1
|
Hao Y, Shen X, Liu J, Cai Z, Wang X, Yang Z, Chen F, Dong B, Wang R, Du X, Qi Z, Ge Y. A Supramolecular Protein Assembly Intrinsically Rescues Memory Deficits in an Alzheimer's Disease Mouse Model. NANO LETTERS 2024; 24:15565-15574. [PMID: 39592140 PMCID: PMC11640758 DOI: 10.1021/acs.nanolett.4c03672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 11/28/2024]
Abstract
Supramolecular protein assemblies have been used as intelligent drug delivery systems that can encapsulate drugs and transport them to specific tissues or cells. However, the known methods for designing supramolecular protein assemblies for transportation across the blood-brain barrier (BBB) remain challenging and inefficient. Herein, we report that the supramolecular recombinant-protein-based strategy enables the biosynthesis and production of a supramolecular protein assembly that is intrinsically capable of crossing the BBB. The recombinant protein constituting the essential part of apolipoprotein A1 can self-assemble into a supramolecular protein assembly known as a nanodisc. The nanodisc could efficiently enter the brain of an Alzheimer's disease mouse model, recognize Aβ1-42, eliminate amyloid plaques, promote neurogenesis, and ameliorate cognitive impairment. This work opens a new field for supramolecular protein assemblies and offers a new avenue for designing versatile and intelligent supramolecular biomaterials.
Collapse
Affiliation(s)
- Yuchong Hao
- Sino-German
Joint Research Lab for Space Biomaterials and Translational Technology,
Synergetic Innovation Center of Biological Optoelectronics and Healthcare
Engineering, School of Life Sciences, Northwestern
Polytechnical University, Youyi West Road 127, Xi’an, Shaanxi 710072, China
| | - Xin Shen
- Sino-German
Joint Research Lab for Space Biomaterials and Translational Technology,
Synergetic Innovation Center of Biological Optoelectronics and Healthcare
Engineering, School of Life Sciences, Northwestern
Polytechnical University, Youyi West Road 127, Xi’an, Shaanxi 710072, China
| | - Jiantao Liu
- Guangdong
Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences
and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Zhongqi Cai
- Sino-German
Joint Research Lab for Space Biomaterials and Translational Technology,
Synergetic Innovation Center of Biological Optoelectronics and Healthcare
Engineering, School of Life Sciences, Northwestern
Polytechnical University, Youyi West Road 127, Xi’an, Shaanxi 710072, China
| | - Xinquan Wang
- Sino-German
Joint Research Lab for Space Biomaterials and Translational Technology,
Synergetic Innovation Center of Biological Optoelectronics and Healthcare
Engineering, School of Life Sciences, Northwestern
Polytechnical University, Youyi West Road 127, Xi’an, Shaanxi 710072, China
| | - Zerui Yang
- Sino-German
Joint Research Lab for Space Biomaterials and Translational Technology,
Synergetic Innovation Center of Biological Optoelectronics and Healthcare
Engineering, School of Life Sciences, Northwestern
Polytechnical University, Youyi West Road 127, Xi’an, Shaanxi 710072, China
| | - Fuqing Chen
- Sino-German
Joint Research Lab for Space Biomaterials and Translational Technology,
Synergetic Innovation Center of Biological Optoelectronics and Healthcare
Engineering, School of Life Sciences, Northwestern
Polytechnical University, Youyi West Road 127, Xi’an, Shaanxi 710072, China
| | - Baorui Dong
- Sino-German
Joint Research Lab for Space Biomaterials and Translational Technology,
Synergetic Innovation Center of Biological Optoelectronics and Healthcare
Engineering, School of Life Sciences, Northwestern
Polytechnical University, Youyi West Road 127, Xi’an, Shaanxi 710072, China
| | - Ruibing Wang
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences & MoE Frontiers Science Center for
Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China
| | - Xiubo Du
- Guangdong
Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences
and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Zhenhui Qi
- Sino-German
Joint Research Lab for Space Biomaterials and Translational Technology,
Synergetic Innovation Center of Biological Optoelectronics and Healthcare
Engineering, School of Life Sciences, Northwestern
Polytechnical University, Youyi West Road 127, Xi’an, Shaanxi 710072, China
| | - Yan Ge
- Sino-German
Joint Research Lab for Space Biomaterials and Translational Technology,
Synergetic Innovation Center of Biological Optoelectronics and Healthcare
Engineering, School of Life Sciences, Northwestern
Polytechnical University, Youyi West Road 127, Xi’an, Shaanxi 710072, China
| |
Collapse
|
2
|
Crossley JA, Allen WJ, Watkins DW, Sabir T, Radford SE, Tuma R, Collinson I, Fessl T. Dynamic coupling of fast channel gating with slow ATP-turnover underpins protein transport through the Sec translocon. EMBO J 2024; 43:1-13. [PMID: 38177311 PMCID: PMC10883268 DOI: 10.1038/s44318-023-00004-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 01/06/2024] Open
Abstract
The Sec translocon is a highly conserved membrane assembly for polypeptide transport across, or into, lipid bilayers. In bacteria, secretion through the core channel complex-SecYEG in the inner membrane-is powered by the cytosolic ATPase SecA. Here, we use single-molecule fluorescence to interrogate the conformational state of SecYEG throughout the ATP hydrolysis cycle of SecA. We show that the SecYEG channel fluctuations between open and closed states are much faster (~20-fold during translocation) than ATP turnover, and that the nucleotide status of SecA modulates the rates of opening and closure. The SecY variant PrlA4, which exhibits faster transport but unaffected ATPase rates, increases the dwell time in the open state, facilitating pre-protein diffusion through the pore and thereby enhancing translocation efficiency. Thus, rapid SecYEG channel dynamics are allosterically coupled to SecA via modulation of the energy landscape, and play an integral part in protein transport. Loose coupling of ATP-turnover by SecA to the dynamic properties of SecYEG is compatible with a Brownian-rachet mechanism of translocation, rather than strict nucleotide-dependent interconversion between different static states of a power stroke.
Collapse
Affiliation(s)
- Joel A Crossley
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czech Republic
- School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, LS1 3HE, UK
| | - William J Allen
- School of Biochemistry, University of Bristol, Bristol, BS8 1QU, UK
| | - Daniel W Watkins
- School of Biochemistry, University of Bristol, Bristol, BS8 1QU, UK
| | - Tara Sabir
- School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, LS1 3HE, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Roman Tuma
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czech Republic
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol, BS8 1QU, UK.
| | - Tomas Fessl
- Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czech Republic.
| |
Collapse
|
3
|
Abstract
Multipass membrane proteins contain two or more α-helical transmembrane domains (TMDs) that span the lipid bilayer. They are inserted cotranslationally into the prokaryotic plasma membrane or eukaryotic endoplasmic reticulum membrane. The Sec61 complex (SecY complex in prokaryotes) provides a ribosome docking site, houses a channel across the membrane, and contains a lateral gate that opens toward the lipid bilayer. Model multipass proteins can be stitched into the membrane by iteratively using Sec61's lateral gate for TMD insertion and its central pore for translocation of flanking domains. Native multipass proteins, with their diverse TMDs and complex topologies, often also rely on members of the Oxa1 family of translocation factors, the PAT complex chaperone, and other poorly understood factors. Here, we discuss the mechanisms of TMD insertion, highlight the limitations of an iterative insertion model, and propose a new hypothesis for multipass membrane protein biogenesis based on recent findings.
Collapse
Affiliation(s)
- Luka Smalinskaitė
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
4
|
Zhang Z, Chen H, Wang Y, Zhang N, Trépout S, Tang BZ, Gasser G, Li MH. Polymersomes with Red/Near-Infrared Emission and Reactive Oxygen Species Generation. Macromol Rapid Commun 2023; 44:e2200716. [PMID: 36254854 DOI: 10.1002/marc.202200716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/30/2022] [Indexed: 11/09/2022]
Abstract
In photodynamic therapy (PDT), the uses of nanoparticles bearing photosensitizers (PSs) can overcome some of the drawbacks of using a PS alone (e.g., poor water solubility and low tumor selectivity). However, numerous nano-formulations are developed by physical encapsulation of PSs through Van der Waals interactions, which have not only a limited load efficiency but also some in vivo biodistribution problems caused by leakage or burst release. Herein, polymersomes made from an amphiphilic block copolymer, in which a PS with aggregation-induced emission (AIE-PS) is covalently attached to its hydrophobic poly(amino acid) block, are reported. These AIE-PS polymersomes dispersed in aqueous solution have a high AIE-PS load efficiency (up to 46% as a mass fraction), a hydrodynamic diameter of 86 nm that is suitable for in vivo applications, and an excellent colloidal stability for at least 1 month. They exhibit a red/near-infrared photoluminescence and ability to generate reactive oxygen species (ROS) under visible light. They are non-cytotoxic in the dark as tested on Hela cells up to concentration of 100 µm. Benefiting from colloidal stability, AIE property and ROS generation capability, such a family of polymersomes can be great candidates for image-guided PDT.
