1
|
Wang TT, Zhang LL, Li FB, Zhang J, Zhang ZB, Mi DZ, Sun J, Zhang HY, Wang CY, Chen YH, Chen CS. LN-439A, a novel BAP1 inhibitor, suppresses the growth of basal-like breast cancer by degrading KLF5. Acta Pharmacol Sin 2025; 46:715-727. [PMID: 39379684 PMCID: PMC11845570 DOI: 10.1038/s41401-024-01361-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/17/2024] [Indexed: 10/10/2024]
Abstract
Basal-like breast cancer (BLBC) is the most malignant subtype of breast cancer because of its aggressive clinical behaviour and lack of effective targeted agents. Krüppel-like factor 5 (KLF5) is an oncogenic transcription factor that is highly expressed in BLBC. The deubiquitinase (DUB) BRCA1-associated protein 1 (BAP1) stabilizes KLF5 and promotes BLBC growth and metastasis. Therefore, pharmacological inhibition of the BAP1‒KLF5 axis is an effective therapeutic strategy for BLBC. Here, through screening, we identified a series of tetrahydro-β-carboline derivatives that effectively reduced the protein expression of KLF5 and exhibited strong antitumour activity. Among the investigated compounds, the lead compound LN-439A presented the strongest antitumour activity and inhibitory effect on KLF5 expression. LN-439A suppressed the proliferation and migration of BLBC cells, induced G2/M arrest, and induced apoptosis. Mechanistically, LN-439A functions as a small molecule catalytic inhibitor of BAP1 by binding to the catalytic pocket of BAP1, leading to the ubiquitination and degradation of KLF5. Consistent with this finding, the overexpression of KLF5 suppressed the antitumour effects of LN-439A. In summary, LN-439A is a promising therapeutic agent for BLBC that functions by targeting the BAP1‒KLF5 axis.
Collapse
Affiliation(s)
- Tian-Tian Wang
- School of Life Science, University of Science and Technology of China, Hefei, 230027, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Long-Long Zhang
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, 650500, China
| | - Fu-Bing Li
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, 650500, China
| | - Jie Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhi-Bi Zhang
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, 650500, China
| | - Da-Zhao Mi
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jian Sun
- The Third Affiliated Hospital, Kunming Medical University, Kunming, 650118, China
| | - Hong-Yan Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Faculty of Life science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Chun-Yan Wang
- Department of the Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| | - Yi-Hua Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China.
- Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, China.
| | - Ce-Shi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, 650500, China.
- The Third Affiliated Hospital, Kunming Medical University, Kunming, 650118, China.
| |
Collapse
|
2
|
Yuan W, Zhang Q, Zhao Y, Xia W, Yin S, Liang X, Chen T, Li G, Liu Y, Liu Z, Huang J. BAP1 regulates HSF1 activity and cancer immunity in pancreatic cancer. J Exp Clin Cancer Res 2024; 43:275. [PMID: 39350280 PMCID: PMC11441124 DOI: 10.1186/s13046-024-03196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND The vast majority of pancreatic cancers have been shown to be insensitive to single-agent immunotherapy. Exploring the mechanisms of immune resistance and implementing combination therapeutic strategies are crucial for PDAC patients to derive benefits from immunotherapy. Deletion of BAP1 occurs in approximately 27% of PDAC patients and is significantly correlated with poor prognosis, but the mechanism how BAP1-deletion compromises survival of patients with PDAC remain a puzzle. METHODS Bap1 knock-out KPC (KrasG12D/+; LSLTrp53R172H/+; Pdx-1-Cre) mice and control KPC mice, syngeneic xenograft models were applied to analysis the correlation between BAP1 and immune therapy response in PDAC. Immunoprecipitation, RT-qPCR, luciferase and transcriptome analysis were combined to revealing potential mechanisms. Syngeneic xenograft models and flow cytometry were constructed to examine the efficacy of the inhibitor of SIRT1 and its synergistic effect with anti-PD-1 therapy. RESULT The deletion of BAP1 contributes to the resistance to immunotherapy in PDAC, which is attributable to BAP1's suppression of the transcriptional activity of HSF1. Specifically, BAP1 competes with SIRT1 for binding to the K80 acetylated HSF1. The BAP1-HSF1 interaction preserves the acetylation of HSF1-K80 and promotes HSF1-HSP70 interaction, facilitating HSF1 oligomerization and detachment from the chromatin. Furthermore, we demonstrate that the targeted inhibition of SIRT1 reverses the immune insensitivity in BAP1 deficient PDAC mouse model. CONCLUSION Our study elucidates an unrevealed mechanism by which BAP1 regulates immune therapy response in PDAC via HSF1 inhibition, and providing promising therapeutic strategies to address immune insensitivity in BAP1-deficient PDAC.
Collapse
Affiliation(s)
- Weiwei Yuan
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiyue Zhang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuhan Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wentao Xia
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shilin Yin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xueyi Liang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Taoyu Chen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gaofeng Li
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Yanshen Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhiqiang Liu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jinxi Huang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
3
|
Ghate NB, Nadkarni KS, Barik GK, Tat SS, Sahay O, Santra MK. Histone ubiquitination: Role in genome integrity and chromatin organization. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195044. [PMID: 38763317 DOI: 10.1016/j.bbagrm.2024.195044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Maintenance of genome integrity is a precise but tedious and complex job for the cell. Several post-translational modifications (PTMs) play vital roles in maintaining the genome integrity. Although ubiquitination is one of the most crucial PTMs, which regulates the localization and stability of the nonhistone proteins in various cellular and developmental processes, ubiquitination of the histones is a pivotal epigenetic event critically regulating chromatin architecture. In addition to genome integrity, importance of ubiquitination of core histones (H2A, H2A, H3, and H4) and linker histone (H1) have been reported in several cellular processes. However, the complex interplay of histone ubiquitination and other PTMs, as well as the intricate chromatin architecture and dynamics, pose a significant challenge to unravel how histone ubiquitination safeguards genome stability. Therefore, further studies are needed to elucidate the interactions between histone ubiquitination and other PTMs, and their role in preserving genome integrity. Here, we review all types of histone ubiquitinations known till date in maintaining genomic integrity during transcription, replication, cell cycle, and DNA damage response processes. In addition, we have also discussed the role of histone ubiquitination in regulating other histone PTMs emphasizing methylation and acetylation as well as their potential implications in chromatin architecture. Further, we have also discussed the involvement of deubiquitination enzymes (DUBs) in controlling histone ubiquitination in modulating cellular processes.
Collapse
Affiliation(s)
- Nikhil Baban Ghate
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India.
| | - Kaustubh Sanjay Nadkarni
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Ganesh Kumar Barik
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Sharad Shriram Tat
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Osheen Sahay
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Manas Kumar Santra
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India.
| |
Collapse
|
4
|
Liu F, Chen J, Li K, Li H, Zhu Y, Zhai Y, Lu B, Fan Y, Liu Z, Chen X, Jia X, Dong Z, Liu K. Ubiquitination and deubiquitination in cancer: from mechanisms to novel therapeutic approaches. Mol Cancer 2024; 23:148. [PMID: 39048965 PMCID: PMC11270804 DOI: 10.1186/s12943-024-02046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/15/2024] [Indexed: 07/27/2024] Open
Abstract
Ubiquitination, a pivotal posttranslational modification of proteins, plays a fundamental role in regulating protein stability. The dysregulation of ubiquitinating and deubiquitinating enzymes is a common feature in various cancers, underscoring the imperative to investigate ubiquitin ligases and deubiquitinases (DUBs) for insights into oncogenic processes and the development of therapeutic interventions. In this review, we discuss the contributions of the ubiquitin-proteasome system (UPS) in all hallmarks of cancer and progress in drug discovery. We delve into the multiple functions of the UPS in oncology, including its regulation of multiple cancer-associated pathways, its role in metabolic reprogramming, its engagement with tumor immune responses, its function in phenotypic plasticity and polymorphic microbiomes, and other essential cellular functions. Furthermore, we provide a comprehensive overview of novel anticancer strategies that leverage the UPS, including the development and application of proteolysis targeting chimeras (PROTACs) and molecular glues.
Collapse
Affiliation(s)
- Fangfang Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Jingyu Chen
- Department of Pediatric Medicine, School of Third Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Kai Li
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Haochen Li
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yiyi Zhu
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yubo Zhai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Bingbing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yanle Fan
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Ziyue Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Xiaojie Chen
- School of Basic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xuechao Jia
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, Henan, China.
| | - Zigang Dong
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| | - Kangdong Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
5
|
Rivard RS, Chang YC, Ragland RL, Thu YM, Kassab M, Mandal RS, Van Riper SK, Kulej K, Higgins L, Markowski TM, Shang D, Hedberg J, Erber L, Garcia B, Chen Y, Bielinsky AK, Brown EJ. Improved detection of DNA replication fork-associated proteins. Cell Rep 2024; 43:114178. [PMID: 38703364 PMCID: PMC12034227 DOI: 10.1016/j.celrep.2024.114178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 03/06/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024] Open
Abstract
Innovative methods to retrieve proteins associated with actively replicating DNA have provided a glimpse into the molecular dynamics of replication fork stalling. We report that a combination of density-based replisome enrichment by isolating proteins on nascent DNA (iPOND2) and label-free quantitative mass spectrometry (iPOND2-DRIPPER) substantially increases both replication factor yields and the dynamic range of protein quantification. Replication protein abundance in retrieved nascent DNA is elevated up to 300-fold over post-replicative controls, and recruitment of replication stress factors upon fork stalling is observed at similar levels. The increased sensitivity of iPOND2-DRIPPER permits direct measurement of ubiquitination events without intervening retrieval of diglycine tryptic fragments of ubiquitin. Using this approach, we find that stalled replisomes stimulate the recruitment of a diverse cohort of DNA repair factors, including those associated with poly-K63-ubiquitination. Finally, we uncover the temporally controlled association of stalled replisomes with nuclear pore complex components and nuclear cytoskeleton networks.
Collapse
Affiliation(s)
- Rebecca S Rivard
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ya-Chu Chang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Ryan L Ragland
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yee-Mon Thu
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Muzaffer Kassab
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahul Shubhra Mandal
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan K Van Riper
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, USA
| | - Katarzyna Kulej
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - LeeAnn Higgins
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Todd M Markowski
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - David Shang
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jack Hedberg
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Luke Erber
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Benjamin Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| | - Eric J Brown
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Foster BM, Wang Z, Schmidt CK. DoUBLing up: ubiquitin and ubiquitin-like proteases in genome stability. Biochem J 2024; 481:515-545. [PMID: 38572758 PMCID: PMC11088880 DOI: 10.1042/bcj20230284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Maintaining stability of the genome requires dedicated DNA repair and signalling processes that are essential for the faithful duplication and propagation of chromosomes. These DNA damage response (DDR) mechanisms counteract the potentially mutagenic impact of daily genotoxic stresses from both exogenous and endogenous sources. Inherent to these DNA repair pathways is the activity of protein factors that instigate repair processes in response to DNA lesions. The regulation, coordination, and orchestration of these DDR factors is carried out, in a large part, by post-translational modifications, such as phosphorylation, ubiquitylation, and modification with ubiquitin-like proteins (UBLs). The importance of ubiquitylation and UBLylation with SUMO in DNA repair is well established, with the modified targets and downstream signalling consequences relatively well characterised. However, the role of dedicated erasers for ubiquitin and UBLs, known as deubiquitylases (DUBs) and ubiquitin-like proteases (ULPs) respectively, in genome stability is less well established, particularly for emerging UBLs such as ISG15 and UFM1. In this review, we provide an overview of the known regulatory roles and mechanisms of DUBs and ULPs involved in genome stability pathways. Expanding our understanding of the molecular agents and mechanisms underlying the removal of ubiquitin and UBL modifications will be fundamental for progressing our knowledge of the DDR and likely provide new therapeutic avenues for relevant human diseases, such as cancer.
