1
|
Yang JB, Xu DZ, Zhang ZH, Zhang X, Ren ZX, Lu ZL, Liu R, Liu Y. Multifunctional System with Camptothecin and [12]aneN 3 Units for Effective In Vivo Anti Pancreatic Cancer through Synergistic Chemotherapy, Gene Therapy, and Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67203-67215. [PMID: 39585759 DOI: 10.1021/acsami.4c12936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Maximizing drug cargo carrying capacity in blood circulation, controlling the in vivo fate of nanoparticles, and precisely drug release to tumor targets are the main aims of multifunctional nanomedicine-based antitumor therapy. Here we combined macrocyclic polyamine di(triazole-[12]aneN3) (M) and chemical drug camptothecin (CPT, C) through photosensitizer 1,1-dicyano-2-phenyl-2-(4-diphenylamino) phenyl-ethylene (DT) containing the cleavable disulfide (S) linkage as an all-in-one theranostic nanoprodrug, MDTSC. The corresponding compound with carbon chain (C) linkage, MDTCC, was also prepared for a comparison study. MDTSC showed the ability to carry plasmids, including the p53 tumor suppressor gene, to form lipoplexes with a size of ∼150 nm. Further addition of DOPE-PEG2k resulted in the hybrid lipoplexes MDTSC/DOPE-PEG2k@DNA, which showed good stability in blood circulation and good biocompatibility to normal cell lines. Experiments demonstrated that the hybrid lipoplexes were able to realize the successful cellular uptake and endosomal escape, to generate ROS under visible light irradiation as well as to trigger the localized release of CPT and the plasmid encoding p53 in tumor cells. In vitro, the hybrid lipoplexes showed better EGFP expression than the commercial Lipo2000, and markedly reduced tumor cell proliferation and migration rate irrespective of whether the BxPC-3 cell lines were grown on plates or 3D tumor spheroids. In vivo, the hybrid lipoplexes showed effective anticancer activity by reducing the BxPC-3 pancreatic tumor growth by 99% through the synergetic combination of chemotherapy, photodynamic therapy, and gene therapy. This research represented the first example of using a cocktail of three therapeutic approaches to achieve cooperative and effective anti pancreatic cancer treatment in vivo and in vitro.
Collapse
Affiliation(s)
- Jing-Bo Yang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- China National Institute for Food and Drug Control, Institute of Chemical Drug Control, HuaTuo Road 29, Beijing 100050, China
| | - De-Zhong Xu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Zi-Han Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xi Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Zhi-Xuan Ren
- Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Zhong-Lin Lu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Rui Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yang Liu
- China National Institute for Food and Drug Control, Institute of Chemical Drug Control, HuaTuo Road 29, Beijing 100050, China
| |
Collapse
|
2
|
Liu Y, Wu Y, Li Z, Wan D, Pan J. Targeted Drug Delivery Strategies for the Treatment of Hepatocellular Carcinoma. Molecules 2024; 29:4405. [PMID: 39339402 PMCID: PMC11434448 DOI: 10.3390/molecules29184405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Hepatocellular carcinoma (HCC) ranks among the most prevalent malignant tumors, exhibiting a high incidence rate that presents a substantial threat to human health. The use of sorafenib and lenvatinib, commonly employed as single-agent targeted inhibitors, complicates the treatment process due to the absence of definitive targeting. Nevertheless, the advent of nanotechnology has injected new optimism into the domain of liver cancer therapy. Nanocarriers equipped with active targeting or passive targeting mechanisms have demonstrated the capability to deliver drugs to tumor cells with high efficiency. This approach not only facilitates precise delivery to the affected site but also enables targeted drug release, thereby enhancing therapeutic efficacy. As medical technology progresses, there is an increasing call for innovative treatment modalities, including novel chemotherapeutic agents, gene therapy, phototherapy, immunotherapy, and combinatorial treatments for HCC. These emerging therapies are anticipated to yield improved clinical outcomes for patients, while minimizing systemic toxicity and adverse effects. Consequently, the application of nanotechnology is poised to significantly improve HCC treatment. This review focused on targeted strategies for HCC and the application of nanotechnology in this area.
Collapse
Affiliation(s)
- Yonghui Liu
- School of Chemistry, Tiangong University, Tianjin 300387, China; (Y.L.)
| | - Yanan Wu
- School of Chemistry, Tiangong University, Tianjin 300387, China; (Y.L.)
| | - Zijian Li
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Dong Wan
- School of Chemistry, Tiangong University, Tianjin 300387, China; (Y.L.)
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Jie Pan
- School of Chemistry, Tiangong University, Tianjin 300387, China; (Y.L.)
| |
Collapse
|
3
|
Ooi YJ, Wen Y, Zhu J, Song X, Li J. Codelivery of Doxorubicin and p53 Gene by β-Cyclodextrin-Based Supramolecular Nanoparticles Formed via Host-Guest Complexation and Electrostatic Interaction. Biomacromolecules 2024; 25:2980-2989. [PMID: 38587905 DOI: 10.1021/acs.biomac.4c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
We developed a supramolecular system for codelivery of doxorubicin (Dox) and p53 gene based on a β-CD-containing star-shaped cationic polymer. First, a star-shaped cationic polymer consisting of a β-CD core and 3 arms of oligoethylenimine (OEI), named CD-OEI, was used to form a supramolecular inclusion complex with hydrophobic Dox. The CD-OEI/Dox complex was subsequently used to condense plasmid DNA via electrostatic interactions to form CD-OEI/Dox/DNA polyplex nanoparticles with positive surface charges that enhanced the cellular uptake of both Dox and DNA. This supramolecular drug and gene codelivery system showed high gene transfection efficiency and effective protein expression in cancer cells. The codelivery of Dox and DNA encoding the p53 gene resulted in reduced cell viability and enhanced antitumor effects at low Dox concentrations. With its enhanced cellular uptake and anticancer efficacy, the system holds promise as a delivery carrier for potential combination cancer therapies.
Collapse
Affiliation(s)
- Ying Jie Ooi
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Yuting Wen
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Jingling Zhu
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Xia Song
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Jun Li
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| |
Collapse
|
4
|
Yu L, Liu Z, Xu W, Jin K, Liu J, Zhu X, Zhang Y, Wu Y. Towards overcoming obstacles of type II photodynamic therapy: Endogenous production of light, photosensitizer, and oxygen. Acta Pharm Sin B 2024; 14:1111-1131. [PMID: 38486983 PMCID: PMC10935104 DOI: 10.1016/j.apsb.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 03/17/2024] Open
Abstract
Conventional photodynamic therapy (PDT) approaches face challenges including limited light penetration, low uptake of photosensitizers by tumors, and lack of oxygen in tumor microenvironments. One promising solution is to internally generate light, photosensitizers, and oxygen. This can be accomplished through endogenous production, such as using bioluminescence as an endogenous light source, synthesizing genetically encodable photosensitizers in situ, and modifying cells genetically to express catalase enzymes. Furthermore, these strategies have been reinforced by the recent rapid advancements in synthetic biology. In this review, we summarize and discuss the approaches to overcome PDT obstacles by means of endogenous production of excitation light, photosensitizers, and oxygen. We envision that as synthetic biology advances, genetically engineered cells could act as precise and targeted "living factories" to produce PDT components, leading to enhanced performance of PDT.
Collapse
Affiliation(s)
- Lin Yu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
- School of Medicine, Shanghai University, Shanghai 200433, China
| | - Zhen Liu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Wei Xu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Kai Jin
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Jinliang Liu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Xiaohui Zhu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Yong Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yihan Wu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| |
Collapse
|
5
|
Casciati A, Taddei AR, Rampazzo E, Persano L, Viola G, Cani A, Bresolin S, Cesi V, Antonelli F, Mancuso M, Merla C, Tanori M. Involvement of Mitochondria in the Selective Response to Microsecond Pulsed Electric Fields on Healthy and Cancer Stem Cells in the Brain. Int J Mol Sci 2024; 25:2233. [PMID: 38396911 PMCID: PMC10889160 DOI: 10.3390/ijms25042233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
In the last few years, pulsed electric fields have emerged as promising clinical tools for tumor treatments. This study highlights the distinct impact of a specific pulsed electric field protocol, PEF-5 (0.3 MV/m, 40 μs, 5 pulses), on astrocytes (NHA) and medulloblastoma (D283) and glioblastoma (U87 NS) cancer stem-like cells (CSCs). We pursued this goal by performing ultrastructural analyses corroborated by molecular/omics approaches to understand the vulnerability or resistance mechanisms triggered by PEF-5 exposure in the different cell types. Electron microscopic analyses showed that, independently of exposed cells, the main targets of PEF-5 were the cell membrane and the cytoskeleton, causing membrane filopodium-like protrusion disappearance on the cell surface, here observed for the first time, accompanied by rapid cell swelling. PEF-5 induced different modifications in cell mitochondria. A complete mitochondrial dysfunction was demonstrated in D283, while a mild or negligible perturbation was observed in mitochondria of U87 NS cells and NHAs, respectively, not sufficient to impair their cell functions. Altogether, these results suggest the possibility of using PEF-based technology as a novel strategy to target selectively mitochondria of brain CSCs, preserving healthy cells.
Collapse
Affiliation(s)
- Arianna Casciati
- Division of Health Protection Technologies, Italian National Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (V.C.); (F.A.); (M.M.)
| | - Anna Rita Taddei
- Great Equipment Center-Section of Electron Microscopy, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy;
| | - Elena Rampazzo
- Department of Women’s and Children’s Health (SDB), University of Padova, Via Giustiniani 3, 35128 Padova, Italy; (E.R.); (L.P.); (G.V.); (A.C.); (S.B.)
- Pediatric Research Institute (IRP), Corso Stati Uniti 4, 35127 Padova, Italy
| | - Luca Persano
- Department of Women’s and Children’s Health (SDB), University of Padova, Via Giustiniani 3, 35128 Padova, Italy; (E.R.); (L.P.); (G.V.); (A.C.); (S.B.)
- Pediatric Research Institute (IRP), Corso Stati Uniti 4, 35127 Padova, Italy
| | - Giampietro Viola
- Department of Women’s and Children’s Health (SDB), University of Padova, Via Giustiniani 3, 35128 Padova, Italy; (E.R.); (L.P.); (G.V.); (A.C.); (S.B.)
- Pediatric Research Institute (IRP), Corso Stati Uniti 4, 35127 Padova, Italy
| | - Alice Cani
- Department of Women’s and Children’s Health (SDB), University of Padova, Via Giustiniani 3, 35128 Padova, Italy; (E.R.); (L.P.); (G.V.); (A.C.); (S.B.)