Collapse
Affiliation(s)
- Zhihua Zhang
- Chimie ParisTech, PSL Université Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, Paris, 75005, France
| | - Hui Chen
- Chimie ParisTech, PSL Université Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, Paris, 75005, France
| | - Youchao Wang
- Chimie ParisTech, PSL Université Paris, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemistry, 11 rue Pierre et Marie Curie, Paris, 75005, France
| | - Nian Zhang
- Chimie ParisTech, PSL Université Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, Paris, 75005, France
| | - Sylvain Trépout
- Institut Curie, Université Paris-Saclay, Inserm US43, CNRS UMS2016, Centre Universitaire, Bât. 101B-110-111-112, Rue Henri Becquerel, CS 90030, Orsay, Cedex, 91401, France
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Gilles Gasser
- Chimie ParisTech, PSL Université Paris, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemistry, 11 rue Pierre et Marie Curie, Paris, 75005, France
| | - Min-Hui Li
- Chimie ParisTech, PSL Université Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, Paris, 75005, France
| |
Collapse
|
5
|
Itskanov S, Park E. Mechanism of Protein Translocation by the Sec61 Translocon Complex. Cold Spring Harb Perspect Biol 2023; 15:a041250. [PMID: 35940906 PMCID: PMC9808579 DOI: 10.1101/cshperspect.a041250] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The endoplasmic reticulum (ER) is a major site for protein synthesis, folding, and maturation in eukaryotic cells, responsible for production of secretory proteins and most integral membrane proteins. The universally conserved protein-conducting channel Sec61 complex mediates core steps in these processes by translocating hydrophilic polypeptide segments of client proteins across the ER membrane and integrating hydrophobic transmembrane segments into the membrane. The Sec61 complex associates with several other molecular machines and enzymes to enable substrate engagement with the channel and coordination of protein translocation with translation, protein folding, and/or post-translational modifications. Recent cryo-electron microscopy and functional studies of these translocon complexes have greatly advanced our mechanistic understanding of Sec61-dependent protein biogenesis at the ER. Here, we will review the current models for how the Sec61 channel performs its functions in coordination with partner complexes.
Collapse
Affiliation(s)
- Samuel Itskanov
- Biophysics Graduate Program
- California Institute for Quantitative Biosciences
| | - Eunyong Park
- California Institute for Quantitative Biosciences
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
6
|
Amal NM, Shiddiq M, Armynah B, Tahir D. High reactive oxygen species produced from fluorescence carbon dots for anticancer and photodynamic therapies: A review. LUMINESCENCE 2022; 37:2006-2017. [PMID: 36136299 DOI: 10.1002/bio.4388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 12/14/2022]
Abstract
High-photoluminescence carbon dots (CDs) were synthesized from various sources and various methods using two approaches, namely bottom up and top down, with emission-dependent excitation wavelength. Electronic transition from the higher-occupied molecular orbital (HOMO) state to the lowest-unoccupied molecular orbital(LUMO) state, surface defect states, wider excitation spectrum, higher quantum yield, efficient energy transfer, and element doping affected the fluorescence properties of CDs. Using 102 references listed in this review, the authors studied the relationship between fluorescence mechanism and reactive oxygen species (ROS) produced for photodynamic therapy (PDT) and materials anticancer applications. We described how the radical atom or ROS work as anticancer therapy and PDT and described the chemical reaction of high-resolution fluorescence CDs. We summarized experimental techniques that are used for producing CDs and discussed their characteristics. Finally, conclusions and future prospects in this field are also discussed. The important characteristics of CD-based design for high ROS may usher in new prospects and challenges for high efficiency and stability of PDT and anticancer therapy. In conclusion, we have provided perspectives and challenges of the future development of CD s.
Collapse
Affiliation(s)
| | - Muhandis Shiddiq
- Research Center for Physics, Indonesia Institute of Sciences, Puspiptek, Banten, Indonesia
| | | | - Dahlang Tahir
- Department of Physics, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
7
|
O'Keefe S, Pool MR, High S. Membrane protein biogenesis at the ER: the highways and byways. FEBS J 2022; 289:6835-6862. [PMID: 33960686 DOI: 10.1111/febs.15905] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 01/13/2023]
Abstract
The Sec61 complex is the major protein translocation channel of the endoplasmic reticulum (ER), where it plays a central role in the biogenesis of membrane and secretory proteins. Whilst Sec61-mediated protein translocation is typically coupled to polypeptide synthesis, suggestive of significant complexity, an obvious characteristic of this core translocation machinery is its surprising simplicity. Over thirty years after its initial discovery, we now understand that the Sec61 complex is in fact the central piece of an elaborate jigsaw puzzle, which can be partly solved using new research findings. We propose that the Sec61 complex acts as a dynamic hub for co-translational protein translocation at the ER, proactively recruiting a range of accessory complexes that enhance and regulate its function in response to different protein clients. It is now clear that the Sec61 complex does not have a monopoly on co-translational insertion, with some transmembrane proteins preferentially utilising the ER membrane complex instead. We also have a better understanding of post-insertion events, where at least one membrane-embedded chaperone complex can capture the newly inserted transmembrane domains of multi-span proteins and co-ordinate their assembly into a native structure. Having discovered this array of Sec61-associated components and competitors, our next challenge is to understand how they act together in order to expand the range and complexity of the membrane proteins that can be synthesised at the ER. Furthermore, this diversity of components and pathways may open up new opportunities for targeted therapeutic interventions designed to selectively modulate protein biogenesis at the ER.
Collapse
Affiliation(s)
- Sarah O'Keefe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Martin R Pool
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Stephen High
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| |
Collapse
|
8
|
Mercier E, Wang X, Bögeholz LAK, Wintermeyer W, Rodnina MV. Cotranslational Biogenesis of Membrane Proteins in Bacteria. Front Mol Biosci 2022; 9:871121. [PMID: 35573737 PMCID: PMC9099147 DOI: 10.3389/fmolb.2022.871121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/12/2022] [Indexed: 12/26/2022] Open
Abstract
Nascent polypeptides emerging from the ribosome during translation are rapidly scanned and processed by ribosome-associated protein biogenesis factors (RPBs). RPBs cleave the N-terminal formyl and methionine groups, assist cotranslational protein folding, and sort the proteins according to their cellular destination. Ribosomes translating inner-membrane proteins are recognized and targeted to the translocon with the help of the signal recognition particle, SRP, and SRP receptor, FtsY. The growing nascent peptide is then inserted into the phospholipid bilayer at the translocon, an inner-membrane protein complex consisting of SecY, SecE, and SecG. Folding of membrane proteins requires that transmembrane helices (TMs) attain their correct topology, the soluble domains are inserted at the correct (cytoplasmic or periplasmic) side of the membrane, and – for polytopic membrane proteins – the TMs find their interaction partner TMs in the phospholipid bilayer. This review describes the recent progress in understanding how growing nascent peptides are processed and how inner-membrane proteins are targeted to the translocon and find their correct orientation at the membrane, with the focus on biophysical approaches revealing the dynamics of the process. We describe how spontaneous fluctuations of the translocon allow diffusion of TMs into the phospholipid bilayer and argue that the ribosome orchestrates cotranslational targeting not only by providing the binding platform for the RPBs or the translocon, but also by helping the nascent chains to find their correct orientation in the membrane. Finally, we present the auxiliary role of YidC as a chaperone for inner-membrane proteins. We show how biophysical approaches provide new insights into the dynamics of membrane protein biogenesis and raise new questions as to how translation modulates protein folding.
