1
|
Twing KI, Brazelton WJ, McCollom TM, Schubotz F, Pendleton HL, Harris RL, Brown AR, Richins SM, Kubo MDY, Hoehler TM, Cardace D, Schrenk MO. Heterogeneity of rock-hosted microbial communities in a serpentinizing aquifer of the Coast Range Ophiolite. Front Microbiol 2025; 16:1504241. [PMID: 40124889 PMCID: PMC11926711 DOI: 10.3389/fmicb.2025.1504241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/11/2025] [Indexed: 03/25/2025] Open
Abstract
The movement of groundwater through fractured bedrock provides favorable conditions for subsurface microbial life, characterized by constrained flow pathways and distinctive local environmental conditions. In this study, we examined a subsurface microbial ecosystem associated with serpentinized rocks recovered from the Coast Range Ophiolite in northern California, USA. The distribution and diversity of microbial communities at various depths within two separate cores reaching up to 45 m below the land surface were investigated with microbiological and geochemical approaches. Core samples contained low total organic carbon content, low DNA yields, and low copy numbers of 16S rRNA genes, yet some samples still yielded amplifiable DNA sequences. The microbial community composition of rock cores was distinct from groundwater, and source tracking of DNA sequences indicated that groundwater is not a significant source of DNA into basement rocks. In contrast, the microbial community of some rock core samples shared similarities with overlying soil samples, which could indicate potential contamination, weathering of shallow serpentinites, or a combination of both. Individual DNA sequences of archaea and bacteria predicted to be endemic to the basement rocks were identified by differential abundance analyses. Core-enriched sequences were distinct from those in groundwater or in the overlying soils and included OTUs related to Serpentinimonas as well as putatively anaerobic, deep subsurface-associated taxa such as methanogens and Bathyarchaeia. Stable isotope analyses of organic and inorganic carbon did not reveal a chemoautotrophic signal and were instead consistent with a primarily surface vegetation source of organic carbon into the basement. This census of archaeal and bacterial DNA sequences associated with altered ultramafic rocks provides a useful resource for further research into the potential for deep subsurface microbial activity fueled by geochemical reactions associated with serpentinization.
Collapse
Affiliation(s)
- Katrina I. Twing
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, United States
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
- Department of Microbiology, Weber State University, Ogden, UT, United States
| | - William J. Brazelton
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| | - Tom M. McCollom
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, United States
| | - Florence Schubotz
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - H. Lizethe Pendleton
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| | - Rachel L. Harris
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Annemarie R. Brown
- Department of Microbiology, Weber State University, Ogden, UT, United States
| | - Seth M. Richins
- Department of Microbiology, Weber State University, Ogden, UT, United States
| | - Michael D. Y. Kubo
- SETI Institute, Mountain View, CA, United States
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, United States
| | - Tori M. Hoehler
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, United States
| | - Dawn Cardace
- Department of Geosciences, University of Rhode Island, Kingston, RI, United States
| | - Matthew O. Schrenk
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
2
|
Colman DR, Templeton AS, Spear JR, Boyd ES. Microbial ecology of serpentinite-hosted ecosystems. THE ISME JOURNAL 2025; 19:wraf029. [PMID: 39961017 PMCID: PMC11931622 DOI: 10.1093/ismejo/wraf029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/28/2025] [Accepted: 02/11/2025] [Indexed: 03/25/2025]
Abstract
Serpentinization, the collective set of geochemical reactions initiated by the hydration of ultramafic rock, has occurred throughout Earth history and is inferred to occur on several planets and moons in our solar system. These reactions generate highly reducing conditions that can drive organic synthesis reactions potentially conducive to the emergence of life, while concomitantly generating fluids that challenge life owing to hyperalkalinity and limited inorganic carbon (and oxidant) availability. Consequently, the serpentinite-hosted biosphere offers insights into the earliest life, the habitable limits for life, and the potential for life on other planets. However, the support of abundant microbial communities by serpentinites was only recognized ~20 years ago with the discovery of deep-sea hydrothermal vents emanating serpentinized fluids. Here, we review the microbial ecology of both marine and continental serpentinization-influenced ecosystems in conjunction with a comparison of publicly available metagenomic sequence data from these communities to provide a global perspective of serpentinite microbial ecology. Synthesis of observations across global systems reveal consistent themes in the diversity, ecology, and functioning of communities. Nevertheless, individual systems exhibit nuances due to local geology, hydrology, and input of oxidized, near-surface/seawater fluids. Further, several new (and old) questions remain including the provenance of carbon to support biomass synthesis, the physical and chemical limits of life in serpentinites, the mode and tempo of in situ evolution, and the extent that modern serpentinites serve as analogs for those on early Earth. These topics are explored from a microbial perspective to outline key knowledge-gaps for future research.
Collapse
Affiliation(s)
- Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, 59717, United States
| | - Alexis S Templeton
- Department of Geological Sciences, University of Colorado, Boulder, Colorado, 80309, United States
| | - John R Spear
- Departments of Civil and Environmental Engineering and Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado, 80401, United States
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, 59717, United States
| |
Collapse
|
3
|
Li R, Wei C, Tang Z, Ali M, Ma Z, Li B, Gu A, Song X. An in situ reactive zone approach using calcium peroxide for the remediation of benzene and chlorobenzene in groundwater: A field study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123899. [PMID: 39740443 DOI: 10.1016/j.jenvman.2024.123899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/06/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025]
Abstract
There is a gap in understanding the different contributions of biodegradation and free radical oxidation using calcium peroxide (CaO2) for the remediation of mixed contaminants of benzene and chlorobenzene in groundwater. In this study, the remedial efficiency and mechanisms of benzene and chlorobenzene co-contaminants using CaO2 were explored by an integrated approach of field study and laboratory validation. It was found that in the field demonstration program, the radius of influence for each injection point using Geoprobe direct-push was larger than the designed value of 0.75 m in the reactive zones created by CaO2 supplemented with a buffer solution (Area A) and CaO2 only (Area B). Both benzene and chlorobenzene were remediated to meet the cleanup goals within 5 months. The benzene and chlorobenzene concentration rebounds observed in monitoring wells were treated effectively with sustained effect of reagents. The laboratory validation experiments verified CaO2 with a buffer solution could maintain the pH values within the range of 6.05-7.69, and higher DO concentrations for prolonged period. The contributions of biodegradation for benzene were 43.47% and 42.02% in CaO2 group and CaO2 adjusted with buffer solutions group, respectively, while those for chlorobenzene were 16.87% and 19.61%. In addition, it was demonstrated in the laboratory that the application of CaO2 supplemented with a buffer solution had the best remediation efficiency for benzene and chlorobenzene, due to the contributions from both the free radicals HO• and the biodegradation of co-contaminants by the native microbial consortium. Furthermore, the intermediate byproducts, including phenol, 2-chlorophenol and pyruvate, were detected in groundwater collected in the field, and the biodegradation and oxidative degradation pathways of benzene and chlorobenzene with the application of CaO2 were proposed. The microbial composition analyses for groundwater samples revealed that multiple functional bacteria, which are capable of degrading benzene and chlorobenzene, were enriched. The findings of the current study take one step further for the understanding of the fundamentals of CaO2 as a slow oxygen releasing reagent, as well as its engineering applications for the remediation of organic contaminants in soil and groundwater.
Collapse
Affiliation(s)
- Rui Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changlong Wei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China
| | - Zhiwen Tang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mukhtiar Ali
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhipan Ma
- Jiangsu Academy of Environmental Industry and Technology Corp, Nanjing, 210019, China
| | - Bing Li
- Jiangsu Academy of Environmental Industry and Technology Corp, Nanjing, 210019, China
| | - Ailiang Gu
- Jiangsu DDBS Environmental Remediation Co., Ltd, Nanjing, 210012, China
| | - Xin Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
He Y, Li Y, Pan Y, Shang J, Sun W, Wang M, Fan H, Sanford RA, Wei N, Peng S, Xie D, Zhang W, Chen S, Liu Y, Jiang Z, Jiang Y, Hu Y, Li S, Hu N, Dong Y, Shi L. Intimate microbe-water-mineral interactions mediate alkalization in the pyroxene-rich iron ore mines in Panxi area, Southwest China. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136127. [PMID: 39405720 DOI: 10.1016/j.jhazmat.2024.136127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/15/2024] [Accepted: 10/08/2024] [Indexed: 12/01/2024]
Abstract
In contrast to acid mine drainage, the microbial assembly and (bio)geochemical processes in alkaline mine conditions remain under-investigated. Here, microbe-water-mineral interactions were systematically investigated in two representative iron mines with alkaline conditions in the Panxi mining area, Southwest China. Compared to reference riverine samples less interfered by mining activities, the iron ore samples, composed of vanadium-titanium magnetite and pyroxene-rich bedrocks, exhibited elevated levels of Fe, HCl-extractable Fe(II), total sulfur, nitrate and sulfate, but lower total carbon (TC). Meanwhile, the mine drainage showed significantly higher sulfate, but lower TC concentrations than the riverine samples. Intriguingly, the Serpentinimonas spp., typically reported in serpentinites, prevailed in the microbial communities from the mine samples exhibiting higher pH. This suggests that the alkaline environments in Panxi mines result from serpentinization-like reactions. Enrichment of Thiobacillus spp. was observed in the mine-dwelling microbial communities, positively correlated with total sulfur, sulfate, nitrate, and Fe(II). Genome-resolved metagenomics suggested a chemoautotrophic lifestyle for the Thiobacillus species (e.g., carbon fixation, sulfur oxidation, and oxygen respiration), which may generate H+ and mitigate alkalization. This study provides valuable insights into progressive development of alkaline mine ecosystems and offers guidance for developing appropriate engineering strategies to restore the abandoned alkaline mines.
Collapse
Affiliation(s)
- Yu He
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yongzhe Li
- School of Environmental Studies, China University of Geosciences, Wuhan, China; Central & South China Municipal Engineering Design and Research Institute Co, Ltd., Wuhan, China
| | - Yue Pan
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Beijing, China; Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, China
| | - Weimin Sun
- Guangdong Institute of Eco-environmental and Soil Science, Guangzhou, China
| | - Meng Wang
- Changjiang Water Resources Protection Institute, Wuhan, China
| | - Hao Fan
- Changjiang Water Resources Protection Institute, Wuhan, China
| | - Robert A Sanford
- Department of Earth Science & Environmental Change, University of Illinois Urbana-Champaign, Champaign, USA
| | - Na Wei
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Champaign, USA
| | - Shuming Peng
- Institute of Ecological Environment, Chengdu University of Technology, China
| | - Daihong Xie
- ANSTEEL Pangang Group Company Limited, Panzhihua, China
| | | | - Shulin Chen
- ANSTEEL Pangang Group Company Limited, Panzhihua, China
| | - Yong Liu
- ANSTEEL Pangang Group Company Limited, Panzhihua, China
| | - Zhou Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yongguang Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yidan Hu
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Shuyi Li
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Na Hu
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yiran Dong
- School of Environmental Studies, China University of Geosciences, Wuhan, China; State Key Laboratory of Biogeology and Environmental Geology, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, Wuhan, China; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan, China.
| | - Liang Shi
- School of Environmental Studies, China University of Geosciences, Wuhan, China; State Key Laboratory of Biogeology and Environmental Geology, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan, China
| |
Collapse
|
5
|
Min H, O'Loughlin EJ, Kwon MJ. Anaerobic microbial metabolism in soil columns affected by highly alkaline pH: Implication for biogeochemistry near construction and demolition waste disposal sites. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122127. [PMID: 39128342 DOI: 10.1016/j.jenvman.2024.122127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/29/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Construction and demolition wastes (CDWs) have become a significant environmental concern due to urbanization. CDWs in landfill sites can generate high-pH leachate and various constituents (e.g., acetate and sulfate) following the dissolution of cement material, which may affect subsurface biogeochemical properties. However, the impact of CDW leachate on microbial reactions and community compositions in subsurface environments remains unclear. Therefore, we created columns composed of layers of concrete debris containing-soil (CDS) and underlying CDW-free soil, and fed them artificial groundwater with or without acetate and/or sulfate. In all columns, the initial pH 5.6 of the underlying soil layer rapidly increased to 10.8 (without acetate and sulfate), 10.1 (with sulfate), 10.1 (with acetate), and 8.3 (with acetate and sulfate) within 35 days. Alkaliphilic or alkaline-resistant microbes including Hydrogenophaga, Silanimonas, Algoriphagus, and/or Dethiobacter were dominant throughout the incubation in all columns, and their relative abundance was highest in the column without acetate and sulfate (50.7-86.6%). Fe(III) and sulfate reduction did not occur in the underlying soil layer without acetate. However, in the column with acetate alone, pH was decreased to 9.9 after day 85 and Fe(II) was produced with an increase in the relative abundance of Fe(III)-reducing bacteria up to 9.1%, followed by an increase in the methanogenic archaea Methanosarcina, suggestive of methanogenesis. In the column with both acetate and sulfate, Fe(III) and sulfate reduction occurred along with an increase in both Fe(III)- and sulfate-reducing bacteria (19.1 and 17.7%, respectively), while Methanosarcina appeared later. The results demonstrate that microbial Fe(III)- and sulfate-reduction and acetoclastic methanogenesis can occur even in soils with highly alkaline pH resulting from the dissolution of concrete debris.
Collapse
Affiliation(s)
- Haeun Min
- Department of Earth and Environmental Sciences, Korea University, Seoul, South Korea
| | | | - Man Jae Kwon
- Department of Earth and Environmental Sciences, Korea University, Seoul, South Korea.
| |
Collapse
|
6
|
He Y, Zhuo S, Gao D, Pan Y, Li M, Pan J, Jiang Y, Hu Y, Guo J, Lin Q, Sanford RA, Sun W, Shang J, Wei N, Peng S, Jiang Z, Li S, Li Y, Dong Y, Shi L. Viral communities in a pH>10 serpentinite-like environment: insight into diversity and potential roles in modulating the microbiomes by bioactive vitamin B 9 synthesis. Appl Environ Microbiol 2024; 90:e0085024. [PMID: 39016614 PMCID: PMC11337834 DOI: 10.1128/aem.00850-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024] Open
Abstract
Viral communities exist in a variety of ecosystems and play significant roles in mediating biogeochemical processes, whereas viruses inhabiting strongly alkaline geochemical systems remain underexplored. In this study, the viral diversity, potential functionalities, and virus-host interactions in a strongly alkaline environment (pH = 10.4-12.4) exposed to the leachates derived from the serpentinization-like reactions of smelting slags were investigated. The viral populations (e.g., Herelleviridae, Queuovirinae, and Inoviridae) were closely associated with the dominating prokaryotic hosts (e.g., Meiothermus, Trueperaceae, and Serpentinomonas) in this ultrabasic environment. Auxiliary metabolic genes (AMGs) suggested that viruses may enhance hosts' fitness by facilitating cofactor biosynthesis, hydrogen metabolism, and carbon cycling. To evaluate the activity of synthesis of essential cofactor vitamin B9 by the viruses, a viral folA (vfolA) gene encoding dihydrofolate reductase (DHFR) was introduced into a thymidine-auxotrophic strain Escherichia coli MG1655 ΔfolA mutant, which restored the growth of the latter in the absence of thymidine. Notably, the homologs of the validated vDHFR were globally distributed in the viromes across various ecosystems. The present study sheds new light on the unique viral communities in hyperalkaline ecosystems and their potential beneficial impacts on the coexisting microbial consortia by supplying essential cofactors. IMPORTANCE This study presents a comprehensive investigation into the diversity, potential functionalities, and virus-microbe interactions in an artificially induced strongly alkaline environment. Functional validation of the detected viral folA genes encoding dihydrofolate reductase substantiated the synthesis of essential cofactors by viruses, which may be ubiquitous, considering the broad distribution of the viral genes associated with folate cycling.
