1
|
Kellaway SG, Potluri S, Keane P, Blair HJ, Ames L, Worker A, Chin PS, Ptasinska A, Derevyanko PK, Adamo A, Coleman DJL, Khan N, Assi SA, Krippner-Heidenreich A, Raghavan M, Cockerill PN, Heidenreich O, Bonifer C. Leukemic stem cells activate lineage inappropriate signalling pathways to promote their growth. Nat Commun 2024; 15:1359. [PMID: 38355578 PMCID: PMC10867020 DOI: 10.1038/s41467-024-45691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Acute Myeloid Leukemia (AML) is caused by multiple mutations which dysregulate growth and differentiation of myeloid cells. Cells adopt different gene regulatory networks specific to individual mutations, maintaining a rapidly proliferating blast cell population with fatal consequences for the patient if not treated. The most common treatment option is still chemotherapy which targets such cells. However, patients harbour a population of quiescent leukemic stem cells (LSCs) which can emerge from quiescence to trigger relapse after therapy. The processes that allow such cells to re-grow remain unknown. Here, we examine the well characterised t(8;21) AML sub-type as a model to address this question. Using four primary AML samples and a novel t(8;21) patient-derived xenograft model, we show that t(8;21) LSCs aberrantly activate the VEGF and IL-5 signalling pathways. Both pathways operate within a regulatory circuit consisting of the driver oncoprotein RUNX1::ETO and an AP-1/GATA2 axis allowing LSCs to re-enter the cell cycle while preserving self-renewal capacity.
Collapse
Affiliation(s)
- Sophie G Kellaway
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
- Blood Cancer and Stem Cells, Centre for Cancer Sciences, School of Medicine, University of Nottingham, Nottingham, UK.
| | - Sandeep Potluri
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Peter Keane
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Helen J Blair
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Luke Ames
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Alice Worker
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Paulynn S Chin
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Anetta Ptasinska
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | | | - Assunta Adamo
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Daniel J L Coleman
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Naeem Khan
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Salam A Assi
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | | | - Manoj Raghavan
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham, UK
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Olaf Heidenreich
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Princess Maxima Center of Pediatric Oncology, Utrecht, Netherlands
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
2
|
Kellaway SG, Coleman DJL, Cockerill PN, Raghavan M, Bonifer C. Molecular Basis of Hematological Disease Caused by Inherited or Acquired RUNX1 Mutations. Exp Hematol 2022; 111:1-12. [PMID: 35341804 DOI: 10.1016/j.exphem.2022.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/04/2022]
Abstract
The transcription factor RUNX1 is essential for correct hematopoietic development; in its absence in the germ line, blood stem cells are not formed. RUNX1 orchestrates dramatic changes in the chromatin landscape at the onset of stem cell formation, which set the stage for both stem self-renewal and further differentiation. However, once blood stem cells are formed, the mutation of the RUNX1 gene is not lethal but can lead to various hematopoietic defects and a predisposition to cancer. Here we summarize the current literature on inherited and acquired RUNX1 mutations, with a particular emphasis on mutations that alter the structure of the RUNX1 protein itself, and place these changes in the context of what is known about RUNX1 function. We also summarize which mutant RUNX1 proteins are actually expressed in cells and discuss the molecular mechanism underlying how such variants reprogram the epigenome setting stem cells on the path to malignancy.
Collapse
Affiliation(s)
- Sophie G Kellaway
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK.
| | - Daniel J L Coleman
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK
| | - Manoj Raghavan
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK; Centre of Clinical Haematology, Queen Elizabeth Hospital, Birmingham, UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK.
| |
Collapse
|
3
|
Kellaway SG, Keane P, Kennett E, Bonifer C. RUNX1-EVI1 disrupts lineage determination and the cell cycle by interfering with RUNX1 and EVI1 driven gene regulatory networks. Haematologica 2021; 106:1569-1580. [PMID: 32299907 PMCID: PMC8168488 DOI: 10.3324/haematol.2019.241885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Indexed: 11/15/2022] Open
Abstract
Hematological malignancies are characterized by a block in differentiation, which in many cases is caused by recurrent mutations affecting the activity of hematopoietic transcription factors. RUNX1-EVI1 is a fusion protein encoded by the t(3;21) translocation linking two transcription factors required for normal hematopoiesis. RUNX1-EVI1 expression is found in myelodysplastic syndrome, secondary acute my eloid leukemia, and blast crisis of chronic myeloid leukemia; with clinical outcomes being worse than in patients with RUNX1-ETO, RUNX1 or EVI1 mutations alone. RUNX1-EVI1 is usually found as a secondary mutation, therefore the molecular mechanisms underlying how RUNX1-EVI1 alone contributes to poor prognosis are unknown. In order to address this question, we induced expression of RUNX1-EVI1 in hematopoietic cells derived from an embryonic stem cell d i fferentiation model. Induction resulte d in disruption of t he RUNX1-dependent endothelial-hematopoietic transition, blocked the cell cycle and undermined cell fate decisions in multipotent hematopoietic progenitor cells. Integrative analyses of gene expression with chromatin and transcription factor binding data demonstrated that RUNX1- EVI1 binding caused a re-distribution of endogenous RUNX1 within the genome and interfered with both RUNX1 and EVI1 regulated gene expression programs. In summary, RUNX1-EVI1 expression alone leads to extensive epigenetic reprogramming which is incompatible with healthy blood production.
