1
|
Meng L, Jiang Y, You J, Chen Y, Guo S, Chen L, Ma J. PRMT1-methylated MSX1 phase separates to control palate development. Nat Commun 2025; 16:949. [PMID: 39843447 PMCID: PMC11754605 DOI: 10.1038/s41467-025-56327-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/16/2025] [Indexed: 01/24/2025] Open
Abstract
Little is known about the regulation and function of phase separation in craniofacial developmental disorders. MSX1 mutations are associated with human cleft palate, the most common craniofacial birth defect. Here, we show that MSX1 phase separation is a vertebrate-conserved mechanism underlying embryonic palatal fusion. Notably, MSX1 phase separation is triggered by its intrinsically disordered protein region (IDR) and regulated by PRMT1-catalyzed methylation, specifically asymmetric dimethylation of arginine in the MSX1 IDR including R150 and R157. Hypomethylated MSX1 due to methylation site mutations and PRMT1 deficiency consistently leads to abnormal MSX1 phase separation to form less dynamic gel-like condensates, resulting in proliferation defects of embryonic palatal mesenchymal cells and cleft palate. Besides, high frequency mutations in the MSX1 IDR, especially R157S, have been identified in humans with cleft palate. Overall, we reveal the function and regulatory pathway of MSX1 phase separation as a conserved mechanism underlying cleft palate, providing a proof-of-concept example of a phenotype-associated phase separation mechanism associated with craniofacial developmental disorders.
Collapse
Affiliation(s)
- Li Meng
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Yucheng Jiang
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Jiawen You
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Stomatological Hospital affiliated Suzhou Vocational Health College, Suzhou, China
| | - Yatao Chen
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shuyu Guo
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Liming Chen
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China.
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| | - Junqing Ma
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China.
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
He X, Liao Y, Yu G, Wang S, Bao Y. Genome-wide association study reveals the underlying regulatory mechanisms of red blood traits in Anadara granosa. BMC Genomics 2024; 25:931. [PMID: 39367301 PMCID: PMC11452991 DOI: 10.1186/s12864-024-10857-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Anadara granosa, commonly known as the blood clam, exhibits the unusual characteristic of having red blood among invertebrates. There is significant individual variation in blood color intensity among blood clams; individuals with vibrant red blood are deemed healthier and exhibit stronger stress resistance. However, the molecular basis underlying these red blood traits (RBTs) remains poorly understood. RESULTS In this study, we performed genome-wide association studies (GWAS) in a population of 300 A. granosa individuals, focusing on RBTs as measured by hemoglobin concentration (HC), total hemocyte count (THC), and heme concentration (HEME). Our analysis identified 18 single nucleotide polymorphisms (SNPs) correlated with RBTs, subsequently selected 117 candidate genes within a 100 kb flanking region of these SNPs, potentially involved in the RBTs of A. granosa. Moreover, we discovered two haplotype blocks specifically associated with THC and HEME. Further analysis revealed eight genes (Septin7, Hox5, Cbfa2t3, Avpr1b, Hhex, Eif2ak3, Glrk, and Rpl35a) that significantly influence RBTs. Notably, a heterozygous A/T mutation in the 3'UTR of Cbfa2t3 was found to promote blood cell proliferation. These genes suggest that the hematopoietic function plays a significant role in the variability of RBTs in A. granosa. CONCLUSIONS Our findings reveal a conservation of the regulatory mechanisms of RBTs between blood clams and vertebrates. The results not only provide a scientific basis for selective breeding in blood clams, but also offer deeper insights into the evolutionary mechanisms of RBTs in invertebrates.
Collapse
Affiliation(s)
- Xin He
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, 315604, China
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Yushan Liao
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Gaowei Yu
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Shi Wang
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Yongbo Bao
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, 315604, China.
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China.
| |
Collapse
|
3
|
Ruan T, Zhou R, Yang Y, Guo J, Jiang C, Wang X, Shen G, Dai S, Chen S, Shen Y. Deficiency of IQCH causes male infertility in humans and mice. eLife 2024; 12:RP88905. [PMID: 39028117 PMCID: PMC11259432 DOI: 10.7554/elife.88905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
IQ motif-containing proteins can be recognized by calmodulin (CaM) and are essential for many biological processes. However, the role of IQ motif-containing proteins in spermatogenesis is largely unknown. In this study, we identified a loss-of-function mutation in the novel gene IQ motif-containing H (IQCH) in a Chinese family with male infertility characterized by a cracked flagellar axoneme and abnormal mitochondrial structure. To verify the function of IQCH, Iqch knockout (KO) mice were generated via CRISPR-Cas9 technology. As expected, the Iqch KO male mice exhibited impaired fertility, which was related to deficient acrosome activity and abnormal structures of the axoneme and mitochondria, mirroring the patient phenotypes. Mechanistically, IQCH can bind to CaM and subsequently regulate the expression of RNA-binding proteins (especially HNRPAB), which are indispensable for spermatogenesis. Overall, this study revealed the function of IQCH, expanded the role of IQ motif-containing proteins in reproductive processes, and provided important guidance for genetic counseling and genetic diagnosis of male infertility.