- Pediatric Research Institute (IRP), Corso Stati Uniti 4, 35127 Padova, Italy
| | - Silvia Bresolin
- Department of Women’s and Children’s Health (SDB), University of Padova, Via Giustiniani 3, 35128 Padova, Italy; (E.R.); (L.P.); (G.V.); (A.C.); (S.B.)
- Pediatric Research Institute (IRP), Corso Stati Uniti 4, 35127 Padova, Italy
| | - Vincenzo Cesi
- Division of Health Protection Technologies, Italian National Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (V.C.); (F.A.); (M.M.)
| | - Francesca Antonelli
- Division of Health Protection Technologies, Italian National Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (V.C.); (F.A.); (M.M.)
| | - Mariateresa Mancuso
- Division of Health Protection Technologies, Italian National Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (V.C.); (F.A.); (M.M.)
| | - Caterina Merla
- Division of Health Protection Technologies, Italian National Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (V.C.); (F.A.); (M.M.)
| | - Mirella Tanori
- Division of Health Protection Technologies, Italian National Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (V.C.); (F.A.); (M.M.)
| |
Collapse
|
6
|
Ou DL, Liao ZX, Kempson IM, Li L, Yang PC, Tseng SJ. Nano-modified viruses prime the tumor microenvironment and promote the photodynamic virotherapy in liver cancer. J Biomed Sci 2024; 31:1. [PMID: 38163894 PMCID: PMC10759334 DOI: 10.1186/s12929-023-00989-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/03/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND As of 2020, hepatocellular carcinoma (HCC), a form of liver cancer, stood as the third most prominent contributor to global cancer-related mortality. Combining immune checkpoint inhibitors (ICI) with other therapies has shown promising results for treating unresectable HCC, offering new opportunities. Recombinant adeno-associated viral type 2 (AAV2) virotherapy has been approved for clinical use but it efficacy is stifled through systemic administration. On the other hand, iron oxide nanoparticles (ION) can be cleared via the liver and enhance macrophage polarization, promoting infiltration of CD8+ T cells and creating a more favorable tumor microenvironment for immunotherapy. METHODS To enhance the efficacy of virotherapy and promote macrophage polarization towards the M1-type in the liver, ION-AAV2 were prepared through the coupling of ION-carboxyl and AAV2-amine using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC)/N-hydroxysulfosuccinimide (Sulfo-NHS). Efficacy after systemic delivery of ION-AAV2 in an orthotopic HCC model was evaluated. RESULTS After 28 days, the tumor weight in mice treated with ION-AAV2 was significantly reduced by 0.56-fold compared to the control group. The ION-AAV2 treatment led to an approximate 1.80-fold increase in the level of tumor associated M1-type macrophages, while the number of M2-type macrophages was reduced by 0.88-fold. Moreover, a proinflammatory response increased the population of tumor-infiltrating CD8+ T cells in the ION-AAV2 group. This transformation converted cold tumors into hot tumors. CONCLUSIONS Our findings suggest that the conjugation of ION with AAV2 could be utilized in virotherapy while simultaneously exploiting macrophage-modulating cancer immunotherapies to effectively suppress HCC growth.
Collapse
Affiliation(s)
- Da-Liang Ou
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, 10051, Taiwan
- National Taiwan University YongLin Institute of Health, National Taiwan University, Taipei, 10051, Taiwan
| | - Zi-Xian Liao
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Ivan M Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Lin Li
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, 10051, Taiwan
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, 10051, Taiwan.
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan.
| | - S-Ja Tseng
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, 10051, Taiwan.
- National Taiwan University YongLin Institute of Health, National Taiwan University, Taipei, 10051, Taiwan.
- Program in Precision Health and Intelligent Medicine, Graduate School of Advanced Technology, National Taiwan University, Taipei, 10051, Taiwan.
| |
Collapse
|
7
|
Chen Y, Wang J, Huang Y, Wu J, Wang Y, Chen A, Guo Q, Zhang Y, Zhang S, Wang L, Zou X, Li X. An oncolytic system produces oxygen selectively in pancreatic tumor cells to alleviate hypoxia and improve immune activation. Pharmacol Res 2024; 199:107053. [PMID: 38176529 DOI: 10.1016/j.phrs.2023.107053] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 12/31/2023] [Indexed: 01/06/2024]
Abstract
INTRODUCTION Hypoxia is one of the important reasons for the poor therapeutic efficacy of current pancreatic cancer treatment, and the dense stroma of pancreatic cancer restricts the diffusion of oxygen within the tumor. METHODS A responsive oxygen-self-supplying adv-miRT-CAT-KR (adv-MCK) cascade reaction system to improve hypoxia in pancreatic cancer is constructed. We utilized various experiments at multiple levels (cells, organoids, in vivo) to investigate its effect on pancreatic cancer and analyzed the role of immune microenvironment changes in it through high-throughput sequencing. RESULTS The adv-MCK system is an oncolytic adenovirus system expressing three special components of genes. The microRNA (miRNA) targets (miRTs) enable adv-MCK to selectively replicate in pancreatic cancer cells. Catalase catalyzes the overexpressed hydrogen peroxide in pancreatic cancer cells to generate endogenous oxygen, which is catalyzed by killerRed to generate singlet oxygen (1O2) and further to enhance the oncolytic effect. Meanwhile, the adv-MCK system can specifically improve hypoxia in pancreatic cancer, exert antitumor effects in combination with photodynamic therapy, and activate antitumor immunity, especially by increasing the level of γδ T cells in the tumor microenvironment. CONCLUSION The responsive oxygen-self-supplying adv-MCK cascade reaction system combined with photodynamic therapy can improve the hypoxic microenvironment of pancreatic cancer and enhance antitumor immunity, which provides a promising alternative treatment strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Yu Chen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Jialun Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Ying Huang
- Department of Pain, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Jianzhuang Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yue Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Aotian Chen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Qiyuan Guo
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing 210008, China
| | - Yixuan Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Shu Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Xihan Li
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
8
|
Liao ZX, Hsu SH, Tang SC, Kempson I, Yang PC, Tseng SJ. Potential targeting of the tumor microenvironment to improve cancer virotherapy. Pharmacol Ther 2023; 250:108521. [PMID: 37657673 DOI: 10.1016/j.pharmthera.2023.108521] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
In 2015, oncolytic virotherapy was approved for clinical use, and in 2017, recombinant adeno-associated virus (AAV) delivery was also approved. However, systemic administration remains challenging due to the limited number of viruses that successfully reach the target site. Although the US Food and Drug Administration (FDA) permits the use of higher doses of AAV to achieve greater rates of transduction, most AAV still accumulates in the liver, potentially leading to toxicity there and elsewhere. Targeting the tumor microenvironment is a promising strategy for cancer treatment due to the critical role of the tumor microenvironment in controlling tumor progression and influencing the response to therapies. Newly discovered evidence indicates that administration routes focusing on the tumor microenvironment can promote delivery specificity and transduction efficacy within the tumor. Here, we review approaches that involve modifying viral surface features, modulating the immune system, and targeting the physicochemical characteristics in tumor microenvironment to regulate therapeutic delivery. Targeting tumor acidosis presents advantages that can be leveraged to enhance virotherapy outcomes and to develop new therapeutic approaches that can be integrated with standard treatments.
Collapse
Affiliation(s)
- Zi-Xian Liao
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10051, Taiwan
| | - Shiue-Cheng Tang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan; Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ivan Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - S Ja Tseng
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei 10051, Taiwan; National Taiwan University YongLin Institute of Health, National Taiwan University, Taipei 10051, Taiwan; Program in Precision Health and Intelligent Medicine, Graduate School of Advanced Technology, National Taiwan University, Taipei 10051, Taiwan.
| |
Collapse
|
9
|
Liu M, Xu L, Jiang J, Dong H, Zhu P, Cao L, Chen J, Zhang X. Light controlled self-escape capability of non-cationic carbon nitride-based nanosheets in lysosomes for hepatocellular carcinoma targeting stimulus-responsive gene delivery. Bioeng Transl Med 2023; 8:e10558. [PMID: 37693059 PMCID: PMC10486340 DOI: 10.1002/btm2.10558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 05/06/2023] [Accepted: 05/21/2023] [Indexed: 09/12/2023] Open
Abstract
High positive charge-induced toxicity, easy lysosomal degradation of nucleic acid drugs, and poor lesion sites targeting are major problems faced in the development of gene carriers. Herein, we proposed the concept of self-escape non-cationic gene carriers for targeted delivery and treatment of photocontrolled hepatocellular carcinoma (HCC) with sufficient lysosome escape and multiple response capacities. Functional DNA was bound to the surface of biotin-PEG2000-modified graphitic carbon nitride (Bio-PEG-CN) nanosheets to form non-cationic nanocomplexes Bio-PEG-CN/DNA. These nanocomposites could actively target HCC tissue. Once these nanocomplexes were taken up by tumor cells, the accumulated reactive oxygen species (ROS) generated by Bio-PEG-CN under LED irradiation would disrupt the lysosome structure, thereby facilitating nanocomposites escape. Due to the acidic microenvironment and lipase in the HCC tissue, the reversible release of DNA could be promoted to complete the transfection process. Meanwhile, the fluorescence signal of Bio-PEG-CN could be monitored in real time by fluorescence imaging technology to investigate the transfection process and mechanism. In vitro and in vivo results further demonstrated that these nanocomplexes could remarkably upregulate the expression of tumor suppressor protein P53, increased tumor sensitivity to ROS generated by nanocarriers, and realized effective gene therapy for HCC via loading P53 gene.
Collapse
Affiliation(s)
| | - Li Xu
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouJiangsuP. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouJiangsuP. R. China
| | - Jia‐Yi Jiang
- School of PharmacyNantong UniversityNantongChina
| | | | - Peng‐Fei Zhu
- School of PharmacyNantong UniversityNantongChina
| | - Lei Cao
- School of PharmacyNantong UniversityNantongChina
| | - Jing Chen
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouJiangsuP. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouJiangsuP. R. China
| | | |
Collapse
|
10
|
de Santana WMOS, Surur AK, Momesso VM, Lopes PM, Santilli CV, Fontana CR. Nanocarriers for photodynamic-gene therapy. Photodiagnosis Photodyn Ther 2023; 43:103644. [PMID: 37270046 DOI: 10.1016/j.pdpdt.2023.103644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
The use of nanotechnology in medicine has important potential applications, including in anticancer strategies. Nanomedicine has made it possible to overcome the limitations of conventional monotherapies, in addition to improving therapeutic results by means of synergistic or cumulative effects. A highlight is the combination of gene therapy (GT) and photodynamic therapy (PDT), which are alternative anticancer approaches that have attracted attention in the last decade. In this review, strategies involving the combination of PDT and GT will be discussed, together with the role of nanocarriers (nonviral vectors) in this synergistic therapeutic approach, including aspects related to the design of nanomaterials, responsiveness, the interaction of the nanomaterial with the biological environment, and anticancer performance in studies in vitro and in vivo.
