Cell Biochem 2022; 123:2030-2043. [PMID: 36125973 DOI: 10.1002/jcb.30328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022]
Abstract
Cilostamide, a phosphodiesterase 3A (Pde3A) inhibitor, is known to increase intraoocyte cyclic adenosine monophosphate (cAMP) level which is involved in sustaining meiotic arrest of the oocytes. To explore the mechanisms involved in the cilostamide-mediated meiotic arrest of the oocytes, the present study describes the effects of cilostamide on cAMP level and related factors involved in maturation of the oocytes at its different meiotic stages; diplotene, metaphase I (MI) and metaphase II (MII). The oocytes from these three stages were collected from rat ovary and incubated with 10 µM cilostamide for 3 h in CO2 incubator. The levels of cAMP, cyclic guanosine monophosphate (cGMP) and the key players of maintaining meiotic arrest during oocyte maturation; Emi2, Apc, Cyclin B1, and Cdk1, were analyzed in diplotene, MI and MII stages. Pde3A was found to be expressed at all three stages but with the lowest level in MI oocyte. As compared to the control sets, the cAMP concentration was found to be highest in MII whereas cGMP was highest in the diplotene stage of cilostamide-treated group. The treated group showed declined reactive oxygen species level as compared with the control counterparts. Relatively increased levels of the Emi2, Cyclin B1, and phosphorylated thr161 of Cdk1 versus declined levels of phosphorylated thr14/tyr15 of Cdk1 in diplotene and MII stage oocytes are known to be involved in maintaining meiotic arrest and all these factors were found to undergo similar pattern of change due to the treatment with cilostamide. The findings thus suggest that cilostamide treatment promotes meiotic arrest by Pde3A inhibition led increase of both cAMP and cGMP level vis-a-vis modulation of the related regulatory factors such as Emi2, CyclinB1, and phosphorylated status of Cdk1 in diplotene and MII stage oocytes. Such a mechanism of meiotic arrest could allow the oocyte to prepare itself for meiotic maturation and thereby to improve oocyte quality.
Collapse
Affiliation(s)
- Anumegha Gupta
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Surendra Kumar Trigun
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
7
|
Kinterová V, Kaňka J, Bartková A, Toralová T. SCF Ligases and Their Functions in Oogenesis and Embryogenesis-Summary of the Most Important Findings throughout the Animal Kingdom. Cells 2022; 11:234. [PMID: 35053348 PMCID: PMC8774150 DOI: 10.3390/cells11020234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 12/10/2022] Open
Abstract
SCF-dependent proteolysis was first discovered via genetic screening of budding yeast almost 25 years ago. In recent years, more and more functions of SCF (Skp1-Cullin 1-F-box) ligases have been described, and we can expect the number of studies on this topic to increase. SCF ligases, which are E3 ubiquitin multi-protein enzymes, catalyse protein ubiquitination and thus allow protein degradation mediated by the 26S proteasome. They play a crucial role in the degradation of cell cycle regulators, regulation of the DNA repair and centrosome cycle and play an important role in several diseases. SCF ligases seem to be needed during all phases of development, from oocyte formation through fertilization, activation of the embryonic genome to embryo implantation. In this review, we summarize known data on SCF ligase-mediated degradation during oogenesis and embryogenesis. In particular, SCFβTrCP and SCFSEL-10/FBXW7 are among the most important and best researched ligases during early development. SCFβTrCP is crucial for the oogenesis of Xenopus and mouse and also in Xenopus and Drosophila embryogenesis. SCFSEL-10/FBXW7 participates in the degradation of several RNA-binding proteins and thereby affects the regulation of gene expression during the meiosis of C. elegans. Nevertheless, a large number of SCF ligases that are primarily involved in embryogenesis remain to be elucidated.
Collapse
Affiliation(s)
- Veronika Kinterová
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 27721 Libechov, Czech Republic; (J.K.); (A.B.); (T.T.)
| | - Jiří Kaňka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 27721 Libechov, Czech Republic; (J.K.); (A.B.); (T.T.)
| | - Alexandra Bartková
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 27721 Libechov, Czech Republic; (J.K.); (A.B.); (T.T.)
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Tereza Toralová
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 27721 Libechov, Czech Republic; (J.K.); (A.B.); (T.T.)
| |
Collapse
|
8
|
Zhou S, Qu KL, Li JA, Chen SL, Zhang YG, Zhu C, Jin H, Wang Y, Pang Q, Liu HC. YY1 activates EMI2 and promotes the progression of cholangiocarcinoma through the PI3K/Akt signaling axis. Cancer Cell Int 2021; 21:699. [PMID: 34933678 PMCID: PMC8693494 DOI: 10.1186/s12935-021-02328-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is one of the deadliest cancers of the digestive tract. The prognosis of CCA is poor and the 5-year survival rate is low. Bioinformatic analysis showed that early mitotic inhibitor 2 (EMI2) was overexpressed in CCA but the underlying mechanism is not known. METHODS The data on bile duct carcinoma from TCGA and GEO databases were used to detect the expression of EMI2. The transcription factors of EMI2 were predicted using JASPAR and PROMO databases. Among the predicted transcription factors, YY1 has been rarely reported in cholangiocarcinoma, and was verified using the luciferase reporter gene assay. RT-PCR was performed to predict the downstream pathway of EMI2, and PI3K/Akt was suspected to be associated with it. Subsequently, in vivo and in vitro experiments were conducted to verify the effects of silencing and overexpressing EMI2 and YY1 on the proliferation, invasion, and metastasis of the bile duct cancer cells. RESULTS EMI2 was highly expressed in CCA. Silencing EMI2 inhibited the proliferation, invasion, and migration of CCA cells, arrested cell cycle in the G1 phase, and promoted of apoptosis. The luciferase reporter gene assay showed that YY1 bound to the promoter region of EMI2, and after silencing YY1, the expression of EMI2 decreased and the progression of CCA was inhibited. Moreover, key proteins in the PI3K/Akt signaling pathway decreased after silencing EMI2. CONCLUSION EMI2 may be one of the direct targets of YY1 and promotes the progression of CCA through the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Shuai Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, Anhui, China
| | - Kang Lin Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, Anhui, China
| | - Jin Ang Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, Anhui, China
| | - Shi Lei Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, Anhui, China
| | - Yi Gang Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, Anhui, China
| | - Chao Zhu
- The Fourth Department of General Surgery, Second People's Hospital of Anhui Province, No. 1868 Dangshan Road, North Second Ring, Hefei, 230041, Anhui, China
| | - Hao Jin
- The Fourth Department of General Surgery, Second People's Hospital of Anhui Province, No. 1868 Dangshan Road, North Second Ring, Hefei, 230041, Anhui, China
| | - Yong Wang
- The Fourth Department of General Surgery, Second People's Hospital of Anhui Province, No. 1868 Dangshan Road, North Second Ring, Hefei, 230041, Anhui, China
| | - Qing Pang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, Anhui, China.
| | - Hui Chun Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, Anhui, China.