Collapse
|
9
|
Bryant OJ, Dhillon P, Hughes C, Fraser GM. Recognition of discrete export signals in early flagellar subunits during bacterial Type III secretion. eLife 2022; 11:66264. [PMID: 35238774 PMCID: PMC8983047 DOI: 10.7554/elife.66264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Type III Secretion Systems (T3SS) deliver subunits from the bacterial cytosol to nascent cell surface flagella. Early flagellar subunits that form the rod and hook substructures are unchaperoned and contain their own export signals. A gate recognition motif (GRM) docks them at the FlhBc component of the FlhAB-FliPQR export gate, but the gate must then be opened and subunits must be unfolded to pass through the flagellar channel. This induced us to seek further signals on the subunits. Here, we identify a second signal at the extreme N-terminus of flagellar rod and hook subunits and determine that key to the signal is its hydrophobicity. We show that the two export signal elements are recognised separately and sequentially, as the N-terminal signal is recognised by the flagellar export machinery only after subunits have docked at FlhBC via the GRM. The position of the N-terminal hydrophobic signal in the subunit sequence relative to the GRM appeared to be important, as a FlgD deletion variant (FlgDshort), in which the distance between the N-terminal signal and the GRM was shortened, 'stalled' at the export machinery and was not exported. The attenuation of motility caused by FlgDshort was suppressed by mutations that destabilised the closed conformation of the FlhAB-FliPQR export gate, suggesting that the hydrophobic N-terminal signal might trigger opening of the flagellar export gate.
Collapse
Affiliation(s)
- Owain J Bryant
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Paraminder Dhillon
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Colin Hughes
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Gillian M Fraser
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
10
|
Gündüz EÖ, Gedik ME, Günaydın G, Okutan E. Amphiphilic Fullerene-BODIPY Photosensitizers for Targeted Photodynamic Therapy. ChemMedChem 2021; 17:e202100693. [PMID: 34859597 DOI: 10.1002/cmdc.202100693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 12/30/2022]
Abstract
Nanotheranostic tailor-made carriers are potent platforms for the treatment of cancer that propound a number of advantages over conventional agents for photodynamic therapy (PDT). Herein, four new heavy atom free amphiphilic glucose-BODIPY-fullerene dyads (14-17) endowed with carbohydrate units in the styryl units, which can also form nanomicelles (14-17NM) with Tween 80 for PDT are reported. Glucose-BODIPY-fullerene systems (14-17) and related nanomicelles (14-17NM) have been prepared to emcee efficient singlet oxygen generation upon light irradiation. In vitro anti-tumor effects of the compounds 14-17 and 14-17NM in the presence of light and in darkness have been investigated with K562 human chronic myelogenous leukemia suspension cells. Anti-tumor toxicity upon light irradiation was due to the formation of singlet oxygen and reactive oxygen species (ROS). This study may provide an accomplished example of efficient PDT applications based on nanovehicles fabricated with universal spin converter, fullerene, light harvesting unit, BODIPY dyes conjugated with targeting units to fight against cancer.
Collapse
Affiliation(s)
- Ezel Öztürk Gündüz
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, 41400, Turkey
| | - M Emre Gedik
- Department of Basic Oncology, Cancer Institute, Hacettepe University Çankaya, Ankara, 06100, Turkey
| | - Gürcan Günaydın
- Department of Basic Oncology, Cancer Institute, Hacettepe University Çankaya, Ankara, 06100, Turkey
| | - Elif Okutan
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, 41400, Turkey
| |
Collapse
|
11
|
Whitley P, Grau B, Gumbart JC, Martínez-Gil L, Mingarro I. Folding and Insertion of Transmembrane Helices at the ER. Int J Mol Sci 2021; 22:ijms222312778. [PMID: 34884581 PMCID: PMC8657811 DOI: 10.3390/ijms222312778] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/16/2023] Open
Abstract
In eukaryotic cells, the endoplasmic reticulum (ER) is the entry point for newly synthesized proteins that are subsequently distributed to organelles of the endomembrane system. Some of these proteins are completely translocated into the lumen of the ER while others integrate stretches of amino acids into the greasy 30 Å wide interior of the ER membrane bilayer. It is generally accepted that to exist in this non-aqueous environment the majority of membrane integrated amino acids are primarily non-polar/hydrophobic and adopt an α-helical conformation. These stretches are typically around 20 amino acids long and are known as transmembrane (TM) helices. In this review, we will consider how transmembrane helices achieve membrane integration. We will address questions such as: Where do the stretches of amino acids fold into a helical conformation? What is/are the route/routes that these stretches take from synthesis at the ribosome to integration through the ER translocon? How do these stretches ‘know’ to integrate and in which orientation? How do marginally hydrophobic stretches of amino acids integrate and survive as transmembrane helices?
Collapse
Affiliation(s)
- Paul Whitley
- Department of Biology and Biochemistry, Centre for Regenerative Medicine, University of Bath, Bath BA2 7AY, UK;
| | - Brayan Grau
- Department of Biochemistry and Molecular Biology, Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, E-46100 Burjassot, Spain; (B.G.); (L.M.-G.)
| | - James C. Gumbart
- School of Physics, School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Luis Martínez-Gil
- Department of Biochemistry and Molecular Biology, Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, E-46100 Burjassot, Spain; (B.G.); (L.M.-G.)
| | - Ismael Mingarro
- Department of Biochemistry and Molecular Biology, Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, E-46100 Burjassot, Spain; (B.G.); (L.M.-G.)
- Correspondence: ; Tel.: +34-963543796
| |
Collapse
|
12
|
Lateral gate dynamics of the bacterial translocon during cotranslational membrane protein insertion. Proc Natl Acad Sci U S A 2021; 118:2100474118. [PMID: 34162707 PMCID: PMC8256087 DOI: 10.1073/pnas.2100474118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Membrane proteins are inserted into the phospholipid bilayer through a lateral gate in the translocon, SecYEG in bacteria, which is expected to be closed in the resting state. Here, we use single-molecule FRET to study the translocon dynamics on timescales ranging from submilliseconds to seconds. We show that the lateral gate is highly dynamic, fluctuating through a continuum of states from open to closed. The insertase YidC facilitates the insertion of transmembrane helices by shifting the fluctuations toward more open conformations. Spontaneous fluctuations allow the gate to rapidly release newly synthesized transmembrane segments into the phospholipid bilayer during ongoing translation. The results highlight the important role of rapid spontaneous fluctuations during the key step in the biogenesis of inner-membrane proteins. During synthesis of membrane proteins, transmembrane segments (TMs) of nascent proteins emerging from the ribosome are inserted into the central pore of the translocon (SecYEG in bacteria) and access the phospholipid bilayer through the open lateral gate formed of two helices of SecY. Here we use single-molecule fluorescence resonance energy transfer to monitor lateral-gate fluctuations in SecYEG embedded in nanodiscs containing native membrane phospholipids. We find the lateral gate to be highly dynamic, sampling the whole range of conformations between open and closed even in the absence of ligands, and we suggest a statistical model-free approach to evaluate the ensemble dynamics. Lateral gate fluctuations take place on both short (submillisecond) and long (subsecond) timescales. Ribosome binding and TM insertion do not halt fluctuations but tend to increase sampling of the open state. When YidC, a constituent of the holotranslocon, is bound to SecYEG, TM insertion facilitates substantial opening of the gate, which may aid in the folding of YidC-dependent polytopic membrane proteins. Mutations in lateral gate residues showing in vivo phenotypes change the range of favored states, underscoring the biological significance of lateral gate fluctuations. The results suggest how rapid fluctuations of the lateral gate contribute to the biogenesis of inner-membrane proteins.