Collapse
Affiliation(s)
| | - Amanda Koberstain Surur
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, 14800-903, Brazil
| | - Vinícius Medeiros Momesso
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, 14800-903, Brazil
| | - Pedro Monteiro Lopes
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, 14800-903, Brazil
| | - Celso V Santilli
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, São Paulo, 14800-900, Brazil
| | - Carla Raquel Fontana
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, 14800-903, Brazil.
| |
Collapse
|
11
|
Moloudi K, Sarbadhikary P, Abrahamse H, George BP. Understanding the Photodynamic Therapy Induced Bystander and Abscopal Effects: A Review. Antioxidants (Basel) 2023; 12:1434. [PMID: 37507972 PMCID: PMC10376621 DOI: 10.3390/antiox12071434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Photodynamic therapy (PDT) is a clinically approved minimally/non-invasive treatment modality that has been used to treat various conditions, including cancer. The bystander and abscopal effects are two well-documented significant reactions involved in imparting long-term systemic effects in the field of radiobiology. The PDT-induced generation of reactive oxygen and nitrogen species and immune responses is majorly involved in eliciting the bystander and abscopal effects. However, the results in this regard are unsatisfactory and unpredictable due to several poorly elucidated underlying mechanisms and other factors such as the type of cancer being treated, the irradiation dose applied, the treatment regimen employed, and many others. Therefore, in this review, we attempted to summarize the current knowledge regarding the non-targeted effects of PDT. The review is based on research published in the Web of Science, PubMed, Wiley Online Library, and Google Scholar databases up to June 2023. We have highlighted the current challenges and prospects in relation to obtaining clinically relevant robust, reproducible, and long-lasting antitumor effects, which may offer a clinically viable treatment against tumor recurrence and metastasis. The effectiveness of both targeted and untargeted PDT responses and their outcomes in clinics could be improved with more research in this area.
Collapse
Affiliation(s)
- Kave Moloudi
- Laser Research Centre, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| | - Paromita Sarbadhikary
- Laser Research Centre, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| |
Collapse
|
12
|
Li J, Wang S, Fontana F, Tapeinos C, Shahbazi MA, Han H, Santos HA. Nanoparticles-based phototherapy systems for cancer treatment: Current status and clinical potential. Bioact Mater 2023; 23:471-507. [PMID: 36514388 PMCID: PMC9727595 DOI: 10.1016/j.bioactmat.2022.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 12/11/2022] Open
Abstract
Remarkable progress in phototherapy has been made in recent decades, due to its non-invasiveness and instant therapeutic efficacy. In addition, with the rapid development of nanoscience and nanotechnology, phototherapy systems based on nanoparticles or nanocomposites also evolved as an emerging hotspot in nanomedicine research, especially in cancer. In this review, first we briefly introduce the history of phototherapy, and the mechanisms of phototherapy in cancer treatment. Then, we summarize the representative development over the past three to five years in nanoparticle-based phototherapy and highlight the design of the innovative nanoparticles thereof. Finally, we discuss the feasibility and the potential of the nanoparticle-based phototherapy systems in clinical anticancer therapeutic applications, aiming to predict future research directions in this field. Our review is a tutorial work, aiming at providing useful insights to researchers in the field of nanotechnology, nanoscience and cancer.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Shiqi Wang
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Flavia Fontana
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Christos Tapeinos
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Huijie Han
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Hélder A Santos
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
13
|
Jiang S, Chen X, Lin J, Huang P. Lactate-Oxidase-Instructed Cancer Diagnosis and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207951. [PMID: 36353879 DOI: 10.1002/adma.202207951] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/15/2022] [Indexed: 05/12/2023]
Abstract
Lactate oxidase (LOx) has attracted extensive interest in cancer diagnosis and therapy in recent years owing to its specific catalysis on l-lactate; its catalytic process consumes oxygen (O2 ) and generates a large amount of hydrogen peroxide (H2 O2 ) and pyruvate. Given high levels of lactate in tumor tissues and its tight correlation with tumor growth, metastasis, and recurrence, LOx-based biosensors including H2 O2 -based, O2 -based, pH-sensitive, and electrochemical have been designed for cancer diagnosis, and various LOx-based cancer therapy strategies including lactate-depletion-based metabolic cancer therapy/immunotherapy, hypoxia-activated chemotherapy, H2 O2 -based chemodynamic therapy, and multimodal synergistic cancer therapy have also been developed. In this review, the lactate-specific catalytic properties of LOx are introduced, and the recent advances on LOx-instructed cancer diagnostic or therapeutic platforms and corresponding biological applications are summarized. Additionally, the challenges and potential of LOx-based nanomedicines are highlighted.
Collapse
Affiliation(s)
- Shanshan Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Xin Chen
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| |
Collapse
|
14
|
Maqsood Q, Sumrin A, Iqbal M, Hussain N, Mahnoor M, Zafar Saleem M, Perveen R. A Winning New Combination? Toward Clinical Application in Oncology. Cancer Control 2023; 30:10732748231175240. [PMID: 37166227 PMCID: PMC10184224 DOI: 10.1177/10732748231175240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/04/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023] Open
Abstract
Immunotherapy has substantial attention in oncology due to the success of CTLA-4 and PD-1 inhibitors in the treatment of melanoma, lung cancer, head and neck cancer, renal cell carcinoma, and Hodgkin's lymphoma. A deeper understanding of interaction of tumor with its environment and the immune system provides best guide for oncology research. Recent studies in oncology have explained how a tumor alters antigen presentation, avoids detection, and activation of the host immune system to live and develop. Understanding the connections between the tumor and the immune system has resulted in several innovative therapy options. The extensive field of gene therapy has provided a number of cutting-edge medicines that are expected to play an important role in lowering cancer-related mortality. This article explains the history, important breakthroughs, and future prospects for three separate gene therapy treatment modalities: immunotherapy, oncolytic virotherapy, and gene transfer. Immunotherapies have completely changed how cancer is treated, especially for individuals whose condition was previously thought to be incurable. Examples include ACT (adoptive cell therapy) and ICB (immune checkpoint blockade). This review article will discuss the relationship between the immune response to cancer and the mechanisms of immunotherapy resistance. It will cover combination drugs authorized by the US Food and Drug Administration and provide a thorough overview of how these drugs are doing clinically right now. Cytokines, vaccines, and other soluble immunoregulatory agents, innate immune modifiers, ACT, virotherapy, and other treatment modalities will all be covered in detail.
Collapse
Affiliation(s)
- Quratulain Maqsood
- Centre for Applied Molecular Biology, University of the Punjab Quaid-i-Azam Campus, Lahore, Pakistan
| | - Aleena Sumrin
- Centre for Applied Molecular Biology, University of the Punjab Quaid-i-Azam Campus, Lahore, Pakistan
| | - Maryam Iqbal
- Centre for Applied Molecular Biology, University of the Punjab Quaid-i-Azam Campus, Lahore, Pakistan
| | - Nazim Hussain
- Centre for Applied Molecular Biology, University of the Punjab Quaid-i-Azam Campus, Lahore, Pakistan
| | - Muhammada Mahnoor
- Department of Rehabilitation Sciences, Akhtar Saeed Medical & Dental College, Lahore, Pakistan
| | - Muhammad Zafar Saleem
- Centre for Applied Molecular Biology, University of the Punjab Quaid-i-Azam Campus, Lahore, Pakistan
| | - Rukhsana Perveen
- Centre for Applied Molecular Biology, University of the Punjab Quaid-i-Azam Campus, Lahore, Pakistan
| |
Collapse
|
15
|
Zhan YR, Chen P, He X, Hei MW, Zhang J, Yu XQ. Sodium Alginate-Doping Cationic Nanoparticle As Dual Gene Delivery System for Genetically Bimodal Therapy. Biomacromolecules 2022; 23:5312-5321. [PMID: 36346945 DOI: 10.1021/acs.biomac.2c01119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Photodynamic therapy occupies an important position in cancer therapy because of its minimal invasiveness and high spatiotemporal precision, and photodynamic/gene combined therapy is a promising strategy for additive therapeutic effects. However, the asynchronism and heterogeneity between traditional chemical photosensitizers and nucleic acid would restrict the feasibility of this strategy. KillerRed protein, as an endogenous photosensitizer, could be directly expressed and take effect in situ by transfecting KillerRed reporter genes into cells. Herein, a simple and easily prepared sodium alginate (SA)-doping cationic nanoparticle SA@GP/DNA was developed for dual gene delivery. The nanoparticles could be formed through electrostatic interaction among sodium alginate, polycation, and plasmid DNA. The title complex SA@GP/DNA showed good biocompatibility and gene transfection efficiency. Mechanism studies revealed that SA doping could facilitate the cellular uptake and DNA release. Furthermore, SA@GP/DNA was applied to the codelivery of p53 and KillerRed reporter genes for the synergistic effect combining p53-mediated apoptosis therapy and KillerRed-mediated photodynamic therapy. The ROS generation, tumor cell growth inhibition, and apoptosis assays proved that the dual-gene transfection could mediate the better effect compared with single therapy. This rationally designed dual gene codelivery nanoparticle provides an effective and promising platform for genetically bimodal therapy.