- The Fourth Department of General Surgery, Second People's Hospital of Anhui Province, No. 1868 Dangshan Road, North Second Ring, Hefei, 230041, Anhui, China.
| |
Collapse
|
9
|
Zhang Y, Zheng W, Ren P, Hu H, Tong X, Zhang S, Li X, Wang H, Jiang J, Jin J, Yang W, Cao L, He Y, Ma Y, Zhang Y, Gu Y, Hu L, Luo K, Gong F, Lu G, Lin G, Fan H, Zhang S. Biallelic mutations in MOS cause female infertility characterized by human early embryonic arrest and fragmentation. EMBO Mol Med 2021; 13:e14887. [PMID: 34779126 PMCID: PMC8649871 DOI: 10.15252/emmm.202114887] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 01/26/2023] Open
Abstract
Early embryonic arrest and fragmentation (EEAF) is a common phenomenon leading to female infertility, but the genetic determinants remain largely unknown. The Moloney sarcoma oncogene (MOS) encodes a serine/threonine kinase that activates the ERK signaling cascade during oocyte maturation in vertebrates. Here, we identified four rare variants of MOS in three infertile female individuals with EEAF that followed a recessive inheritance pattern. These MOS variants encoded proteins that resulted in decreased phosphorylated ERK1/2 level in cells and oocytes, and displayed attenuated rescuing effects on cortical F-actin assembly. Using oocyte-specific Erk1/2 knockout mice, we verified that MOS-ERK signal pathway inactivation in oocytes caused EEAF as human. The RNA sequencing data revealed that maternal mRNA clearance was disrupted in human mature oocytes either with MOS homozygous variant or with U0126 treatment, especially genes relative to mitochondrial function. Mitochondrial dysfunction was observed in oocytes with ERK1/2 deficiency or inactivation. In conclusion, this study not only uncovers biallelic MOS variants causes EEAF but also demonstrates that MOS-ERK signaling pathway drives human oocyte cytoplasmic maturation to prevent EEAF.
Collapse
Affiliation(s)
- Yin‐Li Zhang
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Wei Zheng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC‐XiangyaChangshaChina
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangshaChina
| | - Peipei Ren
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Huiling Hu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC‐XiangyaChangshaChina
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangshaChina
| | - Xiaomei Tong
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Shuo‐Ping Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC‐XiangyaChangshaChina
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangshaChina
| | - Xiang Li
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Haichao Wang
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | | | - Jiamin Jin
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Weijie Yang
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Lanrui Cao
- Life Sciences InstituteZhejiang UniversityHangzhouChina
| | - Yuanlin He
- Department of EpidemiologyCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Yerong Ma
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Yingyi Zhang
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Yifan Gu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC‐XiangyaChangshaChina
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangshaChina
| | - Liang Hu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC‐XiangyaChangshaChina
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangshaChina
| | - Keli Luo
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC‐XiangyaChangshaChina
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangshaChina
| | - Fei Gong
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC‐XiangyaChangshaChina
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangshaChina
| | - Guang‐Xiu Lu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC‐XiangyaChangshaChina
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangshaChina
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC‐XiangyaChangshaChina
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangshaChina
| | - Heng‐Yu Fan
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
- Life Sciences InstituteZhejiang UniversityHangzhouChina
| | - Songying Zhang
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
10
|
Wu H, Zhang X, Shen Q, Liu Y, Gao Y, Wang G, Lv M, Hua R, Xu Y, Zhou P, Wei Z, Tao F, He X, Cao Y, Liu M. A homozygous loss-of-function mutation in FBXO43 causes human non-obstructive azoospermia. Clin Genet 2021; 101:55-64. [PMID: 34595750 DOI: 10.1111/cge.14069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 01/01/2023]
Abstract
Non-obstructive azoospermia (NOA) represents one of the most serious forms of male infertility caused by spermatogenic failure. Despite multiple genes found to be associated with human NOA, the genetic basis of this idiopathic disease remains largely unknown. FBXO43 is a direct inhibitor of the anaphase-promoting complex/cyclosome (APC/C) E3 ligase and crucially important in mouse spermatogenesis. In this study, for the first time, we identified a homozygous nonsense mutation in FBXO43 c.1747C > T:p.Gln583X in two NOA brothers from a Chinese consanguineous family via whole-exome sequencing. FBXO43 was absent from testicular tissue of the proband, and FBXO43-immunostaining signals were invisible in the affected seminiferous tubules. Furthermore, in humans, FBXO43 defects cause meiotic arrest within early diplotene of prophase I. The results here demonstrate the pathogenicity of this loss-of-function mutation and confirmed that spermatocytes were unable to complete meiotic divisions without FBXO43 in humans. In mouse testicular protein extracts, three subunits of the APC/C, including ANAPC2, ANAPC8 and ANAPC10, were validated to interact directly with FBXO43, whereas no interactions were detected for FBXO43 and SKP1. This study furthers our understanding of the genetic basis of human NOA and provides insights into FBXO43 and male infertility.
Collapse
Affiliation(s)
- Huan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Qunshan Shen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Yiyuan Liu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yang Gao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Guanxiong Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mingrong Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Rong Hua
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yuping Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
| | - Fangbiao Tao
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Zhao BW, Sun SM, Xu K, Li YY, Lei WL, Li L, Liu SL, Ouyang YC, Sun QY, Wang ZB. FBXO34 Regulates the G2/M Transition and Anaphase Entry in Meiotic Oocytes. Front Cell Dev Biol 2021; 9:647103. [PMID: 33842473 PMCID: PMC8027338 DOI: 10.3389/fcell.2021.647103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/22/2021] [Indexed: 11/17/2022] Open
Abstract
There are two important events in oocyte meiotic maturation, the G2/M transition and metaphase I progression. Thousands of proteins participate in regulating oocyte maturation, which highlights the importance of the ubiquitin proteasome system (UPS) in regulating protein synthesis and degradation. Skp1–Cullin–F-box (SCF) complexes, as the best characterized ubiquitin E3 ligases in the UPS, specifically recognize their substrates. F-box proteins, as the variable adaptors of SCF, can bind substrates specifically. Little is known about the functions of the F-box proteins in oocyte maturation. In this study, we found that depletion of FBXO34, an F-box protein, led to failure of oocyte meiotic resumption due to a low activity of MPF, and this phenotype could be rescued by exogenous overexpression of CCNB1. Strikingly, overexpression of FBXO34 promoted germinal vesicle breakdown (GVBD), but caused continuous activation of spindle assembly checkpoint (SAC) and MI arrest of oocytes. Here, we demonstrated that FBXO34 regulated both the G2/M transition and anaphase entry in meiotic oocytes.
Collapse
Affiliation(s)
- Bing-Wang Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Si-Min Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ke Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuan-Yuan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wen-Long Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Li Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Sai-Li Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
12
|
Meiotic Instability Generates a Pathological Condition in Mammalian Ovum. Stem Cell Rev Rep 2020; 17:777-784. [PMID: 33140233 DOI: 10.1007/s12015-020-10072-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 02/02/2023]
Abstract
Maintenance of metaphase-II (M-II) arrest in ovum is required to present itself as a right gamete for successful fertilization in mammals. Surprisingly, instability of meiotic cell cycle results in spontaneous exit from M-II arrest, chromosomal scattering and incomplete extrusion of second polar body (PB-II) without forming pronuclei so called abortive spontaneous ovum activation (SOA). It remains unclear what causes meiotic instability in freshly ovulated ovum that results in abortive SOA. We propose the involvement of various signal molecules such as reactive oxygen species (ROS), cyclic 3',5' adenosine monophosphate (cAMP) and calcium (Ca2+) in the induction of meiotic instability and thereby abortive SOA. These signal molecules through their downstream pathways modulate phosphorylation status and activity of cyclin dependent kinase (cdk1) as well as cyclin B1 level. Changes in phosphorylation status of cdk1 and its activity, dissociation and degradation of cyclin B1 destabilize maturation promoting factor (MPF). The premature MPF destabilization and defects in other cell cycle regulators possibly cause meiotic instability in ovum soon after ovulation. The meiotic instability results in a pathological condition of abortive SOA and deteriorates ovum quality. These ova are unfit for fertilization and limit reproductive outcome in several mammalian species including human. Therefore, global attention is required to identify the underlying causes in greater details in order to address the problem of meiotic instability in ova of several mammalian species icluding human. Moreover, these activated ova may be used to create parthenogenetic embryonic stem cell lines in vitro for the use in regenerative medicine.Graphical abstract.