Collapse
|
13
|
Wang D, Fan M, He T, Zeng F, Hu X, Li C, Su Z. Cu/Cu x S-Embedded N,S-Doped Porous Carbon Derived in Situ from a MOF Designed for Efficient Catalysis. Chemistry 2021; 27:11468-11476. [PMID: 34002909 DOI: 10.1002/chem.202101560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 01/25/2023]
Abstract
The reasonable design of the precursor of a carbon-based nanocatalyst is an important pathway to improve catalytic performance. In this study, a simple solvothermal method was used to synthesize [Cu(TPT)(2,5-tdc)] ⋅ 2H2 O (Cu-MOF), which contains N and S atoms, in one step. Further in-situ carbonization of the Cu-MOF as the precursor was used to synthesize Cu/Cux S-embedded N,S-doped porous carbon (Cu/Cux S/NSC) composites. The catalytic activities of the prepared Cu/Cux S/NSC were investigated through catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). The results show that the designed Cu/Cux S/NSC has exceptional catalytic activity and recycling stability, with a reaction rate constant of 0.0256 s-1 , and the conversion rate still exceeds 90 % after 15 cycles. Meanwhile, the efficient catalytic reduction of dyes (CR, MO, MB and RhB) confirmed its versatility. Finally, the active sites of the Cu/Cux S/NSC catalysts were analyzed, and a possible multicomponent synergistic catalytic mechanism was proposed.
Collapse
Affiliation(s)
- Dongsheng Wang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China.,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Mingyue Fan
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China.,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Tingyu He
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Fanming Zeng
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China.,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Xiaoli Hu
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China.,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Chun Li
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Zhongmin Su
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China.,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, P. R. China.,Joint Sino-Russian Laboratory of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| |
Collapse
|
14
|
Oswald J, Njenga R, Natriashvili A, Sarmah P, Koch HG. The Dynamic SecYEG Translocon. Front Mol Biosci 2021; 8:664241. [PMID: 33937339 PMCID: PMC8082313 DOI: 10.3389/fmolb.2021.664241] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
The spatial and temporal coordination of protein transport is an essential cornerstone of the bacterial adaptation to different environmental conditions. By adjusting the protein composition of extra-cytosolic compartments, like the inner and outer membranes or the periplasmic space, protein transport mechanisms help shaping protein homeostasis in response to various metabolic cues. The universally conserved SecYEG translocon acts at the center of bacterial protein transport and mediates the translocation of newly synthesized proteins into and across the cytoplasmic membrane. The ability of the SecYEG translocon to transport an enormous variety of different substrates is in part determined by its ability to interact with multiple targeting factors, chaperones and accessory proteins. These interactions are crucial for the assisted passage of newly synthesized proteins from the cytosol into the different bacterial compartments. In this review, we summarize the current knowledge about SecYEG-mediated protein transport, primarily in the model organism Escherichia coli, and describe the dynamic interaction of the SecYEG translocon with its multiple partner proteins. We furthermore highlight how protein transport is regulated and explore recent developments in using the SecYEG translocon as an antimicrobial target.
Collapse
Affiliation(s)
- Julia Oswald
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Robert Njenga
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Ana Natriashvili
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Pinku Sarmah
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Bag P, Maurya RK, Dadwal A, Sarkar M, Chawla PA, Narang RK, Kumar B. Recent Development in Synthesis of Carbon Dots from Natural Resources and Their Applications in Biomedicine and Multi‐Sensing Platform. ChemistrySelect 2021. [DOI: 10.1002/slct.202100468] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Puja Bag
- Department of Pharmaceutical Analysis ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga Punjab India- 142001
| | - Rahul K. Maurya
- Amity Institute of Pharmacy Amity University Uttar Pradesh Lucknow Campus India
| | - Ankita Dadwal
- Department of Pharmaceutics ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga Punjab India- 142001
- Department of Science and Technology Maharaja Ranjit Singh Punjab Technical University Bathinda 151001, Punjab India
| | - Mrinmoy Sarkar
- Department of Pharmaceutical Analysis ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga Punjab India- 142001
| | - Pooja A. Chawla
- Department of Pharmaceutical Analysis ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga Punjab India- 142001
- Department of Pharmaceutical Chemistry ISF College of Pharmacy, Ghal Kalan, G.T Road Moga, Punjab India- 142001
| | - Raj K. Narang
- Department of Pharmaceutics ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga Punjab India- 142001
| | - Bhupinder Kumar
- Department of Pharmaceutical Analysis ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga Punjab India- 142001
- Department of Pharmaceutical Chemistry ISF College of Pharmacy, Ghal Kalan, G.T Road Moga, Punjab India- 142001
| |
Collapse
|
16
|
Molecular communication of the membrane insertase YidC with translocase SecYEG affects client proteins. Sci Rep 2021; 11:3940. [PMID: 33594158 PMCID: PMC7886851 DOI: 10.1038/s41598-021-83224-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/25/2021] [Indexed: 11/18/2022] Open
Abstract
The membrane insertase YidC inserts newly synthesized proteins by its hydrophobic slide consisting of the two transmembrane (TM) segments TM3 and TM5. Mutations in this part of the protein affect the insertion of the client proteins. We show here that a quintuple mutation, termed YidC-5S, inhibits the insertion of the subunit a of the FoF1 ATP synthase but has no effect on the insertion of the Sec-independent M13 procoat protein and the C-tail protein SciP. Further investigations show that the interaction of YidC-5S with SecY is inhibited. The purified and fluorescently labeled YidC-5S did not approach SecYEG when both were co-reconstituted in proteoliposomes in contrast to the co-reconstituted YidC wild type. These results suggest that TM3 and TM5 are involved in the formation of a common YidC-SecYEG complex that is required for the insertion of Sec/YidC-dependent client proteins.
Collapse
|
17
|
SecY-mediated quality control prevents the translocation of non-gated porins. Sci Rep 2020; 10:16347. [PMID: 33004891 PMCID: PMC7530735 DOI: 10.1038/s41598-020-73185-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 09/09/2020] [Indexed: 01/24/2023] Open
Abstract
OmpC and OmpF are among the most abundant outer membrane proteins in E. coli and serve as hydrophilic channels to mediate uptake of small molecules including antibiotics. Influx selectivity is controlled by the so-called constriction zone or eyelet of the channel. Mutations in the loop domain forming the eyelet can disrupt transport selectivity and thereby interfere with bacterial viability. In this study we show that a highly conserved motif of five negatively charged amino acids in the eyelet, which is critical to regulate pore selectivity, is also required for SecY-mediated transport of OmpC and OmpF into the periplasm. Variants with a deleted or mutated motif were expressed in the cytosol and translocation was initiated. However, after signal peptide cleavage, import into the periplasm was aborted and the mutated proteins were redirected to the cytosol. Strikingly, reducing the proof-reading capacity of SecY by introducing the PrlA4 substitutions restored transport of OmpC with a mutated channel domain into the periplasm. Our study identified a SecY-mediated quality control pathway to restrict transport of outer membrane porin proteins with a deregulated channel activity into the periplasm.
Collapse
|
18
|
Mercier E, Wintermeyer W, Rodnina MV. Co-translational insertion and topogenesis of bacterial membrane proteins monitored in real time. EMBO J 2020; 39:e104054. [PMID: 32311161 PMCID: PMC7396858 DOI: 10.15252/embj.2019104054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 01/23/2023] Open
Abstract
Integral membrane proteins insert into the bacterial inner membrane co‐translationally via the translocon. Transmembrane (TM) segments of nascent proteins adopt their native topological arrangement with the N‐terminus of the first TM (TM1) oriented to the outside (type I) or the inside (type II) of the cell. Here, we study TM1 topogenesis during ongoing translation in a bacterial in vitro system, applying real‐time FRET and protease protection assays. We find that TM1 of the type I protein LepB reaches the translocon immediately upon emerging from the ribosome. In contrast, the type II protein EmrD requires a longer nascent chain before TM1 reaches the translocon and adopts its topology by looping inside the ribosomal peptide exit tunnel. Looping presumably is mediated by interactions between positive charges at the N‐terminus of TM1 and negative charges in the tunnel wall. Early TM1 inversion is abrogated by charge reversal at the N‐terminus. Kinetic analysis also shows that co‐translational membrane insertion of TM1 is intrinsically rapid and rate‐limited by translation. Thus, the ribosome has an important role in membrane protein topogenesis.