Collapse
Affiliation(s)
- Tiechao Ruan
- Key Laboratory of Obstetrics, Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
- Department of Pediatrics, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Ruixi Zhou
- Key Laboratory of Obstetrics, Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
- Department of Pediatrics, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Yihong Yang
- Reproduction Medical Center of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan UniversityChengduChina
| | - Junchen Guo
- Sichuan University-The Chinese University of Hong Kong (SCU-CUHK) Joint Laboratory for Reproductive Medicine, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
- Reproductive Endocrinology and Regulation Laboratory, Department of Obstetric and Gynaecologic, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Chuan Jiang
- Key Laboratory of Obstetrics, Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Xiang Wang
- Key Laboratory of Obstetrics, Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Gan Shen
- Key Laboratory of Obstetrics, Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Siyu Dai
- Key Laboratory of Obstetrics, Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Suren Chen
- Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal UniversityBeijingChina
| | - Ying Shen
- Key Laboratory of Obstetrics, Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
- NHC Key Laboratory of Chronobiology, Sichuan UniversityChengduChina
| |
Collapse
|
4
|
Cavarocchi E, Sayou C, Lorès P, Cazin C, Stouvenel L, El Khouri E, Coutton C, Kherraf ZE, Patrat C, Govin J, Thierry-Mieg N, Whitfield M, Ray PF, Dulioust E, Touré A. Identification of IQCH as a calmodulin-associated protein required for sperm motility in humans. iScience 2023; 26:107354. [PMID: 37520705 PMCID: PMC10382937 DOI: 10.1016/j.isci.2023.107354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/23/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
Sperm fertilization ability mainly relies on proper sperm progression through the female genital tract and capacitation, which involves phosphorylation signaling pathways triggered by calcium and bicarbonate. We performed exome sequencing of an infertile asthenozoospermic patient and identified truncating variants in MAP7D3, encoding a microtubule-associated protein, and IQCH, encoding a protein of unknown function with enzymatic and signaling features. We demonstrate the deleterious impact of both variants on sperm transcripts and proteins from the patient. We show that, in vitro, patient spermatozoa could not induce the phosphorylation cascades associated with capacitation. We also provide evidence for IQCH association with calmodulin, a well-established calcium-binding protein that regulates the calmodulin kinase. Notably, we describe IQCH spatial distribution around the sperm axoneme, supporting its function within flagella. Overall, our work highlights the cumulative pathological impact of gene mutations and identifies IQCH as a key protein required for sperm motility and capacitation.
Collapse
Affiliation(s)
- Emma Cavarocchi
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Camille Sayou
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Patrick Lorès
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Cité, 75014 Paris, France
| | - Caroline Cazin
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
- CHU de Grenoble Alpes, UM GI-DPI, 38000 Grenoble, France
| | - Laurence Stouvenel
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Cité, 75014 Paris, France
| | - Elma El Khouri
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Cité, 75014 Paris, France
| | - Charles Coutton
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
- CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| | | | - Catherine Patrat
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Cité, 75014 Paris, France
- Laboratoire d’Histologie Embryologie - Biologie de la Reproduction - CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France
| | - Jérôme Govin
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | | | - Marjorie Whitfield
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Pierre F. Ray
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
- CHU de Grenoble Alpes, UM GI-DPI, 38000 Grenoble, France
| | - Emmanuel Dulioust
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Cité, 75014 Paris, France
- Laboratoire d’Histologie Embryologie - Biologie de la Reproduction - CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France
| | - Aminata Touré
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
5
|
Zhang Z, Zhou H, Deng X, Zhang R, Qu R, Mu J, Liu R, Zeng Y, Chen B, Wang L, Sang Q, Bao S. IQUB deficiency causes male infertility by affecting the activity of p-ERK1/2/RSPH3. Hum Reprod 2023; 38:168-179. [PMID: 36355624 DOI: 10.1093/humrep/deac244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 10/11/2022] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Can new genetic factors responsible for male infertility be identified, especially for those characterized by asthenospermia despite normal sperm morphology? SUMMARY ANSWER We identified the novel pathogenetic gene IQ motif and ubiquitin-like domain-containing (IQUB) as responsible for male infertility characterized by asthenospermia, involving sperm radial spoke defects. WHAT IS KNOWN ALREADY To date, only a few genes have been found to be responsible for asthenospermia with normal sperm morphology. Iqub, encoding the IQUB protein, is highly and specifically expressed in murine testes and interacts with the proteins radial spoke head 3 (RSPH3), CEP295 N-terminal like (CEP295NL or DDC8), glutathione S-transferase mu 1 (GSTM1) and outer dense fiber of sperm tails 1 (ODF1) in the yeast two-hybrid system. STUDY DESIGN, SIZE, DURATION The IQUB variant was identified by whole-exome sequencing in a cohort of 126 male infertility patients with typical asthenospermia recruited between 2015 and 2020. Knockout (KO) and knockin (KI) mouse models, scanning and transmission electron microscopy (TEM), and