Collapse
|
13
|
Liess AKL, Kucerova A, Schweimer K, Schlesinger D, Dybkov O, Urlaub H, Mansfeld J, Lorenz S. Dimerization regulates the human APC/C-associated ubiquitin-conjugating enzyme UBE2S. Sci Signal 2020; 13:eaba8208. [PMID: 33082289 PMCID: PMC7613103 DOI: 10.1126/scisignal.aba8208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
At the heart of protein ubiquitination cascades, ubiquitin-conjugating enzymes (E2s) form reactive ubiquitin-thioester intermediates to enable efficient transfer of ubiquitin to cellular substrates. The precise regulation of E2s is thus crucial for cellular homeostasis, and their deregulation is frequently associated with tumorigenesis. In addition to driving substrate ubiquitination together with ubiquitin ligases (E3s), many E2s can also autoubiquitinate, thereby promoting their own proteasomal turnover. To investigate the mechanisms that balance these disparate activities, we dissected the regulatory dynamics of UBE2S, a human APC/C-associated E2 that ensures the faithful ubiquitination of cell cycle regulators during mitosis. We uncovered a dimeric state of UBE2S that confers autoinhibition by blocking a catalytically critical ubiquitin binding site. Dimerization is stimulated by the lysine-rich carboxyl-terminal extension of UBE2S that is also required for the recruitment of this E2 to the APC/C and is autoubiquitinated as substrate abundance becomes limiting. Consistent with this mechanism, we found that dimerization-deficient UBE2S turned over more rapidly in cells and did not promote mitotic slippage during prolonged drug-induced mitotic arrest. We propose that dimerization attenuates the autoubiquitination-induced turnover of UBE2S when the APC/C is not fully active. More broadly, our data illustrate how the use of mutually exclusive macromolecular interfaces enables modulation of both the activities and the abundance of E2s in cells to facilitate precise ubiquitin signaling.
Collapse
Affiliation(s)
- Anna K L Liess
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | - Alena Kucerova
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Dörte Schlesinger
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Olexandr Dybkov
- Department for Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, 37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, 37077 Göttingen, Germany
- Bioanalytics Institute for Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Jörg Mansfeld
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany.
- Institute of Cancer Research, London SW7 3RP, UK
| | - Sonja Lorenz
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
14
|
VanGenderen C, Harkness TAA, Arnason TG. The role of Anaphase Promoting Complex activation, inhibition and substrates in cancer development and progression. Aging (Albany NY) 2020; 12:15818-15855. [PMID: 32805721 PMCID: PMC7467358 DOI: 10.18632/aging.103792] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
The Anaphase Promoting Complex (APC), a multi-subunit ubiquitin ligase, facilitates mitotic and G1 progression, and is now recognized to play a role in maintaining genomic stability. Many APC substrates have been observed overexpressed in multiple cancer types, such as CDC20, the Aurora A and B kinases, and Forkhead box M1 (FOXM1), suggesting APC activity is important for cell health. We performed BioGRID analyses of the APC coactivators CDC20 and CDH1, which revealed that at least 69 proteins serve as APC substrates, with 60 of them identified as playing a role in tumor promotion and 9 involved in tumor suppression. While these substrates and their association with malignancies have been studied in isolation, the possibility exists that generalized APC dysfunction could result in the inappropriate stabilization of multiple APC targets, thereby changing tumor behavior and treatment responsiveness. It is also possible that the APC itself plays a crucial role in tumorigenesis through its regulation of mitotic progression. In this review the connections between APC activity and dysregulation will be discussed with regards to cell cycle dysfunction and chromosome instability in cancer, along with the individual roles that the accumulation of various APC substrates may play in cancer progression.
Collapse
Affiliation(s)
- Cordell VanGenderen
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Troy Anthony Alan Harkness
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Terra Gayle Arnason
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.,Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
15
|
Ubiquitin chain-elongating enzyme UBE2S activates the RING E3 ligase APC/C for substrate priming. Nat Struct Mol Biol 2020; 27:550-560. [PMID: 32393902 PMCID: PMC7293561 DOI: 10.1038/s41594-020-0424-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/25/2020] [Indexed: 01/19/2023]
Abstract
The interplay between E2 and E3 enzymes regulates the polyubiquitination of substrates in eukaryotes. Among the several RING-domain E3 ligases in humans, many utilize two distinct E2s for polyubiquitination. For example, the cell cycle regulatory E3, human Anaphase-Promoting Complex/Cyclosome (APC/C), relies on UBE2C to prime substrates with ubiquitin (Ub) and UBE2S to extend polyubiquitin chains. However, the potential coordination between these steps in ubiquitin chain formation remains undefined. While numerous studies have unveiled how RING E3s stimulate individual E2s for Ub transfer, here we change perspective to describe a case where the chain-elongating E2 UBE2S feeds back and directly stimulates the E3 APC/C to promote substrate priming and subsequent multiubiquitination by UBE2C. Our work reveals an unexpected paradigm for the mechanisms of RING E3-dependent ubiquitination and for the diverse and complex interrelationship between components of the ubiquitination cascade.
Collapse
|
16
|
mir-320b rs755613466 T>C and mir-27a rs780199251 G>A polymorphisms and the risk of IVF failure in Kurdish women. Mol Biol Rep 2020; 47:1751-1758. [PMID: 32006196 DOI: 10.1007/s11033-020-05266-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/18/2020] [Indexed: 12/27/2022]
Abstract
In vitro fertilization failure is not only the cause of despair among couples and individuals undergoing the treatment, it has also been contributing to the impediment of assistive reproductive technologies' development. MicroRNAs (miRNAs) have been linked to significant events in the reproduction course. The identification of miRNA polymorphisms may provide a good lead for the potential of diagnosis and treatment of unidentified in vitro fertilization (IVF) failure causes. The aim of our study is to explore the association between miRNA polymorphisms (mir-320b T>C and mir-27a G >A) and IVF failure. Our case-control study consisted of 200 Kurdish women in total, 100 with IVF failure and the other 100 control who have had at least two successful pregnancies and no history of pregnancy loss, we used tetra amplification refractory mutation system PCR to identify the polymorphisms within the groups. The TT genotype of mir-320b was found more frequently in IVF failure patients when compared to the healthy women (OR 8.07, CI 2.18-29.78, P = 0.001) and T allele was more present in the case group (OR 1.83, CI 91.04-2.12, P = 0.034), however mir-27a seemed to show no association with IVF failure in regards to genotype and allele frequencies. The difference in genotype and allele frequencies of mir-320b of the two groups may indicate that it has an effect on the target mRNAs and alter the implantation of embryo during IVF cycles.