Collapse
Affiliation(s)
- Sophie G Kellaway
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Peter Keane
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Ella Kennett
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
4
|
Nafria M, Keane P, Ng ES, Stanley EG, Elefanty AG, Bonifer C. Expression of RUNX1-ETO Rapidly Alters the Chromatin Landscape and Growth of Early Human Myeloid Precursor Cells. Cell Rep 2021; 31:107691. [PMID: 32460028 PMCID: PMC7262600 DOI: 10.1016/j.celrep.2020.107691] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/12/2020] [Accepted: 05/05/2020] [Indexed: 01/03/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematopoietic malignancy caused by recurrent mutations in genes encoding transcriptional, chromatin, and/or signaling regulators. The t(8;21) translocation generates the aberrant transcription factor RUNX1-ETO (RUNX1-RUNX1T1), which by itself is insufficient to cause disease. t(8;21) AML patients show extensive chromatin reprogramming and have acquired additional mutations. Therefore, the genomic and developmental effects directly and solely attributable to RUNX1-ETO expression are unclear. To address this, we employ a human embryonic stem cell differentiation system capable of forming definitive myeloid progenitor cells to express RUNX1-ETO in an inducible fashion. Induction of RUNX1-ETO causes extensive chromatin reprogramming by interfering with RUNX1 binding, blocks differentiation, and arrests cellular growth, whereby growth arrest is reversible following RUNX1-ETO removal. Single-cell gene expression analyses show that RUNX1-ETO induction alters the differentiation of early myeloid progenitors, but not of other progenitor types, indicating that oncoprotein-mediated transcriptional reprogramming is highly target cell specific. RUNX1-ETO reversibly arrests the growth of human ESC-derived early myeloid cells RUNX1-ETO disrupts global RUNX1 binding and deregulates RUNX1 target genes RUNX1-ETO blocks myeloid differentiation by rapidly downregulating SPI1 and CEBPA The impact of RUNX1-ETO induction is cell type specific
Collapse
Affiliation(s)
- Monica Nafria
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK; Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3052, Australia
| | - Peter Keane
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Elizabeth S Ng
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - Edouard G Stanley
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3052, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Andrew G Elefanty
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3052, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Constanze Bonifer
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
5
|
Lewis AC, Kats LM. Non-genetic heterogeneity, altered cell fate and differentiation therapy. EMBO Mol Med 2021; 13:e12670. [PMID: 33555144 PMCID: PMC7933953 DOI: 10.15252/emmm.202012670] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Altered capacity for self-renewal and differentiation is a hallmark of cancer, and many tumors are composed of cells with a developmentally immature phenotype. Among the malignancies where processes that govern cell fate decisions have been studied most extensively is acute myeloid leukemia (AML), a disease characterized by the presence of large numbers of "blasts" that resemble myeloid progenitors. Classically, the defining properties of AML cells were said to be aberrant self-renewal and a block of differentiation, and the term "differentiation therapy" was coined to describe drugs that promote the maturation of leukemic blasts. Notionally however, the simplistic view that such agents "unblock" differentiation is at odds with the cancer stem cell (CSC) hypothesis that posits that tumors are hierarchically organized and that CSCs, which underpin cancer growth, retain the capacity to progress to a developmentally more mature state. Herein, we will review recent developments that are providing unprecedented insights into non-genetic heterogeneity both at steady state and in response to treatment, and propose a new conceptual framework for therapies that aim to alter cell fate decisions in cancer.