other functional assays were performed, between 2019 and 2021. PARTICIPANTS/MATERIALS, SETTING, METHODS The IQUB variant was identified by whole-exome sequencing and confirmed by Sanger sequencing. Iqub KO and KI mice were constructed to mimic the phenotype of the affected individual. After recapitulating the phenotype of human male infertility, scanning and TEM were performed to check the ultrastructure of the sperm. Western blot and co-immunoprecipitation were performed to clarify the pathological mechanism of the IQUB variant. MAIN RESULTS AND THE ROLE OF CHANCE We identified a homozygous nonsense IQUB variant (NM_001282855.2:c.942T> G(p.Tyr314*)) from an infertile male. Iqub KO and KI mice mimicked the infertility phenotype and confirmed IQUB to be the pathogenetic gene. Scanning and TEM showed that sperm of both the mouse models and the affected individual had radial spoke defects. The functional assay suggested that IQUB may recruit calmodulin in lower Ca2+ environments to facilitate the normal assembly of radial spokes by inhibiting the activity of RSPH3/p-ERK1/2 (a nontypical AKAP (A-Kinase Anchoring Protein) forming by RSPH3 and phosphorylation of extracellular signal-regulated kinase 1 and 2 (p-ERK1/2)). LIMITATIONS, REASONS FOR CAUTION Additional cases are needed to confirm the genetic contribution of IQUB variants to male infertility. In addition, because no IQUB antibody is available for immunofluorescence and the polyclonal antibody we generated was only effective in western blotting, immunostaining for IQUB was not performed in this study. Therefore, this study lacks direct in vivo proof to confirm the effect of the variant on IQUB protein level. WIDER IMPLICATIONS OF THE FINDINGS Our results suggest a causal relation between IQUB variants and male infertility owing to asthenospermia, and partly clarify the pathological mechanism of IQUB variants. This expands our knowledge of the genes involved in human sperm asthenospermia and potentially provides a new genetic marker for male infertility. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Key Research and Development Program of China (2021YFC2700100), the National Natural Science Foundation of China (32130029, 82171643, 81971450, 82001538, and 81971382) and the Guangdong Science and Technology Department Guangdong-Hong Kong-Macao Joint Innovation Project (2020A0505140003). There are no competing interests to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Zhihua Zhang
- The Institutes of Biomedical Sciences, The State Key Laboratory of Genetic Engineering, School of Life Sciences and Huadong Hospital, Fudan University, Shanghai, China
| | - Hongbin Zhou
- The Institutes of Biomedical Sciences, The State Key Laboratory of Genetic Engineering, School of Life Sciences and Huadong Hospital, Fudan University, Shanghai, China
| | - Xujing Deng
- Department of Reproductive Immunology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ruixiu Zhang
- Department of Reproductive Immunology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ronggui Qu
- The Institutes of Biomedical Sciences, The State Key Laboratory of Genetic Engineering, School of Life Sciences and Huadong Hospital, Fudan University, Shanghai, China
| | - Jian Mu
- The Institutes of Biomedical Sciences, The State Key Laboratory of Genetic Engineering, School of Life Sciences and Huadong Hospital, Fudan University, Shanghai, China
| | - Ruyi Liu
- The Institutes of Biomedical Sciences, The State Key Laboratory of Genetic Engineering, School of Life Sciences and Huadong Hospital, Fudan University, Shanghai, China
| | - Yang Zeng
- The Institutes of Biomedical Sciences, The State Key Laboratory of Genetic Engineering, School of Life Sciences and Huadong Hospital, Fudan University, Shanghai, China
| | - Biaobang Chen
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Lei Wang
- The Institutes of Biomedical Sciences, The State Key Laboratory of Genetic Engineering, School of Life Sciences and Huadong Hospital, Fudan University, Shanghai, China.,Zhuhai Fudan Innovation Institute, Zhuhai, China
| | - Qing Sang
- The Institutes of Biomedical Sciences, The State Key Laboratory of Genetic Engineering, School of Life Sciences and Huadong Hospital, Fudan University, Shanghai, China.,Zhuhai Fudan Innovation Institute, Zhuhai, China
| | - Shihua Bao
- Department of Reproductive Immunology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
6
|
Silva C, Viana P, Barros A, Sá R, Sousa M, Pereira R. Further Insights on RNA Expression and Sperm Motility. Genes (Basel) 2022; 13:genes13071291. [PMID: 35886074 PMCID: PMC9319021 DOI: 10.3390/genes13071291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 12/10/2022] Open
Abstract
Asthenozoospermia is one of the main causes of male infertility and it is characterized by reduced sperm motility. Several mutations in genes that code for structural or functional constituents of the sperm have already been identified as known causes of asthenozoospermia. In contrast, the role of sperm RNA in regulating sperm motility is still not fully understood. Consequently, here we aim to contribute to the knowledge regarding the expression of sperm RNA, and ultimately, to provide further insights into its relationship with sperm motility. We investigated the expression of a group of mRNAs by using real-time PCR (CATSPER3, CFAP44, CRHR1, HIP1, IQCG KRT34, LRRC6, QRICH2, RSPH6A, SPATA33 and TEKT2) and the highest score corresponding to the target miRNA for each mRNA in asthenozoospermic and normozoospermic individuals. We observed a reduced expression of all mRNAs and miRNAs in asthenozoospermic patients compared to controls, with a more accentuated reduction in patients with progressive sperm motility lower than 15%. Our work provides further insights regarding the role of RNA in regulating sperm motility. Further studies are required to determine how these genes and their corresponding miRNA act regarding sperm motility, particularly KRT34 and CRHR1, which have not previously been seen to play a significant role in regulating sperm motility.