Collapse
Affiliation(s)
- Yu He
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Shiyan Zhuo
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Donghao Gao
- School of Environmental Studies, China University of Geosciences, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Yue Pan
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Studies, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Jie Pan
- Archaeal Biology Center, Institute for Advanced Studies, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yongguang Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yidan Hu
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Jinzhi Guo
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Qin Lin
- Shanghai Biozeron Biological Technology Co. Ltd, China, Shanghai, China
| | - Robert A. Sanford
- Department of Earth Science & Environmental Change, University of Illinois Urbana-Champaign, Urbana, llinois, USA
| | - Weimin Sun
- Guangdong Institute of Eco-environmental and Soil Science, Guangdong, China
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Na Wei
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Shuming Peng
- Institute of Ecological Environment, Chengdu University of Technology, Chengdu, China
| | - Zhou Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Shuyi Li
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yongzhe Li
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yiran Dong
- School of Environmental Studies, China University of Geosciences, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Beijing, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, Wuhan, China
| | - Liang Shi
- School of Environmental Studies, China University of Geosciences, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Beijing, China
| |
Collapse
|
7
|
Jiang J, Guo T, Wang J, Sun A, Chen X, Xu X, Dai S, Qin Z. A novel microbial community restructuring strategy for enhanced hydrogen production using multiple pretreatments and CSTR operation. ENVIRONMENTAL RESEARCH 2024; 251:118725. [PMID: 38518915 DOI: 10.1016/j.envres.2024.118725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/07/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
To achieve rapid enrichment of the targeted hydrogen-producing bacterial population and reconstruction of the microbial community in the biological hydrogen-producing reactor, the activated sludge underwent multiple pretreatments using micro-aeration, alkaline treatment, and heat treatment. The activated sludge obtained from the multiple pretreatments was inoculated into the continuous stirred tank reactor (CSTR) for continuous operations. The community structure alteration and hydrogen-producing capability of the activated sludge were analyzed throughout the operation of the reactor. We found that the primary phyla in the activated sludge population shifted to Proteobacteria, Firmicutes, and Bacteroidetes, which collectively accounted for 96.69% after undergoing several pretreatments. This suggests that the multiple pretreatments facilitated in achieving the selective enrichment of the fermentation hydrogen-producing microorganisms in the activated sludge. The CSTR start-up and continuous operation of the biological hydrogen production reactor resulted in the reactor entering a highly efficient hydrogen production stage at influent COD concentrations of 4000 mg/L and 5000 mg/L, with the highest hydrogen production rate reaching 8.19 L/d and 9.33 L/d, respectively. The main genus present during the efficient hydrogen production stage in the reactor was Ethanoligenens, accounting for up to 33% of the total population. Ethanoligenens exhibited autoaggregation capabilities and a superior capacity for hydrogen production, leading to its prevalence in the reactor and contribution to efficient hydrogen production. During high-efficiency hydrogen production, flora associated with hydrogen production exhibited up to 46.95% total relative abundance. In addition, redundancy analysis (RDA) indicated that effluent pH and COD influenced the distribution of the primary hydrogen-producing bacteria, including Ethanoligenens, Raoultella, and Pectinatus, as well as other low abundant hydrogen-producing bacteria in the activated sludge. The data indicates that the multiple pretreatments and reactor's operation has successfully enriched the hydrogen-producing genera and changed the community structure of microbial hydrogen production.
Collapse
Affiliation(s)
- Jishan Jiang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Tielan Guo
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jingyuan Wang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ao Sun
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xingping Chen
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiaoxiao Xu
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhi Qin
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
8
|
Suzuki S, Ishii S, Chadwick GL, Tanaka Y, Kouzuma A, Watanabe K, Inagaki F, Albertsen M, Nielsen PH, Nealson KH. A non-methanogenic archaeon within the order Methanocellales. Nat Commun 2024; 15:4858. [PMID: 38871712 DOI: 10.1038/s41467-024-48185-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/22/2024] [Indexed: 06/15/2024] Open
Abstract
Serpentinization, a geochemical process found on modern and ancient Earth, provides an ultra-reducing environment that can support microbial methanogenesis and acetogenesis. Several groups of archaea, such as the order Methanocellales, are characterized by their ability to produce methane. Here, we generate metagenomic sequences from serpentinized springs in The Cedars, California, and construct a circularized metagenome-assembled genome of a Methanocellales archaeon, termed Met12, that lacks essential methanogenesis genes. The genome includes genes for an acetyl-CoA pathway, but lacks genes encoding methanogenesis enzymes such as methyl-coenzyme M reductase, heterodisulfide reductases and hydrogenases. In situ transcriptomic analyses reveal high expression of a multi-heme c-type cytochrome, and heterologous expression of this protein in a model bacterium demonstrates that it is capable of accepting electrons. Our results suggest that Met12, within the order Methanocellales, is not a methanogen but a CO2-reducing, electron-fueled acetogen without electron bifurcation.
Collapse
Affiliation(s)
- Shino Suzuki
- Geobiology and Astrobiology Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan.
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa, Japan.
- School of Physical Sciences, SOKENDAI (Graduate University for Advanced Studies), Sagamihara, Kanagawa, Japan.
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine and Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan.
| | - Shun'ichi Ishii
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine and Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan.
| | - Grayson L Chadwick
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Yugo Tanaka
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Atsushi Kouzuma
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Kazuya Watanabe
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Fumio Inagaki
- Advanced Institute for Marine Ecosystem Change (WPI-AIMEC), JAMSTEC, Yokohama, Kanagawa, Japan
- Department of Earth Science, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan
| | - Mads Albertsen
- Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Per H Nielsen
- Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Kenneth H Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
9
|
He Y, Pan J, Huang D, Sanford RA, Peng S, Wei N, Sun W, Shi L, Jiang Z, Jiang Y, Hu Y, Li S, Li Y, Li M, Dong Y. Distinct microbial structure and metabolic potential shaped by significant environmental gradient impacted by ferrous slag weathering. ENVIRONMENT INTERNATIONAL 2023; 178:108067. [PMID: 37393724 DOI: 10.1016/j.envint.2023.108067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
Alkaline ferrous slags pose global environmental issues and long-term risks to ambient environments. To explore the under-investigated microbial structure and biogeochemistry in such unique ecosystems, combined geochemical, microbial, ecological and metagenomic analyses were performed in the areas adjacent to a ferrous slag disposal plant in Sichuan, China. Different levels of exposure to ultrabasic slag leachate had resulted in a significant geochemical gradient of pH (8.0-12.4), electric potential (-126.9 to 437.9 mV), total organic carbon (TOC, 1.5-17.3 mg/L), and total nitrogen (TN, 0.17-1.01 mg/L). Distinct microbial communities were observed depending on their exposure to the strongly alkaline leachate. High pH and Ca2+ concentrations were associated with low microbial diversity and enrichment of bacterial classes Gamma-proteobacteria and Deinococci in the microbial communities exposed to the leachate. Combined metagenomic analyses of 4 leachate-unimpacted and 2-impacted microbial communities led to the assembly of one Serpentinomonas pangenome and 81 phylogenetically diversified metagenome assembled genomes (MAGs). The prevailing taxa in the leachate-impacted habitats (e.g., Serpentinomonas and Meiothermus spp.) were phylogenetically related to those in active serpentinizing ecosystems, suggesting the analogous processes between the man-made and natural systems. More importantly, they accounted for significant abundance of most functional genes associated with environmental adaptation and major element cycling. Their metabolic potential (e.g., cation/H+ antiporters, carbon fixation on lithospheric carbon source, and respiration coupling sulfur oxidization and oxygen or nitrate reduction) may support these taxa to survive and prosper in these unique geochemical niches. This study provides fundamental understandings of the adaptive strategies of microorganisms in response to the strong environmental perturbation by alkali tailings. It also contributes to a better comprehension of how to remediate environments affected by alkaline industrial material.
Collapse
Affiliation(s)
- Yu He
- School of Environmental Studies, China University of Geosciences, China
| | - Jie Pan
- Archaeal Biology Center, Institute for Advanced Studies, Shenzhen University, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, China
| | - Dongmei Huang
- School of Environmental Studies, China University of Geosciences, China; Yejin Geological Team of Hubei Geological Bureau, China
| | - Robert A Sanford
- Department of Earth Science & Environmental Change, University of Illinois Urbana-Champaign, Champaign, IL, United States
| | - Shuming Peng
- Institute of Ecological Environment, Chengdu University of Technology, China
| | - Na Wei
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Champaign, IL, United States
| | - Weimin Sun
- Guangdong Institute of Eco-environmental and Soil Science, Guangdong, China
| | - Liang Shi
- School of Environmental Studies, China University of Geosciences, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China
| | - Zhou Jiang
- School of Environmental Studies, China University of Geosciences, China
| | - Yongguang Jiang
- School of Environmental Studies, China University of Geosciences, China
| | - Yidan Hu
- School of Environmental Studies, China University of Geosciences, China
| | - Shuyi Li
- School of Environmental Studies, China University of Geosciences, China
| | - Yongzhe Li
- School of Environmental Studies, China University of Geosciences, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Studies, Shenzhen University, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, China.
| | - Yiran Dong
- School of Environmental Studies, China University of Geosciences, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China; Hubei Key Laboratory of Wetland Evolution and Ecology Restoration, China.
| |
Collapse
|
10
|
Popall RM, Postec A, Lecoeuvre A, Quéméneur M, Erauso G. Metabolic challenges and key players in serpentinite-hosted microbial ecosystems. Front Microbiol 2023; 14:1197823. [PMID: 37555067 PMCID: PMC10404738 DOI: 10.3389/fmicb.2023.1197823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/29/2023] [Indexed: 08/10/2023] Open
Abstract
Serpentinite-hosted systems are amongst the most challenging environments for life on Earth. Serpentinization, a geochemical alteration of exposed ultramafic rock, produces hydrothermal fluids enriched in abiotically derived hydrogen (H2), methane (CH4), and small organic molecules. The hyperalkaline pH of these fluids poses a great challenge for metabolic energy and nutrient acquisition, curbing the cellular membrane potential and limiting electron acceptor, carbon, and phosphorous availability. Nevertheless, serpentinization supports the growth of diverse microbial communities whose metabolic make-up might shed light on the beginning of life on Earth and potentially elsewhere. Here, we outline current hypotheses on metabolic energy production, carbon fixation, and nutrient acquisition in serpentinizing environments. A taxonomic survey is performed for each important metabolic function, highlighting potential key players such as H2 and CH4 cycling Serpentinimonas, Hydrogenophaga, Methanobacteriales, Methanosarcinales, and novel candidate phyla. Methodological biases of the available data and future approaches are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Gaël Erauso
- Aix-Marseille Univ, Univ Toulon, CNRS, IRD, MIO, Marseille, France
| |
Collapse
|
11
|
Thompson J, Barr C, Babcock-Adams L, Bird L, La Cava E, Garber A, Hongoh Y, Liu M, Nealson KH, Okamoto A, Repeta D, Suzuki S, Tacto C, Tashjian M, Merino N. Insights into the physiological and genomic characterization of three bacterial isolates from a highly alkaline, terrestrial serpentinizing system. Front Microbiol 2023; 14:1179857. [PMID: 37520355 PMCID: PMC10373932 DOI: 10.3389/fmicb.2023.1179857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/23/2023] [Indexed: 08/01/2023] Open
Abstract
The terrestrial serpentinite-hosted ecosystem known as "The Cedars" is home to a diverse microbial community persisting under highly alkaline (pH ~ 12) and reducing (Eh < -550 mV) conditions. This extreme environment presents particular difficulties for microbial life, and efforts to isolate microorganisms from The Cedars over the past decade have remained challenging. Herein, we report the initial physiological assessment and/or full genomic characterization of three isolates: Paenibacillus sp. Cedars ('Paeni-Cedars'), Alishewanella sp. BS5-314 ('Ali-BS5-314'), and Anaerobacillus sp. CMMVII ('Anaero-CMMVII'). Paeni-Cedars is a Gram-positive, rod-shaped, mesophilic facultative anaerobe that grows between pH 7-10 (minimum pH tested was 7), temperatures 20-40°C, and 0-3% NaCl concentration. The addition of 10-20 mM CaCl2 enhanced growth, and iron reduction was observed in the following order, 2-line ferrihydrite > magnetite > serpentinite ~ chromite ~ hematite. Genome analysis identified genes for flavin-mediated iron reduction and synthesis of a bacillibactin-like, catechol-type siderophore. Ali-BS5-314 is a Gram-negative, rod-shaped, mesophilic, facultative anaerobic alkaliphile that grows between pH 10-12 and temperatures 10-40°C, with limited growth observed 1-5% NaCl. Nitrate is used as a terminal electron acceptor under anaerobic conditions, which was corroborated by genome analysis. The Ali-BS5-314 genome also includes genes for benzoate-like compound metabolism. Anaero-CMMVII remained difficult to cultivate for physiological studies; however, growth was observed between pH 9-12, with the addition of 0.01-1% yeast extract. Anaero-CMMVII is a probable oxygen-tolerant anaerobic alkaliphile with hydrogenotrophic respiration coupled with nitrate reduction, as determined by genome analysis. Based on single-copy genes, ANI, AAI and dDDH analyses, Paeni-Cedars and Ali-BS5-314 are related to other species (P. glucanolyticus and A. aestuarii, respectively), and Anaero-CMMVII represents a new species. The characterization of these three isolates demonstrate the range of ecophysiological adaptations and metabolisms present in serpentinite-hosted ecosystems, including mineral reduction, alkaliphily, and siderophore production.