Collapse
Affiliation(s)
- Yu-Rong Zhan
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu610064, People's Republic of China
| | - Ping Chen
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu610064, People's Republic of China
| | - Xi He
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu610041, People's Republic of China
| | - Meng-Wei Hei
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu610064, People's Republic of China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu610064, People's Republic of China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu610064, People's Republic of China.,Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Department of Chemistry, Xihua University, Chengdu610039, People's Republic of China
| |
Collapse
|
16
|
Xu Z, Yu Y, Zhao J, Liao Z, Sun Y, Cheng S, Gou S. A Unique Chemo-photodynamic Antitumor Approach to Suppress Hypoxia via Ultrathin Graphitic Carbon Nitride Nanosheets Supported a Platinum(IV) Prodrug. Inorg Chem 2022; 61:20346-20357. [DOI: 10.1021/acs.inorgchem.2c02806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Zichen Xu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing211189, China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing211189, China
| | - Yongzhi Yu
- National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen333001, P.R. China
| | - Jian Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing211189, China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing211189, China
| | - Zhixin Liao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing211189, China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing211189, China
| | - Yanyan Sun
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou215009, China
| | - Si Cheng
- National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen333001, P.R. China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing211189, China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing211189, China
| |
Collapse
|
17
|
Sohrabi M, Babaei Z, Haghpanah V, Larijani B, Abbasi A, Mahdavi M. Recent advances in gene therapy-based cancer monotherapy and synergistic bimodal therapy using upconversion nanoparticles: Structural and biological aspects. Biomed Pharmacother 2022; 156:113872. [DOI: 10.1016/j.biopha.2022.113872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 11/02/2022] Open
|
18
|
Yang JB, Wu CY, Liu XY, Yu XM, Guo XR, Zhang YJ, Liu R, Lu ZL, Huang HW. Red fluorescent AIEgens based multifunctional nonviral gene vectors for the efficient combination of gene therapy and photodynamic therapy in anti-cancer. Colloids Surf B Biointerfaces 2022; 218:112765. [PMID: 35981470 DOI: 10.1016/j.colsurfb.2022.112765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/17/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
Abstract
Precise molecular engineering of AIEgens-based cationic delivery systems for high transfection efficiency (TE) and effective photodynamic therapy (PDT) holds a huge potential for cancer treatment. Herein, three amphiphiles (DT-C6/8/12-M) consisting of di(triazole-[12]aneN3) (M) and 1,1-dicyano-2-phenyl-2-(4-diphenylamino)phenyl-ethylene (DT) units have been developed to achieve luminescent tracking, efficient TE, and effective PDT in vitro and in vivo. These compounds exhibited strong aggregated induced emission (AIE) at 630 nm and mega Stokes shifts of up to 160 nm. They were able to bind DNA into nanoparticles with suitable sizes, positive surface potential, and good biocompatibility in the presence of DOPE. Among them, vector DT-C12-M/DOPE with n-dodecyl linker achieved a transfection efficiency as high as 42.3 folds that of Lipo2000 in PC-3 cell lines. DT-C12-M/DOPE exhibited the capability of successful endo/lysosomal escape and rapid nuclear delivery of pDNA, and the gene delivery process was clearly monitored via confocal laser scanning microscopy. Moreover, efficient reactive oxygen species (ROS) generation by DT-C12-M upon light irradiation led to effective PDT in vitro . We further show that combination of p53 gene therapy and PDT dramatically enhanced cancer therapeutic outcome in vivo. This "three birds, one stone" strategy offers a novel and promising approach for real-time tracking of gene delivery and better cancer treatment.
Collapse
Affiliation(s)
- Jing-Bo Yang
- College of Chemistry, Beijing Normal University, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing 100875, PR China
| | - Cheng-Yan Wu
- College of Chemistry, Beijing Normal University, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing 100875, PR China
| | - Xu-Ying Liu
- College of Chemistry, Beijing Normal University, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing 100875, PR China
| | - Xiao-Man Yu
- College of Chemistry, Beijing Normal University, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing 100875, PR China
| | - Xiao-Ru Guo
- College of Chemistry, Beijing Normal University, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing 100875, PR China
| | - Yi-Jing Zhang
- College of Chemistry, Beijing Normal University, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing 100875, PR China
| | - Rui Liu
- College of Chemistry, Beijing Normal University, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing 100875, PR China
| | - Zhong-Lin Lu
- College of Chemistry, Beijing Normal University, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing 100875, PR China.
| | - Hai-Wei Huang
- China National Institute for Food and Drug Control, Institute of Chemical Drug Control, HuaTuo Road 29, Beijing 102629, PR China.
| |
Collapse
|
19
|
Liu MX, Zhang XL, Yang JB, Lu ZL, Zhang QT. Highly water-dispersible PCN nanosheets as light-controlled lysosome self-promoting escape type non-cationic gene carriers for tumor therapy. J Mater Chem B 2022; 10:5430-5438. [PMID: 35775960 DOI: 10.1039/d2tb00440b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The construction of non-viral gene delivery faces two major challenges: cytotoxicity caused by high cationic charge units and easy degradation by lysosomes. Herein, highly water-dispersible polymeric carbon nitride (PCN) nanosheets were utilized as the core to construct a light-controlled non-cationic gene delivery system with sufficient lysosomal escape ability. In this system, these nanosheets exhibited efficient DNA condensation, outstanding biocompatibility, transfection tracking, light responsiveness and high transfection efficiency. Once PCN-DNA was taken up by the tumor cells, the accumulated ROS generated by photosensitizers (PSs) under light irradiation would destroy the structure of lysosomes, promote the escape of PCN-DNA and increase the efficiency of gene transfection. Simultaneously, the gene transfection process could be tracked in real time through fluorescence imaging technology, which was conducive to investigate the transfection mechanism. In vitro and in vivo experiments further confirmed that PCN nanosheets loaded with the P53 gene were beneficial to the regeneration of the P53 apoptotic pathway, increased tumor sensitivity to PSs, and further induced tumor cell apoptosis. In summary, the highly water-dispersible PCN nanosheets were applied to light-controlled self-escaping gene delivery for the first time, and tumor gene therapy was successfully realized.
Collapse
Affiliation(s)
- Ming-Xuan Liu
- School of Pharmacy, Nantong University, Nantong, 226001, China.
| | - Xiao-Ling Zhang
- School of Pharmacy, Nantong University, Nantong, 226001, China.
| | - Jing-Bo Yang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Zhong-Lin Lu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Qi-Tao Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
20
|
Zhu Y, Lin M, Hu W, Wang J, Zhang ZG, Zhang K, Yu B, Xu FJ. Controllable Disulfide Exchange Polymerization of Polyguanidine for Effective Biomedical Applications by Thiol-Mediated Uptake. Angew Chem Int Ed Engl 2022; 61:e202200535. [PMID: 35304808 DOI: 10.1002/anie.202200535] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 01/13/2023]
Abstract
New preparation methods of vectors are the key to developing the next generation of biomacromolecule delivery systems. In this study, a controllable disulfide exchange polymerization was established to obtain low-toxicity and efficient bioreducible polyguanidines (mPEG225 -b-PSSn , n=13, 26, 39, 75, 105) by regulating the concentration of activated nucleophiles and reaction time under mild reaction conditions. The relationship between the degrees of polymerization and biocompatibility was studied to identify the optimal polyguanidine mPEG225 -b-PSS26 . Such polyguanidine exhibited good in vitro performance in delivering different functional nucleic acids. The impressive therapeutic effects of mPEG225 -b-PSS26 were further verified in the 4T1 tumor-bearing mice as well as the mice with full-thickness skin defects. Controllable disulfide exchange polymerization provides an attractive strategy for the construction of new biomacromolecule delivery systems.
Collapse
Affiliation(s)
- Yiwen Zhu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mengyu Lin
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wenting Hu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junkai Wang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhi-Guo Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kai Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
21
|
Core-shell structured nanoparticles for photodynamic therapy-based cancer treatment and related imaging. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Xu FJ, Zhu Y, Lin M, Hu W, Wang J, Zhang ZG, Zhang K, Yu B. Controllable Disulfide Exchange Polymerization of Polyguanidine for Effective Biomedical Applications by Thiol‐Mediated Uptake. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fu-Jian Xu
- Beijing University of Chemical Technology College of Materials and Engineering Beijing 100029 100029 Beijing CHINA
| | - Yiwen Zhu
- Beijing University of Chemical Technology College of Materials Science and Engineering CHINA
| | - Mengyu Lin
- Beijing University of Chemical Technology College of Materials Science and Engineering CHINA
| | - Wenting Hu
- Beijing University of Chemical Technology College of Materials Science and Engineering CHINA
| | - Junkai Wang
- Beijing University of Chemical Technology College of Materials Science and Engineering CHINA
| | - Zhi-Guo Zhang
- Beijing University of Chemical Technology College of Materials Science and Engineering CHINA
| | - Kai Zhang
- Beijing University of Chemical Technology College of Materials Science and Engineering CHINA
| | - Bingran Yu
- Beijing University of Chemical Technology College of Materials Science and Engineering CHINA
| |
Collapse
|
23
|
Liu XY, Yang JB, Wu CY, Tang Q, Lu ZL, Lin L. [12]aneN3-Conjugated AIEgens with Two-Photon Imaging Property for Synergistic Gene/Photodynamic Therapy in Vitro and in Vivo. J Mater Chem B 2022; 10:945-957. [DOI: 10.1039/d1tb02352g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Six amphiphiles (TTC-L-M-1/2/3/4/5/6), each consisting of hydrophilic macrocyclic polyamine triazole-[12]aneN3 (M) and hydrophobic photosensitizer tetraphenylethenethiophene modified cyanoacrylate (TTC) moiety linked with alkyl chains (L), have been designed and synthesized for...
Collapse
|
24
|
Qian M, Cheng Z, Luo G, Galluzzi M, Shen Y, Li Z, Yang H, Yu X. Molybdenum Diphosphide Nanorods with Laser-Potentiated Peroxidase Catalytic/Mild-Photothermal Therapy of Oral Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:2101527. [PMID: 35059282 PMCID: PMC8728868 DOI: 10.1002/advs.202101527] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/29/2021] [Indexed: 05/04/2023]
Abstract
Chemodynamic therapy (CDT) is an emerging treatment that usually employs chemical agents to decompose hydrogen peroxide (H2O2) into hydroxyl radical (•OH) via Fenton or Fenton-like reactions, inducing cell apoptosis or necrosis by damaging biomacromolecules such as, lipids, proteins, and DNA. Generally, CDT shows high tumor-specificity and minimal-invasiveness in patients, thus it has attracted extensive research interests. However, the catalytic reaction efficiency of CDT is largely limited by the relatively high pH at the tumor sites. Herein, a 808 nm laser-potentiated peroxidase catalytic/mild-photothermal therapy of molybdenum diphosphide nanorods (MoP2 NRs) is developed to improve CDT performance, and simultaneously achieve effective tumor eradication and anti-infection. In this system, MoP2 NRs exhibit a favorable cytocompatibility due to their inherent excellent elemental biocompatibility. Upon irradiation with an 808 nm laser, MoP2 NRs act as photosensitizers to efficiently capture the photo-excited band electrons and valance band holes, exhibiting enhanced peroxidase-like catalytic activity to sustainedly decompose tumor endogenous H2O2 to •OH, which subsequently destroy the cellular biomacromolecules both in tumor cells and bacteria. As demonstrated both in vitro and in vivo, this system exhibits a superior therapeutic efficiency with inappreciable toxicity. Hence, the work may provide a promising therapeutic technique for further clinical applications.