Collapse
Affiliation(s)
- Benjamin M. Foster
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| | - Zijuan Wang
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| | - Christine K. Schmidt
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| |
Collapse
|
7
|
Rigon M, Mutti L, Campanella M. Pleural mesothelioma (PMe): The evolving molecular knowledge of a rare and aggressive cancer. Mol Oncol 2024; 18:797-814. [PMID: 38459714 PMCID: PMC10994233 DOI: 10.1002/1878-0261.13591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/22/2023] [Accepted: 01/15/2024] [Indexed: 03/10/2024] Open
Abstract
Mesothelioma is a type of late-onset cancer that develops in cells covering the outer surface of organs. Although it can affect the peritoneum, heart, or testicles, it mainly targets the lining of the lungs, making pleural mesothelioma (PMe) the most common and widely studied mesothelioma type. PMe is caused by exposure to fibres of asbestos, which when inhaled leads to inflammation and scarring of the pleura. Despite the ban on asbestos by most Western countries, the incidence of PMe is on the rise, also facilitated by a lack of specific symptomatology and diagnostic methods. Therapeutic options are also limited to mainly palliative care, making this disease untreatable. Here we present an overview of biological aspects underlying PMe by listing genetic and molecular mechanisms behind its onset, aggressive nature, and fast-paced progression. To this end, we report on the role of deubiquitinase BRCA1-associated protein-1 (BAP1), a tumour suppressor gene with a widely acknowledged role in the corrupted signalling and metabolism of PMe. This review aims to enhance our understanding of this devastating malignancy and propel efforts for its investigation.
Collapse
Affiliation(s)
- Manuel Rigon
- Centre for Clinical Pharmacology and Precision Medicine William Harvey Research InstituteQueen Mary University of LondonUK
- Department of BiologyUniversity of Rome Tor VergataRomeItaly
| | - Luciano Mutti
- Department of Biotechnological and Applied Clinical SciencesDISCAB, L'Aquila UniversityL'AquilaItaly
- Temple University Sbarro Institute for Cancer Research and Molecular MedicinePhiladelphiaPAUSA
| | - Michelangelo Campanella
- Centre for Clinical Pharmacology and Precision Medicine William Harvey Research InstituteQueen Mary University of LondonUK
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
- Institute Gustave RoussyVillejuifFrance
| |
Collapse
|
8
|
Schneider S, Anderson JB, Bradley RP, Beigel K, Wright CM, Maguire BA, Yan G, Taylor DM, Harbour JW, Heuckeroth RO. BAP1 is required prenatally for differentiation and maintenance of postnatal murine enteric nervous system. J Clin Invest 2024; 134:e177771. [PMID: 38690732 PMCID: PMC11060734 DOI: 10.1172/jci177771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/05/2024] [Indexed: 05/03/2024] Open
Abstract
Epigenetic regulatory mechanisms are underappreciated, yet are critical for enteric nervous system (ENS) development and maintenance. We discovered that fetal loss of the epigenetic regulator Bap1 in the ENS lineage caused severe postnatal bowel dysfunction and early death in Tyrosinase-Cre Bap1fl/fl mice. Bap1-depleted ENS appeared normal in neonates; however, by P15, Bap1-deficient enteric neurons were largely absent from the small and large intestine of Tyrosinase-Cre Bap1fl/fl mice. Bowel motility became markedly abnormal with disproportionate loss of cholinergic neurons. Single-cell RNA sequencing at P5 showed that fetal Bap1 loss in Tyrosinase-Cre Bap1fl/fl mice markedly altered the composition and relative proportions of enteric neuron subtypes. In contrast, postnatal deletion of Bap1 did not cause enteric neuron loss or impaired bowel motility. These findings suggest that BAP1 is critical for postnatal enteric neuron differentiation and for early enteric neuron survival, a finding that may be relevant to the recently described human BAP1-associated neurodevelopmental disorder.
Collapse
Affiliation(s)
- Sabine Schneider
- Children’s Hospital of Philadelphia Research Institute, Abramson Research Center, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica B. Anderson
- Children’s Hospital of Philadelphia Research Institute, Abramson Research Center, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rebecca P. Bradley
- Children’s Hospital of Philadelphia Research Institute, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | - Katherine Beigel
- Children’s Hospital of Philadelphia Research Institute, Abramson Research Center, Philadelphia, Pennsylvania, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia Research Institute, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | - Christina M. Wright
- Children’s Hospital of Philadelphia Research Institute, Abramson Research Center, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Beth A. Maguire
- Children’s Hospital of Philadelphia Research Institute, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | - Guang Yan
- Children’s Hospital of Philadelphia Research Institute, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | - Deanne M. Taylor
- Children’s Hospital of Philadelphia Research Institute, Abramson Research Center, Philadelphia, Pennsylvania, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia Research Institute, Abramson Research Center, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - J. William Harbour
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Robert O. Heuckeroth
- Children’s Hospital of Philadelphia Research Institute, Abramson Research Center, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Repo PE, Backlund MP, Kivelä TT, Turunen JA. Functional assay for assessment of pathogenicity of BAP1 variants. Hum Mol Genet 2024; 33:426-434. [PMID: 37956408 PMCID: PMC10877462 DOI: 10.1093/hmg/ddad193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Pathogenic germline variants in BRCA1-Associated Protein 1 (BAP1) cause BAP1 tumor predisposition syndrome (BAP1-TPDS). Carriers run especially a risk of uveal (UM) and cutaneous melanoma, malignant mesothelioma, and clear cell renal carcinoma. Approximately half of increasingly reported BAP1 variants lack accurate classification. Correct interpretation of pathogenicity can improve prognosis of the patients through tumor screening with better understanding of BAP1-TPDS. METHODS We edited five rare BAP1 variants with differing functional characteristics identified from patients with UM in HAP1 cells using CRISPR-Cas9 and assayed their effect on cell adhesion/spreading (at 4 h) and proliferation (at 48 h), measured as cell index (CI), using xCELLigence real-time analysis system. RESULTS In BAP1 knockout HAP1 cultures, cell number was half of wild type (WT) cultures at 48 h (p = 0.00021), reaching confluence later, and CI was 78% reduced (p < 0.0001). BAP1-TPDS-associated null variants c.67+1G>T and c.1780_1781insT, and a likely pathogenic missense variant c.281A>G reduced adhesion (all p ≤ 0.015) and proliferation by 74%-83% (all p ≤ 0.032). Another likely pathogenic missense variant c.680G>A reduced both by at least 50% (all p ≤ 0.032), whereas cells edited with likely benign one c.1526C>T grew similarly to WT. CONCLUSIONS BAP1 is essential for optimal fitness of HAP1 cells. Pathogenic and likely pathogenic BAP1 variants reduced cell fitness, reflected in adhesion/spreading and proliferation properties. Further, moderate effects were quantifiable. Variant modelling in HAP1 with CRISPR-Cas9 enabled functional analysis of coding and non-coding region variants in an endogenous expression system.
Collapse
Affiliation(s)
- Pauliina E Repo
- Eye Genetics Group, Folkhälsan Research Center, Biomedicum Helsinki, Haartmaninkatu 8, FI-00290, Helsinki, Finland
- Ocular Oncology Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 4 C, PL220, FI-00029 HUS, Helsinki, Finland
| | - Michael P Backlund
- Eye Genetics Group, Folkhälsan Research Center, Biomedicum Helsinki, Haartmaninkatu 8, FI-00290, Helsinki, Finland
| | - Tero T Kivelä
- Ocular Oncology Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 4 C, PL220, FI-00029 HUS, Helsinki, Finland
| | - Joni A Turunen
- Eye Genetics Group, Folkhälsan Research Center, Biomedicum Helsinki, Haartmaninkatu 8, FI-00290, Helsinki, Finland
- Ophthalmic Genetics and Rare Eye Diseases Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 4 C, PL220, FI-00029 HUS, Helsinki, Finland
| |
Collapse
|
10
|
Febres-Aldana CA, Fanaroff R, Offin M, Zauderer MG, Sauter JL, Yang SR, Ladanyi M. Diffuse Pleural Mesothelioma: Advances in Molecular Pathogenesis, Diagnosis, and Treatment. ANNUAL REVIEW OF PATHOLOGY 2024; 19:11-42. [PMID: 37722697 DOI: 10.1146/annurev-pathol-042420-092719] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Diffuse pleural mesothelioma (DPM) is a highly aggressive malignant neoplasm arising from the mesothelial cells lining the pleural surfaces. While DPM is a well-recognized disease linked to asbestos exposure, recent advances have expanded our understanding of molecular pathogenesis and transformed our clinical practice. This comprehensive review explores the current concepts and emerging trends in DPM, including risk factors, pathobiology, histologic subtyping, and therapeutic management, with an emphasis on a multidisciplinary approach to this complex disease.
Collapse
Affiliation(s)
- Christopher A Febres-Aldana
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| | - Rachel Fanaroff
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| | - Michael Offin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Marjorie G Zauderer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jennifer L Sauter
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| | - Soo-Ryum Yang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| |
Collapse
|
11
|
Shen X, Chen C, Wang Y, Zheng W, Zheng J, Jones AE, Zhu B, Zhang H, Lyons C, Rijal A, Moley JA, Cao G, Liu K, Winn R, Dickinson A, Zhang K, Wang H. Role of histone variants H2BC1 and H2AZ.2 in H2AK119ub nucleosome organization and Polycomb gene silencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575234. [PMID: 38293106 PMCID: PMC10827191 DOI: 10.1101/2024.01.16.575234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Ubiquitination of histone H2A at lysine 119 residue (H2AK119ub) plays critical roles in a wide range of physiological processes, including Polycomb gene silencing 1,2 , replication 3-5 , DNA damage repair 6-10 , X inactivation 11,12 , and heterochromatin organization 13,14 . However, the underlying mechanism and structural basis of H2AK119ub remains largely elusive. In this study, we report that H2AK119ub nucleosomes have a unique composition, containing histone variants H2BC1 and H2AZ.2, and importantly, this composition is required for H2AK119ub and Polycomb gene silencing. Using the UAB domain of RSF1, we purified H2AK119ub nucleosomes to a sufficient amount and purity. Mass spectrometry analyses revealed that H2AK119ub nucleosomes contain the histone variants H2BC1 and H2AZ.2. A cryo-EM study resolved the structure of native H2AK119ub nucleosomes to a 2.6A resolution, confirming H2BC1 in one subgroup of H2AK119ub nucleosomes. Tandem GST-UAB pulldown, Flag-H2AZ.2, and HA-H2BC1 immunoprecipitation revealed that H2AK119ub nucleosomes could be separated into distinct subgroups, suggesting their composition heterogeneity and potential dynamic organization. Knockout or knockdown of H2BC1 or H2AZ.2 reduced cellular H2AK119ub levels, establishing H2BC1 and H2AZ.2 as critical determinants of H2AK119ub. Furthermore, genomic binding profiles of H2BC1 and H2AZ.2 overlapped significantly with H2AK119ub binding, with the most significant overlapping in the gene body and intergenic regions. Finally, assays in developing embryos reveal an interaction of H2AZ.2, H2BC1, and RING1A in vivo . Thus, this study revealed, for the first time, that the H2AK119ub nucleosome has a unique composition, and this composition is required for H2AK119ub and Polycomb gene silencing.