Collapse
Affiliation(s)
- Jaclyn Thompson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Casey Barr
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Lydia Babcock-Adams
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Lina Bird
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, United States
| | - Eugenio La Cava
- National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Arkadiy Garber
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, United States
| | - Yuichi Hongoh
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Mark Liu
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Kenneth H. Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Akihiro Okamoto
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Daniel Repeta
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Shino Suzuki
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Sagamihara, Kanagawa, Japan
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), JAMSTEC, Yokosuka, Kanagawa, Japan
| | - Clarissa Tacto
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Michelle Tashjian
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Nancy Merino
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
12
|
Matthews A, Lima-Zaloumis J, Debes Ii RV, Boyer G, Trembath-Reichert E. Heterotrophic Growth Dominates in the Most Extremotolerant Extremophile Cultures. ASTROBIOLOGY 2023; 23:446-459. [PMID: 36723486 DOI: 10.1089/ast.2022.0100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Due to their ability to withstand "extreme" conditions, Earth's extremophilic organisms can constrain habitability windows for other planetary systems. However, there are many other considerations to microbial growth requirements beyond environmental extremes, such as nutrient availability. Here, we conduct a literature review of the most extremotolerant extremophiles in culture, since working with cultured organisms allows environmental and nutrient variables to be constrained with a high level of specificity. We generated a database that includes the isolation environment, carbon source(s) used, and growth preferences across temperature, pressure, salinity, and pH extremes. We found that the "most extreme" conditions were primarily sustained by heterotrophs, except for hyperthermophiles. These results highlight the importance of considering organic carbon availability when using extremophiles for habitability constraints. We also interrogated polyextreme potential across temperature, pressure, salinity, and pH conditions. Our findings suggest that the investigation of growth tolerance rather than growth optimum may reveal wider habitability parameters. Overall, these results highlight the potential polyextremes, environments, nutrient requirements, and additional analyses that could improve the application of cultured investigations to astrobiology questions.
Collapse
Affiliation(s)
- Adrianna Matthews
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
| | | | - R Vincent Debes Ii
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
| | - Grayson Boyer
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
| | | |
Collapse
|
13
|
Mullis MM, Selwyn JD, Kevorkian R, Tague ED, Castro HF, Campagna SR, Lloyd KG, Reese BK. Microbial survival mechanisms within serpentinizing Mariana forearc sediments. FEMS Microbiol Ecol 2023; 99:6985003. [PMID: 36631299 DOI: 10.1093/femsec/fiad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 12/07/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Marine deep subsurface sediment is often a microbial environment under energy-limited conditions. However, microbial life has been found to persist and even thrive in deep subsurface environments. The Mariana forearc represents an ideal location for determining how microbial life can withstand extreme conditions including pH 10-12.5 and depleted nutrients. The International Ocean Discovery Program Expedition 366 to the Mariana Convergent Margin sampled three serpentinizing seamounts located along the Mariana forearc chain with elevated concentrations of methane, hydrogen, and sulfide. Across all three seamount summits, the most abundant transcripts were for cellular maintenance such as cell wall and membrane repair, and the most abundant metabolic pathways were the Entner-Doudoroff pathway and tricarboxylic acid cycle. At flank samples, sulfur cycling involving taurine assimilation dominated the metatranscriptomes. The in situ activity of these pathways was supported by the detection of their metabolic intermediates. All samples had transcripts from all three domains of Bacteria, Archaea, and Eukarya, dominated by Burkholderiales, Deinococcales, and Pseudomonales, as well as the fungal group Opisthokonta. All samples contained transcripts for aerobic methane oxidation (pmoABC) and denitrification (nirKS). The Mariana forearc microbial communities show activity not only consistent with basic survival mechanisms, but also coupled metabolic reactions.
Collapse
Affiliation(s)
- Megan M Mullis
- Life Sciences Department, Texas A&M University - Corpus Christi, Corpus Christi, TX, United States.,Dauphin Island Sea Lab, Mobile, AL, United States
| | - Jason D Selwyn
- Life Sciences Department, Texas A&M University - Corpus Christi, Corpus Christi, TX, United States
| | - Richard Kevorkian
- Microbiology Department, University of Tennessee, Knoxville, TN, United States
| | - Eric D Tague
- Microbiology Department, University of Tennessee, Knoxville, TN, United States
| | - Hector F Castro
- Microbiology Department, University of Tennessee, Knoxville, TN, United States.,Chemistry Department, UTK Biological and Small Molecule Mass Spectrometry Core, Knoxville, TN, United States
| | - Shawn R Campagna
- Microbiology Department, University of Tennessee, Knoxville, TN, United States.,Chemistry Department, UTK Biological and Small Molecule Mass Spectrometry Core, Knoxville, TN, United States
| | - Karen G Lloyd
- Microbiology Department, University of Tennessee, Knoxville, TN, United States
| | - Brandi Kiel Reese
- Dauphin Island Sea Lab, Mobile, AL, United States.,Marine Sciences Department, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
14
|
Unique H 2-utilizing lithotrophy in serpentinite-hosted systems. THE ISME JOURNAL 2023; 17:95-104. [PMID: 36207493 PMCID: PMC9751293 DOI: 10.1038/s41396-022-01197-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 01/08/2022] [Accepted: 01/17/2022] [Indexed: 11/08/2022]
Abstract
Serpentinization of ultramafic rocks provides molecular hydrogen (H2) that can support lithotrophic metabolism of microorganisms, but also poses extremely challenging conditions, including hyperalkalinity and limited electron acceptor availability. Investigation of two serpentinization-active systems reveals that conventional H2-/CO2-dependent homoacetogenesis is thermodynamically unfavorable in situ due to picomolar CO2 levels. Through metagenomics and thermodynamics, we discover unique taxa capable of metabolism adapted to the habitat. This included a novel deep-branching phylum, "Ca. Lithacetigenota", that exclusively inhabits serpentinite-hosted systems and harbors genes encoding alternative modes of H2-utilizing lithotrophy. Rather than CO2, these putative metabolisms utilize reduced carbon compounds detected in situ presumably serpentinization-derived: formate and glycine. The former employs a partial homoacetogenesis pathway and the latter a distinct pathway mediated by a rare selenoprotein-the glycine reductase. A survey of microbiomes shows that glycine reductases are diverse and nearly ubiquitous in serpentinite-hosted environments. "Ca. Lithacetigenota" glycine reductases represent a basal lineage, suggesting that catabolic glycine reduction is an ancient bacterial innovation by Terrabacteria for gaining energy from geogenic H2 even under hyperalkaline, CO2-poor conditions. Unique non-CO2-reducing metabolisms presented here shed light on potential strategies that extremophiles may employ for overcoming a crucial obstacle in serpentinization-associated environments, features potentially relevant to primordial lithotrophy in early Earth.
Collapse
|
15
|
Brazelton WJ, McGonigle JM, Motamedi S, Pendleton HL, Twing KI, Miller BC, Lowe WJ, Hoffman AM, Prator CA, Chadwick GL, Anderson RE, Thomas E, Butterfield DA, Aquino KA, Früh-Green GL, Schrenk MO, Lang SQ. Metabolic Strategies Shared by Basement Residents of the Lost City Hydrothermal Field. Appl Environ Microbiol 2022; 88:e0092922. [PMID: 35950875 PMCID: PMC9469722 DOI: 10.1128/aem.00929-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/28/2022] [Indexed: 12/14/2022] Open
Abstract
Alkaline fluids venting from chimneys of the Lost City hydrothermal field flow from a potentially vast microbial habitat within the seafloor where energy and organic molecules are released by chemical reactions within rocks uplifted from Earth's mantle. In this study, we investigated hydrothermal fluids venting from Lost City chimneys as windows into subseafloor environments where the products of geochemical reactions, such as molecular hydrogen (H2), formate, and methane, may be the only available sources of energy for biological activity. Our deep sequencing of metagenomes and metatranscriptomes from these hydrothermal fluids revealed a few key species of archaea and bacteria that are likely to play critical roles in the subseafloor microbial ecosystem. We identified a population of Thermodesulfovibrionales (belonging to phylum Nitrospirota) as a prevalent sulfate-reducing bacterium that may be responsible for much of the consumption of H2 and sulfate in Lost City fluids. Metagenome-assembled genomes (MAGs) classified as Methanosarcinaceae and Candidatus Bipolaricaulota were also recovered from venting fluids and represent potential methanogenic and acetogenic members of the subseafloor ecosystem. These genomes share novel hydrogenases and formate dehydrogenase-like sequences that may be unique to hydrothermal environments where H2 and formate are much more abundant than carbon dioxide. The results of this study include multiple examples of metabolic strategies that appear to be advantageous in hydrothermal and subsurface alkaline environments where energy and carbon are provided by geochemical reactions. IMPORTANCE The Lost City hydrothermal field is an iconic example of a microbial ecosystem fueled by energy and carbon from Earth's mantle. Uplift of mantle rocks into the seafloor can trigger a process known as serpentinization that releases molecular hydrogen (H2) and creates unusual environmental conditions where simple organic carbon molecules are more stable than dissolved inorganic carbon. This study provides an initial glimpse into the kinds of microbes that live deep within the seafloor where serpentinization takes place, by sampling hydrothermal fluids exiting from the Lost City chimneys. The metabolic strategies that these microbes appear to be using are also shared by microbes that inhabit other sites of serpentinization, including continental subsurface environments and natural springs. Therefore, the results of this study contribute to a broader, interdisciplinary effort to understand the general principles and mechanisms by which serpentinization-associated processes can support life on Earth and perhaps other worlds.
Collapse
Affiliation(s)
| | - Julia M. McGonigle
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA
| | - Shahrzad Motamedi
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | | | - Katrina I. Twing
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Briggs C. Miller
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - William J. Lowe
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | | | - Cecilia A. Prator
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Grayson L. Chadwick
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Rika E. Anderson
- Department of Biology, Carleton College, Northfield, Minnesota, USA
| | - Elaina Thomas
- Department of Biology, Carleton College, Northfield, Minnesota, USA
| | - David A. Butterfield
- Joint Institute for the Study of Atmosphere and Ocean, University of Washington, Seattle, Washington, USA
| | | | | | - Matthew O. Schrenk
- Department of Earth and Environmental Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Susan Q. Lang
- School of the Earth, Ocean, and Environment, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
16
|
Comparative Metagenomics Highlight a Widespread Pathway Involved in Catabolism of Phosphonates in Marine and Terrestrial Serpentinizing Ecosystems. mSystems 2022; 7:e0032822. [PMID: 35913189 PMCID: PMC9426474 DOI: 10.1128/msystems.00328-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serpentinizing hydrothermal systems result from water circulating into the subsurface and interacting with mantle-derived rocks notably near mid-ocean ridges or continental ophiolites. Serpentinization and associated reactions produce alkaline fluids enriched in molecular hydrogen, methane, and small organic molecules that are assumed to feed microbial inhabitants. In this study, we explored the relationships linking serpentinization to associated microbial communities by comparative metagenomics of serpentinite-hosted systems, basalt-hosted vents, and hot springs. The shallow Prony bay hydrothermal field (PBHF) microbiome appeared to be more related to those of ophiolitic sites than to the Lost City hydrothermal field (LCHF) microbiome, probably because of the meteoric origin of its fluid, like terrestrial alkaline springs. This study emphasized the ubiquitous importance of a set of genes involved in the catabolism of phosphonates and highly enriched in all serpentinizing sites compared to other ecosystems. Because most of the serpentinizing systems are depleted in inorganic phosphate, the abundance of genes involved in the carbon-phosphorus lyase pathway suggests that the phosphonates constitute a source of phosphorus in these ecosystems. Additionally, hydrocarbons such as methane, released upon phosphonate catabolism, may contribute to the overall budget of organic molecules in serpentinizing systems. IMPORTANCE This first comparative metagenomic study of serpentinite-hosted environments provides an objective framework to understand the functioning of these peculiar ecosystems. We showed a taxonomic similarity between the PBHF and other terrestrial serpentinite-hosted ecosystems. At the same time, the LCHF microbial community was closer to deep basalt-hosted hydrothermal fields than continental ophiolites, despite the influence of serpentinization. This study revealed shared functional capabilities among serpentinite-hosted ecosystems in response to environmental stress, the metabolism of abundant dihydrogen, and the metabolism of phosphorus. Our results are consistent with the generalized view of serpentinite environments but provide deeper insight into the array of factors that may control microbial activities in these ecosystems. Moreover, we show that metabolism of phosphonate is widespread among alkaline serpentinizing systems and could play a crucial role in phosphorus and methane biogeochemical cycles. This study opens a new line of investigation of the metabolism of reduced phosphorus compounds in serpentinizing environments.
Collapse
|
17
|
Wang Y, Li W, Baker BJ, Zhou Y, He L, Danchin A, Li Q, Gao Z. Carbon metabolism and adaptation of hyperalkaliphilic microbes in serpentinizing spring of Manleluag, the Philippines. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:308-319. [PMID: 35199456 DOI: 10.1111/1758-2229.13052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Reduced substrates produced by the serpentinization reaction under hydration of olivine may have fuelled biological processes on early Earth. To understand the adaptive strategies and carbon metabolism of the microbes in the serpentinizing ecosystems, we reconstructed 18 draft genomes representing dominant species of Omnitrophicaeota, Gammaproteobacteria and Methanobacteria from the Manleluag serpentinizing spring in Zambales, Philippines (hyperalkaline and rich in methane and hydrogen). Phylogenomics revealed that two genomes were affiliated with a candidate phylum NPL-UPA2 and the references of all our genomes were derived from ground waters, hot springs and the deep biosphere. C1 metabolism appears to be widespread as most of the genomes code for methanogenesis, CO oxidation and CO2 fixation. However, likely due to the low CO2 concentration and election acceptors, the biomass in the spring was extremely low (<103 cell/ml). Various Na+ and K+ transporters and Na+ -driving ATPases appear to be encoded by these genomes, suggesting that nutrient acquisition, bioenergetics and normal cytoplasmic pH were dependent on Na+ and K+ pumps. Our results advance our understanding of the metabolic potentials and bioenergetics of serpentinizing springs and provide a framework of the ecology of early Earth.