Collapse
Affiliation(s)
- Evan Mercier
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Wolfgang Wintermeyer
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
19
|
Roeinfard M, Zahedifar M, Darroudi M, Khorsand Zak A, Sadeghi E. Preparation and characterization of selenium‐decorated graphene quantum dots with high afterglow for application in photodynamic therapy. LUMINESCENCE 2020; 35:891-896. [DOI: 10.1002/bio.3798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/25/2020] [Accepted: 02/29/2020] [Indexed: 12/22/2022]
Affiliation(s)
- M. Roeinfard
- Institute of Nanoscience and NanotechnologyUniversity of Kashan Kashan I.R Iran
| | - M. Zahedifar
- Physics DepartmentUniversity of Kashan Kashan I.R. Iran
- Institute of Nanoscience and NanotechnologyUniversity of Kashan Kashan I.R Iran
| | - M. Darroudi
- Modern Science and Technology DepartmentUniversity of Medical Sciences Mashhad I.R. Iran
- Nuclear Medicine Research CenterUniversity of Medical Sciences Mashhad I.R. Iran
| | - A. Khorsand Zak
- Nanotechnology LaboratoryEsfarayen University of Technology Esfarayen I.R. Iran
| | - E. Sadeghi
- Physics DepartmentUniversity of Kashan Kashan I.R. Iran
- Institute of Nanoscience and NanotechnologyUniversity of Kashan Kashan I.R Iran
| |
Collapse
|
20
|
Tsukazaki T. Structural Basis of the Sec Translocon and YidC Revealed Through X-ray Crystallography. Protein J 2020; 38:249-261. [PMID: 30972527 DOI: 10.1007/s10930-019-09830-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Protein translocation and membrane integration are fundamental, conserved processes. After or during ribosomal protein synthesis, precursor proteins containing an N-terminal signal sequence are directed to a conserved membrane protein complex called the Sec translocon (also known as the Sec translocase) in the endoplasmic reticulum membrane in eukaryotic cells, or the cytoplasmic membrane in bacteria. The Sec translocon comprises the Sec61 complex in eukaryotic cells, or the SecY complex in bacteria, and mediates translocation of substrate proteins across/into the membrane. Several membrane proteins are associated with the Sec translocon. In Escherichia coli, the membrane protein YidC functions not only as a chaperone for membrane protein biogenesis along with the Sec translocon, but also as an independent membrane protein insertase. To understand the molecular mechanism underlying these dynamic processes at the membrane, high-resolution structural models of these proteins are needed. This review focuses on X-ray crystallographic analyses of the Sec translocon and YidC and discusses the structural basis for protein translocation and integration.
Collapse
Affiliation(s)
- Tomoya Tsukazaki
- Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
21
|
Jauss B, Petriman NA, Drepper F, Franz L, Sachelaru I, Welte T, Steinberg R, Warscheid B, Koch HG. Noncompetitive binding of PpiD and YidC to the SecYEG translocon expands the global view on the SecYEG interactome in Escherichia coli. J Biol Chem 2019; 294:19167-19183. [PMID: 31699901 DOI: 10.1074/jbc.ra119.010686] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/25/2019] [Indexed: 12/22/2022] Open
Abstract
The SecYEG translocon constitutes the major protein transport channel in bacteria and transfers an enormous variety of different secretory and inner-membrane proteins. The minimal core of the SecYEG translocon consists of three inner-membrane proteins, SecY, SecE, and SecG, which, together with appropriate targeting factors, are sufficient for protein transport in vitro However, in vivo the SecYEG translocon has been shown to associate with multiple partner proteins, likely allowing the SecYEG translocon to process its diverse substrates. To obtain a global view on SecYEG plasticity in Escherichia coli, here we performed a quantitative interaction proteomic analysis, which identified several known SecYEG-interacting proteins, verified the interaction of SecYEG with quality-control proteins, and revealed several previously unknown putative SecYEG-interacting proteins. Surprisingly, we found that the chaperone complex PpiD/YfgM is the most prominent interaction partner of SecYEG. Detailed analyses of the PpiD-SecY interaction by site-directed cross-linking revealed that PpiD and the established SecY partner protein YidC use almost completely-overlapping binding sites on SecY. Both PpiD and YidC contacted the lateral gate, the plug domain, and the periplasmic cavity of SecY. However, quantitative MS and cross-linking analyses revealed that despite having almost identical binding sites, their binding to SecY is noncompetitive. This observation suggests that the SecYEG translocon forms different substrate-independent subassemblies in which SecYEG either associates with YidC or with the PpiD/YfgM complex. In summary, the results of this study indicate that the PpiD/YfgM chaperone complex is a primary interaction partner of the SecYEG translocon.
Collapse
Affiliation(s)
- Benjamin Jauss
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Narcis-Adrian Petriman
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Friedel Drepper
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Lisa Franz
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Ilie Sachelaru
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Thomas Welte
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Ruth Steinberg
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Bettina Warscheid
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
22
|
Kater L, Frieg B, Berninghausen O, Gohlke H, Beckmann R, Kedrov A. Partially inserted nascent chain unzips the lateral gate of the Sec translocon. EMBO Rep 2019; 20:e48191. [PMID: 31379073 PMCID: PMC6776908 DOI: 10.15252/embr.201948191] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 12/25/2022] Open
Abstract
The Sec translocon provides the lipid bilayer entry for ribosome-bound nascent chains and thus facilitates membrane protein biogenesis. Despite the appreciated role of the native environment in the translocon:ribosome assembly, structural information on the complex in the lipid membrane is scarce. Here, we present a cryo-electron microscopy-based structure of bacterial translocon SecYEG in lipid nanodiscs and elucidate an early intermediate state upon insertion of the FtsQ anchor domain. Insertion of the short nascent chain causes initial displacements within the lateral gate of the translocon, where α-helices 2b, 7, and 8 tilt within the membrane core to "unzip" the gate at the cytoplasmic side. Molecular dynamics simulations demonstrate that the conformational change is reversed in the absence of the ribosome, and suggest that the accessory α-helices of SecE subunit modulate the lateral gate conformation. Site-specific cross-linking validates that the FtsQ nascent chain passes the lateral gate upon insertion. The structure and the biochemical data suggest that the partially inserted nascent chain remains highly flexible until it acquires the transmembrane topology.
Collapse
Affiliation(s)
- Lukas Kater
- Gene Center MunichLudwig‐Maximilian‐UniversityMunichGermany
| | - Benedikt Frieg
- John von Neumann Institute for ComputingJülich Supercomputing CentreInstitute for Complex Systems ‐ Structural Biochemistry (ICS‐6)Forschungszentrum Jülich GmbHJülichGermany
| | | | - Holger Gohlke
- John von Neumann Institute for ComputingJülich Supercomputing CentreInstitute for Complex Systems ‐ Structural Biochemistry (ICS‐6)Forschungszentrum Jülich GmbHJülichGermany
- Institute for Pharmaceutical and Medicinal ChemistryHeinrich Heine University DüsseldorfDüsseldorfGermany
| | | | - Alexej Kedrov
- Gene Center MunichLudwig‐Maximilian‐UniversityMunichGermany
- Synthetic Membrane SystemsInstitute for BiochemistryHeinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
23
|
Ge Y, Shen X, Cao H, Jin L, Shang J, Wang Y, Pan T, Yang Y, Qi Z. Biological Macrocycle: Supramolecular Hydrophobic Guest Transport System Based on Nanodiscs with Photodynamic Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7824-7829. [PMID: 31141380 DOI: 10.1021/acs.langmuir.9b00126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A biogenic macrocycle-based guest loading system has been developed by the self-assembly of membrane scaffold protein and phospholipids. The resulting 10 nm level transport system can increase the solubility of hydrophobic photodynamic agent hypocrellin B in aqueous medium and exhibited a cellular internalization capacity with substantial photodynamic activity.
Collapse
Affiliation(s)
- Yan Ge
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , China
| | - Xin Shen
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , China
| | - Hongqian Cao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology , Beijing 100190 , China
- Department of Public Health , Shandong University , Jinan , Shandong 250012 , China
| | - Lin Jin
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , China
| | - Jie Shang
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , China
| | - Yangxin Wang
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , China
| | - Tiezheng Pan
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , China
| | - Yang Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Zhenhui Qi
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , China
- Institute of Biomedical Materials & Engineering (IBME) , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , China
| |
Collapse
|
24
|
Abstract
Single-molecule studies provide unprecedented details about processes that are difficult to grasp by bulk biochemical assays that yield ensemble-averaged results. One of these processes is the translocation and insertion of proteins across and into the bacterial cytoplasmic membrane. This process is facilitated by the universally conserved secretion (Sec) system, a multi-subunit membrane protein complex that consists of dissociable cytoplasmic targeting components, a molecular motor, a protein-conducting membrane pore, and accessory membrane proteins. Here, we review recent insights into the mechanisms of protein translocation and membrane protein insertion from single-molecule studies.