Collapse
|
12
|
Ren J, Yu P, Liu S, Li R, Niu X, Chen Y, Zhang Z, Zhou F, Zhang L. Deubiquitylating Enzymes in Cancer and Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303807. [PMID: 37888853 PMCID: PMC10754134 DOI: 10.1002/advs.202303807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/30/2023] [Indexed: 10/28/2023]
Abstract
Deubiquitylating enzymes (DUBs) maintain relative homeostasis of the cellular ubiquitome by removing the post-translational modification ubiquitin moiety from substrates. Numerous DUBs have been demonstrated specificity for cleaving a certain type of ubiquitin linkage or positions within ubiquitin chains. Moreover, several DUBs perform functions through specific protein-protein interactions in a catalytically independent manner, which further expands the versatility and complexity of DUBs' functions. Dysregulation of DUBs disrupts the dynamic equilibrium of ubiquitome and causes various diseases, especially cancer and immune disorders. This review summarizes the Janus-faced roles of DUBs in cancer including proteasomal degradation, DNA repair, apoptosis, and tumor metastasis, as well as in immunity involving innate immune receptor signaling and inflammatory and autoimmune disorders. The prospects and challenges for the clinical development of DUB inhibitors are further discussed. The review provides a comprehensive understanding of the multi-faced roles of DUBs in cancer and immunity.
Collapse
Affiliation(s)
- Jiang Ren
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Peng Yu
- Zhongshan Institute for Drug DiscoveryShanghai Institute of Materia MedicaChinese Academy of SciencesZhongshanGuangdongP. R. China
| | - Sijia Liu
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310058China
| | - Ran Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Xin Niu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Yan Chen
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Zhenyu Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450003P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| |
Collapse
|
13
|
Thang NX, Han DW, Park C, Lee H, La H, Yoo S, Lee H, Uhm SJ, Song H, Do JT, Park KS, Choi Y, Hong K. INO80 function is required for mouse mammary gland development, but mutation alone may be insufficient for breast cancer. Front Cell Dev Biol 2023; 11:1253274. [PMID: 38020889 PMCID: PMC10646318 DOI: 10.3389/fcell.2023.1253274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
The aberrant function of ATP-dependent chromatin remodeler INO80 has been implicated in multiple types of cancers by altering chromatin architecture and gene expression; however, the underlying mechanism of the functional involvement of INO80 mutation in cancer etiology, especially in breast cancer, remains unclear. In the present study, we have performed a weighted gene co-expression network analysis (WCGNA) to investigate links between INO80 expression and breast cancer sub-classification and progression. Our analysis revealed that INO80 repression is associated with differential responsiveness of estrogen receptors (ERs) depending upon breast cancer subtype, ER networks, and increased risk of breast carcinogenesis. To determine whether INO80 loss induces breast tumors, a conditional INO80-knockout (INO80 cKO) mouse model was generated using the Cre-loxP system. Phenotypic characterization revealed that INO80 cKO led to reduced branching and length of the mammary ducts at all stages. However, the INO80 cKO mouse model had unaltered lumen morphology and failed to spontaneously induce tumorigenesis in mammary gland tissue. Therefore, our study suggests that the aberrant function of INO80 is potentially associated with breast cancer by modulating gene expression. INO80 mutation alone is insufficient for breast tumorigenesis.
Collapse
Affiliation(s)
- Nguyen Xuan Thang
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| | - Dong Wook Han
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Chanhyeok Park
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| | - Hyeonji Lee
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| | - Hyeonwoo La
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| | - Seonho Yoo
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| | - Heeji Lee
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| | - Sang Jun Uhm
- Department of Animal Science, Sangji University, Wonju, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| | - Kyoung Sik Park
- Department of Surgery, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Liu K, Huang Y, Xu Y, Wang G, Cai S, Zhang X, Shi T. BAP1-related signature predicts benefits from immunotherapy over VEGFR/mTOR inhibitors in ccRCC: a retrospective analysis of JAVELIN Renal 101 and checkmate-009/010/025 trials. Cancer Immunol Immunother 2023:10.1007/s00262-023-03424-4. [PMID: 37046008 DOI: 10.1007/s00262-023-03424-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/13/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND In patients with advanced clear cell renal cell carcinoma, despite the undoubted benefits from immune checkpoint inhibitor (ICI)-based therapies over monotherapies of angiogenic/mTOR inhibitors in the intention-to-treat population, approximately a quarter of the patients can scarcely gain advantage from ICIs, prompting the search for predictive biomarkers for patient selection. METHODS Clinical and multi-omic data of 2428 ccRCC patients were obtained from The Cancer Genome Atlas (TCGA, n = 537), JAVELIN Renal 101 (avelumab plus axitinib vs. sunitinib, n = 885), and CheckMate-009/010/025 (nivolumab vs. everolimus, n = 1006). RESULTS BAP1 mutations were associated with large progression-free survival (PFS) benefits from ICI-based immunotherapies over sunitinib/everolimus (pooled estimate of interaction HR = 0.71, 95% CI 0.51-0.99, P = 0.045). Using the top 20 BAP1 mutation-associated differentially expressed genes (DEGs) generated from the TCGA cohort, we developed the BAP1-score, negatively correlated with angiogenesis and positively correlated with multiple immune-related signatures concerning immune cell infiltration, antigen presentation, B/T cell receptor, interleukin, programmed death-1, and interferon. A high BAP1-score indicated remarkable PFS benefits from ICI-based immunotherapies over angiogenic/mTOR inhibitors (avelumab plus axitinib vs. sunitinib: HR = 0.55, 95% CI 0.43-0.70, P < 0.001; nivolumab vs. everolimus: HR = 0.72, 95% CI 0.52-1.00, P = 0.045), while these benefits were negligible in the low BAP1-score subgroup (HR = 1.16 and 1.02, respectively). CONCLUSION In advanced ccRCCs, the BAP1-score is a biologically and clinically significant predictor of immune microenvironment and the clinical benefits from ICI-based immunotherapies over angiogenic/mTOR inhibitors, demonstrating its potential utility in optimizing the personalized therapeutic strategies in patients with advanced ccRCC.
Collapse
Affiliation(s)
- Kan Liu
- Department of Urology, The Third Medical Center of PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China
| | - Yan Huang
- Department of Urology, The Third Medical Center of PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China
| | - Yu Xu
- Burning Rock Biotech, Guangzhou, Guangdong, China
| | | | - Shangli Cai
- Burning Rock Biotech, Guangzhou, Guangdong, China
| | - Xu Zhang
- Department of Urology, The Third Medical Center of PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China.
| | - Taoping Shi
- Department of Urology, The Third Medical Center of PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China.
| |
Collapse
|
15
|
Kwon J, Lee D, Lee SA. BAP1 as a guardian of genome stability: implications in human cancer. Exp Mol Med 2023; 55:745-754. [PMID: 37009801 PMCID: PMC10167335 DOI: 10.1038/s12276-023-00979-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/02/2023] [Accepted: 01/27/2023] [Indexed: 04/04/2023] Open
Abstract
BAP1 is a ubiquitin C-terminal hydrolase domain-containing deubiquitinase with a wide array of biological activities. Studies in which advanced sequencing technologies were used have uncovered a link between BAP1 and human cancer. Somatic and germline mutations of the BAP1 gene have been identified in multiple human cancers, with a particularly high frequency in mesothelioma, uveal melanoma and clear cell renal cell carcinoma. BAP1 cancer syndrome highlights that all carriers of inherited BAP1-inactivating mutations develop at least one and often multiple cancers with high penetrance during their lifetime. These findings, together with substantial evidence indicating the involvement of BAP1 in many cancer-related biological activities, strongly suggest that BAP1 functions as a tumor suppressor. Nonetheless, the mechanisms that account for the tumor suppressor function of BAP1 have only begun to be elucidated. Recently, the roles of BAP1 in genome stability and apoptosis have drawn considerable attention, and they are compelling candidates for key mechanistic factors. In this review, we focus on genome stability and summarize the details of the cellular and molecular functions of BAP1 in DNA repair and replication, which are crucial for genome integrity, and discuss the implications for BAP1-associated cancer and relevant therapeutic strategies. We also highlight some unresolved issues and potential future research directions.
Collapse
Affiliation(s)
- Jongbum Kwon
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea.
| | - Daye Lee
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Shin-Ai Lee
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Building 37, Room 1068, Bethesda, MD, 20892-4263, USA
| |
Collapse
|
16
|
Kang M, Park SG, Lee SA, Kim S, Lee D, Shirbhate ME, Youn SY, Kim KM, Cha SS, Kwon J. Targeting BAP1 with small compound inhibitor for colon cancer treatment. Sci Rep 2023; 13:2264. [PMID: 36754982 PMCID: PMC9908887 DOI: 10.1038/s41598-023-29017-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
BRCA1-associated protein-1 (BAP1) is a ubiquitin C-terminal hydrolase domain-containing deubiquitinase. The gene encoding BAP1 is mutated in various human cancers, including mesothelioma, uveal melanoma and renal cell carcinoma. BAP1 plays roles in many cancer-related cellular functions, including cell proliferation, cell death, and nuclear processes crucial for genome stability, such as DNA repair and replication. While these findings suggest that BAP1 functions as a tumor suppressor, recent data also suggest that BAP1 might play tumor-promoting roles in certain cancers, such as breast cancer and hematopoietic malignancies. Here, we show that BAP1 is upregulated in colon cancer cells and tissues and that BAP1 depletion reduces colon cancer cell proliferation and tumor growth. BAP1 contributes to colon cancer cell proliferation by accelerating DNA replication and suppressing replication stress and concomitant apoptosis. A recently identified BAP1 inhibitor, TG2-179-1, which seems to covalently bind to the active site of BAP1, exhibits potent cytotoxic activity against colon cancer cells, with half-maximal inhibitory concentrations of less than 10 μM, and inhibits colon tumor growth. TG2-179-1 exerts cytotoxic activity by targeting BAP1, leading to defective replication and increased apoptosis. This work therefore shows that BAP1 acts oncogenically in colon cancer and is a potential therapeutic target for this cancer. Our work also suggests that TG2-179-1 can be developed as a potential therapeutic agent for colon cancer.