Collapse
Affiliation(s)
- Min Qian
- Department of Oral and Maxillofacial SurgeryGuangdong Provincial High‐level Clinical Key SpecialtyGuangdong Province Engineering Research Center of Oral Disease Diagnosis and TreatmentPeking University Shenzhen HospitalGuangdong518036P. R. China
| | - Ziqiang Cheng
- Materials and Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055P. R. China
| | - Guanghong Luo
- Department of Radiation OncologyThe Second Clinical Medical CollegeJinan University (Shenzhen People's Hospital)ShenzhenGuangdong518020P. R. China
| | - Massimiliano Galluzzi
- Materials and Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055P. R. China
| | - Yuehong Shen
- Department of Oral and Maxillofacial SurgeryGuangdong Provincial High‐level Clinical Key SpecialtyGuangdong Province Engineering Research Center of Oral Disease Diagnosis and TreatmentPeking University Shenzhen HospitalGuangdong518036P. R. China
| | - Zhibin Li
- Materials and Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055P. R. China
| | - Hongyu Yang
- Department of Oral and Maxillofacial SurgeryGuangdong Provincial High‐level Clinical Key SpecialtyGuangdong Province Engineering Research Center of Oral Disease Diagnosis and TreatmentPeking University Shenzhen HospitalGuangdong518036P. R. China
| | - Xue‐Feng Yu
- Materials and Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055P. R. China
| |
Collapse
|
25
|
Obaid G, Hasan T. Subcutaneous Xenograft Models for Studying PDT In Vivo. Methods Mol Biol 2022; 2451:127-149. [PMID: 35505015 PMCID: PMC10516195 DOI: 10.1007/978-1-0716-2099-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The most facile, reproducible, and robust in vivo models for evaluating the anticancer efficacy of photodynamic therapy (PDT) are subcutaneous xenograft models of human tumors. The accessibility and practicality of light irradiation protocols for treating subcutaneous xenograft models also increase their value as relatively rapid tools to expedite the testing of novel photosensitizers, respective formulations, and treatment regimens for PDT. This chapter summarizes the methods used in the literature to prepare various types of subcutaneous xenograft models of human cancers and syngeneic models to explore the role of PDT in immuno-oncology. This chapter also summarizes the PDT treatment protocols tested on the subcutaneous models, and the procedures used to evaluate the efficacy at the molecular, macromolecular, and host organism levels.
Collapse
Affiliation(s)
- Girgis Obaid
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Liao ZX, Ou DL, Hsieh MJ, Hsieh CC. Synergistic Effect of Repolarization of M2 to M1 Macrophages Induced by Iron Oxide Nanoparticles Combined with Lactate Oxidase. Int J Mol Sci 2021; 22:ijms222413346. [PMID: 34948143 PMCID: PMC8705044 DOI: 10.3390/ijms222413346] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 12/19/2022] Open
Abstract
Metabolic reprogramming of tumors with the accompanying reprogramming of glucose metabolism and production of lactate accumulation is required for the subsequent development of tumors. Recent evidence has indicated that tumor-secreted lactate can promote an oncolytic immune microenvironment within the tumor. Furthermore, tumor-secreted lactate directly induces polarization of tumor-supportive M2 macrophages. However, oxidized tumor-secreted lactate in the tumor microenvironment can be exploited. Iron oxide nanoparticles have shown promising anticancer potential by activating tumor-suppressing macrophages. Furthermore, lactate oxidase (LOX) generally oxidizes tumor-secreted lactate and subsequently converts to pyruvate. Particularly, the ratio of M2 macrophages to M1 macrophages corresponds with tumor growth. In this study, we present iron oxide nanoparticles with carboxylic acid combined with LOX that enhance antitumor efficacy as a synergistic effect on the repolarization of tumor-supportive M2 macrophages to tumor-suppressive M1 macrophages in a tumor microenvironment. After M2 macrophages treated with iron oxide nanoparticles were combined with LOX, the ratio of M1 macrophages was significantly greater than iron oxide nanoparticles alone or with LOX alone. It is concluded that the inhibition of cancer cell proliferation by ratio of M1 macrophages was observed. This study suggests that the iron oxide nanoparticles combined with LOX could be potentially used for potentiating immune checkpoint inhibitor therapies for cancer treatment.
Collapse
Affiliation(s)
- Zi-Xian Liao
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (M.-J.H.); (C.-C.H.)
- Correspondence: ; Tel.: +886-7525-2000
| | - Da-Liang Ou
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
- YongLin Institute of Health, National Taiwan University, Taipei 10051, Taiwan
| | - Ming-Jung Hsieh
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (M.-J.H.); (C.-C.H.)
| | - Chia-Chen Hsieh
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (M.-J.H.); (C.-C.H.)
| |
Collapse
|
27
|
Wang Z, Xu FJ, Yu B. Smart Polymeric Delivery System for Antitumor and Antimicrobial Photodynamic Therapy. Front Bioeng Biotechnol 2021; 9:783354. [PMID: 34805129 PMCID: PMC8599151 DOI: 10.3389/fbioe.2021.783354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) has attracted tremendous attention in the antitumor and antimicrobial areas. To enhance the water solubility of photosensitizers and facilitate their accumulation in the tumor/infection site, polymeric materials are frequently explored as delivery systems, which are expected to show target and controllable activation of photosensitizers. This review introduces the smart polymeric delivery systems for the PDT of tumor and bacterial infections. In particular, strategies that are tumor/bacteria targeted or activatable by the tumor/bacteria microenvironment such as enzyme/pH/reactive oxygen species (ROS) are summarized. The similarities and differences of polymeric delivery systems in antitumor and antimicrobial PDT are compared. Finally, the potential challenges and perspectives of those polymeric delivery systems are discussed.
Collapse
Affiliation(s)
- Zhijia Wang
- Laboratory of Biomedical Materials and Key Lab of Biomedical Materials of Natural Macromolecules Beijing University of Chemical Technology, Ministry of Education, Beijing University of Chemical Technology, Beijing, China
| | - Fu-Jian Xu
- Laboratory of Biomedical Materials and Key Lab of Biomedical Materials of Natural Macromolecules Beijing University of Chemical Technology, Ministry of Education, Beijing University of Chemical Technology, Beijing, China
| | - Bingran Yu
- Laboratory of Biomedical Materials and Key Lab of Biomedical Materials of Natural Macromolecules Beijing University of Chemical Technology, Ministry of Education, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
28
|
Liu J, Wang F, Qin Y, Feng X. Advances in the Genetically Engineered KillerRed for Photodynamic Therapy Applications. Int J Mol Sci 2021; 22:ijms221810130. [PMID: 34576293 PMCID: PMC8468639 DOI: 10.3390/ijms221810130] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy (PDT) is a clinical treatment for cancer or non-neoplastic diseases, and the photosensitizers (PSs) are crucial for PDT efficiency. The commonly used chemical PSs, generally produce ROS through the type II reaction that highly relies on the local oxygen concentration. However, the hypoxic tumor microenvironment and unavoidable dark toxicity of PSs greatly restrain the wide application of PDT. The genetically encoded PSs, unlike chemical PSs, can be modified using genetic engineering techniques and targeted to unique cellular compartments, even within a single cell. KillerRed, as a dimeric red fluorescent protein, can be activated by visible light or upconversion luminescence to execute the Type I reaction of PDT, which does not need too much oxygen and surely attract the researchers’ focus. In particular, nanotechnology provides new opportunities for various modifications of KillerRed and versatile delivery strategies. This review more comprehensively outlines the applications of KillerRed, highlighting the fascinating features of KillerRed genes and proteins in the photodynamic systems. Furthermore, the advantages and defects of KillerRed are also discussed, either alone or in combination with other therapies. These overviews may facilitate understanding KillerRed progress in PDT and suggest some emerging potentials to circumvent challenges to improve the efficiency and accuracy of PDT.
Collapse
|
29
|
Liao ZX, Kempson IM, Hsieh CC, Tseng SJ, Yang PC. Potential therapeutics using tumor-secreted lactate in nonsmall cell lung cancer. Drug Discov Today 2021; 26:2508-2514. [PMID: 34325010 DOI: 10.1016/j.drudis.2021.07.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/03/2021] [Accepted: 07/19/2021] [Indexed: 01/13/2023]
Abstract
Targeted-therapy failure in treating nonsmall cell lung cancer (NSCLC) frequently occurs because of the emergence of drug resistance and genetic mutations. The same mutations also result in aerobic glycolysis, which further antagonizes outcomes by localized increases in lactate, an immune suppressor. Recent evidence indicates that enzymatic lowering of lactate can promote an oncolytic immune microenvironment within the tumour. Here, we review factors relating to lactate expression in NSCLC and the utility of lactate oxidase (LOX) for governing therapeutic delivery, its role in lactate oxidation and turnover, and relationships between lactate depletion and immune cell populations. The lactate-rich characteristic of NSCLC provides an exploitable property to potentially improve NSCLC outcomes and design new therapeutic strategies to integrate with conventional therapies.
Collapse
Affiliation(s)
- Zi-Xian Liao
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Ivan M Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Chia-Chen Hsieh
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - S-Ja Tseng
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei 10051, Taiwan; National Taiwan University YongLin Scholar, YongLin Institute of Health, National Taiwan University, Taipei 10051, Taiwan.
| | - Pan-Chyr Yang
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei 10051, Taiwan; Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 10051, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
30
|
Yang J, Song L, Shen M, Gou X, Bai L, Wang L, Zhang W, Wu Q, Gong C. Hierarchically Responsive Tumor‐Microenvironment‐Activated Nano‐Artificial Virus for Precise Exogenous and Endogenous Apoptosis Coactivation. ADVANCED FUNCTIONAL MATERIALS 2021. [DOI: 10.1002/adfm.202104423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jin Yang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Linjiang Song
- School of Medical and Life Sciences Chengdu University of Traditional Chinese Medicine Chengdu 611137 P. R. China
| | - Meiling Shen
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Xinyu Gou
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Liping Bai
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Li Wang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Wenli Zhang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Qinjie Wu
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
31
|
El-Hussein A, Manoto SL, Ombinda-Lemboumba S, Alrowaili ZA, Mthunzi-Kufa P. A Review of Chemotherapy and Photodynamic Therapy for Lung Cancer Treatment. Anticancer Agents Med Chem 2021; 21:149-161. [PMID: 32242788 DOI: 10.2174/1871520620666200403144945] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/15/2020] [Accepted: 02/20/2020] [Indexed: 11/22/2022]
Abstract
Cancer is among the leading causes of mortality and morbidity worldwide. Among the different types of cancers, lung cancer is considered to be the leading cause of death related to cancer and the most commonly diagnosed form of such disease. Chemotherapy remains a dominant treatment modality for many types of cancers at different stages. However, in many cases, cancer cells develop drug resistance and become nonresponsive to chemotherapy, thus, necessitating the exploration of alternative and /or complementary treatment modalities. Photodynamic Therapy (PDT) has emerged as an effective treatment modality for various malignant neoplasia and tumors. In PDT, the photochemical interaction of light, Photosensitizer (PS) and molecular oxygen produces Reactive Oxygen Species (ROS), which induces cell death. Combination therapy, by using PDT and chemotherapy, can promote synergistic effect against this fatal disease with the elimination of drug resistance, and enhancement of the efficacy of cancer eradication. In this review, we give an overview of chemotherapeutic modalities, PDT, and the different types of drugs associated with each therapy. Furthermore, we also explored the combined use of chemotherapy and PDT in the course of lung cancer treatment and how this approach could be the last resort for thousands of patients that have been diagnosed by this fatal disease.