Collapse
Affiliation(s)
| | - Lev M Kats
- The Peter MacCallum Cancer CentreMelbourneVICAustralia
- The Sir Peter MacCallum Department of OncologyUniversity of MelbourneParkvilleVICAustralia
| |
Collapse
|
6
|
Kellaway SG, Keane P, Edginton-White B, Regha K, Kennett E, Bonifer C. Different mutant RUNX1 oncoproteins program alternate haematopoietic differentiation trajectories. Life Sci Alliance 2021; 4:4/2/e202000864. [PMID: 33397648 PMCID: PMC7812315 DOI: 10.26508/lsa.202000864] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Using integrated genome-wide and phenotypic methods this study investigates four different mutant RUNX1 oncoproteins and reveals how they differentially contribute to aberrant haematopoiesis. Mutations of the haematopoietic master regulator RUNX1 are associated with acute myeloid leukaemia, familial platelet disorder and other haematological malignancies whose phenotypes and prognoses depend upon the class of the RUNX1 mutation. The biochemical behaviour of these oncoproteins and their ability to cause unique diseases has been well studied, but the genomic basis of their differential action is unknown. To address this question we compared integrated phenotypic, transcriptomic, and genomic data from cells expressing four types of RUNX1 oncoproteins in an inducible fashion during blood development from embryonic stem cells. We show that each class of mutant RUNX1 deregulates endogenous RUNX1 function by a different mechanism, leading to specific alterations in developmentally controlled transcription factor binding and chromatin programming. The result is distinct perturbations in the trajectories of gene regulatory network changes underlying blood cell development which are consistent with the nature of the final disease phenotype. The development of novel treatments for RUNX1-driven diseases will therefore require individual consideration.
Collapse
Affiliation(s)
- Sophie G Kellaway
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Peter Keane
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | | | - Kakkad Regha
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Ella Kennett
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
7
|
Kellaway S, Chin PS, Barneh F, Bonifer C, Heidenreich O. t(8;21) Acute Myeloid Leukemia as a Paradigm for the Understanding of Leukemogenesis at the Level of Gene Regulation and Chromatin Programming. Cells 2020; 9:E2681. [PMID: 33322186 PMCID: PMC7763303 DOI: 10.3390/cells9122681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogenous disease with multiple sub-types which are defined by different somatic mutations that cause blood cell differentiation to go astray. Mutations occur in genes encoding members of the cellular machinery controlling transcription and chromatin structure, including transcription factors, chromatin modifiers, DNA-methyltransferases, but also signaling molecules that activate inducible transcription factors controlling gene expression and cell growth. Mutant cells in AML patients are unable to differentiate and adopt new identities that are shaped by the original driver mutation and by rewiring their gene regulatory networks into regulatory phenotypes with enhanced fitness. One of the best-studied AML-subtypes is the t(8;21) AML which carries a translocation fusing the DNA-binding domain of the hematopoietic master regulator RUNX1 to the ETO gene. The resulting oncoprotein, RUNX1/ETO has been studied for decades, both at the biochemical but also at the systems biology level. It functions as a dominant-negative version of RUNX1 and interferes with multiple cellular processes associated with myeloid differentiation, growth regulation and genome stability. In this review, we summarize our current knowledge of how this protein reprograms normal into malignant cells and how our current knowledge could be harnessed to treat the disease.
Collapse
Affiliation(s)
- Sophie Kellaway
- Institute of Cancer and Genomica Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B152TT, UK; (S.K.); (P.S.C.)
| | - Paulynn S. Chin
- Institute of Cancer and Genomica Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B152TT, UK; (S.K.); (P.S.C.)
| | - Farnaz Barneh
- Princess Máxima Centrum for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, The Netherlands;
| | - Constanze Bonifer
- Institute of Cancer and Genomica Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B152TT, UK; (S.K.); (P.S.C.)
| | - Olaf Heidenreich
- Princess Máxima Centrum for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, The Netherlands;
| |
Collapse
|
8
|
Gilmour J, O'Connor L, Middleton CP, Keane P, Gillemans N, Cazier JB, Philipsen S, Bonifer C. Robust hematopoietic specification requires the ubiquitous Sp1 and Sp3 transcription factors. Epigenetics Chromatin 2019; 12:33. [PMID: 31164147 PMCID: PMC6547542 DOI: 10.1186/s13072-019-0282-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/25/2019] [Indexed: 01/13/2023] Open
Abstract