Collapse
Affiliation(s)
- Minhwa Kang
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Seul Gi Park
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Shin-Ai Lee
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea.,Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Building 37, Room 1068, MD, 20892-4263, Bethesda, USA
| | - Soyi Kim
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Daye Lee
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Mukesh Eknath Shirbhate
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - So-Yeon Youn
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Kwan Mook Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Sun-Shin Cha
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Jongbum Kwon
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea.
| |
Collapse
|
17
|
Gospodinov A, Dzhokova S, Petrova M, Ugrinova I. Chromatin regulators in DNA replication and genome stability maintenance during S-phase. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:243-280. [PMID: 37061334 DOI: 10.1016/bs.apcsb.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The duplication of genetic information is central to life. The replication of genetic information is strictly controlled to ensure that each piece of genomic DNA is copied only once during a cell cycle. Factors that slow or stop replication forks cause replication stress. Replication stress is a major source of genome instability in cancer cells. Multiple control mechanisms facilitate the unimpeded fork progression, prevent fork collapse and coordinate fork repair. Chromatin alterations, caused by histone post-translational modifications and chromatin remodeling, have critical roles in normal replication and in avoiding replication stress and its consequences. This text reviews the chromatin regulators that ensure DNA replication and the proper response to replication stress. We also briefly touch on exploiting replication stress in therapeutic strategies. As chromatin regulators are frequently mutated in cancer, manipulating their activity could provide many possibilities for personalized treatment.
Collapse
Affiliation(s)
- Anastas Gospodinov
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Stefka Dzhokova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maria Petrova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Iva Ugrinova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
18
|
INO80 Is Required for the Cell Cycle Control, Survival, and Differentiation of Mouse ESCs by Transcriptional Regulation. Int J Mol Sci 2022; 23:ijms232315402. [PMID: 36499727 PMCID: PMC9740483 DOI: 10.3390/ijms232315402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Precise regulation of the cell cycle of embryonic stem cells (ESCs) is critical for their self-maintenance and differentiation. The cell cycle of ESCs differs from that of somatic cells and is different depending on the cell culture conditions. However, the cell cycle regulation in ESCs via epigenetic mechanisms remains unclear. Here, we showed that the ATP-dependent chromatin remodeler Ino80 regulates the cell cycle genes in ESCs under primed conditions. Ino80 loss led to a significantly extended length of the G1-phase in ESCs grown under primed culture conditions. Ino80 directly bound to the transcription start site and regulated the expression of cell cycle-related genes. Furthermore, Ino80 loss induced cell apoptosis. However, the regulatory mechanism of Ino80 in differentiating ESC cycle slightly differed; an extended S-phase was detected in differentiating inducible Ino80 knockout ESCs. RNA-seq analysis of differentiating ESCs revealed that the expression of genes associated with organ development cell cycle is persistently altered in Ino80 knockout cells, suggesting that cell cycle regulation by Ino80 is not limited to undifferentiated ESCs. Therefore, our study establishes the function of Ino80 in ESC cycle via transcriptional regulation, at least partly. Moreover, this Ino80 function may be universal to other cell types.
Collapse
|
19
|
Lee SA, Lee D, Kang M, Kim S, Kwon SJ, Lee HS, Seo HR, Kaushal P, Lee NS, Kim H, Lee C, Kwon J. BAP1 promotes the repair of UV-induced DNA damage via PARP1-mediated recruitment to damage sites and control of activity and stability. Cell Death Differ 2022; 29:2381-2398. [PMID: 35637285 PMCID: PMC9751128 DOI: 10.1038/s41418-022-01024-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 01/31/2023] Open
Abstract
BRCA1-associated protein-1 (BAP1) is a ubiquitin C-terminal hydrolase domain-containing deubiquitinase with tumor suppressor activity. The gene encoding BAP1 is mutated in various human cancers, with particularly high frequency in kidney and skin cancers, and BAP1 is involved in many cancer-related cellular functions, such as DNA repair and genome stability. Although BAP1 stimulates DNA double-strand break repair, whether it functions in nucleotide excision repair (NER) is unknown. Here, we show that BAP1 promotes the repair of ultraviolet (UV)-induced DNA damage via its deubiquitination activity in various cell types, including primary melanocytes. Poly(ADP-ribose) polymerase 1 (PARP1) interacts with and recruits BAP1 to damage sites, with BAP1 recruitment peaking after the DDB2 and XPC damage sensors. BAP1 recruitment also requires histone H2A monoubiquitinated at Lys119, which accumulates at damage sites. PARP1 transiently poly(ADP-ribosyl)ates (PARylates) BAP1 at multiple sites after UV damage and stimulates the deubiquitination activity of BAP1 both intrinsically and via PARylation. PARP1 also promotes BAP1 stability via crosstalk between PARylation and ubiquitination. Many PARylation sites in BAP1 are mutated in various human cancers, among which the glutamic acid (Glu) residue at position 31, with particularly frequent mutation in kidney cancer, plays a critical role in BAP1 stabilization and promotes UV-induced DNA damage repair. Glu31 also participates in reducing the viability of kidney cancer cells. This study therefore reveals that BAP1 functions in the NER pathway and that PARP1 plays a role as a novel factor that regulates BAP1 enzymatic activity, protein stability, and recruitment to damage sites. This activity of BAP1 in NER, along with its cancer cell viability-reducing activity, may account for its tumor suppressor function.
Collapse
Affiliation(s)
- Shin-Ai Lee
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Building 37, Room 1068, Bethesda, MD, 20892-4263, USA
| | - Daye Lee
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Minhwa Kang
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Sora Kim
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Su-Jung Kwon
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Han-Sae Lee
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Hye-Ran Seo
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Prashant Kaushal
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Korea
| | - Nam Soo Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Hongtae Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea
| | - Cheolju Lee
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul, 02447, Korea
| | - Jongbum Kwon
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea.
| |
Collapse
|
20
|
Ghafoor A, Hassan R. Somatic BAP1 Loss as a Predictive Biomarker of Overall Survival in Patients With Malignant Pleural Mesothelioma Treated With Chemotherapy. J Thorac Oncol 2022; 17:862-864. [PMID: 35750452 DOI: 10.1016/j.jtho.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Affiliation(s)
- Azam Ghafoor
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Raffit Hassan
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
21
|
Puri S, Chiu YH, Draczkowski P, Ko KT, Yang TJ, Wang YS, Uchiyama S, Danny Hsu ST. Impacts of cancer-associated mutations on the structure-activity relationship of BAP1. J Mol Biol 2022; 434:167553. [DOI: 10.1016/j.jmb.2022.167553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/24/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
|
22
|
LZTS2, a Novel and Independent Prognostic Biomarker for Clear Cell Renal Cell Carcinoma. Pathol Res Pract 2022; 232:153831. [DOI: 10.1016/j.prp.2022.153831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/20/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022]
|
23
|
Therapeutic targeting of BAP1/ASXL3 sub-complex in ASCL1-dependent small cell lung cancer. Oncogene 2022; 41:2152-2162. [PMID: 35194152 PMCID: PMC8993689 DOI: 10.1038/s41388-022-02240-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/24/2022] [Accepted: 02/09/2022] [Indexed: 01/22/2023]
Abstract
Small cell lung cancer (SCLC) is an aggressive disease, with patients diagnosed with either early-stage, limited stage, or extensive stage of SCLC tumor progression. Discovering and targeting the functional biomarkers for SCLC will be crucial in understanding the molecular basis underlying SCLC tumorigenesis to better assist in improving clinical treatment. Emerging studies have demonstrated that dysregulations in BAP1 histone H2A deubiquitinase complex are collectively associated with pathogenesis in human SCLC. Here, we investigated the function of the oncogenic BAP1/ASXL3/BRD4 epigenetic axis in SCLC by developing a next-generation BAP1 inhibitor, iBAP-II, and focusing on the epigenetic balance established between BAP1 and non-canonical PRC1 complexes in regulating SCLC-specific transcriptional programming. We further demonstrated that pharmacologic inhibition of BAP1’s catalytic activity disrupted BAP1/ASXL3/BRD4 epigenetic axis by inducing protein degradation of the ASXL3 scaffold protein, which bridges BRD4 and BAP1 at active enhancers. Furthermore, treatment of iBAP-II represses neuroendocrine lineage-specific ASCL1/MYCL/E2F signaling in SCLC cell lines, and dramatically inhibits SCLC cell viability and tumor growth in vivo. In summary, this study has provided mechanistic insight into the oncogenic function of BAP1 in SCLC and highlighted the potential of targeting BAP1’s activity as a novel SCLC therapy.
Collapse
|
24
|
BAP1 forms a trimer with HMGB1 and HDAC1 that modulates gene × environment interaction with asbestos. Proc Natl Acad Sci U S A 2021; 118:2111946118. [PMID: 34815344 DOI: 10.1073/pnas.2111946118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2021] [Indexed: 12/25/2022] Open
Abstract
Carriers of heterozygous germline BAP1 mutations (BAP1 +/-) are affected by the "BAP1 cancer syndrome." Although they can develop almost any cancer type, they are unusually susceptible to asbestos carcinogenesis and mesothelioma. Here we investigate why among all carcinogens, BAP1 mutations cooperate with asbestos. Asbestos carcinogenesis and mesothelioma have been linked to a chronic inflammatory process promoted by the extracellular release of the high-mobility group box 1 protein (HMGB1). We report that BAP1 +/- cells secrete increased amounts of HMGB1, and that BAP1 +/- carriers have detectable serum levels of acetylated HMGB1 that further increase when they develop mesothelioma. We linked these findings to our discovery that BAP1 forms a trimeric protein complex with HMGB1 and with histone deacetylase 1 (HDAC1) that modulates HMGB1 acetylation and its release. Reduced BAP1 levels caused increased ubiquitylation and degradation of HDAC1, leading to increased acetylation of HMGB1 and its active secretion that in turn promoted mesothelial cell transformation.
Collapse
|
25
|
Sanchez A, Lee D, Kim DI, Miller KM. Making Connections: Integrative Signaling Mechanisms Coordinate DNA Break Repair in Chromatin. Front Genet 2021; 12:747734. [PMID: 34659365 PMCID: PMC8514019 DOI: 10.3389/fgene.2021.747734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 01/25/2023] Open
Abstract
DNA double-strand breaks (DSBs) are hazardous to genome integrity and can promote mutations and disease if not handled correctly. Cells respond to these dangers by engaging DNA damage response (DDR) pathways that are able to identify DNA breaks within chromatin leading ultimately to their repair. The recognition and repair of DSBs by the DDR is largely dependent on the ability of DNA damage sensing factors to bind to and interact with nucleic acids, nucleosomes and their modified forms to target these activities to the break site. These contacts orientate and localize factors to lesions within chromatin, allowing signaling and faithful repair of the break to occur. Coordinating these events requires the integration of several signaling and binding events. Studies are revealing an enormously complex array of interactions that contribute to DNA lesion recognition and repair including binding events on DNA, as well as RNA, RNA:DNA hybrids, nucleosomes, histone and non-histone protein post-translational modifications and protein-protein interactions. Here we examine several DDR pathways that highlight and provide prime examples of these emerging concepts. A combination of approaches including genetic, cellular, and structural biology have begun to reveal new insights into the molecular interactions that govern the DDR within chromatin. While many questions remain, a clearer picture has started to emerge for how DNA-templated processes including transcription, replication and DSB repair are coordinated. Multivalent interactions with several biomolecules serve as key signals to recruit and orientate proteins at DNA lesions, which is essential to integrate signaling events and coordinate the DDR within the milieu of the nucleus where competing genome functions take place. Genome architecture, chromatin structure and phase separation have emerged as additional vital regulatory mechanisms that also influence genome integrity pathways including DSB repair. Collectively, recent advancements in the field have not only provided a deeper understanding of these fundamental processes that maintain genome integrity and cellular homeostasis but have also started to identify new strategies to target deficiencies in these pathways that are prevalent in human diseases including cancer.