Collapse
Affiliation(s)
- Yong Wang
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Wenli Li
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, 572000, P. R. China
| | - Brett J Baker
- Department of Integrative Biology and Marine Science, University of Texas Austin, Austin, TX, 78373, USA
| | - Yingli Zhou
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, 572000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lisheng He
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, 572000, P. R. China
| | - Antoine Danchin
- Kodikos Labs, Institut Cochin, 24 rue du Faubourg Saint Jacques, Paris, 75014, France
| | - Qingmei Li
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, 572000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhaoming Gao
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, 572000, P. R. China
| |
Collapse
|
18
|
Cortez D, Neira G, González C, Vergara E, Holmes DS. A Large-Scale Genome-Based Survey of Acidophilic Bacteria Suggests That Genome Streamlining Is an Adaption for Life at Low pH. Front Microbiol 2022; 13:803241. [PMID: 35387071 PMCID: PMC8978632 DOI: 10.3389/fmicb.2022.803241] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/07/2022] [Indexed: 01/04/2023] Open
Abstract
The genome streamlining theory suggests that reduction of microbial genome size optimizes energy utilization in stressful environments. Although this hypothesis has been explored in several cases of low-nutrient (oligotrophic) and high-temperature environments, little work has been carried out on microorganisms from low-pH environments, and what has been reported is inconclusive. In this study, we performed a large-scale comparative genomics investigation of more than 260 bacterial high-quality genome sequences of acidophiles, together with genomes of their closest phylogenetic relatives that live at circum-neutral pH. A statistically supported correlation is reported between reduction of genome size and decreasing pH that we demonstrate is due to gene loss and reduced gene sizes. This trend is independent from other genome size constraints such as temperature and G + C content. Genome streamlining in the evolution of acidophilic bacteria is thus supported by our results. The analyses of predicted Clusters of Orthologous Genes (COG) categories and subcellular location predictions indicate that acidophiles have a lower representation of genes encoding extracellular proteins, signal transduction mechanisms, and proteins with unknown function but are enriched in inner membrane proteins, chaperones, basic metabolism, and core cellular functions. Contrary to other reports for genome streamlining, there was no significant change in paralog frequencies across pH. However, a detailed analysis of COG categories revealed a higher proportion of genes in acidophiles in the following categories: "replication and repair," "amino acid transport," and "intracellular trafficking". This study brings increasing clarity regarding the genomic adaptations of acidophiles to life at low pH while putting elements, such as the reduction of average gene size, under the spotlight of streamlining theory.
Collapse
Affiliation(s)
- Diego Cortez
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Gonzalo Neira
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Carolina González
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Eva Vergara
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago, Chile
| |
Collapse
|
19
|
Nuppunen-Puputti M, Kietäväinen R, Raulio M, Soro A, Purkamo L, Kukkonen I, Bomberg M. Epilithic Microbial Community Functionality in Deep Oligotrophic Continental Bedrock. Front Microbiol 2022; 13:826048. [PMID: 35300483 PMCID: PMC8921683 DOI: 10.3389/fmicb.2022.826048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/12/2022] [Indexed: 01/03/2023] Open
Abstract
The deep terrestrial biosphere hosts vast sessile rock surface communities and biofilms, but thus far, mostly planktic communities have been studied. We enriched deep subsurface microbial communities on mica schist in microcosms containing bedrock groundwater from the depth of 500 m from Outokumpu, Finland. The biofilms were visualized using scanning electron microscopy, revealing numerous different microbial cell morphologies and attachment strategies on the mica schist surface, e.g., bacteria with outer membrane vesicle-like structures, hair-like extracellular extensions, and long tubular cell structures expanding over hundreds of micrometers over mica schist surfaces. Bacterial communities were analyzed with amplicon sequencing showing that Pseudomonas, Desulfosporosinus, Hydrogenophaga, and Brevundimonas genera dominated communities after 8–40 months of incubation. A total of 21 metagenome assembled genomes from sessile rock surface metagenomes identified genes involved in biofilm formation, as well as a wide variety of metabolic traits indicating a high degree of environmental adaptivity to oligotrophic environment and potential for shifting between multiple energy or carbon sources. In addition, we detected ubiquitous organic carbon oxidation and capacity for arsenate and selenate reduction within our rocky MAGs. Our results agree with the previously suggested interaction between the deep subsurface microbial communities and the rock surfaces, and that this interaction could be crucial for sustaining life in the harsh anoxic and oligotrophic deep subsurface of crystalline bedrock environment.
Collapse
Affiliation(s)
| | | | - Mari Raulio
- European Chemicals Agency (ECHA), Helsinki, Finland
| | - Aino Soro
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | | | - Ilmo Kukkonen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Malin Bomberg
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| |
Collapse
|
20
|
Mondini A, Anwar MZ, Ellegaard-Jensen L, Lavin P, Jacobsen CS, Purcarea C. Heat Shock Response of the Active Microbiome From Perennial Cave Ice. Front Microbiol 2022; 12:809076. [PMID: 35360653 PMCID: PMC8960993 DOI: 10.3389/fmicb.2021.809076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
Ice caves constitute the newly investigated frozen and secluded model habitats for evaluating the resilience of ice-entrapped microbiomes in response to climate changes. This survey identified the total and active prokaryotic and eukaryotic communities from millennium-old ice accumulated in Scarisoara cave (Romania) using Illumina shotgun sequencing of the ribosomal RNA (rRNA) and messenger RNA (mRNA)-based functional analysis of the metatranscriptome. Also, the response of active microbiome to heat shock treatment mimicking the environmental shift during ice melting was evaluated at both the taxonomic and metabolic levels. The putatively active microbial community was dominated by bacterial taxa belonging to Proteobacteria and Bacteroidetes, which are highly resilient to thermal variations, while the scarcely present archaea belonging to Methanomicrobia was majorly affected by heat shock. Among eukaryotes, the fungal rRNA community was shared between the resilient Chytridiomycota and Blastocladiomycota, and the more sensitive Ascomycota and Basidiomycota taxa. A complex microeukaryotic community highly represented by Tardigrada and Rotifera (Metazoa), Ciliophora and Cercozoa (Protozoa), and Chlorophyta (Plantae) was evidenced for the first time in this habitat. This community showed a quick reaction to heat shock, followed by a partial recovery after prolonged incubation at 4°C due to possible predation processes on the prokaryotic cluster. Analysis of mRNA differential gene expression revealed the presence of an active microbiome in the perennial ice from the Scarisoara cave and associated molecular mechanisms for coping with temperature variations by the upregulation of genes involved in enzyme recovery, energy storage, carbon and nitrogen regulation, and cell motility. This first report on the active microbiome embedded in perennial ice from caves and its response to temperature stress provided a glimpse into the impact of glaciers melting and the resilience mechanisms in this habitat, contributing to the knowledge on the functional role of active microbes in frozen environments and their response to climatic changes.
Collapse
Affiliation(s)
- Antonio Mondini
- Department of Microbiology, Institute of Biology, Bucharest, Romania
| | - Muhammad Zohaib Anwar
- Department of Environmental Science, Aarhus University, RISØ Campus, Roskilde, Denmark
- Center for Infectious Disease Genomics and One Health, Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Lea Ellegaard-Jensen
- Department of Environmental Science, Aarhus University, RISØ Campus, Roskilde, Denmark
| | - Paris Lavin
- Centre of Biotechnology and Bioengineering (CeBiB), Universidad de Antofagasta, Antofagasta, Chile
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Carsten Suhr Jacobsen
- Department of Environmental Science, Aarhus University, RISØ Campus, Roskilde, Denmark
| | - Cristina Purcarea
- Department of Microbiology, Institute of Biology, Bucharest, Romania
- *Correspondence: Cristina Purcarea,
| |
Collapse
|
21
|
Microbial Communities in a Serpentinizing Aquifer Are Assembled through Strong Concurrent Dispersal Limitation and Selection. mSystems 2021; 6:e0030021. [PMID: 34519519 PMCID: PMC8547479 DOI: 10.1128/msystems.00300-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In recent years, our appreciation of the extent of habitable environments in Earth’s subsurface has greatly expanded, as has our understanding of the biodiversity contained within. Most studies have relied on single sampling points, rather than considering the long-term dynamics of subsurface environments and their microbial populations. One such habitat are aquifers associated with the aqueous alteration of ultramafic rocks through a process known as serpentinization. Ecological modeling performed on a multiyear time series of microbiology, hydrology, and geochemistry in an ultrabasic aquifer within the Coast Range Ophiolite reveals that community assembly is governed by undominated assembly (i.e., neither stochastic [random] nor deterministic [selective] processes alone govern assembly). Controls on community assembly were further assessed by characterizing aquifer hydrogeology and microbial community adaptations to the environment. These analyses show that low permeability rocks in the aquifer restrict the transmission of microbial populations between closely situated wells. Alpha and beta diversity measures and metagenomic and metatranscriptomic data from microbial communities indicate that high pH and low dissolved inorganic carbon levels impose strong environmental selection on microbial communities within individual wells. Here, we find that the interaction between strong selection imposed by extreme pH and enhanced ecological drift due to dispersal limitation imposed by slow fluid flow results in the undominated assembly signal observed throughout the site. Strong environmental selection paired with extremely low dispersal in the subsurface results in low diversity microbial communities that are well adapted to extreme pH conditions and subject to enhanced stochasticity introduced by ecological drift over time. IMPORTANCE Microbial communities existing under extreme or stressful conditions have long been thought to be structured primarily by deterministic processes. The application of macroecology theory and modeling to microbial communities in recent years has spurred assessment of assembly processes in microbial communities, revealing that both stochastic and deterministic processes are at play to different extents within natural environments. We show that low diversity microbial communities in a hard-rock serpentinizing aquifer are assembled under the influence of strong selective processes imposed by high pH and enhanced ecological drift that occurs as the result of dispersal limitation due to the slow movement of water in the low permeability aquifer. This study demonstrates the important roles that both selection and dispersal limitation play in terrestrial serpentinites, where extreme pH assembles a microbial metacommunity well adapted to alkaline conditions and dispersal limitation drives compositional differences in microbial community composition between local communities in the subsurface.
Collapse
|
22
|
Lee S, O'Loughlin EJ, Kwon MJ. Impact of organic acids and sulfate on the biogeochemical properties of soil from urban subsurface environments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 292:112756. [PMID: 33984641 DOI: 10.1016/j.jenvman.2021.112756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/03/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
Urban subsurface environments are often different from undisturbed subsurface environments due to the impacts of human activities. For example, deterioration of underground infrastructure can introduce elevated levels of Ca, Fe, and heavy metals into subsurface soils and groundwater. Likewise, leakage from sewer systems can lead to contamination by organic C, N, S, and P. However, the impact of these organic and inorganic compounds on biogeochemical processes including microbial redox reactions, mineral transformations, and microbial community transitions in urban subsurface environments is poorly understood. Here we conducted a microcosm experiment with soil samples from an urban construction site to investigate the possible biotic and abiotic processes impacted when sulfate and acetate or lactate were introduced into an urban subsurface environment. In the top-layer soil (0-0.3 m) microcosms, which were highly alkaline (pH > 10), the major impact was on abiotic processes such as secondary mineral precipitation. In the mid-layer (2-3 m) soil microcosms, the rate of Fe(III)-reduction and the amount of Fe(II) produced were greatly impacted by the specific organic acid added, and sulfate-reduction was not observed until after Fe(III)-reduction was complete. Near the end of the incubation, some genera related to syntrophic acetate oxidation and methanogenesis were observed in the lactate-amended microcosms. In the bottom-layer (7-8 m) soil microcosms, the rate of Fe(III)-reduction and the amount of Fe(II) produced were affected by the concentration of amended sulfate. Sulfate-reduction was concurrent with Fe(III)-reduction, suggesting that Fe(II) production was likely due to abiotic reduction of Fe(III) by sulfide produced by microbial sulfate reduction. The slightly acidic initial pH (~5.8) of the mid-soil system was a major factor controlling sequential microbial Fe(III) and sulfate reduction versus parallel Fe(III) and sulfate reduction in the bottom soil system, which had a neutral initial pH (~7.2). 16S rRNA gene-based community analysis revealed a variety of indigenous microbial groups including alkaliphiles, dissimilatory iron and sulfate reducers, syntrophes, and methanogens tightly coupled with, and impacted by, these complex abiotic and biogeochemical processes occurring in urban subsurface environments.
Collapse
Affiliation(s)
- Sunhui Lee
- Department of Earth and Environmental Sciences, Korea University, Seoul, South Korea
| | | | - Man Jae Kwon
- Department of Earth and Environmental Sciences, Korea University, Seoul, South Korea.
| |
Collapse
|
23
|
Bird LJ, Kuenen JG, Osburn MR, Tomioka N, Ishii S, Barr C, Nealson KH, Suzuki S. Serpentinimonas gen. nov., Serpentinimonas raichei sp. nov., Serpentinimonas barnesii sp. nov. and Serpentinimonas maccroryi sp. nov., hyperalkaliphilic and facultative autotrophic bacteria isolated from terrestrial serpentinizing springs. Int J Syst Evol Microbiol 2021; 71:004945. [PMID: 34379584 PMCID: PMC8513617 DOI: 10.1099/ijsem.0.004945] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/02/2021] [Indexed: 11/18/2022] Open
Abstract
Three highly alkaliphilic bacterial strains designated as A1T, H1T and B1T were isolated from two highly alkaline springs at The Cedars, a terrestrial serpentinizing site. Cells from all strains were motile, Gram-negative and rod-shaped. Strains A1T, H1T and B1T were mesophilic (optimum, 30 °C), highly alkaliphilic (optimum, pH 11) and facultatively autotrophic. Major cellular fatty acids were saturated and monounsaturated hexadecenoic and octadecanoic acids. The genome size of strains A1T, H1T and B1T was 2 574 013, 2 475 906 and 2 623 236 bp, and the G+C content was 66.0, 66.2 and 66.1 mol%, respectively. Analysis of the 16S rRNA genes showed the highest similarity to the genera Malikia (95.1-96.4 %), Macromonas (93.0-93.6 %) and Hydrogenophaga (93.0-96.6 %) in the family Comamonadaceae. Phylogenetic analysis based on 16S rRNA gene and phylogenomic analysis based on core gene sequences revealed that the isolated strains diverged from the related species, forming a distinct branch. Average amino acid identity values of strains A1T, H1T and B1T against the genomes of related members in this family were below 67 %, which is below the suggested threshold for genera boundaries. Average nucleotide identity by blast values and digital DNA-DNA hybridization among the three strains were below 92.0 and 46.6 % respectively, which are below the suggested thresholds for species boundaries. Based on phylogenetic, genomic and phenotypic characterization, we propose Serpentinimonas gen. nov., Serpentinimonas raichei sp. nov. (type strain A1T=NBRC 111848T=DSM 103917T), Serpentinimonas barnesii sp. nov. (type strain H1T= NBRC 111849T=DSM 103920T) and Serpentinimonas maccroryi sp. nov. (type strain B1T=NBRC 111850T=DSM 103919T) belonging to the family Comamonadaceae. We have designated Serpentinimonas raichei the type species for the genus because it is the dominant species in The Cedars springs.