Collapse
Affiliation(s)
- Anne-Bart Seinen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute; and the Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands
- Current affiliation: Biophysics Group, AMOLF, 1098 XG Amsterdam, Netherlands
| | - Arnold J.M. Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute; and the Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands
| |
Collapse
|
25
|
Ge Y, Shen X, Cao H, Hao Y, Jin L, Shang J, Wang Y, Pan T, Qi Z. A supramolecular hydrophobic guest transport system based on a biological macrocycle. RSC Adv 2019; 9:38195-38199. [PMID: 35541798 PMCID: PMC9075912 DOI: 10.1039/c9ra07054k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/13/2019] [Indexed: 01/28/2023] Open
Abstract
A protein-based macrocyclic bioactive guest loading system has been developed, which not only provides a stable 10 nm scale lipophilic environment, but also increases the solubility of potent anticancer agent SN38 in its active lactone form in aqueous medium. A highly biocompatible biogenic macrocycle was utilized to enhance the water-solubility and pH stability of the potent antineoplastic agent SN38.![]()
Collapse
Affiliation(s)
- Yan Ge
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an
- China
| | - Xin Shen
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an
- China
| | - Hongqian Cao
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an
- China
| | - Yuchong Hao
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an
- China
| | - Lin Jin
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an
- China
| | - Jie Shang
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an
- China
| | - Yangxin Wang
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an
- China
| | - Tiezheng Pan
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an
- China
| | - Zhenhui Qi
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an
- China
| |
Collapse
|
26
|
Yim C, Jung SJ, Kim JEH, Jung Y, Jeong SD, Kim H. Profiling of signal sequence characteristics and requirement of different translocation components. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1640-1648. [DOI: 10.1016/j.bbamcr.2018.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 11/25/2022]
|
27
|
Niesen MJM, Müller-Lucks A, Hedman R, von Heijne G, Miller TF. Forces on Nascent Polypeptides during Membrane Insertion and Translocation via the Sec Translocon. Biophys J 2018; 115:1885-1894. [PMID: 30366631 DOI: 10.1016/j.bpj.2018.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/15/2018] [Accepted: 10/02/2018] [Indexed: 12/21/2022] Open
Abstract
During ribosomal translation, nascent polypeptide chains (NCs) undergo a variety of physical processes that determine their fate in the cell. This study utilizes a combination of arrest peptide experiments and coarse-grained molecular dynamics to measure and elucidate the molecular origins of forces that are exerted on NCs during cotranslational membrane insertion and translocation via the Sec translocon. The approach enables deconvolution of force contributions from NC-translocon and NC-ribosome interactions, membrane partitioning, and electrostatic coupling to the membrane potential. In particular, we show that forces due to NC-lipid interactions provide a readout of conformational changes in the Sec translocon, demonstrating that lateral gate opening only occurs when a sufficiently hydrophobic segment of NC residues reaches the translocon. The combination of experiment and theory introduced here provides a detailed picture of the molecular interactions and conformational changes during ribosomal translation that govern protein biogenesis.
Collapse
Affiliation(s)
- Michiel J M Niesen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Annika Müller-Lucks
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Rickard Hedman
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Thomas F Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California.
| |
Collapse
|
28
|
Draycheva A, Lee S, Wintermeyer W. Cotranslational protein targeting to the membrane: Nascent-chain transfer in a quaternary complex formed at the translocon. Sci Rep 2018; 8:9922. [PMID: 29967439 PMCID: PMC6028451 DOI: 10.1038/s41598-018-28262-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/20/2018] [Indexed: 11/29/2022] Open
Abstract
Membrane proteins in bacteria are cotranslationally inserted into the plasma membrane through the SecYEG translocon. Ribosomes exposing the signal-anchor sequence (SAS) of a membrane protein are targeted to the translocon by the signal recognition particle (SRP) pathway. SRP scans translating ribosomes and forms high-affinity targeting complexes with those exposing a SAS. Recognition of the SAS activates SRP for binding to its receptor, FtsY, which, in turn, is primed for SRP binding by complex formation with SecYEG, resulting in a quaternary targeting complex. Here we examine the effect of SecYEG docking to ribosome-nascent-chain complexes (RNCs) on SRP binding and SAS transfer, using SecYEG embedded in phospholipid-containing nanodiscs and monitoring FRET between fluorescence-labeled constituents of the targeting complex. SecYEG–FtsY binding to RNC–SRP complexes lowers the affinity of SRP to both ribosome and FtsY, indicating a general weakening of the complex due to partial binding competition near the ribosomal peptide exit. The rearrangement of the quaternary targeting complex to the pre-transfer complex requires an at least partially exposed SAS. The presence of SecYEG-bound FtsY and the length of the nascent chain strongly influence nascent-chain transfer from SRP to the translocon and repositioning of SRP in the post-transfer complex.
Collapse
Affiliation(s)
- Albena Draycheva
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Sejeong Lee
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.,Chemistry Research Laboratory, University of Oxford, OX1 3TA, Oxford, UK
| | - Wolfgang Wintermeyer
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.
| |
Collapse
|
29
|
Each protomer of a dimeric YidC functions as a single membrane insertase. Sci Rep 2018; 8:589. [PMID: 29330366 PMCID: PMC5766580 DOI: 10.1038/s41598-017-18830-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/18/2017] [Indexed: 11/08/2022] Open
Abstract
The membrane insertase YidC catalyzes the entrance of newly synthesized proteins into the lipid bilayer. As an integral membrane protein itself, YidC can be found as a monomer, a dimer or also as a member of the holotranslocase SecYEGDF-YajC-YidC. To investigate whether the dimeric YidC is functional and whether two copies cooperate to insert a single substrate, we constructed a fusion protein where two copies of YidC are connected by a short linker peptide. The 120 kDa protein is stable and functional as it supports the membrane insertion of the M13 procoat protein, the C-tailed protein SciP and the fusion protein Pf3-Lep. Mutations that inhibit either protomer do not inactivate the insertase and rather keep it functional. When both protomers are defective, the substrate proteins accumulate in the cytoplasm. This suggests that the dimeric YidC operates as two insertases. Consistent with this, we show that the dimeric YidC can bind two substrate proteins simultaneously, suggesting that YidC indeed functions as a monomer.
Collapse
|
30
|
Mercier E, Holtkamp W, Rodnina MV, Wintermeyer W. Signal recognition particle binds to translating ribosomes before emergence of a signal anchor sequence. Nucleic Acids Res 2017; 45:11858-11866. [PMID: 29149347 PMCID: PMC5714171 DOI: 10.1093/nar/gkx888] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/28/2017] [Indexed: 01/12/2023] Open
Abstract
The bacterial signal recognition particle (SRP) is part of the machinery that targets ribosomes synthesizing membrane proteins to membrane-embedded translocons co-translationally. Recognition of nascent membrane proteins occurs by virtue of a hydrophobic signal-anchor sequence (SAS) contained in the nascent chain, usually at the N terminus. Here we use fluorescence-based stopped-flow to monitor SRP-ribosome interactions with actively translating ribosomes while an SRP substrate is synthesized and emerges from the peptide exit tunnel. The kinetic analysis reveals that, at cellular concentrations of ribosomes and SRP, SRP rapidly binds to translating ribosomes prior to the emergence of an SAS and forms an initial complex that rapidly rearranges to a more stable engaged complex. When the growing peptide reaches a length of ∼50 amino acids and the SAS is partially exposed, SRP undergoes another conformational change which further stabilizes the complex and initiates targeting of the translating ribosome to the translocon. These results provide a reconciled view on the timing of high-affinity targeting complex formation, while emphasizing the existence of preceding SRP recruitment steps under conditions of ongoing translation.