Collapse
Affiliation(s)
- Carolina Silva
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS/ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-313 Porto, Portugal; (C.S.); (R.S.); (M.S.)
- Faculty of Medicine, University of Coimbra (FMUC), 3000-370 Coimbra, Portugal
| | - Paulo Viana
- Centre for Reproductive Genetics A. Barros, 4100-012 Porto, Portugal; (P.V.); (A.B.)
| | - Alberto Barros
- Centre for Reproductive Genetics A. Barros, 4100-012 Porto, Portugal; (P.V.); (A.B.)
- Department of Genetics, Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
- Institute of Health Research and Innovation (IPATIMUP/i3S), University of Porto, 4200-135 Porto, Portugal
| | - Rosália Sá
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS/ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-313 Porto, Portugal; (C.S.); (R.S.); (M.S.)
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS/ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-313 Porto, Portugal; (C.S.); (R.S.); (M.S.)
| | - Rute Pereira
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS/ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-313 Porto, Portugal; (C.S.); (R.S.); (M.S.)
- Correspondence:
| |
Collapse
|
7
|
Gianferante MD, Wlodarski MW, Atsidaftos E, Da Costa L, Delaporta P, Farrar JE, Goldman FD, Hussain M, Kattamis A, Leblanc T, Lipton JM, Niemeyer CM, Pospisilova D, Quarello P, Ramenghi U, Sankaran VG, Vlachos A, Volejnikova J, Alter BP, Savage SA, Giri N. Genotype-phenotype association and variant characterization in Diamond-Blackfan anemia caused by pathogenic variants in RPL35A. Haematologica 2021; 106:1303-1310. [PMID: 32241839 PMCID: PMC8094096 DOI: 10.3324/haematol.2020.246629] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Indexed: 01/02/2023] Open
Abstract
Diamond Blackfan anemia (DBA) is predominantly an autosomal dominant inherited red cell aplasia primarily caused by pathogenic germline variants in ribosomal protein genes. DBA due to pathogenic RPL35A variants has been associated with large 3q29 deletions and phenotypes not common in DBA. We conducted a multi-institutional genotypephenotype study of 45 patients with DBA associated with pathogenic RPL35A germline variants and curated the variant data on 21 additional cases from the literature. Genotype-phenotype analyses were conducted comparing patients with large deletions versus all other pathogenic variants in RPL35A. Twenty-two of the 45 cases had large deletions in RPL35A. After adjusting for multiple tests, a statistically significant association was observed between patients with a large deletion and steroid-resistant anemia, neutropenia, craniofacial abnormalities, chronic gastrointestinal problems, and intellectual disabilities (P<0.01) compared with all other pathogenic variants. Non-large deletion pathogenic variants were spread across RPL35Awith no apparent hot spot and 56% of the individual family variants were observed more than once. In this, the largest known study of DBA patients with pathogenic RPL35A variants, we determined that patients with large deletions have a more severe phenotype that is clinically different from those with non-large deletion variants. Genes of interest also deleted in the 3q29 region that could be associated with some of these phenotypic features include LMLN and IQCG. Management of DBA due to large RPL35A deletions may be challenging due to complex problems and require comprehensive assessments by multiple specialists including immunological, gastrointestinal, and developmental evaluations to provide optimal multidisciplinary care.