Collapse
Affiliation(s)
- Lina J. Bird
- Center for Bio/Molecular Science and Engineering Naval Research Lab, 4555 Overlook Ave S.W., Washington DC 20375, USA
- Department of Earth Sciences, University of Southern California, 35 W. 37th St. SHS 560, Los Angeles, California 90089, USA
| | - J. Gijs Kuenen
- Department of Earth Sciences, University of Southern California, 35 W. 37th St. SHS 560, Los Angeles, California 90089, USA
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ, Delft, Netherlands
| | - Magdalena R. Osburn
- Department of Earth and Planetary Sciences, Weinberg College of Arts & Sciences. Northwestern University Evanston, Evanston, USA
| | - Naotaka Tomioka
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Monobe B200, Nankoku, Kochi 783-8502, Japan
| | - Shun’ichi Ishii
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Monobe B200, Nankoku, Kochi 783-8502, Japan
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), JAMSTEC, Natsushima 2-15, Yokosuka, Kanagawa 237-0061, Japan
| | - Casey Barr
- Department of Earth Sciences, University of Southern California, 35 W. 37th St. SHS 560, Los Angeles, California 90089, USA
| | - Kenneth H. Nealson
- Department of Earth Sciences, University of Southern California, 35 W. 37th St. SHS 560, Los Angeles, California 90089, USA
| | - Shino Suzuki
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Monobe B200, Nankoku, Kochi 783-8502, Japan
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), JAMSTEC, Natsushima 2-15, Yokosuka, Kanagawa 237-0061, Japan
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan
| |
Collapse
|
24
|
Procaryotic Diversity and Hydrogenotrophic Methanogenesis in an Alkaline Spring (La Crouen, New Caledonia). Microorganisms 2021; 9:microorganisms9071360. [PMID: 34201651 PMCID: PMC8307142 DOI: 10.3390/microorganisms9071360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 01/01/2023] Open
Abstract
(1) Background: The geothermal spring of La Crouen (New Caledonia) discharges warm (42 °C) alkaline water (pH~9) enriched in dissolved nitrogen with traces of methane, but its microbial diversity has not yet been studied. (2) Methods: Cultivation-dependent and -independent methods (e.g., Illumina sequencing and quantitative PCR based on 16S rRNA gene) were used to describe the prokaryotic diversity of this spring. (3) Results: Prokaryotes were mainly represented by Proteobacteria (57% on average), followed by Cyanobacteria, Chlorofexi, and Candidatus Gracilibacteria (GN02/BD1-5) (each > 5%). Both potential aerobes and anaerobes, as well as mesophilic and thermophilic microorganisms, were identified. Some of them had previously been detected in continental hyperalkaline springs found in serpentinizing environments (The Cedars, Samail, Voltri, and Zambales ophiolites). Gammaproteobacteria, Ca. Gracilibacteria and Thermotogae were significantly more abundant in spring water than in sediments. Potential chemolithotrophs mainly included beta- and gammaproteobacterial genera of sulfate-reducers (Ca. Desulfobacillus), methylotrophs (Methyloversatilis), sulfur-oxidizers (Thiofaba, Thiovirga), or hydrogen-oxidizers (Hydrogenophaga). Methanogens (Methanobacteriales and Methanosarcinales) were the dominant Archaea, as found in serpentinization-driven and deep subsurface ecosystems. A novel alkaliphilic hydrogenotrophic methanogen (strain CAN) belonging to the genus Methanobacterium was isolated, suggesting that hydrogenotrophic methanogenesis occurs at La Crouen.
Collapse
|
25
|
Byrd N, Lloyd JR, Small JS, Taylor F, Bagshaw H, Boothman C, Morris K. Microbial Degradation of Citric Acid in Low Level Radioactive Waste Disposal: Impact on Biomineralization Reactions. Front Microbiol 2021; 12:565855. [PMID: 33995289 PMCID: PMC8114274 DOI: 10.3389/fmicb.2021.565855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/10/2021] [Indexed: 11/18/2022] Open
Abstract
Organic complexants are present in some radioactive wastes and can challenge waste disposal as they may enhance subsurface mobility of radionuclides and contaminant species via chelation. The principal sources of organic complexing agents in low level radioactive wastes (LLW) originate from chemical decontamination activities. Polycarboxylic organic decontaminants such as citric and oxalic acid are of interest as currently there is a paucity of data on their biodegradation at high pH and under disposal conditions. This work explores the biogeochemical fate of citric acid, a model decontaminant, under high pH anaerobic conditions relevant to disposal of LLW in cementitious disposal environments. Anaerobic microcosm experiments were set up, using a high pH adapted microbial inoculum from a well characterized environmental site, to explore biodegradation of citrate under representative repository conditions. Experiments were initiated at three different pH values (10, 11, and 12) and citrate was supplied as the electron donor and carbon source, under fermentative, nitrate-, Fe(III)- and sulfate- reducing conditions. Results showed that citrate was oxidized using nitrate or Fe(III) as the electron acceptor at > pH 11. Citrate was fully degraded and removed from solution in the nitrate reducing system at pH 10 and pH 11. Here, the microcosm pH decreased as protons were generated during citrate oxidation. In the Fe(III)-reducing systems, the citrate removal rate was slower than in the nitrate reducing systems. This was presumably as Fe(III)-reduction consumes fewer moles of citrate than nitrate reduction for the same molar concentrations of electron acceptor. The pH did not change significantly in the Fe(III)-reducing systems. Sulfate reduction only occurred in a single microcosm at pH 10. Here, citrate was fully removed from solution, alongside ingrowth of acetate and formate, likely fermentation products. The acetate and lactate were subsequently used as electron donors during sulfate-reduction and there was an associated decrease in solution pH. Interestingly, in the Fe(III) reducing experiments, Fe(II) ingrowth was observed at pH values recorded up to 11.7. Here, TEM analysis of the resultant solid Fe-phase indicated that nanocrystalline magnetite formed as an end product of Fe(III)-reduction under these extreme conditions. PCR-based high-throughput 16S rRNA gene sequencing revealed that bacteria capable of nitrate Fe(III) and sulfate reduction became enriched in the relevant, biologically active systems. In addition, some fermentative organisms were identified in the Fe(III)- and sulfate-reducing systems. The microbial communities present were consistent with expectations based on the geochemical data. These results are important to improve long-term environmental safety case development for cementitious LLW waste disposal.
Collapse
Affiliation(s)
- Natalie Byrd
- Department of Earth and Environmental Sciences, Research Centre for Radwaste Disposal and Williamson Research Centre, The University of Manchester, Manchester, United Kingdom
| | - Jonathan R Lloyd
- Department of Earth and Environmental Sciences, Research Centre for Radwaste Disposal and Williamson Research Centre, The University of Manchester, Manchester, United Kingdom
| | - Joe S Small
- Department of Earth and Environmental Sciences, Research Centre for Radwaste Disposal and Williamson Research Centre, The University of Manchester, Manchester, United Kingdom.,National Nuclear Laboratory, Warrington, United Kingdom
| | - Frank Taylor
- Low Level Waste Repository Ltd., Seascale, United Kingdom
| | - Heath Bagshaw
- School of Engineering, The University of Liverpool, Liverpool, United Kingdom
| | - Christopher Boothman
- Department of Earth and Environmental Sciences, Research Centre for Radwaste Disposal and Williamson Research Centre, The University of Manchester, Manchester, United Kingdom
| | - Katherine Morris
- Department of Earth and Environmental Sciences, Research Centre for Radwaste Disposal and Williamson Research Centre, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
26
|
Wang B, Huang J, Yang J, Jiang H, Xiao H, Han J, Zhang X. Bicarbonate uptake rates and diversity of RuBisCO genes in saline lake sediments. FEMS Microbiol Ecol 2021; 97:6149456. [PMID: 33629724 DOI: 10.1093/femsec/fiab037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 02/23/2021] [Indexed: 11/12/2022] Open
Abstract
There is limited knowledge of microbial carbon fixation rate, and carbon-fixing microbial abundance and diversity in saline lakes. In this study, the inorganic carbon uptake rates and carbon-fixing microbial populations were investigated in the surface sediments of lakes with a full range of salinity from freshwater to salt saturation. The results showed that in the studied lakes light-dependent bicarbonate uptake contributed substantially (>70%) to total bicarbonate uptake, while the contribution of dark bicarbonate uptake (1.35-25.17%) cannot be ignored. The light-dependent bicarbonate uptake rates were significantly correlated with pH and turbidity, while dark bicarbonate uptake rates were significantly influenced by dissolved inorganic carbon, pH, temperature and salinity. Carbon-fixing microbial populations using the Calvin-Benson-Bassham pathway were widespread in the studied lakes, and they were dominated by the cbbL and cbbM gene types affiliated with Cyanobacteria and Proteobacteria, respectively. The cbbL and cbbM gene abundance and population structures were significantly affected by different environmental variables, with the cbbL and cbbM genes being negatively correlated with salinity and organic carbon concentration, respectively. In summary, this study improves our knowledge of the abundance, diversity and function of carbon-fixing microbial populations in the lakes with a full range of salinity.
Collapse
Affiliation(s)
- Beichen Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Jianrong Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Haiyi Xiao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jibin Han
- Key Laboratory of Salt Lake Geology and Environment of Qinghai Province, Qinghai Institute of Salt Lakes, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Xining 81008, China
| | - Xiying Zhang
- Key Laboratory of Salt Lake Geology and Environment of Qinghai Province, Qinghai Institute of Salt Lakes, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Xining 81008, China
| |
Collapse
|
27
|
Obulisamy PK, Mehariya S. Polyhydroxyalkanoates from extremophiles: A review. BIORESOURCE TECHNOLOGY 2021; 325:124653. [PMID: 33465644 DOI: 10.1016/j.biortech.2020.124653] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are group monomers/heteropolymers that are biodegradable and widely used in biomedical applications. They are considered as alternatives to fossil derived polymers and accumulated by microbes including extremophilic archaea as energy storage inclusions under nutrient limitations. The use of extremophilic archaea for PHA production is an economically viable option for conventional aerobic processes, but less is known about their pathways and PHA accumulation capacities. This review summarized: (a) specific adaptive mechanisms towards extreme environments by extremophiles and specific role of PHAs; (b) understanding of PHA synthesis/metabolism in archaea and specific functional genes; (c) genetic engineering and process engineering approaches required for high-rate PHA production using extremophilic archaea. To conclude, the future studies are suggested to understand the membrane lipids and PHAs accumulation to explain the adaptation mechanism of extremophiles and exploiting it for commercial production of PHAs.
Collapse
Affiliation(s)
| | - Sanjeet Mehariya
- Department of Engineering, University of Campania "Luigi Vanvitelli", Real Casa dell'Annunziata, Italy
| |
Collapse
|
28
|
Reddish FN, Miller CL, Deng X, Dong B, Patel AA, Ghane MA, Mosca B, McBean C, Wu S, Solntsev KM, Zhuo Y, Gadda G, Fang N, Cox DN, Mabb AM, Treves S, Zorzato F, Yang JJ. Rapid subcellular calcium responses and dynamics by calcium sensor G-CatchER . iScience 2021; 24:102129. [PMID: 33665552 PMCID: PMC7900224 DOI: 10.1016/j.isci.2021.102129] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 12/14/2020] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
The precise spatiotemporal characteristics of subcellular calcium (Ca2+) transients are critical for the physiological processes. Here we report a green Ca2+ sensor called "G-CatchER+" using a protein design to report rapid local ER Ca2+ dynamics with significantly improved folding properties. G-CatchER+ exhibits a superior Ca2+ on rate to G-CEPIA1er and has a Ca2+-induced fluorescence lifetimes increase. G-CatchER+ also reports agonist/antagonist triggered Ca2+ dynamics in several cell types including primary neurons that are orchestrated by IP3Rs, RyRs, and SERCAs with an ability to differentiate expression. Upon localization to the lumen of the RyR channel (G-CatchER+-JP45), we report a rapid local Ca2+ release that is likely due to calsequestrin. Transgenic expression of G-CatchER+ in Drosophila muscle demonstrates its utility as an in vivo reporter of stimulus-evoked SR local Ca2+ dynamics. G-CatchER+ will be an invaluable tool to examine local ER/SR Ca2+ dynamics and facilitate drug development associated with ER dysfunction.
Collapse
Affiliation(s)
- Florence N. Reddish
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA
| | - Cassandra L. Miller
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA
| | - Xiaonan Deng
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA
| | - Bin Dong
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA
| | - Atit A. Patel
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA
| | - Mohammad A. Ghane
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA
| | - Barbara Mosca
- Department of Life Sciences, General Pathology, University of Ferrara, Ferrara, Italy
| | - Cheyenne McBean
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA
| | - Shengnan Wu
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30303, USA
| | - Kyril M. Solntsev
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - You Zhuo
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA
| | - Giovanni Gadda
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA
| | - Ning Fang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA
| | - Angela M. Mabb
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA
| | - Susan Treves
- Department of Life Sciences, General Pathology, University of Ferrara, Ferrara, Italy
- Department of Biomedicine, Basel University, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Francesco Zorzato
- Department of Life Sciences, General Pathology, University of Ferrara, Ferrara, Italy
- Department of Biomedicine, Basel University, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Jenny J. Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
29
|
Asplund-Samuelsson J, Hudson EP. Wide range of metabolic adaptations to the acquisition of the Calvin cycle revealed by comparison of microbial genomes. PLoS Comput Biol 2021; 17:e1008742. [PMID: 33556078 PMCID: PMC7895386 DOI: 10.1371/journal.pcbi.1008742] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/19/2021] [Accepted: 01/25/2021] [Indexed: 11/21/2022] Open
Abstract
Knowledge of the genetic basis for autotrophic metabolism is valuable since it relates to both the emergence of life and to the metabolic engineering challenge of incorporating CO2 as a potential substrate for biorefining. The most common CO2 fixation pathway is the Calvin cycle, which utilizes Rubisco and phosphoribulokinase enzymes. We searched thousands of microbial genomes and found that 6.0% contained the Calvin cycle. We then contrasted the genomes of Calvin cycle-positive, non-cyanobacterial microbes and their closest relatives by enrichment analysis, ancestral character estimation, and random forest machine learning, to explore genetic adaptations associated with acquisition of the Calvin cycle. The Calvin cycle overlaps with the pentose phosphate pathway and glycolysis, and we could confirm positive associations with fructose-1,6-bisphosphatase, aldolase, and transketolase, constituting a conserved operon, as well as ribulose-phosphate 3-epimerase, ribose-5-phosphate isomerase, and phosphoglycerate kinase. Additionally, carbohydrate storage enzymes, carboxysome proteins (that raise CO2 concentration around Rubisco), and Rubisco activases CbbQ and CbbX accompanied the Calvin cycle. Photorespiration did not appear to be adapted specifically for the Calvin cycle in the non-cyanobacterial microbes under study. Our results suggest that chemoautotrophy in Calvin cycle-positive organisms was commonly enabled by hydrogenase, and less commonly ammonia monooxygenase (nitrification). The enrichment of specific DNA-binding domains indicated Calvin-cycle associated genetic regulation. Metabolic regulatory adaptations were illustrated by negative correlation to AraC and the enzyme arabinose-5-phosphate isomerase, which suggests a downregulation of the metabolite arabinose-5-phosphate, which may interfere with the Calvin cycle through enzyme inhibition and substrate competition. Certain domains of unknown function that were found to be important in the analysis may indicate yet unknown regulatory mechanisms in Calvin cycle-utilizing microbes. Our gene ranking provides targets for experiments seeking to improve CO2 fixation, or engineer novel CO2-fixing organisms.