Collapse
Affiliation(s)
- Evan Mercier
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Wolf Holtkamp
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Wolfgang Wintermeyer
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| |
Collapse
|
31
|
Heidari Tajabadi F, Medrano-Soto A, Ahmadzadeh M, Salehi Jouzani G, Saier MH. Comparative Analyses of Transport Proteins Encoded within the Genomes of Bdellovibrio bacteriovorus HD100 and Bdellovibrio exovorus JSS. J Mol Microbiol Biotechnol 2017; 27:332-349. [PMID: 29212086 DOI: 10.1159/000484563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022] Open
Abstract
Bdellovibrio, δ-proteobacteria, including B. bacteriovorus (Bba) and B. exovorus (Bex), are obligate predators of other Gram-negative bacteria. While Bba grows in the periplasm of the prey cell, Bex grows externally. We have analyzed and compared the transport proteins of these 2 organisms based on the current contents of the Transporter Classification Database (TCDB; www.tcdb.org). Bba has 103 transporters more than Bex, 50% more secondary carriers, and 3 times as many MFS carriers. Bba has far more metabolite transporters than Bex as expected from its larger genome, but there are 2 times more carbohydrate uptake and drug efflux systems, and 3 times more lipid transporters. Bba also has polyamine and carboxylate transporters lacking in Bex. Bba has more than twice as many members of the Mot-Exb family of energizers, but both may have energizers for gliding motility. They use entirely different types of systems for iron acquisition. Both contain unexpectedly large numbers of pseudogenes and incomplete systems, suggesting that they are undergoing genome size reduction. Interestingly, all 5 outer-membrane receptors in Bba are lacking in Bex. The 2 organisms have similar numbers and types of peptide and amino acid uptake systems as well as protein and carbohydrate secretion systems. The differences observed correlate with and may account, in part, for the different lifestyles of these 2 bacterial predators.
Collapse
|
32
|
Signal recognition particle prevents N-terminal processing of bacterial membrane proteins. Nat Commun 2017; 8:15562. [PMID: 28516953 PMCID: PMC5454389 DOI: 10.1038/ncomms15562] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/10/2017] [Indexed: 12/11/2022] Open
Abstract
Bacterial proteins are synthesized with an N-formylated amino-terminal methionine, and N-formylated peptides elicit innate-immunity responses against bacterial infections. However, the source of these formylated peptides is not clear, as most bacterial proteins are co-translationally deformylated by peptide deformylase. Here we develop a deformylation assay with translating ribosomes as substrates, to show that the binding of the signal recognition particle (SRP) to signal sequences in nascent proteins on the ribosome prevents deformylation, whereas deformylation of nascent proteins without signal sequence is not affected. Deformylation and its inhibition by SRP are not influenced by trigger factor, a chaperone that interacts with nascent chains on the ribosome. We propose that bacterial inner-membrane proteins, in particular those with N-out topology, can retain their N-terminal formyl group during cotranslational membrane insertion and supply formylated peptides during bacterial infections.
Collapse
|
33
|
Sachelaru I, Winter L, Knyazev DG, Zimmermann M, Vogt A, Kuttner R, Ollinger N, Siligan C, Pohl P, Koch HG. YidC and SecYEG form a heterotetrameric protein translocation channel. Sci Rep 2017; 7:101. [PMID: 28273911 PMCID: PMC5427846 DOI: 10.1038/s41598-017-00109-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/08/2017] [Indexed: 11/26/2022] Open
Abstract
The heterotrimeric SecYEG complex cooperates with YidC to facilitate membrane protein insertion by an unknown mechanism. Here we show that YidC contacts the interior of the SecY channel resulting in a ligand-activated and voltage-dependent complex with distinct ion channel characteristics. The SecYEG pore diameter decreases from 8 Å to only 5 Å for the YidC-SecYEG pore, indicating a reduction in channel cross-section by YidC intercalation. In the presence of a substrate, YidC relocates to the rim of the pore as indicated by increased pore diameter and loss of YidC crosslinks to the channel interior. Changing the surface charge of the pore by incorporating YidC into the channel wall increases the anion selectivity, and the accompanying change in wall hydrophobicity is liable to alter the partition of helices from the pore into the membrane. This could explain how the exit of transmembrane domains from the SecY channel is facilitated by YidC.
Collapse
Affiliation(s)
- Ilie Sachelaru
- grid.5963.9Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Stefan Meier Str. 17, Freiburg, 79104 Germany ,grid.5963.9Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, Stefan Meier Str. 17, 79104 Freiburg, Germany
| | - Lukas Winter
- 0000 0001 1941 5140grid.9970.7Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria
| | - Denis G. Knyazev
- 0000 0001 1941 5140grid.9970.7Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria
| | - Mirjam Zimmermann
- 0000 0001 1941 5140grid.9970.7Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria
| | - Andreas Vogt
- grid.5963.9Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Stefan Meier Str. 17, Freiburg, 79104 Germany ,grid.5963.9Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, Stefan Meier Str. 17, 79104 Freiburg, Germany ,grid.5963.9Spemann-Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Roland Kuttner
- 0000 0001 1941 5140grid.9970.7Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria
| | - Nicole Ollinger
- 0000 0001 1941 5140grid.9970.7Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria
| | - Christine Siligan
- 0000 0001 1941 5140grid.9970.7Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020, Linz, Austria.
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Stefan Meier Str. 17, Freiburg, 79104, Germany. .,Spemann-Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-Universität Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
34
|
Thommen M, Holtkamp W, Rodnina MV. Co-translational protein folding: progress and methods. Curr Opin Struct Biol 2016; 42:83-89. [PMID: 27940242 DOI: 10.1016/j.sbi.2016.11.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/22/2016] [Indexed: 11/19/2022]
Abstract
Proteins are synthesized as linear polymers and have to fold into their native structure to fulfil various functions in the cell. Folding can start co-translationally when the emerging peptide is still attached to the ribosome and is guided by the environment of the polypeptide exit tunnel and the kinetics of translation. Major questions are: When does co-translational folding begin? What is the role of the ribosome in guiding the nascent peptide towards its native structure? How does translation elongation kinetics modulate protein folding? Here we suggest how novel structural and biophysical approaches can help to probe the interplay between the ribosome and the emerging peptide and present future challenges in understanding co-translational folding.
Collapse
Affiliation(s)
- Michael Thommen
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen 37077, Germany
| | - Wolf Holtkamp
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen 37077, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen 37077, Germany.
| |
Collapse
|
35
|
|
36
|
Draycheva A, Bornemann T, Ryazanov S, Lakomek N, Wintermeyer W. The bacterial SRP receptor, FtsY, is activated on binding to the translocon. Mol Microbiol 2016; 102:152-67. [DOI: 10.1111/mmi.13452] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Albena Draycheva
- Department of Physical BiochemistryMax Planck Institute for Biophysical ChemistryGöttingen Germany
| | - Thomas Bornemann
- Department of Physical BiochemistryMax Planck Institute for Biophysical ChemistryGöttingen Germany
| | - Sergey Ryazanov
- Department of NMR‐based Structural BiologyMax Planck Institute for Biophysical ChemistryGöttingen Germany
| | - Nils‐Alexander Lakomek
- Department of NMR‐based Structural BiologyMax Planck Institute for Biophysical ChemistryGöttingen Germany
- Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, Solid‐state NMRETH ZürichZürich Switzerland
| | - Wolfgang Wintermeyer
- Department of Physical BiochemistryMax Planck Institute for Biophysical ChemistryGöttingen Germany
| |
Collapse
|
37
|
Collinson I, Corey RA, Allen WJ. Channel crossing: how are proteins shipped across the bacterial plasma membrane? Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0025. [PMID: 26370937 PMCID: PMC4632601 DOI: 10.1098/rstb.2015.0025] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The structure of the first protein-conducting channel was determined more than a decade ago. Today, we are still puzzled by the outstanding problem of protein translocation—the dynamic mechanism underlying the consignment of proteins across and into membranes. This review is an attempt to summarize and understand the energy transducing capabilities of protein-translocating machines, with emphasis on bacterial systems: how polypeptides make headway against the lipid bilayer and how the process is coupled to the free energy associated with ATP hydrolysis and the transmembrane protein motive force. In order to explore how cargo is driven across the membrane, the known structures of the protein-translocation machines are set out against the background of the historic literature, and in the light of experiments conducted in their wake. The paper will focus on the bacterial general secretory (Sec) pathway (SecY-complex), and its eukaryotic counterpart (Sec61-complex), which ferry proteins across the membrane in an unfolded state, as well as the unrelated Tat system that assembles bespoke channels for the export of folded proteins.