Background Both tissue-specific and ubiquitously expressed transcription factors, such as Sp-family members, are required for correct development. However, the molecular details of how ubiquitous factors are involved in programming tissue-specific chromatin and thus participate in developmental processes are still unclear. We previously showed that embryonic stem cells lacking Sp1 DNA-binding activity (Sp1ΔDBD/ΔDBD cells) are able to differentiate into early blood progenitors despite the inability of Sp1 to bind chromatin without its DNA-binding domain. However, gene expression during differentiation becomes progressively deregulated, and terminal differentiation is severely compromised. Results Here, we studied the cooperation of Sp1 with its closest paralogue Sp3 in hematopoietic development and demonstrate that Sp1 and Sp3 binding sites largely overlap. The complete absence of either Sp1 or Sp3 or the presence of the Sp1 DNA-binding mutant has only a minor effect on the pattern of distal accessible chromatin sites and their transcription factor binding motif content, suggesting that these mutations do not affect tissue-specific chromatin programming. Sp3 cooperates with Sp1ΔDBD/ΔDBD to enable hematopoiesis, but is unable to do so in the complete absence of Sp1. Using single-cell gene expression analysis, we show that the lack of Sp1 DNA binding leads to a distortion of cell fate decision timing, indicating that stable chromatin binding of Sp1 is required to maintain robust differentiation trajectories. Conclusions Our findings highlight the essential contribution of ubiquitous factors such as Sp1 to blood cell development. In contrast to tissue-specific transcription factors which are required to direct specific cell fates, loss of Sp1 leads to a widespread deregulation in timing and coordination of differentiation trajectories during hematopoietic specification. Electronic supplementary material The online version of this article (10.1186/s13072-019-0282-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jane Gilmour
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Leigh O'Connor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Christopher P Middleton
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.,Centre for Computational Biology, University of Birmingham, Birmingham, UK
| | - Peter Keane
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Nynke Gillemans
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Sjaak Philipsen
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
9
|
RUNX family: Oncogenes or tumor suppressors (Review). Oncol Rep 2019; 42:3-19. [PMID: 31059069 PMCID: PMC6549079 DOI: 10.3892/or.2019.7149] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/11/2019] [Indexed: 02/07/2023] Open
Abstract
Runt-related transcription factor (RUNX) proteins belong to a transcription factors family known as master regulators of important embryonic developmental programs. In the last decade, the whole family has been implicated in the regulation of different oncogenic processes and signaling pathways associated with cancer. Furthermore, a suppressor tumor function has been also reported, suggesting the RUNX family serves key role in all different types of cancer. In this review, the known biological characteristics, specific regulatory abilities and experimental evidence of RUNX proteins will be analyzed to demonstrate their oncogenic potential and tumor suppressor abilities during oncogenic processes, suggesting their importance as biomarkers of cancer. Additionally, the importance of continuing with the molecular studies of RUNX proteins' and its dual functions in cancer will be underlined in order to apply it in the future development of specific diagnostic methods and therapies against different types of cancer.
Collapse
|
10
|
Paredes R, Schneider M, Stevens A, White DJ, Williamson AJK, Muter J, Pearson S, Kelly JR, Connors K, Wiseman DH, Chadwick JA, Löffler H, Teng HY, Lovell S, Unwin R, van de Vrugt HJ, Smith H, Kustikova O, Schambach A, Somervaille TCP, Pierce A, Whetton AD, Meyer S. EVI1 carboxy-terminal phosphorylation is ATM-mediated and sustains transcriptional modulation and self-renewal via enhanced CtBP1 association. Nucleic Acids Res 2018; 46:7662-7674. [PMID: 29939287 PMCID: PMC6125627 DOI: 10.1093/nar/gky536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/24/2018] [Accepted: 05/29/2018] [Indexed: 01/15/2023] Open
Abstract
The transcriptional regulator EVI1 has an essential role in early hematopoiesis and development. However, aberrantly high expression of EVI1 has potent oncogenic properties and confers poor prognosis and chemo-resistance in leukemia and solid tumors. To investigate to what extent EVI1 function might be regulated by post-translational modifications we carried out mass spectrometry- and antibody-based analyses and uncovered an ATM-mediated double phosphorylation of EVI1 at the carboxy-terminal S858/S860 SQS motif. In the presence of genotoxic stress EVI1-WT (SQS), but not site mutated EVI1-AQA was able to maintain transcriptional patterns and transformation potency, while under standard conditions carboxy-terminal mutation had no effect. Maintenance of hematopoietic progenitor cell clonogenic potential was profoundly impaired with EVI1-AQA compared with EVI1-WT, in particular in the presence of genotoxic stress. Exploring mechanistic events underlying these observations, we showed that after genotoxic stress EVI1-WT, but not EVI1-AQA increased its level of association with its functionally essential interaction partner CtBP1, implying a role for ATM in regulating EVI1 protein interactions via phosphorylation. This aspect of EVI1 regulation is therapeutically relevant, as chemotherapy-induced genotoxicity might detrimentally sustain EVI1 function via stress response mediated phosphorylation, and ATM-inhibition might be of specific targeted benefit in EVI1-overexpressing malignancies.