Collapse
Affiliation(s)
- Anthony Sanchez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Doohyung Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Dae In Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
26
|
Evaluation of the Preclinical Efficacy of Lurbinectedin in Malignant Pleural Mesothelioma. Cancers (Basel) 2021; 13:cancers13102332. [PMID: 34066159 PMCID: PMC8151304 DOI: 10.3390/cancers13102332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The marine drug lurbinectedin revealed an unprecedented efficacy against patient-derived malignant pleural mesothelioma cells, regardless of the histological type and the BAP1 mutation status. By inducing strong DNA damages, it dramatically arrested cell cycle progression and induced apoptosis. These results may be translated into the use of lurbinectedin as an effective agent for malignant pleural mesothelioma patients. Abstract Background: Malignant pleural mesothelioma (MPM) is a highly aggressive cancer generally diagnosed at an advanced stage and characterized by a poor prognosis. The absence of alterations in druggable kinases, together with an immune-suppressive tumor microenvironment, limits the use of molecular targeted therapies, making the treatment of MPM particularly challenging. Here we investigated the in vitro susceptibility of MPM to lurbinectedin (PM01183), a marine-derived drug that recently received accelerated approval by the FDA for the treatment of patients with metastatic small cell lung cancer with disease progression on or after platinum-based chemotherapy. Methods: A panel of primary MPM cultures, resembling the three major MPM histological subtypes (epithelioid, sarcomatoid, and biphasic), was characterized in terms of BAP1 status and histological markers. Subsequently, we explored the effects of lurbinectedin at nanomolar concentration on cell cycle, cell viability, DNA damage, genotoxic stress response, and proliferation. Results: Stabilized MPM cultures exhibited high sensitivity to lurbinectedin independently from the BAP1 mutational status and histological classification. Specifically, we observed that lurbinectedin rapidly promoted a cell cycle arrest in the S-phase and the activation of the DNA damage response, two conditions that invariably resulted in an irreversible DNA fragmentation, together with strong apoptotic cell death. Moreover, the analysis of long-term treatment indicated that lurbinectedin severely impacts MPM transforming abilities in vitro. Conclusion: Overall, our data provide evidence that lurbinectedin exerts a potent antitumoral activity on primary MPM cells, independently from both the histological subtype and BAP1 alteration, suggesting its potential activity in the treatment of MPM patients.
Collapse
|
27
|
Fhu CW, Ali A. Dysregulation of the Ubiquitin Proteasome System in Human Malignancies: A Window for Therapeutic Intervention. Cancers (Basel) 2021; 13:cancers13071513. [PMID: 33805973 PMCID: PMC8037609 DOI: 10.3390/cancers13071513] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The ubiquitin proteasome system (UPS) governs the non-lysosomal degradation of oxidized, damaged, or misfolded proteins in eukaryotic cells. Dysregulation of the UPS results in loss of ability to maintain protein quality through proteolysis, and is closely related to the development of various malignancies and tumorigenesis. Here, we provide a comprehensive general overview on the regulation and roles of UPS and discuss the mechanisms linking dysregulated UPS to human malignancies. Inhibitors developed against components of the UPS, which include U.S. Food and Drug Administration FDA-approved and those currently undergoing clinical trials, are also presented in this review. Abstract The ubiquitin proteasome system (UPS) governs the non-lysosomal degradation of oxidized, damaged, or misfolded proteins in eukaryotic cells. This process is tightly regulated through the activation and transfer of polyubiquitin chains to target proteins which are then recognized and degraded by the 26S proteasome complex. The role of UPS is crucial in regulating protein levels through degradation to maintain fundamental cellular processes such as growth, division, signal transduction, and stress response. Dysregulation of the UPS, resulting in loss of ability to maintain protein quality through proteolysis, is closely related to the development of various malignancies and tumorigenesis. Here, we provide a comprehensive general overview on the regulation and roles of UPS and discuss functional links of dysregulated UPS in human malignancies. Inhibitors developed against components of the UPS, which include U.S. Food and Drug Administration FDA-approved and those currently undergoing clinical trials, are also presented in this review.
Collapse
|
28
|
Seo HR, Jeong D, Lee S, Lee HS, Lee SA, Kang SW, Kwon J. CHIP and BAP1 Act in Concert to Regulate INO80 Ubiquitination and Stability for DNA Replication. Mol Cells 2021; 44:101-115. [PMID: 33658435 PMCID: PMC7941006 DOI: 10.14348/molcells.2021.2258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 12/14/2022] Open
Abstract
The INO80 chromatin remodeling complex has roles in many essential cellular processes, including DNA replication. However, the mechanisms that regulate INO80 in these processes remain largely unknown. We previously reported that the stability of Ino80, the catalytic ATPase subunit of INO80, is regulated by the ubiquitin proteasome system and that BRCA1-associated protein-1 (BAP1), a nuclear deubiquitinase with tumor suppressor activity, stabilizes Ino80 via deubiquitination and promotes replication fork progression. However, the E3 ubiquitin ligase that targets Ino80 for proteasomal degradation was unknown. Here, we identified the C-terminus of Hsp70-interacting protein (CHIP), the E3 ubiquitin ligase that functions in cooperation with Hsp70, as an Ino80-interacting protein. CHIP polyubiquitinates Ino80 in a manner dependent on Hsp70. Contrary to our expectation that CHIP degrades Ino80, CHIP instead stabilizes Ino80 by extending its halflife. The data suggest that CHIP stabilizes Ino80 by inhibiting degradative ubiquitination. We also show that CHIP works together with BAP1 to enhance the stabilization of Ino80, leading to its chromatin binding. Interestingly, both depletion and overexpression of CHIP compromise replication fork progression with little effect on fork stalling, as similarly observed for BAP1 and Ino80, indicating that an optimal cellular level of Ino80 is important for replication fork speed but not for replication stress suppression. This work therefore idenitifes CHIP as an E3 ubiquitin ligase that stabilizes Ino80 via nondegradative ubiquitination and suggests that CHIP and BAP1 act in concert to regulate Ino80 ubiquitination to fine-tune its stability for efficient DNA replication.
Collapse
Affiliation(s)
- Hye-Ran Seo
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Daun Jeong
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Sunmi Lee
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
| | - Han-Sae Lee
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Shin-Ai Lee
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
- Present address: Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Sang Won Kang
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
| | - Jongbum Kwon
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
29
|
Rong C, Zhou R, Wan S, Su D, Wang SL, Hess J. Ubiquitin Carboxyl-Terminal Hydrolases and Human Malignancies: The Novel Prognostic and Therapeutic Implications for Head and Neck Cancer. Front Oncol 2021; 10:592501. [PMID: 33585209 PMCID: PMC7878561 DOI: 10.3389/fonc.2020.592501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022] Open
Abstract
Ubiquitin C-terminal hydrolases (UCHs), a subfamily of deubiquitinating enzymes (DUBs), have been found in a variety of tumor entities and play distinct roles in the pathogenesis and development of various cancers including head and neck cancer (HNC). HNC is a heterogeneous disease arising from the mucosal epithelia of the upper aerodigestive tract, including different anatomic sites, distinct histopathologic types, as well as human papillomavirus (HPV)-positive and negative subgroups. Despite advances in multi-disciplinary treatment for HNC, the long-term survival rate of patients with HNC remains low. Emerging evidence has revealed the members of UCHs are associated with the pathogenesis and clinical prognosis of HNC, which highlights the prognostic and therapeutic implications of UCHs for patients with HNC. In this review, we summarize the physiological and pathological functions of the UCHs family, which provides enlightenment of potential mechanisms of UCHs family in HNC pathogenesis and highlights the potential consideration of UCHs as attractive drug targets.
Collapse
Affiliation(s)
- Chao Rong
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Ran Zhou
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shan Wan
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Dan Su
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shou-Li Wang
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Jochen Hess
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany
- Research Group Molecular Mechanisms of Head and Neck Tumors, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
30
|
Roles and mechanisms of BAP1 deubiquitinase in tumor suppression. Cell Death Differ 2021; 28:606-625. [PMID: 33462414 DOI: 10.1038/s41418-020-00709-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
The BAP1 gene has emerged as a major tumor suppressor mutated with various frequencies in numerous human malignancies, including uveal melanoma, malignant pleural mesothelioma, clear cell renal cell carcinoma, intrahepatic cholangiocarcinoma, hepatocellular carcinoma, and thymic epithelial tumors. BAP1 mutations are also observed at low frequency in other malignancies including breast, colorectal, pancreatic, and bladder cancers. BAP1 germline mutations are associated with high incidence of mesothelioma, uveal melanoma, and other cancers, defining the "BAP1 cancer syndrome." Interestingly, germline BAP1 mutations constitute an important paradigm for gene-environment interactions, as loss of BAP1 predisposes to carcinogen-induced tumorigenesis. Inactivating mutations of BAP1 are also identified in sporadic cancers, denoting the importance of this gene for normal tissue homeostasis and tumor suppression, although some oncogenic properties have also been attributed to BAP1. BAP1 belongs to the deubiquitinase superfamily of enzymes, which are responsible for the maturation and turnover of ubiquitin as well as the reversal of substrate ubiquitination, thus regulating ubiquitin signaling. BAP1 is predominantly nuclear and interacts with several chromatin-associated factors, assembling multi-protein complexes with mutually exclusive partners. BAP1 exerts its function through highly regulated deubiquitination of its substrates. As such, BAP1 orchestrates chromatin-associated processes including gene expression, DNA replication, and DNA repair. BAP1 also exerts cytoplasmic functions, notably in regulating Ca2+ signaling at the endoplasmic reticulum. This DUB is also subjected to multiple post-translational modifications, notably phosphorylation and ubiquitination, indicating that several signaling pathways tightly regulate its function. Recent progress indicated that BAP1 plays essential roles in multiple cellular processes including cell proliferation and differentiation, cell metabolism, as well as cell survival and death. In this review, we summarize the biological and molecular functions of BAP1 and explain how the inactivation of this DUB might cause human cancers. We also highlight some of the unresolved questions and suggest potential new directions.
Collapse
|
31
|
Deng R, Guo Y, Li L, He J, Qiang Z, Zhang H, Chen R, Wang Y, Zhao X, Yu J. BAP1 suppresses prostate cancer progression by deubiquitinating and stabilizing PTEN. Mol Oncol 2021; 15:279-298. [PMID: 33155366 PMCID: PMC7782096 DOI: 10.1002/1878-0261.12844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/17/2020] [Accepted: 10/21/2020] [Indexed: 01/25/2023] Open
Abstract
Deubiquitinase BAP1 is an important tumor suppressor in several malignancies, but its functions and critical substrates in prostate cancer (PCa) remain unclear. Here, we report that the mRNA and protein expression levels of BAP1 are downregulated in clinical PCa specimens. BAP1 can physically bind to and deubiquitinate PTEN, which inhibits the ubiquitination-mediated degradation of PTEN and thus stabilizes PTEN protein. Ectopically expressed BAP1 in PCa cells increases PTEN protein level and subsequently inhibits the AKT signaling pathway, thus suppressing PCa progression. Conversely, knockdown of BAP1 in PCa cells leads to the decrease in PTEN protein level and the activation of the Akt signaling pathway, therefore promoting malignant transformation and cancer metastasis. However, these can be reversed by the re-expression of PTEN. More importantly, we found that BAP1 protein level positively correlates with PTEN in a substantial fraction of human cancers. These findings demonstrate that BAP1 is an important deubiquitinase of PTEN for its stability and the BAP1-PTEN signaling axis plays a crucial role in tumor suppression.