Collapse
Affiliation(s)
- Ian Collinson
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Robin A Corey
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - William J Allen
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
38
|
Voorhees RM, Hegde RS. Toward a structural understanding of co-translational protein translocation. Curr Opin Cell Biol 2016; 41:91-9. [PMID: 27155805 DOI: 10.1016/j.ceb.2016.04.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 01/06/2023]
Abstract
The translocation of most eukaryotic secreted and integral membrane proteins occurs co-translationally at the endoplasmic reticulum (ER). These nascent polypeptides are recognized on the ribosome by the signal recognition particle (SRP), targeted to the ER, and translocated across or inserted into the membrane by the Sec61 translocation channel. Structural analysis of these co-translational processes has been challenging due to the size, complexity, and flexibility of the targeting and translocation machinery. Recent technological advances in cryo-electron microscopy (cryo-EM) have resulted in increasingly powerful tools to study large, heterogeneous, and low-abundance samples. These advances are being utilized to obtain near-atomic resolution reconstructions of functional translation, targeting, and translocation intermediates, paving the way to a mechanistic understanding of protein biogenesis.
Collapse
Affiliation(s)
- Rebecca M Voorhees
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
39
|
Protein Elongation, Co-translational Folding and Targeting. J Mol Biol 2016; 428:2165-85. [DOI: 10.1016/j.jmb.2016.03.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 11/18/2022]
|
40
|
Gumbart JC, Chipot C. Decrypting protein insertion through the translocon with free-energy calculations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1663-71. [PMID: 26896694 DOI: 10.1016/j.bbamem.2016.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 12/23/2022]
Abstract
Protein insertion into a membrane is a complex process involving numerous players. The most prominent of these players is the Sec translocon complex, a conserved protein-conducting channel present in the cytoplasmic membrane of bacteria and the membrane of the endoplasmic reticulum in eukaryotes. The last decade has seen tremendous leaps forward in our understanding of how insertion is managed by the translocon and its partners, coming from atomic-detailed structures, innovative experiments, and well-designed simulations. In this review, we discuss how experiments and simulations, hand-in-hand, teased out the secrets of the translocon-facilitated membrane insertion process. In particular, we focus on the role of free-energy calculations in elucidating membrane insertion. Amazingly, despite all its apparent complexity, protein insertion into membranes is primarily driven by simple thermodynamic and kinetic principles. This article is part of a Special Issue entitled: Membrane proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Christophe Chipot
- Laboratoire International Associé Centre National de la Recherche Scientifique and University of Illinois at Urbana-Champaign, UMR n° 7565, Université de Lorraine, B.P. 70239, 54506 Vandœuvre-lès-Nancy, France; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
41
|
Kuhn P, Draycheva A, Vogt A, Petriman NA, Sturm L, Drepper F, Warscheid B, Wintermeyer W, Koch HG. Ribosome binding induces repositioning of the signal recognition particle receptor on the translocon. J Cell Biol 2016; 211:91-104. [PMID: 26459600 PMCID: PMC4602035 DOI: 10.1083/jcb.201502103] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The cotranslational transfer of nascent membrane proteins to the SecYEG translocon is facilitated by a reorientation of the SecY-bound signal recognition particle (SRP) receptor, FtsY, which accompanies the formation of a quaternary targeting complex consisting of SecYEG, FtsY, SRP, and the ribosome. Cotranslational protein targeting delivers proteins to the bacterial cytoplasmic membrane or to the eukaryotic endoplasmic reticulum membrane. The signal recognition particle (SRP) binds to signal sequences emerging from the ribosomal tunnel and targets the ribosome-nascent-chain complex (RNC) to the SRP receptor, termed FtsY in bacteria. FtsY interacts with the fifth cytosolic loop of SecY in the SecYEG translocon, but the functional role of the interaction is unclear. By using photo-cross-linking and fluorescence resonance energy transfer measurements, we show that FtsY–SecY complex formation is guanosine triphosphate independent but requires a phospholipid environment. Binding of an SRP–RNC complex exposing a hydrophobic transmembrane segment induces a rearrangement of the SecY–FtsY complex, which allows the subsequent contact between SecY and ribosomal protein uL23. These results suggest that direct RNC transfer to the translocon is guided by the interaction between SRP and translocon-bound FtsY in a quaternary targeting complex.
Collapse
Affiliation(s)
- Patrick Kuhn
- Institute of Biochemistry and Molecular Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Albena Draycheva
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Andreas Vogt
- Institute of Biochemistry and Molecular Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Narcis-Adrian Petriman
- Institute of Biochemistry and Molecular Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Lukas Sturm
- Institute of Biochemistry and Molecular Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Friedel Drepper
- Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Bettina Warscheid
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Wolfgang Wintermeyer
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
42
|
Structure of the native Sec61 protein-conducting channel. Nat Commun 2015; 6:8403. [PMID: 26411746 PMCID: PMC4598622 DOI: 10.1038/ncomms9403] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/19/2015] [Indexed: 12/12/2022] Open
Abstract
In mammalian cells, secretory and membrane proteins are translocated across or inserted into the endoplasmic reticulum (ER) membrane by the universally conserved protein-conducting channel Sec61, which has been structurally studied in isolated, detergent-solubilized states. Here we structurally and functionally characterize native, non-solubilized ribosome-Sec61 complexes on rough ER vesicles using cryo-electron tomography and ribosome profiling. Surprisingly, the 9-Å resolution subtomogram average reveals Sec61 in a laterally open conformation, even though the channel is not in the process of inserting membrane proteins into the lipid bilayer. In contrast to recent mechanistic models for polypeptide translocation and insertion, our results indicate that the laterally open conformation of Sec61 is the only conformation present in the ribosome-bound translocon complex, independent of its functional state. Consistent with earlier functional studies, our structure suggests that the ribosome alone, even without a nascent chain, is sufficient for lateral opening of Sec61 in a lipid environment. The protein-conducting channel Sec61 is responsible for protein transport and membrane insertion at the endoplasmic reticulum. Here, the authors determine the structure of ribosome-bound Sec61 in a native context, in which it adopts a laterally open conformation, irrespective of its functional state.
Collapse
|
43
|
Geng Y, Kedrov A, Caumanns JJ, Crevenna AH, Lamb DC, Beckmann R, Driessen AJM. Role of the Cytosolic Loop C2 and the C Terminus of YidC in Ribosome Binding and Insertion Activity. J Biol Chem 2015; 290:17250-61. [PMID: 26023232 DOI: 10.1074/jbc.m115.650309] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Indexed: 11/06/2022] Open
Abstract
Members of the YidC/Oxa1/Alb3 protein family mediate membrane protein insertion, and this process is initiated by the assembly of YidC·ribosome nascent chain complexes at the inner leaflet of the lipid bilayer. The positively charged C terminus of Escherichia coli YidC plays a significant role in ribosome binding but is not the sole determinant because deletion does not completely abrogate ribosome binding. The positively charged cytosolic loops C1 and C2 of YidC may provide additional docking sites. We performed systematic sequential deletions within these cytosolic domains and studied their effect on the YidC insertase activity and interaction with translation-stalled (programmed) ribosome. Deletions within loop C1 strongly affected the activity of YidC in vivo but did not influence ribosome binding or substrate insertion, whereas loop C2 appeared to be involved in ribosome binding. Combining the latter deletion with the removal of the C terminus of YidC abolished YidC-mediated insertion. We propose that these two regions play an crucial role in the formation and stabilization of an active YidC·ribosome nascent chain complex, allowing for co-translational membrane insertion, whereas loop C1 may be involved in the downstream chaperone activity of YidC or in other protein-protein interactions.
Collapse
Affiliation(s)
- Yanping Geng
- From the Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | | | - Joseph J Caumanns
- From the Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Alvaro H Crevenna
- the Physical Chemistry, Department for Chemistry, Center for Nanoscience, the NanoSystems Initiative Munich and the Center for Integrated Protein Science Munich, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Don C Lamb
- the Physical Chemistry, Department for Chemistry, Center for Nanoscience, the NanoSystems Initiative Munich and the Center for Integrated Protein Science Munich, Ludwig-Maximilians-University, 81377 Munich, Germany
| | | | - Arnold J M Driessen
- From the Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, Nijenborgh 7, 9747 AG Groningen, The Netherlands,
| |
Collapse
|