Collapse
Affiliation(s)
- Roberto Paredes
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - Marion Schneider
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - Adam Stevens
- Manchester Academic Health Science Centre, Manchester, UK
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health M13 9WL, University of Manchester, UK
| | - Daniel J White
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - Andrew J K Williamson
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - Joanne Muter
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - Stella Pearson
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - James R Kelly
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - Kathleen Connors
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - Daniel H Wiseman
- Manchester Academic Health Science Centre, Manchester, UK
- Leukaemia Biology Group, CRUK Manchester Institute, Manchester M20 4XB, UK
| | - John A Chadwick
- Manchester Academic Health Science Centre, Manchester, UK
- Leukaemia Biology Group, CRUK Manchester Institute, Manchester M20 4XB, UK
| | - Harald Löffler
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Hsiang Ying Teng
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - Simon Lovell
- Manchester Academic Health Science Centre, Manchester, UK
- Evolution, Systems and Genomics Domain,Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Richard Unwin
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - Henri J van de Vrugt
- Oncogenetics, Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Helen Smith
- Manchester Academic Health Science Centre, Manchester, UK
- Evolution, Systems and Genomics Domain,Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Olga Kustikova
- Institute of Experimental Hematology, Hannover Medical School; Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School; Hannover, Germany
| | - Tim C P Somervaille
- Manchester Academic Health Science Centre, Manchester, UK
- Leukaemia Biology Group, CRUK Manchester Institute, Manchester M20 4XB, UK
| | - Andrew Pierce
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - Anthony D Whetton
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
- Stoller Biomarker Discovery Centre, University of Manchester, Manchester M13 9NQ, UK
| | - Stefan Meyer
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Palatine Road, Manchester M20 3LI, UK
- Manchester Academic Health Science Centre, Manchester, UK
- Department of Paediatric Haematology and Oncology, Royal Manchester Children's Hospital, Manchester M13 9WL, UK
- Young Oncology Unit, The Christie NHS Foundation Trust, Manchester M20 4XB, UK
| |
Collapse
|
11
|
Gilmour J, Assi SA, Noailles L, Lichtinger M, Obier N, Bonifer C. The Co-operation of RUNX1 with LDB1, CDK9 and BRD4 Drives Transcription Factor Complex Relocation During Haematopoietic Specification. Sci Rep 2018; 8:10410. [PMID: 29991720 PMCID: PMC6039467 DOI: 10.1038/s41598-018-28506-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/25/2018] [Indexed: 01/09/2023] Open
Abstract
Haematopoietic cells arise from endothelial cells within the dorsal aorta of the embryo via a process called the endothelial-haematopoietic transition (EHT). This process crucially depends on the transcription factor RUNX1 which rapidly activates the expression of genes essential for haematopoietic development. Using an inducible version of RUNX1 in a mouse embryonic stem cell differentiation model we showed that prior to the EHT, haematopoietic genes are primed by the binding of the transcription factor FLI1. Once expressed, RUNX1 relocates FLI1 towards its binding sites. However, the nature of the transcription factor assemblies recruited by RUNX1 to reshape the chromatin landscape and initiate mRNA synthesis are unclear. Here, we performed genome-wide analyses of RUNX1-dependent binding of factors associated with transcription elongation to address this question. We demonstrate that RUNX1 induction moves FLI1 from distal ETS/GATA sites to RUNX1/ETS sites and recruits the basal transcription factors CDK9, BRD4, the Mediator complex and the looping factor LDB1. Our study explains how the expression of a single transcription factor can drive rapid and replication independent transitions in cellular shape which are widely observed in development and disease.
Collapse
Affiliation(s)
- Jane Gilmour
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Salam A Assi
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Laura Noailles
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Monika Lichtinger
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Nadine Obier
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Centre for Clinical Research, University of Freiburg Medical School, Freiburg, Germany
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
12
|
Ying Y, Hong X, Xu X, Ma K, He J, Zhu F. A novel mutation +5904 C>T of RUNX1 site in the erythroid cell-specific regulatory element decreases the ABO antigen expression in Chinese population. Vox Sang 2018; 113:594-600. [PMID: 29978484 DOI: 10.1111/vox.12676] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/16/2018] [Accepted: 06/10/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND An erythroid cell-specific regulatory element (+5·8-kb) in the first intron of ABO is responsible for the antigen differential expression and the regulatory activity of the element was affected by the nucleotide mutation in the +5·8-kb region. Currently, many individuals with ABO subgroups were found in the Chinese population, but there was little information about the function of +5·8-kb region in these individuals. Here, we studied the mechanism of the mutation in the +5·8-kb region responsible for reducing of antigen expression in 30 ABO subtype Chinese individuals without mutation in the coding region or splicing site. MATERIALS AND METHODS The nucleotide sequence of the partial intron 1 covering the +5·8-kb site was amplified and directly sequenced. The haplotype with the novel mutation was obtained by the TOPO TA cloning. Both of the ABO promoter and the +5·8 kb regulatory element were subcloned into the basic luciferase reporter plasmid using the double endonuclease digestion. The promoter activity was examined by the dual-luciferase report vector with K562 cells. RESULTS A novel nucleotide substitution +5904 C>T located at RUNX1-binding site in the +5·8 kb site was identified from three individuals with B subtypes. +5890 T>G were found in three Bel and one Ael phenotypes. Cotransfection and luciferase assays demonstrated that the +5904 C>T could obviously reduce activity of the +5·8 kb site. CONCLUSION The study suggested that the transcriptional activity of the +5·8 kb site could be downregulated by the single point mutation of RUNX1 motif, leading to reduction in A or B antigen expression.
