1
|
Adhikary K, Kapoor S, Kotak S. A cortical pool of LIN-5 (NuMA) controls cytokinetic furrow formation and cytokinesis completion. J Cell Biol 2025; 224:e202406059. [PMID: 40304693 PMCID: PMC12042773 DOI: 10.1083/jcb.202406059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 02/26/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025] Open
Abstract
In animal cells, cleavage furrow formation is controlled by localized activation of the GTPase RhoA at the equatorial membrane using cues transmitted from the spindle. Here, we explore the function of LIN-5, a well-studied protein known for its role in aster separation and spindle positioning in cleavage furrow formation. We show that the cortical pool of LIN-5, recruited by GPR-1/2 and important for cortical force generation, regulates cleavage furrow formation independently of its roles in aster separation and spindle positioning. Instead, our data suggest that enrichment of LIN-5/GPR-1/2 at the polar cortical region is essential to ensure the timely accumulation of contractile ring components-myosin II and Anillin at the equatorial cortex. We additionally define a late cytokinesis role of cortical LIN-5/GPR-1/2 in midbody stabilization and abscission. These results indicate that the cortical LIN-5/GPR-1/2 complex contributes to multiple aspects of cytokinesis independently of its roles in spindle positioning and elongation.
Collapse
Affiliation(s)
- Kuheli Adhikary
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), Bangalore, India
| | - Sukriti Kapoor
- Molecular, Cell and Developmental Biology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Sachin Kotak
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), Bangalore, India
| |
Collapse
|
2
|
Ai P, Tang S, Bai S, Wan D, Li X, Guo W, Zheng T, Wang H, Zhang P. Synergistically Tuning Thermoelectric Properties of BaCdPF via Strain Engineering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 40386841 DOI: 10.1021/acs.langmuir.5c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
The layered BaCdPF compound with the ZrSiCuAs-type structure emerges as a promising thermoelectric (TE) material due to the excellent electronic transport properties under the p-type doping circumstance. However, the fundamental mechanisms that regulate its thermal and electronic transport under strain engineering remain largely unexplored, hindering its practical applications. In current work, the crystal structure, thermal transport, and electronic transport properties of layered BaCdPF under strain engineering are systematically investigated by first-principles calculations in combination with a machine-learning interatomic potential approach. The BaCdPF maintains mechanical robustness, high dynamic and thermal stabilities across a wide range of strain conditions. The coexistence of band degeneracy and anisotropic band dispersions (heavy and light bands) at the valence band maximum plays a critical role in enhancing electronic transport properties. Under tensile strain, the chemical bond softening and four-phonon scattering favors two-dimensional (2D) phonon transport characteristics, yielding a low lattice thermal conductivity of 1.08 W m-1K-1 at 300 K under a -4% tensile strain. Conversely, compressive strain significantly enhances the carrier mobility, promoting three-dimensional (3D) electronic transport. The current work not only provides effective strategies for optimizing the TE performance of layered BaCdPF but also sheds light on the distinct interplay of 3D charge and 2D phonon transport under strain engineering, which offers broader implications for the design of strain-modulated TE materials.