Collapse
Affiliation(s)
- Johannes Asplund-Samuelsson
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Elton P. Hudson
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| |
Collapse
|
30
|
Molecular Evidence for an Active Microbial Methane Cycle in Subsurface Serpentinite-Hosted Groundwaters in the Samail Ophiolite, Oman. Appl Environ Microbiol 2021; 87:AEM.02068-20. [PMID: 33127818 DOI: 10.1128/aem.02068-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/20/2020] [Indexed: 01/04/2023] Open
Abstract
Serpentinization can generate highly reduced fluids replete with hydrogen (H2) and methane (CH4), potent reductants capable of driving microbial methanogenesis and methanotrophy, respectively. However, CH4 in serpentinized waters is thought to be primarily abiogenic, raising key questions about the relative importance of methanogens and methanotrophs in the production and consumption of CH4 in these systems. Herein, we apply molecular approaches to examine the functional capability and activity of microbial CH4 cycling in serpentinization-impacted subsurface waters intersecting multiple rock and water types within the Samail Ophiolite of Oman. Abundant 16S rRNA genes and transcripts affiliated with the methanogenic genus Methanobacterium were recovered from the most alkaline (pH, >10), H2- and CH4-rich subsurface waters. Additionally, 16S rRNA genes and transcripts associated with the aerobic methanotrophic genus Methylococcus were detected in wells that spanned varied fluid geochemistry. Metagenomic sequencing yielded genes encoding homologs of proteins involved in the hydrogenotrophic pathway of microbial CH4 production and in microbial CH4 oxidation. Transcripts of several key genes encoding methanogenesis/methanotrophy enzymes were identified, predominantly in communities from the most hyperalkaline waters. These results indicate active methanogenic and methanotrophic populations in waters with hyperalkaline pH in the Samail Ophiolite, thereby supporting a role for biological CH4 cycling in aquifers that undergo low-temperature serpentinization.IMPORTANCE Serpentinization of ultramafic rock can generate conditions favorable for microbial methane (CH4) cycling, including the abiotic production of hydrogen (H2) and possibly CH4 Systems of low-temperature serpentinization are geobiological targets due to their potential to harbor microbial life and ubiquity throughout Earth's history. Biomass in fracture waters collected from the Samail Ophiolite of Oman, a system undergoing modern serpentinization, yielded DNA and RNA signatures indicative of active microbial methanogenesis and methanotrophy. Intriguingly, transcripts for proteins involved in methanogenesis were most abundant in the most highly reacted waters that have hyperalkaline pH and elevated concentrations of H2 and CH4 These findings suggest active biological methane cycling in serpentinite-hosted aquifers, even under extreme conditions of high pH and carbon limitation. These observations underscore the potential for microbial activity to influence the isotopic composition of CH4 in these systems, which is information that could help in identifying biosignatures of microbial activity on other planets.
Collapse
|
31
|
Cyanobacterial Mats in Calcite-Precipitating Serpentinite-Hosted Alkaline Springs of the Voltri Massif, Italy. Microorganisms 2020; 9:microorganisms9010062. [PMID: 33383678 PMCID: PMC7824716 DOI: 10.3390/microorganisms9010062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 01/15/2023] Open
Abstract
(1) Background: Microbial communities in terrestrial, calcifying high-alkaline springs are not well understood. In this study, we investigate the structure and composition of microbial mats in ultrabasic (pH 10–12) serpentinite springs of the Voltri Massif (Italy). (2) Methods: Along with analysis of chemical and mineralogical parameters, environmental DNA was extracted and subjected to analysis of microbial communities based upon next-generation sequencing. (3) Results: Mineral precipitation and microbialite formation occurred, along with mat formation. Analysis of the serpentinite spring microbial community, based on Illumina sequencing of 16S rRNA amplicons, point to the relevance of alkaliphilic cyanobacteria, colonizing carbonate buildups. Cyanobacterial groups accounted for up to 45% of all retrieved sequences; 3–4 taxa were dominant, belonging to the filamentous groups of Leptolyngbyaceae, Oscillatoriales, and Pseudanabaenaceae. The cyanobacterial community found at these sites is clearly distinct from creek water sediment, highlighting their specific adaptation to these environments.
Collapse
|
32
|
Ruiz-Lopez S, Foster L, Boothman C, Cole N, Morris K, Lloyd JR. Identification of a Stable Hydrogen-Driven Microbiome in a Highly Radioactive Storage Facility on the Sellafield Site. Front Microbiol 2020; 11:587556. [PMID: 33329459 PMCID: PMC7732693 DOI: 10.3389/fmicb.2020.587556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/26/2020] [Indexed: 11/29/2022] Open
Abstract
The use of nuclear power has been a significant part of the United Kingdom’s energy portfolio with the Sellafield site being used for power production and more recently reprocessing and decommissioning of spent nuclear fuel activities. Before being reprocessed, spent nuclear fuel is stored in water ponds with significant levels of background radioactivity and in high alkalinity (to minimize fuel corrosion). Despite these challenging conditions, the presence of microbial communities has been detected. To gain further insight into the microbial communities present in extreme environments, an indoor, hyper-alkaline, oligotrophic, and radioactive spent fuel storage pond (INP) located on the Sellafield site was analyzed. Water samples were collected from sample points within the INP complex, and also the purge water feeding tank (FT) that supplies water to the pond, and were screened for the presence of the 16S and 18S rRNA genes to inform sequencing requirements over a period of 30 months. Only 16S rRNA genes were successfully amplified for sequencing, suggesting that the microbial communities in the INP were dominated by prokaryotes. Quantitative Polymerase Chain Reaction (qPCR) analysis targeting 16S rRNA genes suggested that bacterial cells in the order of 104–106 mL–1 were present in the samples, with loadings rising with time. Next generation Illumina MiSeq sequencing was performed to identify the dominant microorganisms at eight sampling times. The 16S rRNA gene sequence analysis suggested that 70% and 91% from of the OTUs samples, from the FT and INP respectively, belonged to the phylum Proteobacteria, mainly from the alpha and beta subclasses. The remaining OTUs were assigned primarily to the phyla Acidobacteria, Bacteroidetes, and, Cyanobacteria. Overall the most abundant genera identified were Hydrogenophaga, Curvibacter, Porphyrobacter, Rhodoferax, Polaromonas, Sediminibacterium, Roseococcus, and Sphingomonas. The presence of organisms most closely related to Hydrogenophaga species in the INP areas, suggests the metabolism of hydrogen as an energy source, most likely linked to hydrolysis of water caused by the stored fuel. Isolation of axenic cultures using a range of minimal and rich media was also attempted, but only relatively minor components (from the phylum Bacteroidetes) of the pond water communities were obtained, emphasizing the importance of DNA-based, not culture-dependent techniques, for assessing the microbiome of nuclear facilities.
Collapse
Affiliation(s)
- Sharon Ruiz-Lopez
- Department of Earth and Environmental Sciences, University of Manchester (UoM), Manchester, United Kingdom
| | - Lynn Foster
- Department of Earth and Environmental Sciences, University of Manchester (UoM), Manchester, United Kingdom
| | - Chris Boothman
- Department of Earth and Environmental Sciences, University of Manchester (UoM), Manchester, United Kingdom
| | - Nick Cole
- Sellafield Ltd., Warrington, United Kingdom
| | - Katherine Morris
- Department of Earth and Environmental Sciences, University of Manchester (UoM), Manchester, United Kingdom
| | - Jonathan R Lloyd
- Department of Earth and Environmental Sciences, University of Manchester (UoM), Manchester, United Kingdom
| |
Collapse
|
33
|
Wilpiszeski RL, Sherwood Lollar B, Warr O, House CH. In Situ Growth of Halophilic Bacteria in Saline Fracture Fluids from 2.4 km below Surface in the Deep Canadian Shield. Life (Basel) 2020; 10:E307. [PMID: 33255232 PMCID: PMC7760289 DOI: 10.3390/life10120307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/22/2022] Open
Abstract
Energy derived from water-rock interactions such as serpentinization and radiolysis, among others, can sustain microbial ecosystems deep within the continental crust, expanding the habitable biosphere kilometers below the earth's surface. Here, we describe a viable microbial community including sulfate-reducing microorganisms from one such subsurface lithoautotrophic ecosystem hosted in fracture waters in the Canadian Shield, 2.4 km below the surface in the Kidd Creek Observatory in Timmins, Ontario. The ancient groundwater housed in fractures in this system was previously shown to be rich in abiotically produced hydrogen, sulfate, methane, and short-chain hydrocarbons. We have further investigated this system by collecting filtered water samples and deploying sterile in situ biosampler units into boreholes to provide an attachment surface for the actively growing fraction of the microbial community. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, and DNA sequencing analyses were undertaken to classify the recovered microorganisms. Moderately halophilic taxa (e.g., Marinobacter, Idiomarina, Chromohalobacter, Thiobacillus, Hyphomonas, Seohaeicola) were recovered from all sampled boreholes, and those boreholes that had previously been sealed to equilibrate with the fracture water contained taxa consistent with sulfate reduction (e.g., Desulfotomaculum) and hydrogen-driven homoacetogenesis (e.g., Fuchsiella). In contrast to this "corked" borehole that has been isolated from the mine environment for approximately 7 years at the time of sampling, we sampled additional open boreholes. The waters flowing freely from these open boreholes differ from those of the long-sealed borehole. This work complements ongoing efforts to describe the microbial diversity in fracture waters at Kidd Creek in order to better understand the processes shaping life in the deep terrestrial subsurface. In particular, this work demonstrates that anaerobic bacteria and known halophilic taxa are present and viable in the fracture waters presently outflowing from existing boreholes. Major cations and anions found in the fracture waters at the 2.4 km level of the mine are also reported.
Collapse
Affiliation(s)
- Regina L. Wilpiszeski
- Department of Geosciences and Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Barbara Sherwood Lollar
- Stable Isotope Laboratory, University of Toronto, Toronto, ON M5S 3B1, Canada; (B.S.L.); (O.W.)
| | - Oliver Warr
- Stable Isotope Laboratory, University of Toronto, Toronto, ON M5S 3B1, Canada; (B.S.L.); (O.W.)
| | - Christopher H. House
- Department of Geosciences and Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, PA 16802, USA;
| |
Collapse
|
34
|
Sabuda MC, Brazelton WJ, Putman LI, McCollom TM, Hoehler TM, Kubo MDY, Cardace D, Schrenk MO. A dynamic microbial sulfur cycle in a serpentinizing continental ophiolite. Environ Microbiol 2020; 22:2329-2345. [PMID: 32249550 DOI: 10.1111/1462-2920.15006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022]
Abstract
Serpentinization is the hydration and oxidation of ultramafic rock, which occurs as oceanic lithosphere is emplaced onto continental margins (ophiolites), and along the seafloor as faulting exposes this mantle-derived material to circulating hydrothermal fluids. This process leads to distinctive fluid chemistries as molecular hydrogen (H2 ) and hydroxyl ions (OH- ) are produced and reduced carbon compounds are mobilized. Serpentinizing ophiolites also serve as a vector to transport sulfur compounds from the seafloor onto the continents. We investigated hyperalkaline, sulfur-rich, brackish groundwater in a serpentinizing continental ophiolite to elucidate the role of sulfur compounds in fuelling in situ microbial activities. Here we illustrate that key sulfur-cycling taxa, including Dethiobacter, Desulfitispora and 'Desulforudis', persist throughout this extreme environment. Biologically catalysed redox reactions involving sulfate, sulfide and intermediate sulfur compounds are thermodynamically favourable in the groundwater, which indicates they may be vital to sustaining life in these characteristically oxidant- and energy-limited systems. Furthermore, metagenomic and metatranscriptomic analyses reveal a complex network involving sulfate reduction, sulfide oxidation and thiosulfate reactions. Our findings highlight the importance of the complete inorganic sulfur cycle in serpentinizing fluids and suggest sulfur biogeochemistry provides a key link between terrestrial serpentinizing ecosystems and their submarine heritage.
Collapse
Affiliation(s)
- Mary C Sabuda
- Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | | | - Lindsay I Putman
- Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI, 48824, USA.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Tom M McCollom
- Laboratory for Atmospheric and Space Physics, UCB 600, University of Colorado-Boulder, Boulder, CO, 80309, USA
| | - Tori M Hoehler
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Michael D Y Kubo
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, 94035, USA.,SETI Institute, Mountain View, CA, 94043, USA
| | - Dawn Cardace
- Department of Geosciences, University of Rhode Island, Kingston, RI, 02881, USA
| | - Matthew O Schrenk
- Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI, 48824, USA.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
35
|
Carbon Assimilation Strategies in Ultrabasic Groundwater: Clues from the Integrated Study of a Serpentinization-Influenced Aquifer. mSystems 2020; 5:5/2/e00607-19. [PMID: 32156795 PMCID: PMC7065513 DOI: 10.1128/msystems.00607-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
This study describes the potential metabolic pathways by which microbial communities in a serpentinite-influenced aquifer may produce biomass from the products of serpentinization. Serpentinization is a widespread geochemical process, taking place over large regions of the seafloor and at continental margins, where ancient seafloor has accreted onto the continents. Because of the difficulty in delineating abiotic and biotic processes in these environments, major questions remain related to microbial contributions to the carbon cycle and physiological adaptation to serpentinite habitats. This research explores multiple mechanisms of carbon fixation and assimilation in serpentinite-hosted microbial communities. Serpentinization is a low-temperature metamorphic process by which ultramafic rock chemically reacts with water. Such reactions provide energy and materials that may be harnessed by chemosynthetic microbial communities at hydrothermal springs and in the subsurface. However, the biogeochemistry mediated by microbial populations that inhabit these environments is understudied and complicated by overlapping biotic and abiotic processes. We applied metagenomics, metatranscriptomics, and untargeted metabolomics techniques to environmental samples taken from the Coast Range Ophiolite Microbial Observatory (CROMO), a subsurface observatory consisting of 12 wells drilled into the ultramafic and serpentinite mélange of the Coast Range Ophiolite in California. Using a combination of DNA and RNA sequence data and mass spectrometry data, we found evidence for several carbon fixation and assimilation strategies, including the Calvin-Benson-Bassham cycle, the reverse tricarboxylic acid cycle, the reductive acetyl coenzyme A (acetyl-CoA) pathway, and methylotrophy, in the microbial communities inhabiting the serpentinite-hosted aquifer. Our data also suggest that the microbial inhabitants of CROMO use products of the serpentinization process, including methane and formate, as carbon sources in a hyperalkaline environment where dissolved inorganic carbon is unavailable. IMPORTANCE This study describes the potential metabolic pathways by which microbial communities in a serpentinite-influenced aquifer may produce biomass from the products of serpentinization. Serpentinization is a widespread geochemical process, taking place over large regions of the seafloor and at continental margins, where ancient seafloor has accreted onto the continents. Because of the difficulty in delineating abiotic and biotic processes in these environments, major questions remain related to microbial contributions to the carbon cycle and physiological adaptation to serpentinite habitats. This research explores multiple mechanisms of carbon fixation and assimilation in serpentinite-hosted microbial communities.