Collapse
Affiliation(s)
- Matthew D Gianferante
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| | | | - Evangelia Atsidaftos
- Feinstein Institute of Medical Research, Cohen Children's Medical Center, NY, USA
| | - Lydie Da Costa
- Service Hematologie Biologique, Hopital Robert-Debré, Université de Paris, France
| | - Polyxeni Delaporta
- First Department of Pediatrics, National and Kapodistrian University of Athens, Greece
| | - Jason E Farrar
- Arkansas Children Research Institute, University of Arkansas, Little Rock, USA
| | | | - Maryam Hussain
- Feinstein Institute of Medical Research, Cohen Children's Medical Center, NY, USA
| | - Antonis Kattamis
- First Department of Pediatrics, National and Kapodistrian University of Athens, Greece
| | - Thierry Leblanc
- Service Hematologie Biologique, Hopital Robert-Debré, Université de Paris, France
| | - Jeffrey M Lipton
- Feinstein Institute of Medical Research, Cohen Children's Medical Center, NY, USA
| | | | | | | | - Ugo Ramenghi
- Pediatric and Public Health Science, University of Torino, Torino, Italy
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Adrianna Vlachos
- Feinstein Institute of Medical Research, Cohen Children's Medical Center, NY, USA
| | - Jana Volejnikova
- Palacky University and University Hospital, Olomouc, Czech Republic
| | - Blanche P Alter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| | - Sharon A Savage
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| | - Neelam Giri
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| |
Collapse
|
8
|
Andrews C, Xu Y, Kirberger M, Yang JJ. Structural Aspects and Prediction of Calmodulin-Binding Proteins. Int J Mol Sci 2020; 22:ijms22010308. [PMID: 33396740 PMCID: PMC7795363 DOI: 10.3390/ijms22010308] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 11/19/2022] Open
Abstract
Calmodulin (CaM) is an important intracellular protein that binds Ca2+ and functions as a critical second messenger involved in numerous biological activities through extensive interactions with proteins and peptides. CaM’s ability to adapt to binding targets with different structures is related to the flexible central helix separating the N- and C-terminal lobes, which allows for conformational changes between extended and collapsed forms of the protein. CaM-binding targets are most often identified using prediction algorithms that utilize sequence and structural data to predict regions of peptides and proteins that can interact with CaM. In this review, we provide an overview of different CaM-binding proteins, the motifs through which they interact with CaM, and shared properties that make them good binding partners for CaM. Additionally, we discuss the historical and current methods for predicting CaM binding, and the similarities and differences between these methods and their relative success at prediction. As new CaM-binding proteins are identified and classified, we will gain a broader understanding of the biological processes regulated through changes in Ca2+ concentration through interactions with CaM.
Collapse
Affiliation(s)
- Corey Andrews
- Center for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; (C.A.); (Y.X.)
| | - Yiting Xu
- Center for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; (C.A.); (Y.X.)
| | - Michael Kirberger
- Chemistry Division, Georgia Gwinnett College, Lawrenceville, GA 30043, USA;
| | - Jenny J. Yang
- Center for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; (C.A.); (Y.X.)
- Correspondence: ; Tel.: +1-4044135520
| |
Collapse
|
9
|
Dürvanger Z, Harmat V. Structural Diversity in Calmodulin - Peptide Interactions. Curr Protein Pept Sci 2020; 20:1102-1111. [PMID: 31553290 DOI: 10.2174/1389203720666190925101937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/13/2019] [Accepted: 04/12/2019] [Indexed: 01/17/2023]
Abstract
Calmodulin (CaM) is a highly conserved eukaryotic Ca2+ sensor protein that is able to bind a large variety of target sequences without a defined consensus sequence. The recognition of this diverse target set allows CaM to take part in the regulation of several vital cell functions. To fully understand the structural basis of the regulation functions of CaM, the investigation of complexes of CaM and its targets is essential. In this minireview we give an outline of the different types of CaM - peptide complexes with 3D structure determined, also providing an overview of recently determined structures. We discuss factors defining the orientations of peptides within the complexes, as well as roles of anchoring residues. The emphasis is on complexes where multiple binding modes were found.
Collapse
Affiliation(s)
- Zsolt Dürvanger
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Veronika Harmat
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Protein Modelling Research Group, Budapest, Hungary
| |
Collapse
|
10
|
Zhang P, Jiang W, Luo N, Zhu W, Fan L. IQ motif containing D (IQCD), a new acrosomal protein involved in the acrosome reaction and fertilisation. Reprod Fertil Dev 2019; 31:898-914. [DOI: 10.1071/rd18416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/07/2018] [Indexed: 11/23/2022] Open
Abstract
The acrosome is single, large, dense-core secretory granule overlying the nucleus of most mammalian spermatozoa. Its exocytosis, the acrosome reaction, is a crucial event during fertilisation. In this study we identified a new acrosome-associated gene, namely IQ motif containing D (IQCD), expressed nearly in multiple tissues with highest expression levels in the testis. In mouse testis, Iqcd transcript accumulated from Postnatal Day (PND) 1 to adulthood. However, expression of IQCD protein at the testicular development stage started primarily from PND 18 and increased in an age-dependent manner until plateauing in adulthood. IQCD was primarily accumulated in the acrosome area of round and elongating spermatids within seminiferous tubules of the testes during the late stage of spermiogenesis; this immunolocalisation pattern is similar in mice and humans. IQCD levels in spermatozoa were significantly lower in IVF patients with total fertilisation failure or a low fertilisation rate than in healthy men. Anti-IQCD antibody significantly inhibited the acrosome reaction and slightly reduced protein tyrosine phosphorylation levels in human spermatozoa, but specifically blocked murine IVF. IQCD interacted with mammalian homolog of C. elegans uncoordinated gene 13 (Munc13) in spermatozoa and may participate in acrosome exocytosis. In conclusion, this study identified a new acrosomal protein, namely IQCD, which is involved in fertilisation and the acrosome reaction.