Collapse
Affiliation(s)
- Y Ying
- Blood Center of Zhejiang Province, Hangzhou, China
- Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| | - X Hong
- Blood Center of Zhejiang Province, Hangzhou, China
- Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| | - X Xu
- Blood Center of Zhejiang Province, Hangzhou, China
- Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| | - K Ma
- Blood Center of Zhejiang Province, Hangzhou, China
- Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| | - J He
- Blood Center of Zhejiang Province, Hangzhou, China
- Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| | - F Zhu
- Blood Center of Zhejiang Province, Hangzhou, China
- Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
13
|
Lica JJ, Grabe GJ, Heldt M, Misiak M, Bloch P, Serocki M, Switalska M, Wietrzyk J, Baginski M, Hellmann A, Borowski E, Skladanowski A. Cell Density-Dependent Cytological Stage Profile and Its Application for a Screen of Cytostatic Agents Active Toward Leukemic Stem Cells. Stem Cells Dev 2018; 27:488-513. [PMID: 29431006 DOI: 10.1089/scd.2017.0245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Proliferation and expansion of leukemia is driven by leukemic stem cells (LSCs). Multidrug resistance (MDR) of LSCs is one of the main reasons of failure and relapses in acute myeloid leukemia (AML) treatment. In this study, we show that maintaining HL-60 at low cell culture density or applying a 240-day treatment with anthrapyridazone (BS-121) increased the percentage of primitive cells, which include LSCs determining the overall stage profile. This change manifested in morphology, expression of both cell surface markers and redox-state proteins, as well as mitochondrial potential. Moreover, four sublines were generated, each with unique and characteristic stage profile and cytostatic sensitivity. Cell density-induced culture alterations (affecting stage profiles) were exploited in a screen of anthrapyridazones. Among the compound tested, C-123 was the most potent against primitive cell stages while generating relatively low amounts of reactive oxygen species (ROS). Furthermore, it had low toxicity in vivo and weakly affected blood morphology of healthy mice. The cell density-dependent stage profiles could be utilized in preliminary drug screens for activity against LSCs or in construction of patient-specific platforms to find drugs effective in case of AML relapse (drug extrapolation). The correlation between ROS generation in differentiated cells and toxic effect observed in HL-60 has a potential application in myelotoxicity predictions. The discovered properties of C-123 indicate its potential application in AML treatment, specifically in conditioned myeloablation preceding allogeneic transplantation and/or ex vivo treatment preceding autologous transplantation.
Collapse
Affiliation(s)
- Jan J Lica
- 1 Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology , Gdansk, Poland
| | - Grzegorz J Grabe
- 2 Department of Medicine, Imperial College London , London, United Kingdom
| | - Mateusz Heldt
- 1 Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology , Gdansk, Poland
| | - Majus Misiak
- 1 Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology , Gdansk, Poland
| | - Patrycja Bloch
- 1 Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology , Gdansk, Poland
| | - Marcin Serocki
- 1 Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology , Gdansk, Poland .,3 Department of Biology and Pharmaceutical Botany, Medical University of Gdansk , Gdansk, Poland
| | - Marta Switalska
- 4 Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy , Polish Academy of Sciences, Wroclaw, Poland
| | - Joanna Wietrzyk
- 4 Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy , Polish Academy of Sciences, Wroclaw, Poland
| | - Maciej Baginski
- 1 Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology , Gdansk, Poland
| | - Andrzej Hellmann
- 5 Department of Hematology and Transplantology, Medical University of Gdansk , Gdansk, Poland
| | - Edward Borowski
- 1 Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology , Gdansk, Poland .,6 BLIRT S.A. (BioLab Innovative Research Technologies) , Gdansk, Poland
| | - Andrzej Skladanowski
- 1 Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology , Gdansk, Poland
| |
Collapse
|
14
|
Lin S, Mulloy JC, Goyama S. RUNX1-ETO Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:151-173. [PMID: 28299657 DOI: 10.1007/978-981-10-3233-2_11] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AML1-ETO leukemia is the most common cytogenetic subtype of acute myeloid leukemia, defined by the presence of t(8;21). Remarkable progress has been achieved in understanding the molecular pathogenesis of AML1-ETO leukemia. Proteomic surveies have shown that AML-ETO forms a stable complex with several transcription factors, including E proteins. Genome-wide transcriptome and ChIP-seq analyses have revealed the genes directly regulated by AML1-ETO, such as CEBPA. Several lines of evidence suggest that AML1-ETO suppresses endogenous DNA repair in cells to promote mutagenesis, which facilitates acquisition of cooperating secondary events. Furthermore, it has become increasingly apparent that a delicate balance of AML1-ETO and native AML1 is important to sustain the malignant cell phenotype. Translation of these findings into the clinical setting is just beginning.