Collapse
Affiliation(s)
- Peng Ai
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin, Liaoning 123000, China
| | - Shuwei Tang
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin, Liaoning 123000, China
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Shulin Bai
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin, Liaoning 123000, China
| | - Da Wan
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin, Liaoning 123000, China
| | - Xiaodong Li
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin, Liaoning 123000, China
| | - Wanrong Guo
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin, Liaoning 123000, China
| | - Tuo Zheng
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin, Liaoning 123000, China
| | - Hao Wang
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin, Liaoning 123000, China
| | - Pengfei Zhang
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin, Liaoning 123000, China
| |
Collapse
|
3
|
Kato T, Skorobogata O, Rocheleau CE. Centralspindlin is partially required for C. elegans anchor cell specification, vulval induction and morphogenesis. Dev Biol 2025; 524:199-209. [PMID: 40379077 DOI: 10.1016/j.ydbio.2025.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 05/07/2025] [Accepted: 05/14/2025] [Indexed: 05/19/2025]
Abstract
Caenorhabditis elegans vulval development is a relatively simple model of organ development whereby a signal from the overlying gonad induces three epithelial cells to undergo three rounds of cell division to generate 22 cells that make up the vulva. Specification of the vulval cell fates requires coordination between cell division and cell signaling via LIN-12/Notch and LET-23/EGFR pathways in the somatic gonad and the underlying epithelium. Here we characterize the role of the centralspindlin complex in vulval development. Centralspindlin, a heterotetramer of ZEN-4/KIF23 and CYK-4/RacGAP1, is essential for completion of cytokinesis during early embryonic cell divisions. We found that centralspindlin is required for completion of cytokinesis in the developing somatic gonad and hence specification of the LIN-3/EGF-secreting anchor cell (AC) critical for LET-23/EGFR-mediated vulval induction. However, the requirements for centralspindlin for cytokinesis during postembryonic development are incomplete as the AC is frequently specified, though often binucleate. The presence of the binucleate AC correlates with vulval induction demonstrating that LET-23/EGFR signaling is largely functional. Centralspindlin is also partially required for cytokinesis of the vulval cells where it is required for vulval morphogenesis rather than induction. We also found that the GAP domain of CYK-4/RacGAP1 required for contractile ring assembly during embryonic division is not essential for development of the somatic gonad and the vulva. Thus, there appears to be different requirements for centralspindlin during postembryonic development of the somatic gonad and vulva as compared to early embryogenesis.
Collapse
Affiliation(s)
- Tatsuya Kato
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Olga Skorobogata
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Christian E Rocheleau
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Zimyanin V, Magaj M, Manzi NI, Yu CH, Gibney T, Chen YZ, Basaran M, Horton X, Siller K, Pani A, Needleman D, Dickinson DJ, Redemann S. Chromokinesin Klp-19 regulates microtubule overlap and dynamics during anaphase in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.26.564275. [PMID: 37961478 PMCID: PMC10634869 DOI: 10.1101/2023.10.26.564275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Recent studies have highlighted the significance of the spindle midzone, the region between the segregating chromosomes, in ensuring proper chromosome segregation. By combining 3D electron tomography, cutting-edge light microscopy and a novel single cell in vitro essay allowing single molecule tracking, we have discovered a previously unknown role of the regulation of microtubule dynamics within the spindle midzone of C. elegans by the chromokinesin KLP-19, and its relevance for proper spindle function. Using Fluorescence recovery after photobleaching and a combination of second harmonic generation and two-photon fluorescence microscopy, we found that the length of the antiparallel microtubule overlap zone in the spindle midzone is constant throughout anaphase, and independent of cortical pulling forces as well as the presence of the microtubule bundling protein SPD-1. Further investigations of SPD-1 and KLP-19 in C. elegans, the homologs of PRC1 and KIF4a, suggest that KLP-19 regulates the overlap length and functions independently of SPD-1. Our data shows that KLP-19 plays an active role in regulating the length of microtubules within the midzone as well as the size of the antiparallel overlap region throughout mitosis. Depletion of KLP-19 in mitosis leads to an increase in microtubule length and thus microtubule-based interactions in the spindle midzone, which affects spindle dynamics and force transmission. Our data shows that by localizing KLP-19 to the spindle midzone in anaphase microtubule dynamics can be locally controlled allowing the formation of a functional midzone.