Collapse
|
11
|
Westerlund AM, Delemotte L. Effect of Ca2+ on the promiscuous target-protein binding of calmodulin. PLoS Comput Biol 2018; 14:e1006072. [PMID: 29614072 PMCID: PMC5898786 DOI: 10.1371/journal.pcbi.1006072] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/13/2018] [Accepted: 03/07/2018] [Indexed: 01/05/2023] Open
Abstract
Calmodulin (CaM) is a calcium sensing protein that regulates the function of a large number of proteins, thus playing a crucial part in many cell signaling pathways. CaM has the ability to bind more than 300 different target peptides in a Ca2+-dependent manner, mainly through the exposure of hydrophobic residues. How CaM can bind a large number of targets while retaining some selectivity is a fascinating open question. Here, we explore the mechanism of CaM selective promiscuity for selected target proteins. Analyzing enhanced sampling molecular dynamics simulations of Ca2+-bound and Ca2+-free CaM via spectral clustering has allowed us to identify distinct conformational states, characterized by interhelical angles, secondary structure determinants and the solvent exposure of specific residues. We searched for indicators of conformational selection by mapping solvent exposure of residues in these conformational states to contacts in structures of CaM/target peptide complexes. We thereby identified CaM states involved in various binding classes arranged along a depth binding gradient. Binding Ca2+ modifies the accessible hydrophobic surface of the two lobes and allows for deeper binding. Apo CaM indeed shows shallow binding involving predominantly polar and charged residues. Furthermore, binding to the C-terminal lobe of CaM appears selective and involves specific conformational states that can facilitate deep binding to target proteins, while binding to the N-terminal lobe appears to happen through a more flexible mechanism. Thus the long-ranged electrostatic interactions of the charged residues of the N-terminal lobe of CaM may initiate binding, while the short-ranged interactions of hydrophobic residues in the C-terminal lobe of CaM may account for selectivity. This work furthers our understanding of the mechanism of CaM binding and selectivity to different target proteins and paves the way towards a comprehensive model of CaM selectivity.
Collapse
Affiliation(s)
- Annie M. Westerlund
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Lucie Delemotte
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
12
|
Bjørklund SS, Panda A, Kumar S, Seiler M, Robinson D, Gheeya J, Yao M, Alnæs GIG, Toppmeyer D, Riis M, Naume B, Børresen-Dale AL, Kristensen VN, Ganesan S, Bhanot G. Widespread alternative exon usage in clinically distinct subtypes of Invasive Ductal Carcinoma. Sci Rep 2017; 7:5568. [PMID: 28717182 PMCID: PMC5514065 DOI: 10.1038/s41598-017-05537-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 06/05/2017] [Indexed: 12/11/2022] Open
Abstract
Cancer cells can have different patterns of exon usage of individual genes when compared to normal tissue, suggesting that alternative splicing may play a role in shaping the tumor phenotype. The discovery and identification of gene variants has increased dramatically with the introduction of RNA-sequencing technology, which enables whole transcriptome analysis of known, as well as novel isoforms. Here we report alternative splicing and transcriptional events among subtypes of invasive ductal carcinoma in The Cancer Genome Atlas (TCGA) Breast Invasive Carcinoma (BRCA) cohort. Alternative exon usage was widespread, and although common events were shared among three subtypes, ER+ HER2−, ER− HER2−, and HER2+, many events on the exon level were subtype specific. Additional RNA-seq analysis was carried out in an independent cohort of 43 ER+ HER2− and ER− HER2− primary breast tumors, confirming many of the exon events identified in the TCGA cohort. Alternative splicing and transcriptional events detected in five genes, MYO6, EPB41L1, TPD52, IQCG, and ACOX2 were validated by qRT-PCR in a third cohort of 40 ER+ HER2− and ER− HER2− patients, showing that these events were truly subtype specific.