Collapse
|
17
|
Qin Y, Du J, Fan C. Ube2S regulates Wnt/β-catenin signaling and promotes the progression of non-small cell lung cancer. Int J Med Sci 2020; 17:274-279. [PMID: 32038111 PMCID: PMC6990889 DOI: 10.7150/ijms.40243] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/19/2019] [Indexed: 11/05/2022] Open
Abstract
Ubiquitin conjugating enzyme E2S (Ube2S) plays important roles in cancer development in some malignant tumors. However, the functions and related molecular network of Ube2S in non-small cell lung cancer are not fully understood. In the current study, we examined the expression of Ube2S in non-small cell lung cancer and its clinicopathological significance. We also investigated the molecules and pathways regulated by Ube2S. An immunostaining study showed that the positive rate of Ube2s expression in lung cancer tissues was higher than that in normal lung tissues (p < 0.05). Upregulated Ube2S expression in cancer tissues significantly correlated with clinical progression (TNM III versus I + II), lymph node metastasis, and shorter survival time of the patients (p < 0.05). When Ube2S was overexpressed in A549 cells, the abilities of these cells to proliferate and migrate were increased (p < 0.05). Moreover, Ube2S significantly upregulated the expression of β-catenin, cyclin D1, and MMP7 (novel molecules of the Wnt/β-catenin pathway), and the activity of this pathway (p < 0.05). In addition, a Wnt/β-catenin signaling inhibitor effectively abolished the function of Ube2S. These results indicate that Ube2S may be a novel marker contributing to lung cancer development, possibly through regulating canonical Wnt signaling.
Collapse
Affiliation(s)
- Yanan Qin
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, 110001, Shenyang, China
| | - Jiang Du
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, 110001, Shenyang, China
| | - Chuifeng Fan
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, 110001, Shenyang, China
| |
Collapse
|
18
|
Meng TG, Lei WL, Li J, Wang F, Zhao ZH, Li A, Wang ZB, Sun QY, Ou XH. Degradation of Ccnb3 is essential for maintenance of MII arrest in oocyte. Biochem Biophys Res Commun 2019; 521:265-269. [PMID: 31640856 DOI: 10.1016/j.bbrc.2019.10.124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
Abstract
Before fertilization, ovulated mammalian oocytes are arrested at the metaphase of second meiosis (MII), which is maintained by the so-called cytostatic factor (CSF). It is well known that the continuous synthesis and accumulation of cyclin B is critical for maintaining the CSF-mediated MII arrest. Recent studies by us and others have shown that Ccnb3 is required for the metaphase-to-anaphase transition during the first meiosis of mouse oocytes, but whether Ccnb3 plays a role in MII arrest and exit remains unknown. Here, we showed that the protein level of Ccnb3 gradually decreased during oocyte meiotic maturation, and exogenous expression of Ccnb3 led to release of MII arrest, degradation of securin, separation of sister chromatids, extrusion of the second polar body (PB2), and finally entry into interphase. These phenotypes could be rescued by inhibition of Wee1B or CDK2. Our results indicate that Ccnb3 plays a critical regulatory role in MII arrest and exit in mouse oocytes.
Collapse
Affiliation(s)
- Tie-Gang Meng
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wen-Long Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Feng Wang
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zheng-Hui Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Ang Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiang-Hong Ou
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
| |
Collapse
|
19
|
Liess AKL, Kucerova A, Schweimer K, Yu L, Roumeliotis TI, Diebold M, Dybkov O, Sotriffer C, Urlaub H, Choudhary JS, Mansfeld J, Lorenz S. Autoinhibition Mechanism of the Ubiquitin-Conjugating Enzyme UBE2S by Autoubiquitination. Structure 2019; 27:1195-1210.e7. [PMID: 31230944 DOI: 10.1016/j.str.2019.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/01/2019] [Accepted: 05/17/2019] [Indexed: 12/16/2022]
Abstract
Ubiquitin-conjugating enzymes (E2s) govern key aspects of ubiquitin signaling. Emerging evidence suggests that the activities of E2s are modulated by posttranslational modifications; the structural underpinnings, however, are largely unclear. Here, we unravel the structural basis and mechanistic consequences of a conserved autoubiquitination event near the catalytic center of E2s, using the human anaphase-promoting complex/cyclosome-associated UBE2S as a model system. Crystal structures we determined of the catalytic ubiquitin carrier protein domain combined with MD simulations reveal that the active-site region is malleable, which permits an adjacent ubiquitin acceptor site, Lys+5, to be ubiquitinated intramolecularly. We demonstrate by NMR that the Lys+5-linked ubiquitin inhibits UBE2S by obstructing its reloading with ubiquitin. By immunoprecipitation, quantitative mass spectrometry, and siRNA-and-rescue experiments we show that Lys+5 ubiquitination of UBE2S decreases during mitotic exit but does not influence proteasomal turnover of this E2. These findings suggest that UBE2S activity underlies inherent regulation during the cell cycle.
Collapse
Affiliation(s)
- Anna K L Liess
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Alena Kucerova
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Lu Yu
- Functional Proteomics Group, The Institute of Cancer Research, London SW3 6JB, UK
| | | | - Mathias Diebold
- Institute of Pharmacy and Food Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Olexandr Dybkov
- Department for Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, 37077 Göttingen, Germany
| | - Christoph Sotriffer
- Institute of Pharmacy and Food Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Henning Urlaub
- Group for Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen, 37077 Göttingen, Germany; Proteomics Service Facility, Georg-August-Universität, Göttingen, 37077 Göttingen, Germany
| | - Jyoti S Choudhary
- Functional Proteomics Group, The Institute of Cancer Research, London SW3 6JB, UK
| | - Jörg Mansfeld
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Sonja Lorenz
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
20
|
Lin M, Lei T, Zheng J, Chen S, Du L, Xie H. UBE2S mediates tumor progression via SOX6/β-Catenin signaling in endometrial cancer. Int J Biochem Cell Biol 2019; 109:17-22. [PMID: 30690078 DOI: 10.1016/j.biocel.2019.01.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 12/24/2022]
Abstract
Dysregulation of ubiquitin-conjugating enzyme E2S (UBE2S) contributes to tumor progression. However, its clinical significance and biological function in endometrial cancer (EMC) remain unclear. Here, we show that UBE2S is upregulated in EMC and exhibits oncogenic activities via activation of SOX6/β-Catenin signaling. High expression of UBE2S is significantly associated with poor prognosis in two independent cohorts consisting of a total of 773 patients with EMC. in vitro studies demonstrate that ectopic expression of UBE2S promotes cell proliferation and migration, whereas knockdown of UBE2S results in opposite phenotypes. Overexpression of UBE2S in EMC cells enhances the nuclear translocation of β-Catenin, and subsequently induces the expression of c-Myc and Cyclin D1. Inhibition of β-Catenin by XAV-939 markedly attenuates UBE2S-promoted cell growth. Mechanistically, UBE2S suppresses the expression of SOX6 to trigger β-Catenin signaling. Re-expression of SOX6 in UBE2S-expressing EMC cells abolishes the nuclear localization of β-Catenin. Collectively, these data suggest UBE2S may serve as a promising prognostic factor and function as an oncogene in EMC. The newly identified UBE2S/SOX6/β-Catenin axis represents a new potential therapeutic target for EMC intervention.