Collapse
Affiliation(s)
- Rong Deng
- Department of Biochemistry and Molecular Cell BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yanmin Guo
- Department of Biochemistry and Molecular Cell BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lian Li
- Department of Biochemistry and Molecular Cell BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jianfeng He
- Department of Biochemistry and Molecular Cell BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhe Qiang
- Department of Biochemistry and Molecular Cell BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hailong Zhang
- Department of Biochemistry and Molecular Cell BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ran Chen
- Department of Biochemistry and Molecular Cell BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yanli Wang
- Department of Biochemistry and Molecular Cell BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghaiChina
- Basic Clinical Research CenterRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghaiChina
- Basic Clinical Research CenterRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
32
|
Mognato M, Burdak-Rothkamm S, Rothkamm K. Interplay between DNA replication stress, chromatin dynamics and DNA-damage response for the maintenance of genome stability. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108346. [PMID: 34083038 DOI: 10.1016/j.mrrev.2020.108346] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/02/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022]
Abstract
DNA replication stress is a major source of DNA damage, including double-stranded breaks that promote DNA damage response (DDR) signaling. Inefficient repair of such lesions can affect genome integrity. During DNA replication different factors act on chromatin remodeling in a coordinated way. While recent studies have highlighted individual molecular mechanisms of interaction, less is known about the orchestration of chromatin changes under replication stress. In this review we attempt to explore the complex relationship between DNA replication stress, DDR and genome integrity in mammalian cells, taking into account the role of chromatin disposition as an important modulator of DNA repair. Recent data on chromatin restoration and epigenetic re-establishment after DNA replication stress are reviewed.
Collapse
Affiliation(s)
| | - Susanne Burdak-Rothkamm
- University Medical Center Hamburg-Eppendorf, Department of Radiotherapy, Laboratory of Radiobiology & Experimental Radiation Oncology, Germany.
| | - Kai Rothkamm
- University Medical Center Hamburg-Eppendorf, Department of Radiotherapy, Laboratory of Radiobiology & Experimental Radiation Oncology, Germany.
| |
Collapse
|
33
|
Polycomb group-mediated histone H2A monoubiquitination in epigenome regulation and nuclear processes. Nat Commun 2020; 11:5947. [PMID: 33230107 PMCID: PMC7683540 DOI: 10.1038/s41467-020-19722-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 10/12/2020] [Indexed: 12/19/2022] Open
Abstract
Histone posttranslational modifications are key regulators of chromatin-associated processes including gene expression, DNA replication and DNA repair. Monoubiquitinated histone H2A, H2Aub (K118 in Drosophila or K119 in vertebrates) is catalyzed by the Polycomb group (PcG) repressive complex 1 (PRC1) and reversed by the PcG-repressive deubiquitinase (PR-DUB)/BAP1 complex. Here we critically assess the current knowledge regarding H2Aub deposition and removal, its crosstalk with PcG repressive complex 2 (PRC2)-mediated histone H3K27 methylation, and the recent attempts toward discovering its readers and solving its enigmatic functions. We also discuss mounting evidence of the involvement of H2A ubiquitination in human pathologies including cancer, while highlighting some knowledge gaps that remain to be addressed. Histone H2A monoubiquitination on lysine 119 in vertebrate and lysine 118 in Drosophila (H2Aub) is an epigenomic mark usually associated with gene repression by Polycomb group factors. Here the authors review the current knowledge on the deposition and removal of H2Aub, its function in transcription and other DNA-associated processes as well as its relevance to human disease.
Collapse
|
34
|
Prendergast L, McClurg UL, Hristova R, Berlinguer-Palmini R, Greener S, Veitch K, Hernandez I, Pasero P, Rico D, Higgins JMG, Gospodinov A, Papamichos-Chronakis M. Resolution of R-loops by INO80 promotes DNA replication and maintains cancer cell proliferation and viability. Nat Commun 2020; 11:4534. [PMID: 32913330 PMCID: PMC7484789 DOI: 10.1038/s41467-020-18306-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 08/18/2020] [Indexed: 02/04/2023] Open
Abstract
Collisions between the DNA replication machinery and co-transcriptional R-loops can impede DNA synthesis and are a major source of genomic instability in cancer cells. How cancer cells deal with R-loops to proliferate is poorly understood. Here we show that the ATP-dependent chromatin remodelling INO80 complex promotes resolution of R-loops to prevent replication-associated DNA damage in cancer cells. Depletion of INO80 in prostate cancer PC3 cells leads to increased R-loops. Overexpression of the RNA:DNA endonuclease RNAse H1 rescues the DNA synthesis defects and suppresses DNA damage caused by INO80 depletion. R-loops co-localize with and promote recruitment of INO80 to chromatin. Artificial tethering of INO80 to a LacO locus enabled turnover of R-loops in cis. Finally, counteracting R-loops by INO80 promotes proliferation and averts DNA damage-induced death in cancer cells. Our work suggests that INO80-dependent resolution of R-loops promotes DNA replication in the presence of transcription, thus enabling unlimited proliferation in cancers.
Collapse
Affiliation(s)
- Lisa Prendergast
- Cancer Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Newcastle University, Paul O'Gorman Building, Newcastle upon Tyne, NE2 4HH, UK
- Drug Discovery Unit, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG, Manchester, UK
| | - Urszula L McClurg
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Rossitsa Hristova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | - Sarah Greener
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Katie Veitch
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Inmaculada Hernandez
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08028, Spain
| | - Philippe Pasero
- Institute of Human Genetics, CNRS UMR9002 and University of Montpellier, Equipe Labéllisée Ligue Contre le Cancer, 34090, Montpellier, France
| | - Daniel Rico
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | | | - Anastas Gospodinov
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Manolis Papamichos-Chronakis
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK.
| |
Collapse
|
35
|
Deregulated levels of RUVBL1 induce transcription-dependent replication stress. Int J Biochem Cell Biol 2020; 128:105839. [PMID: 32846207 DOI: 10.1016/j.biocel.2020.105839] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/11/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022]
Abstract
Chromatin regulators control transcription and replication, however if and how they might influence the coordination of these processes still is largely unknown. RUVBL1 and the related ATPase RUVBL2 participate in multiple nuclear processes and are implicated in cancer. Here, we report that both the excess and the deficit of the chromatin regulator RUVBL1 impede DNA replication as a consequence of altered transcription. Surprisingly, cells that either overexpressed or were silenced for RUVBL1 had slower replication fork rates and accumulated phosphorylated H2AX, dependent on active transcription. However, the mechanisms of transcription-dependent replication stress were different when RUVBL1 was overexpressed and when depleted. RUVBL1 overexpression led to increased c-Myc-dependent pause release of RNAPII, as evidenced by higher overall transcription, much stronger Ser2 phosphorylation of Rpb1- C-terminal domain, and enhanced colocalization of Rpb1 and c-Myc. RUVBL1 deficiency resulted in increased ubiquitination of Rpb1 and reduced mobility of an RNAP subunit, suggesting accumulation of stalled RNAPIIs on chromatin. Overall, our data show that by modulating the state of RNAPII complexes, RUVBL1 deregulation induces replication-transcription interference and compromises genome integrity during S-phase.
Collapse
|
36
|
Symmetric neural progenitor divisions require chromatin-mediated homologous recombination DNA repair by Ino80. Nat Commun 2020; 11:3839. [PMID: 32737294 PMCID: PMC7395731 DOI: 10.1038/s41467-020-17551-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
Chromatin regulates spatiotemporal gene expression during neurodevelopment, but it also mediates DNA damage repair essential to proliferating neural progenitor cells (NPCs). Here, we uncover molecularly dissociable roles for nucleosome remodeler Ino80 in chromatin-mediated transcriptional regulation and genome maintenance in corticogenesis. We find that conditional Ino80 deletion from cortical NPCs impairs DNA double-strand break (DSB) repair, triggering p53-dependent apoptosis and microcephaly. Using an in vivo DSB repair pathway assay, we find that Ino80 is selectively required for homologous recombination (HR) DNA repair, which is mechanistically distinct from Ino80 function in YY1-associated transcription. Unexpectedly, sensitivity to loss of Ino80-mediated HR is dependent on NPC division mode: Ino80 deletion leads to unrepaired DNA breaks and apoptosis in symmetric NPC-NPC divisions, but not in asymmetric neurogenic divisions. This division mode dependence is phenocopied following conditional deletion of HR gene Brca2. Thus, distinct modes of NPC division have divergent requirements for Ino80-dependent HR DNA repair.
Collapse
|
37
|
Carbone M, Harbour JW, Brugarolas J, Bononi A, Pagano I, Dey A, Krausz T, Pass HI, Yang H, Gaudino G. Biological Mechanisms and Clinical Significance of BAP1 Mutations in Human Cancer. Cancer Discov 2020; 10:1103-1120. [PMID: 32690542 DOI: 10.1158/2159-8290.cd-19-1220] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/03/2020] [Accepted: 05/07/2020] [Indexed: 11/16/2022]
Abstract
Among more than 200 BAP1-mutant families affected by the "BAP1 cancer syndrome," nearly all individuals inheriting a BAP1 mutant allele developed one or more malignancies during their lifetime, mostly uveal and cutaneous melanoma, mesothelioma, and clear-cell renal cell carcinoma. These cancer types are also those that, when they occur sporadically, are more likely to carry somatic biallelic BAP1 mutations. Mechanistic studies revealed that the tumor suppressor function of BAP1 is linked to its dual activity in the nucleus, where it is implicated in a variety of processes including DNA repair and transcription, and in the cytoplasm, where it regulates cell death and mitochondrial metabolism. BAP1 activity in tumor suppression is cell type- and context-dependent. BAP1 has emerged as a critical tumor suppressor across multiple cancer types, predisposing to tumor development when mutated in the germline as well as somatically. Moreover, BAP1 has emerged as a key regulator of gene-environment interaction.This article is highlighted in the In This Issue feature, p. 1079.