Collapse
Affiliation(s)
- Sunniva Stordal Bjørklund
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA.,Department of Cancer Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Oslo, 0310, Norway.,The K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, P.O box 1171, Blindern, 0318, Oslo, Norway
| | - Anshuman Panda
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA.,Department of Physics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Surendra Kumar
- Department of Cancer Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Oslo, 0310, Norway.,The K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, P.O box 1171, Blindern, 0318, Oslo, Norway.,Department of Clinical Molecular Biology and Laboratory Science (EpiGen), Akershus University hospital, Division of Medicine, 1476, Lørenskog, Norway
| | - Michael Seiler
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA.,BioMaPS Institute, Rutgers University, Piscataway, NJ, 08854, USA
| | - Doug Robinson
- BioMaPS Institute, Rutgers University, Piscataway, NJ, 08854, USA
| | - Jinesh Gheeya
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA
| | - Ming Yao
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA
| | - Grethe I Grenaker Alnæs
- Department of Cancer Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Oslo, 0310, Norway
| | - Deborah Toppmeyer
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA
| | - Margit Riis
- Department of Clinical Molecular Biology and Laboratory Science (EpiGen), Akershus University hospital, Division of Medicine, 1476, Lørenskog, Norway.,Department of Surgery, Akershus University Hospital, 1478, Lørenskog, Norway.,Department of Breast and Endocrine Surgery, Oslo University Hospital, Ullevål, 0450, Oslo, Norway
| | - Bjørn Naume
- Department of Oncology, Oslo University Hospital, Radiumhospitalet, Oslo, Norway
| | - Anne-Lise Børresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Oslo, 0310, Norway.,The K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, P.O box 1171, Blindern, 0318, Oslo, Norway
| | - Vessela N Kristensen
- Department of Cancer Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Oslo, 0310, Norway.,The K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, P.O box 1171, Blindern, 0318, Oslo, Norway.,Department of Clinical Molecular Biology and Laboratory Science (EpiGen), Akershus University hospital, Division of Medicine, 1476, Lørenskog, Norway
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA.
| | - Gyan Bhanot
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA. .,Department of Physics, Rutgers University, Piscataway, NJ, 08854, USA. .,Department of Molecular Biology & Biochemistry, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
13
|
Kim MA, Sohn YC. Characterization of a Sea Urchin IQ Motif Containing Protein D as a Coactivator of Nuclear Receptors. Zoolog Sci 2017; 34:235-241. [PMID: 28589840 DOI: 10.2108/zs160157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nuclear receptor (NR) interacting proteins, such as coactivators and corepressors, play a crucial role in specifying the transcriptional activity of the receptor. However, little is known about the functional features of the NR coregulators in marine invertebrates. Using the yeast two-hybrid screening method, a sea urchin oocyte cDNA library was screened for proteins that interact with the ligand-binding domain of human RXRα (hRXRα) as the bait protein in the presence of 9-cis retinoic acid. Here, we describe IQ motif containing protein D (IQCD) as an RXR-interacting coactivator. The open reading frame of Strongylocentrotus nudus IQCD (SnIQCD) cDNA contains 1464 bp encoding a protein of 487 amino acids. SnIQCD and the vertebrate IQCDs contain well-conserved C-terminal IQ motifs and coiled-coil domains. The interactions between RXRα and IQCD were confirmed by an immunoprecipitation assay and a mammal two-hybrid assay. RXRα preferentially interacted with the C-terminal half including IQ motif than the N-terminal half of SnIQCD. The coactivator interacting LXXLL motif in SnIQCD is not directly involved in the interaction with RXRα. SnIQCD overexpression increased the basal RXR transactivation of a RXR-responsive reporter gene. Furthermore, SnIQCD enhanced the transcriptional activity of RXR heterodimeric partners such as RAR, PPAR, and the steroid hormone receptor family members from mammals, teleost fish, and sea urchin. Taken together, we suggest that IQCD orthologs are able to function as transcriptional coactivators cooperating with NRs.
Collapse
Affiliation(s)
- Mi Ae Kim
- Department of Marine Molecular Bioscience, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung, Gangwon 25457, Republic of Korea
| | - Young Chang Sohn
- Department of Marine Molecular Bioscience, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung, Gangwon 25457, Republic of Korea
| |
Collapse
|
14
|
Hovey L, Fowler CA, Mahling R, Lin Z, Miller MS, Marx DC, Yoder JB, Kim EH, Tefft KM, Waite BC, Feldkamp MD, Yu L, Shea MA. Calcium triggers reversal of calmodulin on nested anti-parallel sites in the IQ motif of the neuronal voltage-dependent sodium channel Na V1.2. Biophys Chem 2017; 224:1-19. [PMID: 28343066 PMCID: PMC5503752 DOI: 10.1016/j.bpc.2017.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 02/23/2017] [Accepted: 02/23/2017] [Indexed: 01/26/2023]
Abstract
Several members of the voltage-gated sodium channel family are regulated by calmodulin (CaM) and ionic calcium. The neuronal voltage-gated sodium channel NaV1.2 contains binding sites for both apo (calcium-depleted) and calcium-saturated CaM. We have determined equilibrium dissociation constants for rat NaV1.2 IQ motif [IQRAYRRYLLK] binding to apo CaM (~3nM) and (Ca2+)4-CaM (~85nM), showing that apo CaM binding is favored by 30-fold. For both apo and (Ca2+)4-CaM, NMR demonstrated that NaV1.2 IQ motif peptide (NaV1.2IQp) exclusively made contacts with C-domain residues of CaM (CaMC). To understand how calcium triggers conformational change at the CaM-IQ interface, we determined a solution structure (2M5E.pdb) of (Ca2+)2-CaMC bound to NaV1.2IQp. The polarity of (Ca2+)2-CaMC relative to the IQ motif was opposite to that seen in apo CaMC-Nav1.2IQp (2KXW), revealing that CaMC recognizes nested, anti-parallel sites in Nav1.2IQp. Reversal of CaM may require transient release from the IQ motif during calcium binding, and facilitate a re-orientation of CaMN allowing interactions with non-IQ NaV1.2 residues or auxiliary regulatory proteins interacting in the vicinity of the IQ motif.