Collapse
Affiliation(s)
- Ahmed El-Hussein
- National Institute of Laser Enhanced Science, Cairo University, Giza, Egypt
| | - Sello L Manoto
- Council for Scientific and Industrial Research (CSIR), National Laser Centre, Pretoria, South Africa
| | | | - Ziya A Alrowaili
- Physics Department, College of Science, Jouf University, Jouf, Saudi Arabia
| | - Patience Mthunzi-Kufa
- Council for Scientific and Industrial Research (CSIR), National Laser Centre, Pretoria, South Africa
| |
Collapse
|
32
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
33
|
Li L, Tian H, He J, Zhang M, Li Z, Ni P. Fabrication of aminated poly(glycidyl methacrylate)-based polymers for co-delivery of anticancer drugs and the p53 gene. J Mater Chem B 2021; 8:9555-9565. [PMID: 33001126 DOI: 10.1039/d0tb01811b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aminated poly(glycidyl methacrylate)s-based polymers for gene delivery not only can reduce toxicity and improve solubility, but can improve gene transfection efficiency and reduce protein aggregation. In this study, we first prepared poly(glycidyl methacrylate) (PGMA) via reversible addition-fragmentation chain transfer (RAFT) polymerization, and then the obtained PGMA homopolymer was post-modified with ethanol amine (EA), 1-amino-2-propanol (AP), 3-(dibutylamino)propylamine (DA) and N-(2-hydroxyethyl)ethylenediamine (HA), respectively, to yield four kinds of PGMA-based gene vectors containing hydroxyl groups (abbreviated as PGEA, PGAP, PGDA and PGHA). The effects of the different side chains and hydroxyl groups on the biological properties of these four cationic polymers were investigated. We found that the transfection efficiency of the PGHA/p53 complex was higher than those of the other three polymer/gene complexes through MTT assay and laser scanning confocal microscopy. Hence, we chose HA for further post-modification to fabricate a cationic copolymer, PCL-ss-P(PEGMA-co-GHA) (abbreviated as PGHAP), via a combination of ring opening polymerization (ROP) and RAFT copolymerization. The PCL-ss-P(PEGMA-co-GHA) amphiphilic copolymer could self-assemble into nanoparticles, which could be used to encapsulate anticancer drug doxorubicin (DOX) and compress the p53 gene to form the DOX-loaded PCL-ss-P(PEGMA-co-GHA)/p53 complex (abbreviated as DPGHAP/p53). The gel retardation assay showed that p53 gene could be well immobilized and remained stable under the electronegative conditions. MTT assay showed that the DPGHAP/p53 complex had a significant antitumor effect on A549 cells and H1299 cells compared with free DOX or/and p53 gene therapy alone. Furthermore, the test results from live cell imaging systems revealed that the DPGHAP/p53 complexes could effectively deliver DOX and the p53 gene into A549 cells. Therefore, the constructed cationic polymer PCL-ss-P(PEGMA-co-GHA) has potential application prospects as a co-vector of anticancer drugs and genes.
Collapse
Affiliation(s)
- Lei Li
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China. and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongrui Tian
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China.
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China.
| | - Mingzu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China.
| | - Zuguang Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
34
|
Valente J, Pereira P, Sousa A, Queiroz J, Sousa F. Effect of Plasmid DNA Size on Chitosan or Polyethyleneimine Polyplexes Formulation. Polymers (Basel) 2021; 13:793. [PMID: 33807586 PMCID: PMC7962013 DOI: 10.3390/polym13050793] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 01/22/2023] Open
Abstract
Gene therapy could be simply defined as a strategy for the introduction of a functional copy of desired genes in patients, to correct some specific mutation and potentially treat the respective disorder. However, this straightforward definition hides very complex processes related to the design and preparation of the therapeutic genes, as well as the development of suitable gene delivery systems. Within non-viral vectors, polymeric nanocarriers have offered an ideal platform to be applied as gene delivery systems. Concerning this, the main goal of the study was to do a systematic evaluation on the formulation of pDNA delivery systems based on the complexation of different sized plasmids with chitosan (CH) or polyethyleneimine (PEI) polymers to search for the best option regarding encapsulation efficiency, surface charge, size, and delivery ability. The cytotoxicity and the transfection efficiency of these systems were accessed and, for the best p53 encoding pDNA nanosystems, the ability to promote protein expression was also evaluated. Overall, it was showed that CH polyplexes are more efficient on transfection when compared with the PEI polyplexes, resulting in higher P53 protein expression. Cells transfected with CH/p53-pDNA polyplexes presented an increase of around 54.2% on P53 expression, while the transfection with the PEI/p53-pDNA polyplexes resulted in a 32% increase.
Collapse
Affiliation(s)
- J.F.A. Valente
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (P.P.); (A.S.); (J.A.Q.)
- CDRsp—Centre Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal
| | - P. Pereira
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (P.P.); (A.S.); (J.A.Q.)
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal
| | - A. Sousa
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (P.P.); (A.S.); (J.A.Q.)
| | - J.A. Queiroz
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (P.P.); (A.S.); (J.A.Q.)
| | - F. Sousa
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (P.P.); (A.S.); (J.A.Q.)
| |
Collapse
|
35
|
Zhou T, Yang M, Zhang G, Kang L, Yang L, Guan H. Long non-coding RNA nuclear paraspeckle assembly transcript 1 protects human lens epithelial cells against H 2O 2 stimuli through the nuclear factor kappa b/p65 and p38/mitogen-activated protein kinase axis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1653. [PMID: 33490165 PMCID: PMC7812193 DOI: 10.21037/atm-20-7365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) plays a regulatory role in many biological processes; however, its role in cataracts has yet to be illuminated. This study aimed to investigate the protective role of NEAT1 in hydrogen peroxide (H2O2)-treated human lens epithelial cells (HLECs) and its underlying molecular mechanism. Methods HLECs (SRA01/04) were treated with 300 µM H2O2 to mimic cataract in vitro. Cell viability was detected by performing an MTT assay and EdU staining. Flow cytometry was carried out to detect apoptosis of HLECs. DNA damage was examined using γ-H2A histone family member X staining. and reactive oxygen species (ROS) production was measured using 2’,7’dichlorofluorescin diacetate staining. The expression levels of lncRNA and proteins were detected with quantitative real-time polymerase chain reaction and western blot, respectively. Results The expression of NEAT1 was observed to be increased in H2O2-treated HLECs and age-related cataract (ARC) tissues. Knockdown NEAT1 strongly protected against H2O2-induced cell death and also regulated the expression of cleaved caspase-3, B-cell lymphoma 2, and Bcl-2-associated X protein. Further, knockdown NEAT1 also significantly suppressed H2O2-induced intracellular ROS production and malondialdehyde (MDA) content, but elevated the glutathione (GSH) activity of H2O2-treated cells. Also, it is demonstrated that si-NEAT1 greatly inhibited H2O2-induced phosphorylation of NF-кB p65 and p38 MAPK. Conclusions This study confirmed that knockdown NEAT1 attenuated H2O2-induced damage in HLECs, and inhibited the oxidative stress and apoptosis of HLECs via regulating nuclear factor-kappa B (NF-κB) p65 and p38 MAPK signaling. It may provide a potential target for clinical treatment of cataracts.
Collapse
Affiliation(s)
- Tianqiu Zhou
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, China
| | - Mei Yang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, China
| | - Lihua Kang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, China
| | - Ling Yang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
36
|
Mohammadinejad R, Dehshahri A, Sagar Madamsetty V, Zahmatkeshan M, Tavakol S, Makvandi P, Khorsandi D, Pardakhty A, Ashrafizadeh M, Ghasemipour Afshar E, Zarrabi A. In vivo gene delivery mediated by non-viral vectors for cancer therapy. J Control Release 2020; 325:249-275. [PMID: 32634464 PMCID: PMC7334939 DOI: 10.1016/j.jconrel.2020.06.038] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/17/2022]
Abstract
Gene therapy by expression constructs or down-regulation of certain genes has shown great potential for the treatment of various diseases. The wide clinical application of nucleic acid materials dependents on the development of biocompatible gene carriers. There are enormous various compounds widely investigated to be used as non-viral gene carriers including lipids, polymers, carbon materials, and inorganic structures. In this review, we will discuss the recent discoveries on non-viral gene delivery systems. We will also highlight the in vivo gene delivery mediated by non-viral vectors to treat cancer in different tissue and organs including brain, breast, lung, liver, stomach, and prostate. Finally, we will delineate the state-of-the-art and promising perspective of in vivo gene editing using non-viral nano-vectors.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA
| | - Masoumeh Zahmatkeshan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy; Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6153753843, Iran
| | - Danial Khorsandi
- Department of Medical Nanotechnology, Faculty of Advanced, Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran; Department of Biotechnology-Biomedicine, University of Barcelona, Barcelona 08028, Spain
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Elham Ghasemipour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey.
| |
Collapse
|
37
|
Yang J, Dai J, Wang Q, Cheng Y, Guo J, Zhao Z, Hong Y, Lou X, Xia F. Tumor‐Triggered Disassembly of a Multiple‐Agent‐Therapy Probe for Efficient Cellular Internalization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Juliang Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430078 China
| | - Jun Dai
- Department of Obstetrics and Gynecology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Quan Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430078 China
| | - Yong Cheng
- Engineering Research Center of Nano-Geomaterials of Ministry of Education Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430078 China
| | - Jingjing Guo
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Yuning Hong
- Department of Chemistry and Physics La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430078 China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430078 China
| |
Collapse
|
38
|
Yang J, Dai J, Wang Q, Cheng Y, Guo J, Zhao Z, Hong Y, Lou X, Xia F. Tumor-Triggered Disassembly of a Multiple-Agent-Therapy Probe for Efficient Cellular Internalization. Angew Chem Int Ed Engl 2020; 59:20405-20410. [PMID: 32720727 DOI: 10.1002/anie.202009196] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/25/2020] [Indexed: 12/25/2022]
Abstract
Integration of multiple agent therapy (MAT) into one probe is promising for improving therapeutic efficiency for cancer treatment. However, MAT probe, if entering the cell as a whole, may not be optimal for each therapeutic agent (with different physicochemical properties), to achieve their best performance, hindering strategy optimization. A peptide-conjugated-AIEgen (FC-PyTPA) is presented: upon loading with siRNA, it self-assembles into FCsiRNA -PyTPA. When approaching the region near tumor cells, FCsiRNA -PyTPA responds to extracellular MMP-2 and is cleaved into FCsiRNA and PyTPA. The former enters cells mainly by macropinocytosis and the latter is internalized into cells mainly through caveolae-mediated endocytosis. This two-part strategy greatly improves the internalization efficiency of each individual therapeutic agent. Inside the cell, self-assembly of nanofiber precursor F, gene interference of CsiRNA , and ROS production of PyTPA are activated to inhibit tumor growth.