Collapse
Affiliation(s)
- Shan Lin
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - James C Mulloy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Susumu Goyama
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
15
|
RUNX1 regulates site specificity of DNA demethylation by recruitment of DNA demethylation machineries in hematopoietic cells. Blood Adv 2017; 1:1699-1711. [PMID: 29296817 DOI: 10.1182/bloodadvances.2017005710] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/20/2017] [Indexed: 11/20/2022] Open
Abstract
RUNX1 is an essential master transcription factor in hematopoietic development and plays important roles in immune functions. Although the gene regulatory mechanism of RUNX1 has been characterized extensively, the epigenetic role of RUNX1 remains unclear. Here, we demonstrate that RUNX1 contributes DNA demethylation in a binding site-directed manner in human hematopoietic cells. Overexpression analysis of RUNX1 showed the RUNX1-binding site-directed DNA demethylation. The RUNX1-mediated DNA demethylation was also observed in DNA replication-arrested cells, suggesting an involvement of active demethylation mechanism. Coimmunoprecipitation in hematopoietic cells showed physical interactions between RUNX1 and DNA demethylation machinery enzymes TET2, TET3, TDG, and GADD45. Further chromatin immunoprecipitation sequencing revealed colocalization of RUNX1 and TET2 in the same genomic regions, indicating recruitment of DNA demethylation machinery by RUNX1. Finally, methylome analysis revealed significant overrepresentation of RUNX1-binding sites at demethylated regions during hematopoietic development. Collectively, the present data provide evidence that RUNX1 contributes site specificity of DNA demethylation by recruitment of TET and other demethylation-related enzymes to its binding sites in hematopoietic cells.
Collapse
|
16
|
Acquisition of an oncogenic fusion protein is sufficient to globally alter the landscape of miRNA expression to inhibit myogenic differentiation. Oncotarget 2017; 8:87054-87072. [PMID: 29152063 PMCID: PMC5675615 DOI: 10.18632/oncotarget.19693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/03/2017] [Indexed: 01/07/2023] Open
Abstract
The differentiation status of tumors is used as a prognostic indicator, with tumors comprised of less differentiated cells exhibiting higher levels of aggressiveness that correlate with a poor prognosis. Although oncogenes contribute to blocking differentiation, it is not clear how they globally alter miRNA expression during differentiation to achieve this result. The pediatric sarcoma Alveolar Rhabdomyosarcoma, which is primarily characterized by the expression of the PAX3-FOXO1 oncogenic fusion protein, consists of undifferentiated muscle cells. However, it is unclear what role PAX3-FOXO1 plays in promoting the undifferentiated state. We demonstrate that expression of PAX3-FOXO1 globally alters the expression of over 80 individual miRNA during early myogenic differentiation, resulting in three primary effects: 1) inhibition of the expression of 51 miRNA essential for promoting myogenesis, 2) promoting the aberrant expression of 43 miRNA not normally expressed during myogenesis, and 3) altering the expression pattern of 39 additional miRNA. Combined, these changes are predicted to have an overall negative effect on myogenic differentiation. This is one of the first studies describing how an oncogene globally alters miRNA expression to block differentiation and has clinical implications for the development of much needed multi-faceted tumor-specific therapeutic regimens.
Collapse
|
17
|
Loke J, Assi SA, Imperato MR, Ptasinska A, Cauchy P, Grabovska Y, Soria NM, Raghavan M, Delwel HR, Cockerill PN, Heidenreich O, Bonifer C. RUNX1-ETO and RUNX1-EVI1 Differentially Reprogram the Chromatin Landscape in t(8;21) and t(3;21) AML. Cell Rep 2017; 19:1654-1668. [PMID: 28538183 PMCID: PMC5457485 DOI: 10.1016/j.celrep.2017.05.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/13/2017] [Accepted: 04/28/2017] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease caused by mutations in transcriptional regulator genes, but how different mutant regulators shape the chromatin landscape is unclear. Here, we compared the transcriptional networks of two types of AML with chromosomal translocations of the RUNX1 locus that fuse the RUNX1 DNA-binding domain to different regulators, the t(8;21) expressing RUNX1-ETO and the t(3;21) expressing RUNX1-EVI1. Despite containing the same DNA-binding domain, the two fusion proteins display distinct binding patterns, show differences in gene expression and chromatin landscape, and are dependent on different transcription factors. RUNX1-EVI1 directs a stem cell-like transcriptional network reliant on GATA2, whereas that of RUNX1-ETO-expressing cells is more mature and depends on RUNX1. However, both types of AML are dependent on the continuous expression of the fusion proteins. Our data provide a molecular explanation for the differences in clinical prognosis for these types of AML.