Collapse
|
36
|
Affiliation(s)
- J. Gijs Kuenen
- Environmental Biotechnology Section, Department of BiotechnologyDelft University of Technology The Netherlands
| |
Collapse
|
37
|
Eickenbusch P, Takai K, Sissman O, Suzuki S, Menzies C, Sakai S, Sansjofre P, Tasumi E, Bernasconi SM, Glombitza C, Jørgensen BB, Morono Y, Lever MA. Origin of Short-Chain Organic Acids in Serpentinite Mud Volcanoes of the Mariana Convergent Margin. Front Microbiol 2019; 10:1729. [PMID: 31404165 PMCID: PMC6677109 DOI: 10.3389/fmicb.2019.01729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/12/2019] [Indexed: 11/17/2022] Open
Abstract
Serpentinitic systems are potential habitats for microbial life due to frequently high concentrations of microbial energy substrates, such as hydrogen (H2), methane (CH4), and short-chain organic acids (SCOAs). Yet, many serpentinitic systems are also physiologically challenging environments due to highly alkaline conditions (pH > 10) and elevated temperatures (>80°C). To elucidate the possibility of microbial life in deep serpentinitic crustal environments, International Ocean Discovery Program (IODP) Expedition 366 drilled into the Yinazao, Fantangisña, and Asùt Tesoru serpentinite mud volcanoes on the Mariana Forearc. These mud volcanoes differ in temperature (80, 150, 250°C, respectively) of the underlying subducting slab, and in the porewater pH (11.0, 11.2, 12.5, respectively) of the serpentinite mud. Increases in formate and acetate concentrations across the three mud volcanoes, which are positively correlated with temperature in the subducting slab and coincide with strong increases in H2 concentrations, indicate a serpentinization-related origin. Thermodynamic calculations suggest that formate is produced by equilibrium reactions with dissolved inorganic carbon (DIC) + H2, and that equilibration continues during fluid ascent at temperatures below 80°C. By contrast, the mechanism(s) of acetate production are not clear. Besides formate, acetate, and H2 data, we present concentrations of other SCOAs, methane, carbon monoxide, and sulfate, δ13C-data on bulk carbon pools, and microbial cell counts. Even though calculations indicate a wide range of microbial catabolic reactions to be thermodynamically favorable, concentration profiles of potential energy substrates, and very low cell numbers suggest that microbial life is scarce or absent. We discuss the potential roles of temperature, pH, pressure, and dispersal in limiting the occurrence of microbial life in deep serpentinitic environments.
Collapse
Affiliation(s)
- Philip Eickenbusch
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zurich, Switzerland
| | - Ken Takai
- SUGAR Program, Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science Technology, Yokosuka, Japan
| | | | - Shino Suzuki
- Geomicrobiology Research Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, Kochi, Japan
| | - Catriona Menzies
- Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton, United Kingdom.,Department of Geology and Petroleum Geology, University of Aberdeen, Aberdeen, United Kingdom
| | - Sanae Sakai
- SUGAR Program, Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science Technology, Yokosuka, Japan
| | - Pierre Sansjofre
- Laboratoire Géosciences Océan UMR 6538, Université de Bretagne Occidentale, Brest, France
| | - Eiji Tasumi
- SUGAR Program, Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science Technology, Yokosuka, Japan
| | | | - Clemens Glombitza
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zurich, Switzerland.,NASA Ames Research Center, Moffett Field, CA, United States
| | - Bo Barker Jørgensen
- Department of Bioscience, Center for Geomicrobiology, Aarhus University, Aarhus, Denmark
| | - Yuki Morono
- Geomicrobiology Research Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, Kochi, Japan
| | - Mark Alexander Lever
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
38
|
Merino N, Aronson HS, Bojanova DP, Feyhl-Buska J, Wong ML, Zhang S, Giovannelli D. Corrigendum: Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context. Front Microbiol 2019; 10:1785. [PMID: 31456760 PMCID: PMC6700686 DOI: 10.3389/fmicb.2019.01785] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/18/2019] [Indexed: 11/27/2022] Open
Affiliation(s)
- Nancy Merino
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States.,Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Lab, Livermore, CA, United States
| | - Heidi S Aronson
- Department of Biology, University of Southern California, Los Angeles, CA, United States
| | - Diana P Bojanova
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Jayme Feyhl-Buska
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Michael L Wong
- Department of Astronomy - Astrobiology Program, University of Washington, Seattle, WA, United States.,NASA Astrobiology Institute's Virtual Planetary Laboratory, University of Washington, Seattle, WA, United States
| | - Shu Zhang
- Section of Infection and Immunity, Herman Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, CA, United States
| | - Donato Giovannelli
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,Department of Biology, University of Naples "Federico II", Naples, Italy.,Department of Marine and Coastal Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States.,Institute for Biological Resources and Marine Biotechnology, National Research Council of Italy, Ancona, Italy
| |
Collapse
|
39
|
Microbial Community in Hyperalkaline Steel Slag-Fill Emulates Serpentinizing Springs. DIVERSITY 2019. [DOI: 10.3390/d11070103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To date, a majority of studies of microbial life in hyperalkaline settings focus on environments that are also highly saline (haloalkaline). Haloalkaline conditions offer microbes abundant workarounds to maintain pH homeostasis, as salt ions can be exchanged for protons by dedicated antiporter proteins. Yet hyperalkaline freshwater systems also occur both naturally and anthropogenically, such as the slag fill aquifers around former Lake Calumet (Chicago, IL, USA). In this study, 16S rRNA gene sequences and metagenomic sequence libraries were collected to assess the taxonomic composition and functional potential of microbes present in these slag-polluted waterways. Relative 16S rRNA gene abundances in Calumet sediment and water samples describe community compositions not significantly divergent from those in nearby circumneutral conditions. Major differences in composition are mainly driven by Proteobacteria, primarily one sequence cluster closely related to Hydrogenophaga, which comprises up to 85% of 16S rRNA gene abundance in hyperalkaline surface sediments. Sequence identity indicates this novel species belongs to the recently established genus Serpentinomonas, a bacterial lineage associated with natural freshwater hyperalkaline serpentinizing springs.
Collapse
|
40
|
Meyer-Dombard DR, Osburn MR, Cardace D, Arcilla CA. The Effect of a Tropical Climate on Available Nutrient Resources to Springs in Ophiolite-Hosted, Deep Biosphere Ecosystems in the Philippines. Front Microbiol 2019; 10:761. [PMID: 31118921 PMCID: PMC6504838 DOI: 10.3389/fmicb.2019.00761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/26/2019] [Indexed: 11/13/2022] Open
Abstract
Springs hosted in ophiolites are often affected by serpentinization processes. The characteristically low DIC and high CH4 and H2 gas concentrations of serpentinizing ecosystems have led to interest in hydrogen based metabolisms in these subsurface biomes. However, a true subsurface signature can be difficult to identify in surface expressions such as serpentinizing springs. Here, we explore carbon and nitrogen resources in serpentinization impacted springs in the tropical climate of the Zambales and Palawan ophiolites in the Philippines, with a focus on surface vs. subsurface processes and exogenous vs. endogenous nutrient input. Isotopic signatures in spring fluids, biomass, and carbonates were examined to identify sources and sinks of carbon and nitrogen, carbonate geochemistry, and the effect of seasonal precipitation. Seasonality affected biomass production in both low flow and high flow spring systems. Changes in meteorological precipitation affected δ13CDIC and δ13CDOC values of the spring fluids, which reflected seasonal gain/loss of atmospheric influence and changes in exogenous DOC input. The primary carbon source in high flow systems was variable, with DOC contributing to biomass in many springs, and a mix of DIC and carbonates contributing to biomass in select locations. However, primary carbon resources in low flow systems may depend more on endogenous than exogenous carbon, even in high precipitation seasons. Isotopic evidence for nitrogen fixation was identified, with seasonal influence only seen in low flow systems. Carbonate formation was found to occur as a mixture of recrystallization/recycling of older carbonates and rapid mineral precipitation (depending on the system), with highly δ13C and δ18O depleted carbonates occurring in many locations. Subsurface signatures (e.g., low DOC influence on Cbiomass) were most apparent in the driest seasons and lowest flow systems, indicating locations where metabolic processes divorced from surface influences (including hydrogen based metabolisms) are most likely to be occurring.
Collapse
Affiliation(s)
- D’Arcy R. Meyer-Dombard
- Department of Earth and Environmental Sciences, The University of Illinois at Chicago, Chicago, IL, United States
| | - Magdelena R. Osburn
- Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL, United States
| | - Dawn Cardace
- Department of Geosciences, The University of Rhode Island, Kingston, RI, United States
| | - Carlo A. Arcilla
- Director of Science and Technology-Philippine Nuclear Research Institute, Manilla, Philippines
| |
Collapse
|
41
|
Merino N, Aronson HS, Bojanova DP, Feyhl-Buska J, Wong ML, Zhang S, Giovannelli D. Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context. Front Microbiol 2019; 10:780. [PMID: 31037068 PMCID: PMC6476344 DOI: 10.3389/fmicb.2019.00780] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/27/2019] [Indexed: 01/21/2023] Open
Abstract
Prokaryotic life has dominated most of the evolutionary history of our planet, evolving to occupy virtually all available environmental niches. Extremophiles, especially those thriving under multiple extremes, represent a key area of research for multiple disciplines, spanning from the study of adaptations to harsh conditions, to the biogeochemical cycling of elements. Extremophile research also has implications for origin of life studies and the search for life on other planetary and celestial bodies. In this article, we will review the current state of knowledge for the biospace in which life operates on Earth and will discuss it in a planetary context, highlighting knowledge gaps and areas of opportunity.
Collapse
Affiliation(s)
- Nancy Merino
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States.,Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Lab, Livermore, CA, United States
| | - Heidi S Aronson
- Department of Biology, University of Southern California, Los Angeles, CA, United States
| | - Diana P Bojanova
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Jayme Feyhl-Buska
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Michael L Wong
- Department of Astronomy - Astrobiology Program, University of Washington, Seattle, WA, United States.,NASA Astrobiology Institute's Virtual Planetary Laboratory, University of Washington, Seattle, WA, United States
| | - Shu Zhang
- Section of Infection and Immunity, Herman Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, CA, United States
| | - Donato Giovannelli
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,Department of Biology, University of Naples "Federico II", Naples, Italy.,Department of Marine and Coastal Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States.,Institute for Biological Resources and Marine Biotechnology, National Research Council of Italy, Ancona, Italy
| |
Collapse
|
42
|
Lebre PH, Cowan DA. Genomics of Alkaliphiles. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 172:135-155. [PMID: 30796503 DOI: 10.1007/10_2018_83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alkalinicity presents a challenge for life due to a "reversed" proton gradient that is unfavourable to many bioenergetic processes across the membranes of microorganisms. Despite this, many bacteria, archaea, and eukaryotes, collectively termed alkaliphiles, are adapted to life in alkaline ecosystems and are of great scientific and biotechnological interest due to their niche specialization and ability to produce highly stable enzymes. Advances in next-generation sequencing technologies have propelled not only the genomic characterization of many alkaliphilic microorganisms that have been isolated from nature alkaline sources but also our understanding of the functional relationships between different taxa in microbial communities living in these ecosystems. In this review, we discuss the genetics and molecular biology of alkaliphiles from an "omics" point of view, focusing on how metagenomics and transcriptomics have contributed to our understanding of these extremophiles. Graphical Abstract.
Collapse
Affiliation(s)
- Pedro H Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
43
|
Kevbrin VV. Isolation and Cultivation of Alkaliphiles. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 172:53-84. [DOI: 10.1007/10_2018_84] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Suzuki S, Nealson KH, Ishii S. Genomic and in-situ Transcriptomic Characterization of the Candidate Phylum NPL-UPL2 From Highly Alkaline Highly Reducing Serpentinized Groundwater. Front Microbiol 2018; 9:3141. [PMID: 30619209 PMCID: PMC6305446 DOI: 10.3389/fmicb.2018.03141] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/04/2018] [Indexed: 12/05/2022] Open
Abstract
Serpentinization is a process whereby water interacts with reduced mantle rock called peridotite to produce a new suite of minerals (e.g., serpentine), a highly alkaline fluid, and hydrogen. In previous reports, we identified abundance of microbes of the candidate phylum NPL-UPA2 in a serpentinization site called The Cedars. Here, we report the first metagenome assembled genome (MAG) of the candidate phylum as well as the in-situ gene expression. The MAG of the phylum NPL-UPA2, named Unc8, is only about 1 Mbp and its biosynthetic properties suggest it should be capable of independent growth. In keeping with the highly reducing niche of Unc8, its genome encodes none of the known oxidative stress response genes including superoxide dismutases. With regard to energy metabolism, the MAG of Unc8 encodes all enzymes for Wood-Ljungdahl acetogenesis pathway, a ferredoxin:NAD+ oxidoreductase (Rnf) and electron carriers for flavin-based electron bifurcation (Etf, Hdr). Furthermore, the transcriptome of Unc8 in the waters of The Cedars showed enhanced levels of gene expression in the key enzymes of the Wood-Ljungdahl pathway [e.g., Carbon monoxide dehydrogenase /Acetyl-CoA synthase complex (CODH/ACS), Rnf, Acetyl-CoA synthetase (Acd)], which indicated that the Unc8 is an acetogen. However, the MAG of Unc8 encoded no well-known hydrogenase genes, suggesting that the energy metabolism of Unc8 might be focused on CO as the carbon and energy sources for the acetate formation. Given that CO could be supplied via abiotic reaction associated with deep subsurface serpentinization, while available CO2 would be at extremely low concentrations in this high pH environment, CO-associated metabolism could provide advantageous approach. The CODH/ACS in Unc8 is a Bacteria/Archaea hybrid type of six-subunit complex and the electron carriers, Etf and Hdr, showed the highest similarity to those in Archaea, suggesting that archaeal methanogenic energy metabolism was incorporated into the bacterial acetogenesis in NPL-UPA2. Given that serpentinization systems are viewed as potential habitats for early life, and that acetogenesis via the Wood-Ljungdahl pathway is proposed as an energy metabolism of Last Universal Common Ancestor, a phylogenetically distinct acetogen from an early earth analog site may provide important insights in primordial lithotrophs and their habitat.