Collapse
Affiliation(s)
- Meifang Lin
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ting Lei
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ju Zheng
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shuqin Chen
- Department of Gynecology & Obstetrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liu Du
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hongning Xie
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
21
|
Heim A, Tischer T, Mayer TU. Calcineurin promotes APC/C activation at meiotic exit by acting on both XErp1 and Cdc20. EMBO Rep 2018; 19:embr.201846433. [PMID: 30373936 DOI: 10.15252/embr.201846433] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 11/09/2022] Open
Abstract
Vertebrate oocytes await fertilization arrested at metaphase of the second meiotic division. Fertilization triggers a transient calcium wave, which induces the activation of the anaphase-promoting complex/cyclosome (APC/C) and its co-activator Cdc20 resulting in the destruction of cyclin B and hence meiotic exit. Two calcium-dependent enzymes are implicated in fertilization-induced APC/CC dc20 activation: calcium-/calmodulin-dependent kinase type II (CaMKII) and calcineurin (CaN). While the role of CaMKII in targeting the APC/C inhibitor XErp1/Emi2 for destruction is well-established, it remained elusive how CaN affects APC/CC dc20 activation. Here, we discover that CaN contributes to APC/CC dc20 activation in Xenopus laevis oocytes by two independent but interrelated mechanisms. First, it facilitates the degradation of XErp1 by dephosphorylating it at a site that is part of a phosphorylation-dependent recruiting motif for PP2A-B'56, which antagonizes inhibitory phosphorylation of XErp1. Second, it dephosphorylates Cdc20 at an inhibitory site, thereby supporting its APC/C-activating function. Thus, our comprehensive analysis reveals that CaN contributes to timely APC/C activation at fertilization by both negatively regulating the APC/C inhibitory activity of XErp1 and positively regulating the APC/C-activating function of Cdc20.
Collapse
Affiliation(s)
- Andreas Heim
- Department of Biology, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | | | - Thomas U Mayer
- Department of Biology, University of Konstanz, Konstanz, Germany .,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
22
|
Pan YH, Yang M, Liu LP, Wu DC, Li MY, Su SG. UBE2S enhances the ubiquitination of p53 and exerts oncogenic activities in hepatocellular carcinoma. Biochem Biophys Res Commun 2018; 503:895-902. [PMID: 29928880 DOI: 10.1016/j.bbrc.2018.06.093] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 06/18/2018] [Indexed: 12/18/2022]
Abstract
Ubiquitin-conjugating enzyme E2S (UBE2S) plays pivotal roles in the progression of human cancers. However, its clinical significance and role in hepatocellular carcinoma (HCC) remain unknown. Here, we show that UBE2S is upregulated in HCC and exhibits oncogenic activities via enhancing the ubiquitination of p53. Increased expression of UBE2S was significantly correlated with higher serum AFP level, higher pathological grade, advanced TNM stage, larger tumor size, vascular invasion and unfavorable patient survivals in two independent cohorts containing a total of 845 patients with HCC. Multivariate analyses by cox regression model suggested UBE2S as an independent factor for overall survival. In vitro experiments demonstrated that UBE2S overexpression promoted, whereas UBE2S knockdown suppressed cell proliferation and migration via modulation of p53 signaling pathway. Ectopic expression of UBE2S upregulated the expression of p53 and its downstream effectors, such as p21 and Cyclin D1. Mechanistically, UBE2S enhanced the ubiquitination of p53 protein to facilitate its degradation in HCC cells. Re-expression of p53 partially attenuated the UBE2S-promoted malignant phenotypes. Collectively, our study provides compelling evidence that UBE2S is a potential prognostic factor and functions as an oncogene in HCC.
Collapse
Affiliation(s)
- Ying-Hua Pan
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mei Yang
- Department of Gastroenterology, Dongguan Third People's Hospital, Dongguan, China
| | - Li-Ping Liu
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, Guangdong Province, China
| | - Dan-Chun Wu
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ming-Yue Li
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, Guangdong Province, China
| | - Shu-Guang Su
- Department of Pathology, The Affiliated Hexian Memorial Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
23
|
KISHIMOTO T. MPF-based meiotic cell cycle control: Half a century of lessons from starfish oocytes. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:180-203. [PMID: 29643273 PMCID: PMC5968197 DOI: 10.2183/pjab.94.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/21/2018] [Indexed: 05/23/2023]
Abstract
In metazoans that undergo sexual reproduction, genomic inheritance is ensured by two distinct types of cell cycle, mitosis and meiosis. Mitosis maintains the genomic ploidy in somatic cells reproducing within a generation, whereas meiosis reduces by half the ploidy in germ cells to prepare for successive generations. The meiotic cell cycle is believed to be a derived form of the mitotic cell cycle; however, the molecular mechanisms underlying both of these processes remain elusive. My laboratory has long studied the meiotic cell cycle in starfish oocytes, particularly the control of meiotic M-phase by maturation- or M phase-promoting factor (MPF) and the kinase cyclin B-associated Cdk1 (cyclin B-Cdk1). Using this system, we have unraveled the molecular principles conserved in metazoans that modify M-phase progression from the mitotic type to the meiotic type needed to produce a haploid genome. Furthermore, we have solved a long-standing enigma concerning the molecular identity of MPF, a universal inducer of M-phase both in mitosis and meiosis of eukaryotic cells.
Collapse
Affiliation(s)
- Takeo KISHIMOTO
- Professor Emeritus of Tokyo Institute of Technology
- Visiting Professor of Ochanomizu University, Japan
- Correspondence should be addressed: T. Kishimoto, Science and Education Center, Ochanomizu University, Ootsuka 2-1-1, Bunkyo-ku, Tokyo 112-8610, Japan (e-mail: ; )
| |
Collapse
|
24
|
Zhang QH, Yuen WS, Adhikari D, Flegg JA, FitzHarris G, Conti M, Sicinski P, Nabti I, Marangos P, Carroll J. Cyclin A2 modulates kinetochore-microtubule attachment in meiosis II. J Cell Biol 2017; 216:3133-3143. [PMID: 28819014 PMCID: PMC5626527 DOI: 10.1083/jcb.201607111] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 07/04/2017] [Accepted: 07/28/2017] [Indexed: 12/17/2022] Open
Abstract
Cyclin A2 is a crucial mitotic Cdk regulatory partner that coordinates entry into mitosis and is then destroyed in prometaphase within minutes of nuclear envelope breakdown. The role of cyclin A2 in female meiosis and its dynamics during the transition from meiosis I (MI) to meiosis II (MII) remain unclear. We found that cyclin A2 decreases in prometaphase I but recovers after the first meiotic division and persists, uniquely for metaphase, in MII-arrested oocytes. Conditional deletion of cyclin A2 from mouse oocytes has no discernible effect on MI but leads to disrupted MII spindles and increased merotelic attachments. On stimulation of exit from MII, there is a dramatic increase in lagging chromosomes and an inhibition of cytokinesis. These defects are associated with an increase in microtubule stability in MII spindles, suggesting that cyclin A2 mediates the fidelity of MII by maintaining microtubule dynamics during the rapid formation of the MII spindle.