Collapse
Affiliation(s)
- Justin Loke
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK
| | - Salam A Assi
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK
| | - Maria Rosaria Imperato
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK
| | - Anetta Ptasinska
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK
| | - Pierre Cauchy
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK
| | - Yura Grabovska
- Northern Institute for Cancer Research, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Natalia Martinez Soria
- Northern Institute for Cancer Research, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Manoj Raghavan
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK
| | - H Ruud Delwel
- Department of Hematology, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, the Netherlands
| | - Peter N Cockerill
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK
| | - Olaf Heidenreich
- Northern Institute for Cancer Research, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Constanze Bonifer
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK.
| |
Collapse
|
18
|
Bonifer C, Levantini E, Kouskoff V, Lacaud G. Runx1 Structure and Function in Blood Cell Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:65-81. [PMID: 28299651 DOI: 10.1007/978-981-10-3233-2_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RUNX transcription factors belong to a highly conserved class of transcriptional regulators which play various roles in the development of the majority of metazoans. In this review we focus on the founding member of the family, RUNX1, and its role in the transcriptional control of blood cell development in mammals. We summarize data showing that RUNX1 functions both as activator and repressor within a chromatin environment, a feature that requires its interaction with multiple other transcription factors and co-factors. Furthermore, we outline how RUNX1 works together with other factors to reshape the epigenetic landscape and the three-dimensional structure of gene loci within the nucleus. Finally, we review how aberrant forms of RUNX1 deregulate blood cell development and cause hematopoietic malignancies.
Collapse
Affiliation(s)
- Constanze Bonifer
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| | - Elena Levantini
- Beth Israel Diaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Richerche, Pisa, Italy
| | - Valerie Kouskoff
- Division of Developmental Biology & Medicine, The University of Manchester, Manchester, UK
| | - Georges Lacaud
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| |
Collapse
|
19
|
Obier N, Cauchy P, Assi SA, Gilmour J, Lie-A-Ling M, Lichtinger M, Hoogenkamp M, Noailles L, Cockerill PN, Lacaud G, Kouskoff V, Bonifer C. Cooperative binding of AP-1 and TEAD4 modulates the balance between vascular smooth muscle and hemogenic cell fate. Development 2016; 143:4324-4340. [PMID: 27802171 PMCID: PMC5201045 DOI: 10.1242/dev.139857] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/10/2016] [Indexed: 12/22/2022]
Abstract
The transmission of extracellular signals into the nucleus involves inducible transcription factors, but how different signalling pathways act in a cell type-specific fashion is poorly understood. Here, we studied the regulatory role of the AP-1 transcription factor family in blood development using embryonic stem cell differentiation coupled with genome-wide transcription factor binding and gene expression analyses. AP-1 factors respond to MAP kinase signalling and comprise dimers of FOS, ATF and JUN proteins. To examine genes regulated by AP-1 and to examine how it interacts with other inducible transcription factors, we abrogated its global DNA-binding activity using a dominant-negative FOS peptide. We show that FOS and JUN bind to and activate a specific set of vascular genes and that AP-1 inhibition shifts the balance between smooth muscle and hematopoietic differentiation towards blood. Furthermore, AP-1 is required for de novo binding of TEAD4, a transcription factor connected to Hippo signalling. Our bottom-up approach demonstrates that AP-1- and TEAD4-associated cis-regulatory elements form hubs for multiple signalling-responsive transcription factors and define the cistrome that regulates vascular and hematopoietic development by extrinsic signals.
Collapse
Affiliation(s)
- Nadine Obier
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Pierre Cauchy
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Salam A Assi
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Jane Gilmour
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Michael Lie-A-Ling
- CRUK Manchester Institute, University of Manchester, Manchester M20 4BX, UK
| | - Monika Lichtinger
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Maarten Hoogenkamp
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Laura Noailles
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Peter N Cockerill
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Georges Lacaud
- CRUK Manchester Institute, University of Manchester, Manchester M20 4BX, UK
| | - Valerie Kouskoff
- CRUK Manchester Institute, University of Manchester, Manchester M20 4BX, UK
| | - Constanze Bonifer
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
20
|
Molecular Changes During Acute Myeloid Leukemia (AML) Evolution and Identification of Novel Treatment Strategies Through Molecular Stratification. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 144:383-436. [PMID: 27865463 DOI: 10.1016/bs.pmbts.2016.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acute myeloid leukemia (AML) is a hematopoietic malignancy characterized by impaired differentiation and uncontrollable proliferation of myeloid progenitor cells. Due to high relapse rates, overall survival for this rapidly progressing disease is poor. The significant challenge in AML treatment is disease heterogeneity stemming from variability in maturation state of leukemic cells of origin, genetic aberrations among patients, and existence of multiple disease clones within a single patient. Disease heterogeneity and the lack of biomarkers for drug sensitivity lie at the root of treatment failure as well as selective efficacy of AML chemotherapies and the emergence of drug resistance. Furthermore, standard-of-care treatment is aggressive, presenting significant tolerability concerns to the commonly advanced-age AML patient. In this review, we examine the concept and potential of molecular stratification, particularly with biologically relevant drug responses, in identifying low-toxicity precision therapeutic combinations and clinically relevant biomarkers for AML patient care as a way to overcome these challenges in AML treatment.
Collapse
|