Collapse
Affiliation(s)
- Shino Suzuki
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, Nankoku, Japan.,Department of Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, United States.,Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Kenneth H Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Shun'ichi Ishii
- Department of Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, United States.,R&D Center for Submarine Resources, JAMSTEC, Nankoku, Japan
| |
Collapse
|
45
|
Sleep NH. Geological and Geochemical Constraints on the Origin and Evolution of Life. ASTROBIOLOGY 2018; 18:1199-1219. [PMID: 30124324 DOI: 10.1089/ast.2017.1778] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The traditional tree of life from molecular biology with last universal common ancestor (LUCA) branching into bacteria and archaea (though fuzzy) is likely formally valid enough to be a basis for discussion of geological processes on the early Earth. Biologists infer likely properties of nodal organisms within the tree and, hence, the environment they inhabited. Geologists both vet tenuous trees and putative origin of life scenarios for geological and ecological reasonability and conversely infer geological information from trees. The latter approach is valuable as geologists have only weakly constrained the time when the Earth became habitable and the later time when life actually existed to the long interval between ∼4.5 and ∼3.85 Ga where no intact surface rocks are known. With regard to vetting, origin and early evolution hypotheses from molecular biology have recently centered on serpentinite settings in marine and alternatively land settings that are exposed to ultraviolet sunlight. The existence of these niches on the Hadean Earth is virtually certain. With regard to inferring geological environment from genomics, nodes on the tree of life can arise from true bottlenecks implied by the marine serpentinite origin scenario and by asteroid impact. Innovation of a very useful trait through a threshold allows the successful organism to quickly become very abundant and later root a large clade. The origin of life itself, that is, the initial Darwinian ancestor, the bacterial and archaeal roots as free-living cellular organisms that independently escaped hydrothermal chimneys above marine serpentinite or alternatively from shallow pore-water environments on land, the Selabacteria root with anoxygenic photosynthesis, and the Terrabacteria root colonizing land are attractive examples that predate the geological record. Conversely, geological reasoning presents likely events for appraisal by biologists. Asteroid impacts may have produced bottlenecks by decimating life. Thermophile roots of bacteria and archaea as well as a thermophile LUCA are attractive.
Collapse
Affiliation(s)
- Norman H Sleep
- Department of Geophysics, Stanford University , Stanford, California
| |
Collapse
|
46
|
Okamoto A, Rowe A, Deng X, Nealson KH. Self-standing Electrochemical Set-up to Enrich Anode-respiring Bacteria On-site. J Vis Exp 2018. [PMID: 30102275 DOI: 10.3791/57632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Anaerobic respiration coupled with electron transport to insoluble minerals (referred to as extracellular electron transport [EET]) is thought to be critical for microbial energy production and persistence in many subsurface environments, especially those lacking soluble terminal electron acceptors. While EET-capable microbes have been successfully isolated from various environments, the diversity of bacteria capable of EET is still poorly understood, especially in difficult-to-sample, low energy or extreme environments, such as many subsurface ecosystems. Here, we describe an on-site electrochemical system to enrich EET-capable bacteria using an anode as a respiratory terminal electron acceptor. This anode is connected to a cathode capable of catalyzing abiotic oxygen reduction. Comparing this approach with electrocultivation methods that use a potentiostat for poising the electrode potential, the two-electrode system does not require an external power source. We present an example of our on-site enrichment utilized in an alkaline pond at the Cedars, a terrestrial serpentinization site in Northern California. Prior attempts to cultivate mineral reducing bacteria were unsuccessful, which is likely due to the low-biomass nature of this site and/or the low relative abundance of metal reducing microbes. Prior to implementing our two-electrode enrichment, we measured the vertical profile of dissolved oxygen concentration. This allowed us to place the carbon felt anode and platinum-electroplated carbon felt cathode at depths that would support anaerobic and aerobic processes, respectively. Following on-site incubation, we further enriched the anodic electrode in the laboratory and confirmed a distinct microbial community compared to the surface-attached or biofilm communities normally observed at the Cedars. This enrichment subsequently led to the isolation of the first electrogenic microbe from the Cedars. This method of on-site microbial enrichment has the potential to greatly enhance the isolation of EET-capable bacteria from low biomass or difficult to sample habitats.
Collapse
Affiliation(s)
- Akihiro Okamoto
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science;
| | - Annette Rowe
- Department of Earth Sciences, University of Southern California
| | - Xiao Deng
- Department of Applied Chemistry, The University of Tokyo
| | | |
Collapse
|
47
|
Alfreider A, Bogensperger T. Specific detection of form IA RubisCO genes in chemoautotrophic bacteria. J Basic Microbiol 2018; 58:712-716. [PMID: 29797590 PMCID: PMC7610800 DOI: 10.1002/jobm.201800136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/02/2018] [Accepted: 05/08/2018] [Indexed: 11/23/2022]
Abstract
The analysis of RubisCO genes is a highly useful instrument to explore the diversity of chemoautotrophic bacteria using the Calvin–Benson–Bassham cycle for CO2 fixation. However, because of the wide taxonomic distribution of phylogenetically related RubisCO forms, environmental studies targeting chemoautotrophs are hampered in habitats dominated by phototrophs. Here, we report the development of a gene marker that specifically detects form IA RubisCO genes in bacteria, excluding photoautotrophic representatives. The high specificity of the PCR assay was confirmed by sequence analysis of DNA obtained from the photic zone of six lakes, were chemoautotrophs are outnumbered by Cyanobacteria also using form IA RubisCO for CO2 assimilation.
Collapse
Affiliation(s)
- Albin Alfreider
- Institute of Ecology, University of Innsbruck, Innsbruck, Tirol, Austria
| | - Teresa Bogensperger
- Institute of Ecology, University of Innsbruck, Innsbruck, Tirol, Austria.,Department for Internal Medicine IV, Hospital Wels Grieskirchen GmbH, Wels, Austria
| |
Collapse
|
48
|
Sheik CS, Reese BK, Twing KI, Sylvan JB, Grim SL, Schrenk MO, Sogin ML, Colwell FS. Identification and Removal of Contaminant Sequences From Ribosomal Gene Databases: Lessons From the Census of Deep Life. Front Microbiol 2018; 9:840. [PMID: 29780369 PMCID: PMC5945997 DOI: 10.3389/fmicb.2018.00840] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/12/2018] [Indexed: 11/15/2022] Open
Abstract
Earth’s subsurface environment is one of the largest, yet least studied, biomes on Earth, and many questions remain regarding what microorganisms are indigenous to the subsurface. Through the activity of the Census of Deep Life (CoDL) and the Deep Carbon Observatory, an open access 16S ribosomal RNA gene sequence database from diverse subsurface environments has been compiled. However, due to low quantities of biomass in the deep subsurface, the potential for incorporation of contaminants from reagents used during sample collection, processing, and/or sequencing is high. Thus, to understand the ecology of subsurface microorganisms (i.e., the distribution, richness, or survival), it is necessary to minimize, identify, and remove contaminant sequences that will skew the relative abundances of all taxa in the sample. In this meta-analysis, we identify putative contaminants associated with the CoDL dataset, recommend best practices for removing contaminants from samples, and propose a series of best practices for subsurface microbiology sampling. The most abundant putative contaminant genera observed, independent of evenness across samples, were Propionibacterium, Aquabacterium, Ralstonia, and Acinetobacter. While the top five most frequently observed genera were Pseudomonas, Propionibacterium, Acinetobacter, Ralstonia, and Sphingomonas. The majority of the most frequently observed genera (high evenness) were associated with reagent or potential human contamination. Additionally, in DNA extraction blanks, we observed potential archaeal contaminants, including methanogens, which have not been discussed in previous contamination studies. Such contaminants would directly affect the interpretation of subsurface molecular studies, as methanogenesis is an important subsurface biogeochemical process. Utilizing previously identified contaminant genera, we found that ∼27% of the total dataset were identified as contaminant sequences that likely originate from DNA extraction and DNA cleanup methods. Thus, controls must be taken at every step of the collection and processing procedure when working with low biomass environments such as, but not limited to, portions of Earth’s deep subsurface. Taken together, we stress that the CoDL dataset is an incredible resource for the broader research community interested in subsurface life, and steps to remove contamination derived sequences must be taken prior to using this dataset.
Collapse
Affiliation(s)
- Cody S Sheik
- Department of Biology and Large Lakes Observatory, University of Minnesota Duluth, Duluth, MN, United States
| | - Brandi Kiel Reese
- Department of Life Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX, United States
| | - Katrina I Twing
- Department of Biology, The University of Utah, Salt Lake City, UT, United States
| | - Jason B Sylvan
- Department of Oceanography, Texas A&M University, College Station, TX, United States
| | - Sharon L Grim
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Matthew O Schrenk
- Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI, United States
| | - Mitchell L Sogin
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Frederick S Colwell
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
49
|
Meyer-Dombard DR, Casar CP, Simon AG, Cardace D, Schrenk MO, Arcilla CA. Biofilm formation and potential for iron cycling in serpentinization-influenced groundwater of the Zambales and Coast Range ophiolites. Extremophiles 2018; 22:407-431. [PMID: 29450709 DOI: 10.1007/s00792-018-1005-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 02/05/2018] [Indexed: 02/01/2023]
Abstract
Terrestrial serpentinizing systems harbor microbial subsurface life. Passive or active microbially mediated iron transformations at alkaline conditions in deep biosphere serpentinizing ecosystems are understudied. We explore these processes in the Zambales (Philippines) and Coast Range (CA, USA) ophiolites, and associated surface ecosystems by probing the relevance of samples acquired at the surface to in situ, subsurface ecosystems, and the nature of microbe-mineral associations in the subsurface. In this pilot study, we use microcosm experiments and batch culturing directed at iron redox transformations to confirm thermodynamically based predictions that iron transformations may be important in subsurface serpentinizing ecosystems. Biofilms formed on rock cores from the Zambales ophiolite on surface and in-pit associations, confirming that organisms from serpentinizing systems can form biofilms in subsurface environments. Analysis by XPS and FTIR confirmed that enrichment culturing utilizing ferric iron growth substrates produced reduced, magnetic solids containing siderite, spinels, and FeO minerals. Microcosms and enrichment cultures supported organisms whose near relatives participate in iron redox transformations. Further, a potential 'principal' microbial community common to solid samples in serpentinizing systems was identified. These results indicate collectively that iron redox transformations should be more thoroughly and universally considered when assessing the function of terrestrial subsurface ecosystems driven by serpentinization.
Collapse
Affiliation(s)
- D'Arcy R Meyer-Dombard
- Department of Earth and Environmental Sciences, University of Illinois at Chicago, m/c 186, 845 W. Taylor St., Chicago, IL, 60515, USA.
| | - Caitlin P Casar
- Department of Earth and Environmental Sciences, University of Illinois at Chicago, m/c 186, 845 W. Taylor St., Chicago, IL, 60515, USA
| | - Alexander G Simon
- Department of Earth and Environmental Sciences, University of Illinois at Chicago, m/c 186, 845 W. Taylor St., Chicago, IL, 60515, USA
| | - Dawn Cardace
- Department of Geosciences, University of Rhode Island, Kingston, IL, USA
| | - Matthew O Schrenk
- Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Carlo A Arcilla
- National Institute of Geological Sciences, University of the Philippines, Diliman, Quezon City, Philippines
| |
Collapse
|
50
|
Frouin E, Bes M, Ollivier B, Quéméneur M, Postec A, Debroas D, Armougom F, Erauso G. Diversity of Rare and Abundant Prokaryotic Phylotypes in the Prony Hydrothermal Field and Comparison with Other Serpentinite-Hosted Ecosystems. Front Microbiol 2018; 9:102. [PMID: 29467733 PMCID: PMC5808123 DOI: 10.3389/fmicb.2018.00102] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/17/2018] [Indexed: 01/21/2023] Open
Abstract
The Bay of Prony, South of New Caledonia, represents a unique serpentinite-hosted hydrothermal field due to its coastal situation. It harbors both submarine and intertidal active sites, discharging hydrogen- and methane-rich alkaline fluids of low salinity and mild temperature through porous carbonate edifices. In this study, we have extensively investigated the bacterial and archaeal communities inhabiting the hydrothermal chimneys from one intertidal and three submarine sites by 16S rRNA gene amplicon sequencing. We show that the bacterial community of the intertidal site is clearly distinct from that of the submarine sites with species distribution patterns driven by only a few abundant populations, affiliated to the Chloroflexi and Proteobacteria phyla. In contrast, the distribution of archaeal taxa seems less site-dependent, as exemplified by the co-occurrence, in both submarine and intertidal sites, of two dominant phylotypes of Methanosarcinales previously thought to be restricted to serpentinizing systems, either marine (Lost City Hydrothermal Field) or terrestrial (The Cedars ultrabasic springs). Over 70% of the phylotypes were rare and included, among others, all those affiliated to candidate divisions. We finally compared the distribution of bacterial and archaeal phylotypes of Prony Hydrothermal Field with those of five previously studied serpentinizing systems of geographically distant sites. Although sensu stricto no core microbial community was identified, a few uncultivated lineages, notably within the archaeal order Methanosarcinales and the bacterial class Dehalococcoidia (the candidate division MSBL5) were exclusively found in a few serpentinizing systems while other operational taxonomic units belonging to the orders Clostridiales, Thermoanaerobacterales, or the genus Hydrogenophaga, were abundantly distributed in several sites. These lineages may represent taxonomic signatures of serpentinizing ecosystems. These findings extend our current knowledge of the microbial diversity inhabiting serpentinizing systems and their biogeography.
Collapse
Affiliation(s)
- Eléonore Frouin
- Aix-Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Méline Bes
- Aix-Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Bernard Ollivier
- Aix-Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Marianne Quéméneur
- Aix-Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Anne Postec
- Aix-Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Didier Debroas
- CNRS UMR 6023, Laboratoire "Microorganismes - Génome et Environnement", Université Clermont Auvergne, Clermont-Ferrand, France
| | - Fabrice Armougom
- Aix-Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Gaël Erauso
- Aix-Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| |
Collapse
|