Collapse
Affiliation(s)
- Qing-Hua Zhang
- Development and Stem Cell Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia .,Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Wai Shan Yuen
- Development and Stem Cell Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Deepak Adhikari
- Development and Stem Cell Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Jennifer A Flegg
- Monash Academy for Cross and Interdisciplinary Mathematical Applications, Monash University, Melbourne, Victoria, Australia
| | - Greg FitzHarris
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Department of Obstetrics and Gynaecology, University of Montréal, Montréal, Québec, Canada
| | - Marco Conti
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA
| | - Piotr Sicinski
- Dana-Farber Cancer Institute, Boston, MA.,Department of Genetics, Harvard Medical School, Boston, MA
| | - Ibtissem Nabti
- Department of Cell and Developmental Biology, University College London, London, England, UK.,Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Petros Marangos
- Department of Cell and Developmental Biology, University College London, London, England, UK.,Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece.,Department of Biomedical Research, Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology, Ioannina, Greece
| | - John Carroll
- Development and Stem Cell Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia .,Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia.,Department of Cell and Developmental Biology, University College London, London, England, UK
| |
Collapse
|
25
|
Tiwari M, Chaube SK. Maturation promoting factor destabilization mediates human chorionic gonadotropin induced meiotic resumption in rat oocytes. Dev Growth Differ 2017; 59:603-614. [PMID: 28815566 DOI: 10.1111/dgd.12387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/21/2017] [Accepted: 06/24/2017] [Indexed: 12/13/2022]
Abstract
Human chorionic gonadotropin (hCG) mimics the action of luteinizing hormone (LH) and triggers meiotic maturation and ovulation in mammals. The mechanism by which hCG triggers meiotic resumption in mammalian oocytes remains poorly understood. We aimed to find out the impact of hCG surge on morphological changes, adenosine 3',5'-cyclic monophosphate (cAMP), guanosine 3',5'-cyclic monophosphate (cGMP), cell division cycle 25B (Cdc25B), Wee1, early mitotic inhibitor 2 (Emi2), anaphase-promoting complex/cyclosome (APC/C), meiotic arrest deficient protein 2 (MAD2), phosphorylation status of cyclin-dependent kinase 1 (Cdk1), its activity and cyclin B1 expression levels during meiotic resumption from diplotene as well as metaphase-II (M-II) arrest in cumulus oocyte complexes (COCs). Our data suggest that hCG surge increased cyclic nucleotides level in encircling granulosa cells but decreased their level in oocyte. The reduced intraoocyte cyclic nucleotides level is associated with the decrease of Cdc25B, Thr161 phosphorylated Cdk1 and Emi2 expression levels. On the other hand, hCG surge increased Wee1, Thr14/Tyr15 phosphorylated Cdk1, APC/C as well as MAD2 expression levels. The elevated APC/C activity reduced cyclin B1 level. The changes in phosphorylation status of Cdk1 and reduced cyclin B1 level might have resulted in maturation promoting factor (MPF) destabilization. The destabilized MPF finally triggered resumption of meiosis from diplotene as well as M-II arrest in rat oocytes.
Collapse
Affiliation(s)
- Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, U.P., India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, U.P., India
| |
Collapse
|
26
|
Prasad S, Koch B, Chaube SK. Maturation promoting factor destabilization facilitates postovulatory aging-mediated abortive spontaneous egg activation in rat. Dev Growth Differ 2016; 58:293-302. [DOI: 10.1111/dgd.12272] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/08/2016] [Accepted: 02/08/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Shilpa Prasad
- Department of Zoology; Biochemistry Unit, Cell Physiology Laboratory; Varanasi 221005 U.P. India
| | - Biplob Koch
- Department of Zoology; Genotoxicology and Cancer Biology Laboratory; Institute of Science; Banaras Hindu University; Varanasi 221005 U.P. India
| | - Shail K. Chaube
- Department of Zoology; Biochemistry Unit, Cell Physiology Laboratory; Varanasi 221005 U.P. India
| |
Collapse
|
27
|
Prasad S, Koch B, Chaube SK. Involvement of Cyclin-Dependent Kinase 1 during Postovulatory Aging-Mediated Abortive Spontaneous Egg Activation in Rat Eggs Cultured In Vitro. Cell Reprogram 2016; 18:96-107. [PMID: 26982431 DOI: 10.1089/cell.2015.0068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Freshly ovulated rat eggs do not remain arrested at metaphase II (MII) and undergo exit from MII arrest with initiation of extrusion of the second polar body (PBII), a characteristic feature of abortive spontaneous egg activation (SEA). The biochemical and molecular changes during postovulatory aging-mediated abortive SEA remain poorly understood. We investigated the morphological, cellular, and molecular changes during postovulatory aging-mediated abortive SEA in eggs cultured in vitro. Our results suggest that postovulatory egg aging in vitro induced initiation of PBII extrusion in a time-dependent manner. Postovulatory aging increased Wee1 kinase and Thr-14/Tyr-15 phosphorylated cyclin-dependent kinase 1 (Cdk1) levels, whereas Thr-161 phosphorylated Cdk1 and cyclin B1 levels were significantly decreased in eggs cultured in vitro. The early mitotic inhibitor 2 (Emi2) level was significantly reduced, but anaphase promoting complex/cyclosome (APC/C) and mitotic arrest deficient protein (MAD2) levels were increased initially and then reduced during a later period of in vitro culture. These results suggest that an increased Wee1 kinase level modulated the specific phosphorylation status of Cdk1, increased Cdk1 activity, and decreased the cyclin B1 level. Furthermore, the decreased Emi2 level was associated with an increased level of APC/C and decreased level of cyclin B1, which resulted in maturation promoting factor (MPF) destabilization and finally led to postovulatory aging-mediated abortive SEA in rat eggs cultured in vitro.
Collapse
Affiliation(s)
- Shilpa Prasad
- 1 Cell Physiology Laboratory, Biochemistry Unit, Department of Zoology, Institute of Science, Banaras Hindu University , Varanasi-221005, Uttar Pradesh, India
| | - Biplob Koch
- 2 Genotoxicology and Cancer Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University , Varanasi-221005, Uttar Pradesh, India
| | - Shail K Chaube
- 1 Cell Physiology Laboratory, Biochemistry Unit, Department of Zoology, Institute of Science, Banaras Hindu University , Varanasi-221005, Uttar Pradesh, India
| |
Collapse
|
28
|
Jia JL, Han YH, Kim HC, Ahn M, Kwon JW, Luo Y, Gunasekaran P, Lee SJ, Lee KS, Kyu Bang J, Kim NH, Namgoong S. Structural basis for recognition of Emi2 by Polo-like kinase 1 and development of peptidomimetics blocking oocyte maturation and fertilization. Sci Rep 2015; 5:14626. [PMID: 26459104 PMCID: PMC4602232 DOI: 10.1038/srep14626] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/01/2015] [Indexed: 11/08/2022] Open
Abstract
In a mammalian oocyte, completion of meiosis is suspended until fertilization by a sperm, and the cell cycle is arrested by a biochemical activity called cytostatic factor (CSF). Emi2 is one of the CSFs, and it maintains the protein level of maturation promoting factor (MPF) by inhibiting ubiquitin ligase anaphase promoting complex/cyclosome (APC/C). Degradation of Emi2 via ubiquitin-mediated proteolysis after fertilization requires phosphorylation by Polo-like kinase 1 (Plk1). Therefore, recognition and phosphorylation of Emi2 by Plk1 are crucial steps for cell cycle resumption, but the binding mode of Emi2 and Plk1 is poorly understood. Using biochemical assays and X-ray crystallography, we found that two phosphorylated threonines (Thr(152) and Thr(176)) in Emi2 are each responsible for the recruitment of one Plk1 molecule by binding to its C-terminal polo box domain (PBD). We also found that meiotic maturation and meiosis resumption via parthenogenetic activation were impaired when Emi2 interaction with Plk1-PBD was blocked by a peptidomimetic called 103-8. Because of the inherent promiscuity of kinase inhibitors, our results suggest that targeting PBD of Plk1 may be an effective strategy for the development of novel and specific contraceptive agents that block oocyte maturation and/or fertilization.