Collapse
Affiliation(s)
- Juliang Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Quan Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China
| | - Yong Cheng
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China
| | - Jingjing Guo
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Yuning Hong
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China
| |
Collapse
|
39
|
Dong L, Li W, Sun L, Yu L, Chen Y, Hong G. Energy-converting biomaterials for cancer therapy: Category, efficiency, and biosafety. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1663. [PMID: 32808464 DOI: 10.1002/wnan.1663] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022]
Abstract
Energy-converting biomaterials (ECBs)-mediated cancer-therapeutic modalities have been extensively explored, which have achieved remarkable benefits to overwhelm the obstacles of traditional cancer-treatment modalities. Energy-driven cancer-therapeutic modalities feature their distinctive merits, including noninvasiveness, low mammalian toxicity, adequate therapeutic outcome, and optimistical synergistic therapeutics. In this advanced review, the prevailing mainstream ECBs can be divided into two sections: Reactive oxygen species (ROS)-associated energy-converting biomaterials (ROS-ECBs) and hyperthermia-related energy-converting biomaterials (H-ECBs). On the one hand, ROS-ECBs can transfer exogenous or endogenous energy (such as light, radiation, ultrasound, or chemical) to generate and release highly toxic ROS for inducing tumor cell apoptosis/necrosis, including photo-driven ROS-ECBs for photodynamic therapy, radiation-driven ROS-ECBs for radiotherapy, ultrasound-driven ROS-ECBs for sonodynamic therapy, and chemical-driven ROS-ECBs for chemodynamic therapy. On the other hand, H-ECBs could translate the external energy (such as light and magnetic) into heat for killing tumor cells, including photo-converted H-ECBs for photothermal therapy and magnetic-converted H-ECBs for magnetic hyperthermia therapy. Additionally, the biosafety issues of ECBs are expounded preliminarily, guaranteeing the ever-stringent requirements of clinical translation. Finally, we discussed the prospects and facing challenges for constructing the new-generation ECBs for establishing intriguing energy-driven cancer-therapeutic modalities. This article is categorized under: Nanotechnology Approaches to Biology >Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Lile Dong
- Department of Radiology, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Wenjuan Li
- Department of Radiology, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Lining Sun
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai, China
| | - Luodan Yu
- School of Life Sciences, Shanghai University, Shanghai, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Yu Chen
- School of Life Sciences, Shanghai University, Shanghai, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Guobin Hong
- Department of Radiology, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| |
Collapse
|
40
|
Zhu Y, Lu J, Han M, Jiang X, Azad MAK, Patil NA, Lin Y, Zhao J, Hu Y, Yu HH, Chen K, Boyce JD, Dunstan RA, Lithgow T, Barlow CK, Li W, Schneider‐Futschik EK, Wang J, Gong B, Sommer B, Creek DJ, Fu J, Wang L, Schreiber F, Velkov T, Li J. Polymyxins Bind to the Cell Surface of Unculturable Acinetobacter baumannii and Cause Unique Dependent Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000704. [PMID: 32775156 PMCID: PMC7403960 DOI: 10.1002/advs.202000704] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/28/2020] [Indexed: 05/13/2023]
Abstract
Multidrug-resistant Acinetobacter baumannii is a top-priority pathogen globally and polymyxins are a last-line therapy. Polymyxin dependence in A. baumannii (i.e., nonculturable on agar without polymyxins) is a unique and highly-resistant phenotype with a significant potential to cause treatment failure in patients. The present study discovers that a polymyxin-dependent A. baumannii strain possesses mutations in both lpxC (lipopolysaccharide biosynthesis) and katG (reactive oxygen species scavenging) genes. Correlative multiomics analyses show a significantly remodeled cell envelope and remarkably abundant phosphatidylglycerol in the outer membrane (OM). Molecular dynamics simulations and quantitative membrane lipidomics reveal that polymyxin-dependent growth emerges only when the lipopolysaccharide-deficient OM distinctively remodels with ≥ 35% phosphatidylglycerol, and with "patch" binding on the OM by the rigid polymyxin molecules containing strong intramolecular hydrogen bonding. Rather than damaging the OM, polymyxins bind to the phosphatidylglycerol-rich OM and strengthen the membrane integrity, thereby protecting bacteria from external reactive oxygen species. Dependent growth is observed exclusively with polymyxin analogues, indicating a critical role of the specific amino acid sequence of polymyxins in forming unique structures for patch-binding to bacterial OM. Polymyxin dependence is a novel antibiotic resistance mechanism and the current findings highlight the risk of 'invisible' polymyxin-dependent isolates in the evolution of resistance.
Collapse
Affiliation(s)
- Yan Zhu
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Jing Lu
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Mei‐Ling Han
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Xukai Jiang
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Mohammad A. K. Azad
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Nitin A. Patil
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Yu‐Wei Lin
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Jinxin Zhao
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Yang Hu
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Heidi H. Yu
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Ke Chen
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - John D. Boyce
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Rhys A. Dunstan
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Trevor Lithgow
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | | | - Weifeng Li
- School of Physics and State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | | | - Jiping Wang
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Bin Gong
- School of Computer Science and TechnologyShandong UniversityJinan250100China
| | - Bjorn Sommer
- Department of Computer and Information ScienceUniversity of KonstanzKonstanz78457Germany
| | - Darren J. Creek
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash UniversityMelbourne3052Australia
| | - Jing Fu
- Department of Mechanical and Aerospace EngineeringMonash UniversityMelbourne3800Australia
| | - Lushan Wang
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao CampusQingdao266237China
| | - Falk Schreiber
- Department of Computer and Information ScienceUniversity of KonstanzKonstanz78457Germany
| | - Tony Velkov
- Department of Pharmacology and TherapeuticsUniversity of MelbourneMelbourne3010Australia
| | - Jian Li
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| |
Collapse
|
41
|
Wu T, Liu Q, Cao Y, Tian R, Liu J, Ding B. Multifunctional Double-Bundle DNA Tetrahedron for Efficient Regulation of Gene Expression. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32461-32467. [PMID: 32613824 DOI: 10.1021/acsami.0c08886] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
DNA nanostructures have garnered considerable interest as research tools in the field of cell biology and pathology. Herein, we develop an addressable double-bundle DNA tetrahedron with distinct modification sites to load multiple functional components for efficient regulation of gene expression. In our tailored nanoplatform, nucleic acid drugs (antisense for gene therapy) and protein drugs (KillerRed for photodynamic therapy) are precisely organized in the chemically well-defined DNA tetrahedron. With the attachment of active targeting groups, this functional DNA nanocarrier can efficiently penetrate into the cell membrane and subsequently transport drugs to the target subcellular organelles (mitochondrion and nucleus) for inducing synergistic cell behavior regulation to start the endogenous apoptotic process. This tailored DNA nanocarrier provides unprecedented opportunities for intelligent drug delivery and cell biology research.
Collapse
Affiliation(s)
- Tiantian Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yuanwei Cao
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Run Tian
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
42
|
Lichon L, Kotras C, Myrzakhmetov B, Arnoux P, Daurat M, Nguyen C, Durand D, Bouchmella K, Ali LMA, Durand JO, Richeter S, Frochot C, Gary-Bobo M, Surin M, Clément S. Polythiophenes with Cationic Phosphonium Groups as Vectors for Imaging, siRNA Delivery, and Photodynamic Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1432. [PMID: 32708042 PMCID: PMC7466636 DOI: 10.3390/nano10081432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/22/2022]
Abstract
In this work, we exploit the versatile function of cationic phosphonium-conjugated polythiophenes to develop multifunctional platforms for imaging and combined therapy (siRNA delivery and photodynamic therapy). The photophysical properties (absorption, emission and light-induced generation of singlet oxygen) of these cationic polythiophenes were found to be sensitive to molecular weight. Upon light irradiation, low molecular weight cationic polythiophenes were able to light-sensitize surrounding oxygen into reactive oxygen species (ROS) while the highest were not due to its aggregation in aqueous media. These polymers are also fluorescent, allowing one to visualize their intracellular location through confocal microscopy. The most promising polymers were then used as vectors for siRNA delivery. Due to their cationic and amphipathic features, these polymers were found to effectively self-assemble with siRNA targeting the luciferase gene and deliver it in MDA-MB-231 cancer cells expressing luciferase, leading to 30-50% of the gene-silencing effect. In parallel, the photodynamic therapy (PDT) activity of these cationic polymers was restored after siRNA delivery, demonstrating their potential for combined PDT and gene therapy.
Collapse
Affiliation(s)
- Laure Lichon
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (L.L.); (C.N.); (D.D.); (L.M.A.A.)
| | - Clément Kotras
- Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons—UMONS, 20 Place du Parc, 7000 Mons, Belgium; (C.K.); (M.S.)
- ICGM, University of Montpellier, CNRS, ENSCM, CC1701, Place Eugène Bataillon, 34095 Montpellier, France; (K.B.); (J.-O.D.); (S.R.)
| | - Bauyrzhan Myrzakhmetov
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, Université de Lorraine, CNRS, 54000 Nancy, France; (B.M.); (P.A.); (C.F.)
| | - Philippe Arnoux
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, Université de Lorraine, CNRS, 54000 Nancy, France; (B.M.); (P.A.); (C.F.)
| | - Morgane Daurat
- NanoMedSyn, 15 Avenue Charles Flahault, 34093 Montpellier, France;
| | - Christophe Nguyen
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (L.L.); (C.N.); (D.D.); (L.M.A.A.)
| | - Denis Durand
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (L.L.); (C.N.); (D.D.); (L.M.A.A.)
| | - Karim Bouchmella
- ICGM, University of Montpellier, CNRS, ENSCM, CC1701, Place Eugène Bataillon, 34095 Montpellier, France; (K.B.); (J.-O.D.); (S.R.)
| | - Lamiaa Mohamed Ahmed Ali
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (L.L.); (C.N.); (D.D.); (L.M.A.A.)
- Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria 21561, Egypt
| | - Jean-Olivier Durand
- ICGM, University of Montpellier, CNRS, ENSCM, CC1701, Place Eugène Bataillon, 34095 Montpellier, France; (K.B.); (J.-O.D.); (S.R.)
| | - Sébastien Richeter
- ICGM, University of Montpellier, CNRS, ENSCM, CC1701, Place Eugène Bataillon, 34095 Montpellier, France; (K.B.); (J.-O.D.); (S.R.)
| | - Céline Frochot
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, Université de Lorraine, CNRS, 54000 Nancy, France; (B.M.); (P.A.); (C.F.)
| | - Magali Gary-Bobo
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (L.L.); (C.N.); (D.D.); (L.M.A.A.)
| | - Mathieu Surin
- Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons—UMONS, 20 Place du Parc, 7000 Mons, Belgium; (C.K.); (M.S.)
| | - Sébastien Clément
- ICGM, University of Montpellier, CNRS, ENSCM, CC1701, Place Eugène Bataillon, 34095 Montpellier, France; (K.B.); (J.-O.D.); (S.R.)
| |
Collapse
|
43
|
Xu C, Hu W, Zhang N, Qi Y, Nie JJ, Zhao N, Yu B, Xu FJ. Genetically multimodal therapy mediated by one polysaccharides-based supramolecular nanosystem. Biomaterials 2020; 248:120031. [DOI: 10.1016/j.biomaterials.2020.120031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022]
|
44
|
Liao ZX, Huang KY, Kempson IM, Li HJ, Tseng SJ, Yang PC. Nanomodified strategies to overcome EGFR-tyrosine kinase inhibitors resistance in non-small cell lung cancer. J Control Release 2020; 324:482-492. [PMID: 32497570 DOI: 10.1016/j.jconrel.2020.05.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
Abstract
Lung cancer is the primary cause of cancer-related death worldwide. 85%-90% of cases are non-small cell lung cancer (NSCLC) which characteristically exhibits altered epidermal growth factor receptor (EGFR) signaling is a major driver pathway. Unfortunately, therapeutic outcomes in treating NSCLC are compromised by the emergence of drug resistance in response to EGFR-tyrosine kinase inhibitor (TKI) targeted therapy due to the acquired resistance mutation EGFR T790M or activation of alternative pathways. There is current need for a new generation of TKIs to be developed to treat EGFR-TKI-resistant NSCLC. To overcome the above problems and improve clinical efficacy, nanotechnology with targeting abilities and sustained release has been proposed for EGFR-TKI-resistant NSCLC treatment and has already achieved success in in vitro or in vivo models. In this review, we summarize and illustrate representative nano-formulations targeting EGFR-TKI-resistant NSCLC. The described advances may pave the way to better understanding and design of nanocarriers and multifunctional nanosystems for efficient treatment for drug resistant NSCLC.
Collapse
Affiliation(s)
- Zi-Xian Liao
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Kuo-Yen Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Ivan M Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Hsin-Jung Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - S-Ja Tseng
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei 10051, Taiwan; National Taiwan University YongLin Scholar, YongLin Institute of Health, National Taiwan University, Taipei 10672, Taiwan.
| | - Pan-Chyr Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; The Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan; Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 10051, Taiwan.
| |
Collapse
|
45
|
Xu Q, Li X, Zhang P, Wang Y. Rapidly dissolving microneedle patch for synergistic gene and photothermal therapy of subcutaneous tumor. J Mater Chem B 2020; 8:4331-4339. [PMID: 32352128 DOI: 10.1039/d0tb00105h] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synergistic combination of gene therapy and photothermal therapy (PTT) has been widely investigated as a promising strategy for cancer treatment. To deliver genes and photothermal agents simultaneously and accurately to a tumor site, a microneedle (MN) patch co-loaded with p53 DNA and IR820 was fabricated by a two-step casting method. Hyaluronic acid was chosen as a matrix and p53 DNA and IR820 were mainly loaded into the tips to enhance utilization and reduce waste. The MN patch could efficiently penetrate the stratum corneum, and dissolve rapidly to release p53 DNA and IR820 in the subcutaneous tumor site. Due to the efficient photothermal efficacy of IR820, the temperature of the tumor site where the MN patch was applied increased by 14.7 °C under near-infrared light irradiation. The MN patch showed excellent antitumor effects in vivo owing to the synergistic effect of gene therapy and PTT. Consequently, the p53 DNA/IR820 MN patch may be a promising synergistic strategy for subcutaneous tumor treatments.
Collapse
Affiliation(s)
- Qinan Xu
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China.
| | | | | | | |
Collapse
|
46
|
Chen J, Guo Z, Jiao Z, Lin L, Xu C, Tian H, Chen X. Poly(l-glutamic acid)-Based Zwitterionic Polymer in a Charge Conversional Shielding System for Gene Therapy of Malignant Tumors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19295-19306. [PMID: 32239907 DOI: 10.1021/acsami.0c02769] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, pH-sensitive polymers have received extensive attention in tumor therapy. However, the rapid response to pH changes is the key to achieving efficient treatment. Here, a novel shielding system with a rapidly pH-responsive polymer (PAMT) is synthesized by click reaction between poly(γ-allyl-l-glutamate) and thioglycolic acid or 2-(Boc-amino)ethanethiol. The zwitterionic biodegradable polymer PAMT, which is negatively charged at physiological pH, can be used to shield positively charged nanoparticles. PAMT is electrostatically attached to the surface of the positively charged PEI/pDNA complex to form a ternary complex. The zwitterionic PAMT-shielded complex exhibits rapid charge conversion when the pH decreases from 7.4 to 6.8. For the in vivo tumor inhibition experiment, PAMT/PEI/shVEGF injected intravenously shows a more significant inhibitory effect on tumor growth. The excellent results are mainly attributed to introduction of the zwitterionic copolymer PAMT, which can shield the positively charged PEI/shVEGF complex in physiological conditions, while the surface potential of the shielded complexes changes to a positive charge in the acidic tumor environment.
Collapse
Affiliation(s)
- Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Zhaopei Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Zixue Jiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Lin Lin
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Caina Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| |
Collapse
|
47
|
Du S, Shao J, Qi Y, Liu X, Liu J, Zhang F. Long non-coding RNA ANRIL alleviates H 2O 2-induced injury by up-regulating microRNA-21 in human lens epithelial cells. Aging (Albany NY) 2020; 12:6543-6557. [PMID: 32310822 PMCID: PMC7202488 DOI: 10.18632/aging.102800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 01/19/2020] [Indexed: 12/22/2022]
Abstract
The accurate role of ANRIL in cataract is poorly understood. We aimed to reveal the effects of ANRIL on H2O2-treated HLECs, SRA01/04, as well as the regulatory mechanisms. Oxidative stress model of HLECs was induced by H2O2. Cell injury was evaluated according to cell proliferation, apoptosis and DNA damage using CCK-8 assay/flow cytometry and TUNEL assays/γH2AX staining. Expressions of ANRIL and miR-21 in HLECs were determined by RT-qPCR. The effects of miR-21, miR-34a and miR-122-5p inhibition as well as AMPK and β-catenin on HLECs with ANRIL overexpression and H2O2 stimulation were analyzed. In vivo experiment was performed via RT-qPCR. H2O2 repressed proliferation and induced apoptosis or DNA damage in HLECs. Those alterations induced by H2O2 were attenuated by ANRIL overexpression. MiR-21 was positively regulated by ANRIL, and both of them were repressed in H2O2-induced HLECs and cataract patient tissues. Inhibition of miR-21 but not miR-34a or miR-122-5p reversed the effects of ANRIL on H2O2-treated HLECs. Phosphorylation of AMPK and expression of β-catenin were increased by ANRIL via regulating miR-21. AMPK and β-catenin affected beneficial function of ANRIL-miR-21 axis.Therefore, lncRNA ANRIL attenuated H2O2-induced cell injury in HELCs via up-regulating miR-21 via the activation of AMPK and β-catenin.
Collapse
Affiliation(s)
- Shanshan Du
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jingzhi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Ying Qi
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xuhui Liu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jingjing Liu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Fengyan Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| |
Collapse
|
48
|
Fang Z, Pan S, Gao P, Sheng H, Li L, Shi L, Zhang Y, Cai X. Stimuli-responsive charge-reversal nano drug delivery system: The promising targeted carriers for tumor therapy. Int J Pharm 2020; 575:118841. [DOI: 10.1016/j.ijpharm.2019.118841] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 01/04/2023]
|
49
|
Tang Q, Liu J, Jiang Y, Zhang M, Mao L, Wang M. Cell-Selective Messenger RNA Delivery and CRISPR/Cas9 Genome Editing by Modulating the Interface of Phenylboronic Acid-Derived Lipid Nanoparticles and Cellular Surface Sialic Acid. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46585-46590. [PMID: 31763806 DOI: 10.1021/acsami.9b17749] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Messenger RNA (mRNA) represents an emerging class of nucleic acid therapeutics for genome editing and genetic disease treatment. Delivering exogenous mRNA selectively to cells, however, remains a main challenge to broaden the biomedical application of mRNA and develop targeted gene therapy. Herein, we report cell-selective mRNA delivery and CRISPR/Cas9 genome editing by modulating the interface of phenylboronic acid (PBA) derived lipid nanoparticles (NPs) and cellular surface sialic acid (SA). We design a cationic lipid featuring a PBA group, PBA-BADP, to self-assemble with mRNA into nanoparticles via electrostatic interactions. Importantly, these nanoparticles present free PBA groups on their surface, showing an enhanced cellular uptake by SA-overexpressing cancer cells via the interfacial PBA/SA interaction. It is shown that PBA-BADP/mRNA NPs transfection results in 300 times higher luciferase reporter gene expression in cancer cells than that in noncancer cells. Moreover, we demonstrate that the delivery of tumor suppressor p53 mRNA using PBA-BADP selectively prohibits cancer cell growth, while PBA-BADP/Cas9 mRNA NPs delivery knocks out gene expression of HeLa cancer cells in a much higher efficiency than noncancer cells. We believe these findings could further extend the modulation of PBA and cellular SA interface to advance mRNA delivery and genome editing for new gene therapy.
Collapse
Affiliation(s)
- Qiao Tang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry Chinese Academy of Sciences , Beijing 100190 , China
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Ji Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ying Jiang
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Meining Zhang
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
50
|
Yiwen Wang, Gao L, Zhao R, Liu X, Lu M, Yao X, Shen Y. Binding and Release of Reactive Oxygen Species-Responsive Charge Reversal Cationic Polymers with DNA Studied by Surface Plasmon Resonance. POLYMER SCIENCE SERIES A 2019. [DOI: 10.1134/s0965545x19060130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|