Collapse
Affiliation(s)
| | - J William Harbour
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center, and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Angela Bononi
- University of Hawai'i Cancer Center, Honolulu, Hawai'i
| | - Ian Pagano
- University of Hawai'i Cancer Center, Honolulu, Hawai'i
| | - Anwesha Dey
- Department of Discovery Oncology, Genentech, South San Francisco, California
| | - Thomas Krausz
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Harvey I Pass
- Department of Cardiothoracic Surgery, New York University Langone Medical Center, New York, New York
| | - Haining Yang
- University of Hawai'i Cancer Center, Honolulu, Hawai'i
| | | |
Collapse
|
38
|
Pirker C, Bilecz A, Grusch M, Mohr T, Heidenreich B, Laszlo V, Stockhammer P, Lötsch-Gojo D, Gojo J, Gabler L, Spiegl-Kreinecker S, Dome B, Steindl A, Klikovits T, Hoda MA, Jakopovic M, Samarzija M, Mohorcic K, Kern I, Kiesel B, Brcic L, Oberndorfer F, Müllauer L, Klepetko W, Schmidt WM, Kumar R, Hegedus B, Berger W. Telomerase Reverse Transcriptase Promoter Mutations Identify a Genomically Defined and Highly Aggressive Human Pleural Mesothelioma Subgroup. Clin Cancer Res 2020; 26:3819-3830. [PMID: 32317288 DOI: 10.1158/1078-0432.ccr-19-3573] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/13/2020] [Accepted: 04/17/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Human malignant pleural mesothelioma (MPM) is characterized by dismal prognosis. Consequently, dissection of molecular mechanisms driving malignancy is of key importance. Here we investigate whether activating mutations in the telomerase reverse transcriptase (TERT) gene promoter are present in MPM and associated with disease progression, cell immortalization, and genomic alteration patterns. EXPERIMENTAL DESIGN TERT promoters were sequenced in 182 MPM samples and compared with clinicopathologic characteristics. Surgical specimens from 45 patients with MPM were tested for in vitro immortalization. The respective MPM cell models (N = 22) were analyzed by array comparative genomic hybridization, gene expression profiling, exome sequencing as well as TRAP, telomere length, and luciferase promoter assays. RESULTS TERT promoter mutations were detected in 19 of 182 (10.4%) MPM cases and significantly associated with advanced disease and nonepithelioid histology. Mutations independently predicted shorter overall survival in both histologic MPM subtypes. Moreover, 9 of 9 (100%) mutated but only 13 of 36 (36.1%) wild-type samples formed immortalized cell lines. TERT promoter mutations were associated with enforced promoter activity and TERT mRNA expression, while neither telomerase activity nor telomere lengths were significantly altered. TERT promoter-mutated MPM cases exhibited distinctly reduced chromosomal alterations and specific mutation patterns. While BAP1 mutations/deletions were exclusive with TERT promoter mutations, homozygous deletions at the RBFOX1 and the GSTT1 loci were clearly enriched in mutated cases. CONCLUSIONS TERT promoter mutations independently predict a dismal course of disease in human MPM. The altered genomic aberration pattern indicates that TERT promoter mutations identify a novel, highly aggressive MPM subtype presumably based on a specific malignant transformation process.
Collapse
Affiliation(s)
- Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Agnes Bilecz
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary
| | - Michael Grusch
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Thomas Mohr
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Barbara Heidenreich
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Viktoria Laszlo
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University Vienna, Austria
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Paul Stockhammer
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University Vienna, Austria
| | - Daniela Lötsch-Gojo
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Johannes Gojo
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Lisa Gabler
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Sabine Spiegl-Kreinecker
- Department of Neurosurgery, Neuromed Campus, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| | - Balazs Dome
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University Vienna, Austria
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, Semmelweis University, Budapest, Hungary
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
| | - Ariane Steindl
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University Vienna, Austria
| | - Thomas Klikovits
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University Vienna, Austria
| | - Mir Alireza Hoda
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University Vienna, Austria
| | - Marko Jakopovic
- Department for Respiratory Diseases Jordanovac, University Hospital Center, University of Zagreb, Zagreb, Croatia
| | - Miroslav Samarzija
- Department for Respiratory Diseases Jordanovac, University Hospital Center, University of Zagreb, Zagreb, Croatia
| | - Katja Mohorcic
- University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
| | - Izidor Kern
- University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Luka Brcic
- Medical University of Graz, Diagnostic and Research Institute of Pathology, Graz, Austria
| | | | - Leonhard Müllauer
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University Vienna, Austria
| | - Wolfgang M Schmidt
- Center for Anatomy and Cell Biology, Neuromuscular Research Department, Medical University of Vienna, Vienna, Austria
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Balazs Hegedus
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary.
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University Vienna, Austria
- Department of Thoracic Surgery, Ruhrlandklinik, University Duisburg-Essen, Essen, Germany
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
39
|
BAP1 promotes stalled fork restart and cell survival via INO80 in response to replication stress. Biochem J 2020; 476:3053-3066. [PMID: 31657441 DOI: 10.1042/bcj20190622] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 01/26/2023]
Abstract
The recovery from replication stress by restarting stalled forks to continue DNA synthesis is crucial for maintaining genome stability and thereby preventing diseases such as cancer. We previously showed that BRCA1-associated protein 1 (BAP1), a nuclear deubiquitinase with tumor suppressor activity, promotes replication fork progression by stabilizing the INO80 chromatin remodeler via deubiquitination and recruiting it to replication forks during normal DNA synthesis. However, whether BAP1 functions in DNA replication under stress conditions is unknown. Here, we show that BAP1 depletion reduces S-phase progression and DNA synthesis after treatment with hydroxyurea (HU). BAP1-depleted cells exhibit a defect in the restart of HU-induced stalled replication forks, which is recovered by the ectopic expression of INO80. Both BAP1 and INO80 bind chromatin at replication forks upon HU treatment. BAP1 depletion abrogates the binding of INO80 to replication forks and increases the formation of RAD51 foci following HU treatment. BAP1-depleted cells show hypersensitivity to HU treatment, which is rescued by INO80 expression. These results suggest that BAP1 promotes the restart of stress-induced stalled replication forks by recruiting INO80 to the stalled forks. This function of BAP1 in replication stress recovery may contribute to its ability to suppress genome instability and cancer development.
Collapse
|
40
|
Abstract
Mesothelioma has long been associated with the exposure to asbestos, which was largely used in manufacturing activities. Toxicology studies in vitro and in vivo demonstrated that asbestos fibers were carcinogenic, and epidemiology studies revealed that asbestos exposure was paralleled by the increase in the incidence of mesothelioma and related mortality rates. More recently, the role of chronic inflammation and the molecular mechanisms involved in carcinogenesis by mineral fibers were elucidated following the discovery of the roles of HMGB1 and inflammasome. A change of paradigm was the discovery of a prevalence of mesotheliomas attributable to inherited mutations of cancer susceptibility genes. The discovery of BAP1 as a predisposition gene for the development of familial mesothelioma and other cancers implemented genome studies in patients with mesothelioma and routine clinical surveys in individuals at risk to identify germline mutations associated with cancers included in the BAP1 syndrome. A further progress in the approach to asbestos-related malignancy was the adoption of combined genetics and environmental analyses according to the model of gene-environment (GxE) interactions. This review aims at updating on the most recently discovered mechanisms of tumorigenesis and the pivotal role of GxE interactions.
Collapse
Affiliation(s)
| | - Jiaming Xue
- University of Hawai'i Cancer Center, Honolulu, HI 96813, USA
| | - Haining Yang
- University of Hawai'i Cancer Center, Honolulu, HI 96813, USA
| |
Collapse
|
41
|
New Insights in the IP 3 Receptor and Its Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:243-270. [PMID: 31646513 DOI: 10.1007/978-3-030-12457-1_10] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) is a Ca2+-release channel mainly located in the endoplasmic reticulum (ER). Three IP3R isoforms are responsible for the generation of intracellular Ca2+ signals that may spread across the entire cell or occur locally in so-called microdomains. Because of their ubiquitous expression, these channels are involved in the regulation of a plethora of cellular processes, including cell survival and cell death. To exert their proper function a fine regulation of their activity is of paramount importance. In this review, we will highlight the recent advances in the structural analysis of the IP3R and try to link these data with the newest information concerning IP3R activation and regulation. A special focus of this review will be directed towards the regulation of the IP3R by protein-protein interaction. Especially the protein family formed by calmodulin and related Ca2+-binding proteins and the pro- and anti-apoptotic/autophagic Bcl-2-family members will be highlighted. Finally, recently identified and novel IP3R regulatory proteins will be discussed. A number of these interactions are involved in cancer development, illustrating the potential importance of modulating IP3R-mediated Ca2+ signaling in cancer treatment.
Collapse
|
42
|
Danese A, Marchi S, Vitto VAM, Modesti L, Leo S, Wieckowski MR, Giorgi C, Pinton P. Cancer-Related Increases and Decreases in Calcium Signaling at the Endoplasmic Reticulum-Mitochondria Interface (MAMs). Rev Physiol Biochem Pharmacol 2020; 185:153-193. [PMID: 32789789 DOI: 10.1007/112_2020_43] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endoplasmic reticulum (ER)-mitochondria regions are specialized subdomains called also mitochondria-associated membranes (MAMs). MAMs allow regulation of lipid synthesis and represent hubs for ion and metabolite signaling. As these two organelles can module both the amplitude and the spatiotemporal patterns of calcium (Ca2+) signals, this particular interaction controls several Ca2+-dependent pathways well known for their contribution to tumorigenesis, such as metabolism, survival, sensitivity to cell death, and metastasis. Mitochondria-mediated apoptosis arises from mitochondrial Ca2+ overload, permeabilization of the mitochondrial outer membrane, and the release of mitochondrial apoptotic factors into the cytosol. Decreases in Ca2+ signaling at the ER-mitochondria interface are being studied in depth as failure of apoptotic-dependent cell death is one of the predominant characteristics of cancer cells. However, some recent papers that linked MAMs Ca2+ crosstalk-related upregulation to tumor onset and progression have aroused the interest of the scientific community.In this review, we will describe how different MAMs-localized proteins modulate the effectiveness of Ca2+-dependent apoptotic stimuli by causing both increases and decreases in the ER-mitochondria interplay and, specifically, by modulating Ca2+ signaling.
Collapse
Affiliation(s)
- Alberto Danese
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Veronica Angela Maria Vitto
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Lorenzo Modesti
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Sara Leo
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Carlotta Giorgi
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
43
|
Functional analysis of deubiquitylating enzymes in tumorigenesis and development. Biochim Biophys Acta Rev Cancer 2019; 1872:188312. [DOI: 10.1016/j.bbcan.2019.188312] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
|
44
|
Sun J, Hu X, Gao Y, Tang Q, Zhao Z, Xi W, Yang F, Zhang W, Song Y, Song B, Wang T, Wang H. MYSM1-AR complex-mediated repression of Akt/c-Raf/GSK-3β signaling impedes castration-resistant prostate cancer growth. Aging (Albany NY) 2019; 11:10644-10663. [PMID: 31761786 PMCID: PMC6914400 DOI: 10.18632/aging.102482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022]
Abstract
Epigenetic alterations that lead to dysregulated gene expression in the progression of castration-resistant prostate cancer (CRPC) remain elusive. Here, we investigated the role of histone deubiquitinase MYSM1 in the pathogenesis of prostate cancer (PCa). Tissues and public datasets of PCa were evaluated for MYSM1 levels. We explored the effects of MYSM1 on cell proliferation, senescence and viability both in vitro and in vivo. Integrative database analyses and co-immunoprecipitation assays were performed to elucidate genomic association of MYSM1 and MYSM1-involved biological interaction network in PCa. We observed that MYSM1 were downregulated in CRPC compared to localized prostate tumors. Knockdown of MYSM1 promoted cell proliferation and suppressed senescence of CRPC cells under condition of androgen ablation. MYSM1 downregulation enhanced the tumorigenic ability in nude mice. Integrative bioinformatic analyses of the significantly associated genes with MYSM1 revealed MYSM1-correlated pathways, providing substantial clues as to the role of MYSM1 in PCa. MYSM1 was able to bind to androgen receptor instead of increasing its expression and knockdown of MYSM1 resulted in activation of Akt/c-Raf/GSK-3β signaling. Together, our findings indicate that MYSM1 is pivotal in CRPC pathogenesis and may be established as a potential target for future treatment.