Collapse
Affiliation(s)
- Jia-Lin Jia
- Department of Animal Sciences, Chungbuk National University, Republic of Korea
| | - Young-Hyun Han
- Department of Animal Sciences, Chungbuk National University, Republic of Korea
| | - Hak-Cheol Kim
- Department of Animal Sciences, Chungbuk National University, Republic of Korea
| | - Mija Ahn
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Korea
| | - Jeong-Woo Kwon
- Department of Animal Sciences, Chungbuk National University, Republic of Korea
| | - Yibo Luo
- Department of Animal Sciences, Chungbuk National University, Republic of Korea
| | | | - Soo-Jae Lee
- College of Pharmacy, Chungbuk National University, Republic of Korea
| | - Kyung S. Lee
- National Cancer Institute, National Institute of Health, Rockville, Maryland, United States
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Republic of Korea
| | - Suk Namgoong
- Department of Animal Sciences, Chungbuk National University, Republic of Korea
| |
Collapse
|
29
|
Ben-Eliezer I, Pomerantz Y, Galiani D, Nevo N, Dekel N. Appropriate expression of Ube2C and Ube2S controls the progression of the first meiotic division. FASEB J 2015. [PMID: 26207029 DOI: 10.1096/fj.15-274522] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Timely degradation of protein regulators of the cell cycle is essential for the completion of cell division. This degradation is promoted by the E3 anaphase-promoting complex/cyclosome (APC/C) and mediated by the E2 ubiquitin-conjugating enzymes (Ube2s). Unlike the ample information gathered regarding the meiotic E3 APC/C, the E2s participating in this cell division have never been studied. We identified Ube2C, -S, and -D3 as the E2 enzymes that regulate APC/C activity during meiosis of mouse oocytes. Their depletion reduces the levels of the first meiotic cytokinesis by 50%, and their overexpression doubles and accelerates its completion (50% as compared with 4% at 11 h). We also demonstrated that these E2s take part in ensuring appropriate spindle formation. It is noteworthy that high levels of Ube2C bring about the resumption of the first meiotic division, regardless of the formation of the spindle, overriding the spindle assembly checkpoint. Thus, alongside their canonical function in protein degradation, Ube2C and -S also control the extrusion of the first polar body. Overall, our study characterizes new regulators and unveils the novel roles they play during the meiotic division. These findings shed light on faithful chromosome segregation in oocytes and may contribute to better understanding of aneuploidy and its consequent genetic malformations.
Collapse
Affiliation(s)
- Inbal Ben-Eliezer
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Pomerantz
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Dalia Galiani
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Nava Nevo
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Nava Dekel
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
30
|
Sivakumar S, Gorbsky GJ. Spatiotemporal regulation of the anaphase-promoting complex in mitosis. Nat Rev Mol Cell Biol 2015; 16:82-94. [PMID: 25604195 DOI: 10.1038/nrm3934] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The appropriate timing of events that lead to chromosome segregation during mitosis and cytokinesis is essential to prevent aneuploidy, and defects in these processes can contribute to tumorigenesis. Key mitotic regulators are controlled through ubiquitylation and proteasome-mediated degradation. The APC/C (anaphase-promoting complex; also known as the cyclosome) is an E3 ubiquitin ligase that has a crucial function in the regulation of the mitotic cell cycle, particularly at the onset of anaphase and during mitotic exit. Co-activator proteins, inhibitor proteins, protein kinases and phosphatases interact with the APC/C to temporally and spatially control its activity and thus ensure accurate timing of mitotic events.
Collapse
Affiliation(s)
- Sushama Sivakumar
- Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, Oklahoma 73104, USA
| | - Gary J Gorbsky
- Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
31
|
Feng R, Sang Q, Zhu Y, Fu W, Liu M, Xu Y, Shi H, Xu Y, Qu R, Chai R, Shao R, Jin L, He L, Sun X, Wang L. MiRNA-320 in the human follicular fluid is associated with embryo quality in vivo and affects mouse embryonic development in vitro. Sci Rep 2015; 5:8689. [PMID: 25732513 PMCID: PMC4346788 DOI: 10.1038/srep08689] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/29/2015] [Indexed: 12/29/2022] Open
Abstract
Previous work from our laboratory demonstrated the existence of miRNAs in human follicular fluid. In the current study, we have sought to identify miRNAs that might affect oocyte/embryo quality in patients undergoing intracytoplasmic sperm injection and to investigate their roles in in vitro fertilization outcomes in mouse oocytes. 53 samples were classified as Group 1 (high quality) if the day-3 embryos had seven and more cells or as Group 2 (low quality) if the embryos had six and fewer cells. TaqMan Human microRNAs cards and qRT-PCR were performed to verify differently expressed miRNAs. The function of the corresponding miRNA was investigated in mouse oocytes by injecting them with miRNA-inhibitor oligonucleotides. We found that hsa-miR-320a and hsa-miR-197 had significantly higher expression levels in the Group 1 follicular fluids than in Group 2 (p = 0.0073 and p = 0.008, respectively). Knockdown of mmu-miR-320 in mouse oocytes strongly decreased the proportions of MII oocytes that developed into two-cell and blastocyst stage embryos (p = 0.0048 and p = 0.0069, respectively). Wnt signaling pathway components had abnormal expression level in miR-320 inhibitor-injected oocytes. This study provides the first evidence that miRNAs in human follicular fluid are indicative of and can influence embryo quality.