Collapse
Affiliation(s)
- Liam Hovey
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - C Andrew Fowler
- NMR Facility, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 52242-1109 Iowa City, United States
| | - Ryan Mahling
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Zesen Lin
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Mark Stephen Miller
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Dagan C Marx
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Jesse B Yoder
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Elaine H Kim
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Kristin M Tefft
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Brett C Waite
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Michael D Feldkamp
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States
| | - Liping Yu
- NMR Facility, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 52242-1109 Iowa City, United States
| | - Madeline A Shea
- Department of Biochemistry, University of Iowa, 52242-1109 Iowa City, United States.
| |
Collapse
|
15
|
Li J, Chen Y, Deng Y, Unarta IC, Lu Q, Huang X, Zhang M. Ca 2+-Induced Rigidity Change of the Myosin VIIa IQ Motif-Single α Helix Lever Arm Extension. Structure 2017; 25:579-591.e4. [PMID: 28262393 DOI: 10.1016/j.str.2017.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/08/2016] [Accepted: 02/09/2017] [Indexed: 11/17/2022]
Abstract
Several unconventional myosins contain a highly charged single α helix (SAH) immediately following the calmodulin (CaM) binding IQ motifs, functioning to extend lever arms of these myosins. How such SAH is connected to the IQ motifs and whether the conformation of the IQ motifs-SAH segments are regulated by Ca2+ fluctuations are not known. Here, we demonstrate by solving its crystal structure that the predicted SAH of myosin VIIa (Myo7a) forms a stable SAH. The structure of Myo7a IQ5-SAH segment in complex with apo-CaM reveals that the SAH sequence can extend the length of the Myo7a lever arm. Although Ca2+-CaM remains bound to IQ5-SAH, the Ca2+-induced CaM binding mode change softens the conformation of the IQ5-SAH junction, revealing a Ca2+-induced lever arm flexibility change for Myo7a. We further demonstrate that the last IQ motif of several other myosins also binds to both apo- and Ca2+-CaM, suggesting a common Ca2+-induced conformational regulation mechanism.
Collapse
Affiliation(s)
- Jianchao Li
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Yiyun Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yisong Deng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ilona Christy Unarta
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Qing Lu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xuhui Huang
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
16
|
Pan M, Zhang Q, Liu P, Huang J, Wang Y, Chen S. Inhibition of the nuclear export of p65 and IQCG in leukemogenesis by NUP98-IQCG. Front Med 2016; 10:410-419. [PMID: 27864780 DOI: 10.1007/s11684-016-0489-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 09/29/2016] [Indexed: 01/04/2023]
Abstract
NUP98 fuses with approximately 34 different partner genes via translocation in hematological malignancies. Transgenic or retrovirus-mediated bone marrow transplanted mouse models reveal the leukemogenesis of some NUP98-related fusion genes. We previously reported the fusion protein NUP98-IQ motif containing G (IQCG) in a myeloid/T lymphoid bi-phenoleukemia patient with t(3;11) and confirmed its leukemogenic ability. Herein, we demonstrated the association of NUP98-IQCG with CRM1, and found that NUP98-IQCG expression inhibits the CRM1-mediated nuclear export of p65 and enhances the transcriptional activity of nuclear factor-κB. Moreover, IQCG could be entrapped in the nucleus by NUP98-IQCG, and the fusion protein interacts with calmodulin via the IQ motif in a calcium-independent manner. Therefore, the inhibition of nuclear exports of p65 and IQCG might contribute to the leukemogenesis of NUP98-IQCG.
Collapse
Affiliation(s)
- Mengmeng Pan
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, 200025, China
| | - Qiyao Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, 200025, China
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences and Graduate School, Chinese Academy of Sciences and SJTU School of Medicine, Shanghai, 200025, China
| | - Ping Liu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, 200025, China
| | - Jinyan Huang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, 200025, China
| | - Yueying Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, 200025, China.
| | - Saijuan Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, 200025, China.
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences and Graduate School, Chinese Academy of Sciences and SJTU School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
17
|
The Ever Changing Moods of Calmodulin: How Structural Plasticity Entails Transductional Adaptability. J Mol Biol 2014; 426:2717-35. [DOI: 10.1016/j.jmb.2014.05.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 11/20/2022]
|