Collapse
Affiliation(s)
- Jinbo Sun
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Xiangnan Hu
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Yongheng Gao
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Qisheng Tang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Zhining Zhao
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China.,Clinical Laboratory, 451 Hospital of Chinese People's Liberation Army, Xi'an, Shaanxi 710054, China
| | - Wenjin Xi
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Fan Yang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Wei Zhang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Yue Song
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Bin Song
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Tao Wang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.,Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - He Wang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| |
Collapse
|
45
|
Abstract
Renal cell carcinomas (RCCs) are a diverse set of malignancies that have recently been shown to harbour mutations in a number of chromatin modifier genes - including PBRM1, SETD2, BAP1, KDM5C, KDM6A, and MLL2 - through high-throughput sequencing efforts. Current research focuses on understanding the biological activities that chromatin modifiers employ to suppress tumorigenesis and on developing clinical approaches that take advantage of this knowledge. Unsurprisingly, several common themes unify the functions of these epigenetic modifiers, particularly regulation of histone post-translational modifications and nucleosome organization. Furthermore, chromatin modifiers also govern processes crucial for DNA repair and maintenance of genomic integrity as well as the regulation of splicing and other key processes. Many chromatin modifiers have additional non-canonical roles in cytoskeletal regulation, which further contribute to genomic stability, expanding the repertoire of functions that might be essential in tumorigenesis. Our understanding of how mutations in chromatin modifiers contribute to tumorigenesis in RCC is improving but remains an area of intense investigation. Importantly, elucidating the activities of chromatin modifiers offers intriguing opportunities for the development of new therapeutic interventions in RCC.
Collapse
Affiliation(s)
- Aguirre A de Cubas
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - W Kimryn Rathmell
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
46
|
Kang H, Zhang C, An Z, Shen WH, Zhu Y. AtINO80 and AtARP5 physically interact and play common as well as distinct roles in regulating plant growth and development. THE NEW PHYTOLOGIST 2019; 223:336-353. [PMID: 30843208 DOI: 10.1111/nph.15780] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
The proper modulation of chromatin structure is dependent on the activities of chromatin-remodeling factors and their interplays. Here, we show that the Arabidopsis chromatin-remodeler AtINO80 interacts with the actin-related protein AtARP5 and can form a larger protein complex. Genetic analysis demonstrated that AtARP5 acts in concert with AtINO80 during plant cellular proliferation and replication stress response. At the same time, AtARP5 is not required for AtINO80-mediated control of flowering time and related transcriptional regulation, and their chromatin distribution patterns on regions of flowering-repressor genes FLC/MAF4/MAF5 are also different. An in vitro DNase I digestion assay revealed that the AtINO80N-terminus can weakly bind DNA, an interaction that is significantly inhibited by H2A.Z/H2B addition. AtARP6, a specific subunit of SWR1-C that mediates the H2A.Z exchange, was found to have a previously unexpected inhibitory role in the local chromatin enrichment of AtINO80. Further genetic analyses revealed the functional interplay between AtINO80 and AtARP6 and their critical roles in embryogenesis and post-embryonic organ development, as well as the synergy of AtARP5 and AtARP6 in maintaining genomic stability. Our findings provide insights into the common and distinct roles of AtINO80 and AtARP5 in diverse aspects of plant development.
Collapse
Affiliation(s)
- Huijia Kang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Chi Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zengxuan An
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wen-Hui Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- CNRS, IBMP UPR 2357, Université de Strasbourg, Strasbourg, F-67000, France
| | - Yan Zhu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
47
|
Fursova NA, Blackledge NP, Nakayama M, Ito S, Koseki Y, Farcas AM, King HW, Koseki H, Klose RJ. Synergy between Variant PRC1 Complexes Defines Polycomb-Mediated Gene Repression. Mol Cell 2019; 74:1020-1036.e8. [PMID: 31029541 PMCID: PMC6561741 DOI: 10.1016/j.molcel.2019.03.024] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/04/2019] [Accepted: 03/21/2019] [Indexed: 01/30/2023]
Abstract
The Polycomb system modifies chromatin and plays an essential role in repressing gene expression to control normal mammalian development. However, the components and mechanisms that define how Polycomb protein complexes achieve this remain enigmatic. Here, we use combinatorial genetic perturbation coupled with quantitative genomics to discover the central determinants of Polycomb-mediated gene repression in mouse embryonic stem cells. We demonstrate that canonical Polycomb repressive complex 1 (PRC1), which mediates higher-order chromatin structures, contributes little to gene repression. Instead, we uncover an unexpectedly high degree of synergy between variant PRC1 complexes, which is fundamental to gene repression. We further demonstrate that variant PRC1 complexes are responsible for distinct pools of H2A monoubiquitylation that are associated with repression of Polycomb target genes and silencing during X chromosome inactivation. Together, these discoveries reveal a new variant PRC1-dependent logic for Polycomb-mediated gene repression.
Collapse
Affiliation(s)
- Nadezda A Fursova
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Neil P Blackledge
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Manabu Nakayama
- Laboratory of Medical Omics Research, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Shinsuke Ito
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yoko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Anca M Farcas
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Hamish W King
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; AMED-CREST, Japanese Agency for Medical Research and Development, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
48
|
Probing the Tumor Suppressor Function of BAP1 in CRISPR-Engineered Human Liver Organoids. Cell Stem Cell 2019; 24:927-943.e6. [PMID: 31130514 DOI: 10.1016/j.stem.2019.04.017] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/01/2019] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
Abstract
The deubiquitinating enzyme BAP1 is a tumor suppressor, among others involved in cholangiocarcinoma. BAP1 has many proposed molecular targets, while its Drosophila homolog is known to deubiquitinate histone H2AK119. We introduce BAP1 loss-of-function by CRISPR/Cas9 in normal human cholangiocyte organoids. We find that BAP1 controls the expression of junctional and cytoskeleton components by regulating chromatin accessibility. Consequently, we observe loss of multiple epithelial characteristics while motility increases. Importantly, restoring the catalytic activity of BAP1 in the nucleus rescues these cellular and molecular changes. We engineer human liver organoids to combine four common cholangiocarcinoma mutations (TP53, PTEN, SMAD4, and NF1). In this genetic background, BAP1 loss results in acquisition of malignant features upon xenotransplantation. Thus, control of epithelial identity through the regulation of chromatin accessibility appears to be a key aspect of BAP1's tumor suppressor function. Organoid technology combined with CRISPR/Cas9 provides an experimental platform for mechanistic studies of cancer gene function in a human context.
Collapse
|
49
|
Andreev V, Hristova R, Asparuhova M, Danovski G, Stoynov S, Gospodinov A. Mammalian INO80 chromatin remodeler cooperates with FANCM to mediate DNA interstrand crosslink-induced checkpoint activation and repair. DNA Repair (Amst) 2019; 74:38-50. [DOI: 10.1016/j.dnarep.2018.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/30/2018] [Accepted: 12/27/2018] [Indexed: 11/30/2022]
|
50
|
Campagne A, Lee MK, Zielinski D, Michaud A, Le Corre S, Dingli F, Chen H, Shahidian LZ, Vassilev I, Servant N, Loew D, Pasmant E, Postel-Vinay S, Wassef M, Margueron R. BAP1 complex promotes transcription by opposing PRC1-mediated H2A ubiquitylation. Nat Commun 2019; 10:348. [PMID: 30664650 PMCID: PMC6341105 DOI: 10.1038/s41467-018-08255-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 12/21/2018] [Indexed: 11/09/2022] Open
Abstract
In Drosophila, a complex consisting of Calypso and ASX catalyzes H2A deubiquitination and has been reported to act as part of the Polycomb machinery in transcriptional silencing. The mammalian homologs of these proteins (BAP1 and ASXL1/2/3, respectively), are frequently mutated in various cancer types, yet their precise functions remain unclear. Using an integrative approach based on isogenic cell lines generated with CRISPR/Cas9, we uncover an unanticipated role for BAP1 in gene activation. This function requires the assembly of an enzymatically active BAP1-associated core complex (BAP1.com) containing one of the redundant ASXL proteins. We investigate the mechanism underlying BAP1.com-mediated transcriptional regulation and show that it does not participate in Polycomb-mediated silencing. Instead, our results establish that the function of BAP1.com is to safeguard transcriptionally active genes against silencing by the Polycomb Repressive Complex 1. In Drosophila, the Calypso–ASX complex catalyzes H2A deubiquitination and aids Polycomb in transcriptional silencing. Here the authors show that the orthologous complex, BAP1.com, promotes gene activation by counteracting PRC1-mediated gene silencing.
Collapse
Affiliation(s)
- Antoine Campagne
- Institut Curie, Paris Sciences et Lettres Research University, Sorbonne University, 75005, Paris, France.,INSERM U934/CNRS UMR3215, 75005, Paris, France
| | - Ming-Kang Lee
- Institut Curie, Paris Sciences et Lettres Research University, Sorbonne University, 75005, Paris, France.,INSERM U934/CNRS UMR3215, 75005, Paris, France
| | - Dina Zielinski
- Institut Curie, Paris Sciences et Lettres Research University, Sorbonne University, 75005, Paris, France.,INSERM U934/CNRS UMR3215, 75005, Paris, France.,INSERM U900, Mines ParisTech, 75005, Paris, France
| | - Audrey Michaud
- Institut Curie, Paris Sciences et Lettres Research University, Sorbonne University, 75005, Paris, France.,INSERM U934/CNRS UMR3215, 75005, Paris, France
| | - Stéphanie Le Corre
- Institut Curie, Paris Sciences et Lettres Research University, Sorbonne University, 75005, Paris, France.,INSERM U934/CNRS UMR3215, 75005, Paris, France
| | - Florent Dingli
- Institut Curie, Paris Sciences et Lettres Research University, Sorbonne University, 75005, Paris, France
| | - Hong Chen
- Institut Curie, Paris Sciences et Lettres Research University, Sorbonne University, 75005, Paris, France.,INSERM U934/CNRS UMR3215, 75005, Paris, France
| | - Lara Z Shahidian
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Ivaylo Vassilev
- Institut Curie, Paris Sciences et Lettres Research University, Sorbonne University, 75005, Paris, France.,INSERM U934/CNRS UMR3215, 75005, Paris, France.,INSERM U900, Mines ParisTech, 75005, Paris, France
| | - Nicolas Servant
- Institut Curie, Paris Sciences et Lettres Research University, Sorbonne University, 75005, Paris, France.,INSERM U900, Mines ParisTech, 75005, Paris, France
| | - Damarys Loew
- Institut Curie, Paris Sciences et Lettres Research University, Sorbonne University, 75005, Paris, France
| | - Eric Pasmant
- Department of Molecular Genetics Pathology, Cochin Hospital, HUPC AP-HP, EA7331, Faculty of Pharmacy, University of Paris Descartes, Paris, 75014, France
| | - Sophie Postel-Vinay
- Département d'Innovation Thérapeutique et Essais Précoces, INSERM U981, Gustave Roussy, Université Paris-Saclay, Villejuif, F-94805, France
| | - Michel Wassef
- Institut Curie, Paris Sciences et Lettres Research University, Sorbonne University, 75005, Paris, France. .,INSERM U934/CNRS UMR3215, 75005, Paris, France.
| | - Raphaël Margueron
- Institut Curie, Paris Sciences et Lettres Research University, Sorbonne University, 75005, Paris, France. .,INSERM U934/CNRS UMR3215, 75005, Paris, France.
| |
Collapse
|