Collapse
Affiliation(s)
- Ruizhi Feng
- 1] State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China [2] Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qing Sang
- 1] State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China [2] Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yan Zhu
- Guangdong No.2 provincial people's hospital, Guangzhou, China
| | - Wei Fu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Miao Liu
- Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Yan Xu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Huijuan Shi
- Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Yao Xu
- 1] State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China [2] Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ronggui Qu
- 1] State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China [2] Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Ruijin Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Li Jin
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Lin He
- 1] Institutes of Biomedical Sciences, Fudan University, Shanghai, China [2] Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Lei Wang
- 1] State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China [2] Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Suzuki K, Sako K, Akiyama K, Isoda M, Senoo C, Nakajo N, Sagata N. Identification of non-Ser/Thr-Pro consensus motifs for Cdk1 and their roles in mitotic regulation of C2H2 zinc finger proteins and Ect2. Sci Rep 2015; 5:7929. [PMID: 25604483 PMCID: PMC4300507 DOI: 10.1038/srep07929] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/22/2014] [Indexed: 11/09/2022] Open
Abstract
The cyclin B-dependent protein kinase Cdk1 is a master regulator of mitosis and phosphorylates numerous proteins on the minimal consensus motif Ser/Thr-Pro (S/T-P). At least in several proteins, however, not well-defined motifs lacking a Pro in the +1 position, referred herein to as non-S/T-P motifs, have been shown to be phosphorylated by Cdk1. Here we show that non-S/T-P motifs in fact form consensus sequences for Cdk1 and probably play roles in mitotic regulation of physiologically important proteins. First, we show, by in vitro kinase assays, that previously identified non-S/T-P motifs all harbour one or more C-terminal Arg/Lys residues essential for their phosphorylation by Cdk1. Second, using Arg/Lys-scanning oriented peptide libraries, we demonstrate that Cdk1 phosphorylates a minimal sequence S/T-X-X-R/K and more favorable sequences (P)-X-S/T-X-[R/K]2–5 as its non-S/T-P consensus motifs. Third, on the basis of these results, we find that highly conserved linkers (typically, T-G-E-K-P) of C2H2 zinc finger proteins and a nuclear localization signal-containing sequence (matching P-X-S-X-[R/K]5) of the cytokinesis regulator Ect2 are inhibitorily phosphorylated by Cdk1, well accounting for the known mitotic regulation and function of the respective proteins. We suggest that non-S/T-P Cdk1 consensus motifs identified here may function to regulate many other proteins during mitosis.
Collapse
Affiliation(s)
- Kazuhiro Suzuki
- Department of Biology, Graduate School of Sciences, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Kosuke Sako
- Department of Biology, Graduate School of Sciences, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Kazuhiro Akiyama
- Department of Biology, Graduate School of Sciences, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Michitaka Isoda
- Department of Biology, Graduate School of Sciences, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Chiharu Senoo
- Department of Biology, Graduate School of Sciences, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Nobushige Nakajo
- Department of Biology, Graduate School of Sciences, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Noriyuki Sagata
- Department of Biology, Graduate School of Sciences, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| |
Collapse
|
33
|
Brown NG, Watson ER, Weissmann F, Jarvis MA, VanderLinden R, Grace CRR, Frye JJ, Qiao R, Dube P, Petzold G, Cho SE, Alsharif O, Bao J, Davidson IF, Zheng JJ, Nourse A, Kurinov I, Peters JM, Stark H, Schulman BA. Mechanism of polyubiquitination by human anaphase-promoting complex: RING repurposing for ubiquitin chain assembly. Mol Cell 2014; 56:246-260. [PMID: 25306923 DOI: 10.1016/j.molcel.2014.09.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 08/29/2014] [Accepted: 09/03/2014] [Indexed: 11/17/2022]
Abstract
Polyubiquitination by E2 and E3 enzymes is a predominant mechanism regulating protein function. Some RING E3s, including anaphase-promoting complex/cyclosome (APC), catalyze polyubiquitination by sequential reactions with two different E2s. An initiating E2 ligates ubiquitin to an E3-bound substrate. Another E2 grows a polyubiquitin chain on the ubiquitin-primed substrate through poorly defined mechanisms. Here we show that human APC's RING domain is repurposed for dual functions in polyubiquitination. The canonical RING surface activates an initiating E2-ubiquitin intermediate for substrate modification. However, APC engages and activates its specialized ubiquitin chain-elongating E2 UBE2S in ways that differ from current paradigms. During chain assembly, a distinct APC11 RING surface helps deliver a substrate-linked ubiquitin to accept another ubiquitin from UBE2S. Our data define mechanisms of APC/UBE2S-mediated polyubiquitination, reveal diverse functions of RING E3s and E2s, and provide a framework for understanding distinctive RING E3 features specifying ubiquitin chain elongation.
Collapse
Affiliation(s)
- Nicholas G Brown
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Edmond R Watson
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Florian Weissmann
- Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria
| | - Marc A Jarvis
- Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria
| | - Ryan VanderLinden
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Christy R R Grace
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jeremiah J Frye
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Renping Qiao
- Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria
| | - Prakash Dube
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; Department of 3D Electron Cryomicroscopy, Institute of Microbiology and Genetics, Georg-August Universität, 37077 Göttingen, Germany
| | - Georg Petzold
- Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria
| | - Shein Ei Cho
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Omar Alsharif
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ju Bao
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Iain F Davidson
- Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria
| | - Jie J Zheng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Amanda Nourse
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Igor Kurinov
- NE-CAT, Bldg. 436E, Department of Chemistry and Chemical Biology, Cornell University, Argonne, IL 60439, USA
| | | | - Holger Stark
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; Department of 3D Electron Cryomicroscopy, Institute of Microbiology and Genetics, Georg-August Universität, 37077 Göttingen, Germany.
| | - Brenda A Schulman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
34
|
The zinc-binding region (ZBR) fragment of Emi2 can inhibit APC/C by targeting its association with the coactivator Cdc20 and UBE2C-mediated ubiquitylation. FEBS Open Bio 2014; 4:689-703. [PMID: 25161877 PMCID: PMC4141206 DOI: 10.1016/j.fob.2014.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/16/2014] [Accepted: 06/30/2014] [Indexed: 01/21/2023] Open
Abstract
Overexpression of the ZBR fragment of Emi2, but not of Emi1, induces abnormal cell division. The Emi2 ZBR fragment impairs the association of the coactivator Cdc20 with APC/C. The Emi2 ZBR fragment inhibits ubiquitylation by the cullin-RING of APC/C and E2C. The Emi2 ZBR-specific residues for APC/C inhibitory activity have been identified.
Anaphase-promoting complex or cyclosome (APC/C) is a multisubunit ubiquitin ligase E3 that targets cell-cycle regulators. Cdc20 is required for full activation of APC/C in M phase, and mediates substrate recognition. In vertebrates, Emi2/Erp1/FBXO43 inhibits APC/C-Cdc20, and functions as a cytostatic factor that causes long-term M phase arrest of mature oocytes. In this study, we found that a fragment corresponding to the zinc-binding region (ZBR) domain of Emi2 inhibits cell-cycle progression, and impairs the association of Cdc20 with the APC/C core complex in HEK293T cells. Furthermore, we revealed that the ZBR fragment of Emi2 inhibits in vitro ubiquitin chain elongation catalyzed by the APC/C cullin-RING ligase module, the ANAPC2–ANAPC11 subcomplex, in combination with the ubiquitin chain-initiating E2, E2C/UBE2C/UbcH10. Structural analyses revealed that the Emi2 ZBR domain uses different faces for the two mechanisms. Thus, the double-faced ZBR domain of Emi2 antagonizes the APC/C function by inhibiting both the binding with the coactivator Cdc20 and ubiquitylation mediated by the cullin-RING ligase module and E2C. In addition, the tail region between the ZBR domain and the C-terminal RL residues [the post-ZBR (PZ) region] interacts with the cullin subunit, ANAPC2. In the case of the ZBR fragment of the somatic paralogue of Emi2, Emi1/FBXO5, these inhibitory activities against cell division and ubiquitylation were not observed. Finally, we identified two sets of key residues in the Emi2 ZBR domain that selectively exert each of the dual Emi2-specific modes of APC/C inhibition, by their mutation in the Emi2 ZBR domain and their transplantation into the Emi1 ZBR domain.
Collapse
|