Collapse
Affiliation(s)
- Vitaly Zimyanin
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Magdalena Magaj
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | | - Che-Hang Yu
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, USA
| | - Theresa Gibney
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Yu-Zen Chen
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Mustafa Basaran
- Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Xavier Horton
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Karsten Siller
- IT-Research Computing, University of Virginia, Charlottesville, VA, USA
| | - Ariel Pani
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Daniel Needleman
- Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | - Daniel J Dickinson
- Department of Molecular Bioscience, University of Texas at Austin, TX, USA
| | - Stefanie Redemann
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
5
|
Lim WM, Chew WX, Esposito Verza A, Pesenti M, Musacchio A, Surrey T. Regulation of minimal spindle midzone organization by mitotic kinases. Nat Commun 2024; 15:9213. [PMID: 39472429 PMCID: PMC11522559 DOI: 10.1038/s41467-024-53500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/11/2024] [Indexed: 11/02/2024] Open
Abstract
During cell division, the microtubule cytoskeleton undergoes dramatic cell cycle-driven reorganizations of its architecture. Coordinated by changes in the phosphorylation patterns of a multitude of microtubule associated proteins, the mitotic spindle first self-assembles to capture the chromosomes and then reorganizes in anaphase as the chromosomes are segregated. A key protein for this reorganization is PRC1 which is differentially phosphorylated by the mitotic kinases CDK1 and PLK1. How the phosphorylation state of PRC1 orchestrates spindle reorganization is not understood mechanistically. Here, we reconstitute in vitro the transition between metaphase and anaphase-like microtubule architectures triggered by the changes in PRC1 phosphorylation. We find that whereas PLK1 regulates its own recruitment by PRC1, CDK1 controls the affinity of PRC1 for antiparallel microtubule binding. Dephosphorylation of CDK1-phosphorylated PRC1 is required and sufficient to trigger the reorganization of a minimal anaphase midzone in the presence of the midzone length controlling kinesin KIF4A. These results demonstrate how phosphorylation-controlled affinity changes regulate the architecture of active microtubule networks, providing new insight into the mechanistic underpinnings of the cell cycle-driven reorganization of the central spindle during mitosis.
Collapse
Affiliation(s)
- Wei Ming Lim
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer del Dr. Aiguader 88, Barcelona, Spain
| | - Wei-Xiang Chew
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer del Dr. Aiguader 88, Barcelona, Spain
| | - Arianna Esposito Verza
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Marion Pesenti
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Max Planck School Matter to Life, Heidelberg, Germany
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Thomas Surrey
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer del Dr. Aiguader 88, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluis Companys 23, Barcelona, Spain.
| |
Collapse
|
6
|
Xu X, Huang Y, Yang F, Sun X, Lin R, Feng J, Yang M, Shao J, Liu X, Zhou T, Xie S, Yang Y. NudCL2 is required for cytokinesis by stabilizing RCC2 with Hsp90 at the midbody. Protein Cell 2024; 15:766-782. [PMID: 38801297 PMCID: PMC11443449 DOI: 10.1093/procel/pwae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/21/2024] [Indexed: 05/29/2024] Open
Abstract
Cytokinesis is required for faithful division of cytoplasmic components and duplicated nuclei into two daughter cells. Midbody, a protein-dense organelle that forms at the intercellular bridge, is indispensable for successful cytokinesis. However, the regulatory mechanism of cytokinesis at the midbody still remains elusive. Here, we unveil a critical role for NudC-like protein 2 (NudCL2), a co-chaperone of heat shock protein 90 (Hsp90), in cytokinesis regulation by stabilizing regulator of chromosome condensation 2 (RCC2) at the midbody in mammalian cells. NudCL2 localizes at the midbody, and its downregulation results in cytokinesis failure, multinucleation, and midbody disorganization. Using iTRAQ-based quantitative proteomic analysis, we find that RCC2 levels are decreased in NudCL2 knockout (KO) cells. Moreover, Hsp90 forms a complex with NudCL2 to stabilize RCC2, which is essential for cytokinesis. RCC2 depletion mirrors phenotypes observed in NudCL2-downregulated cells. Importantly, ectopic expression of RCC2 rescues the cytokinesis defects induced by NudCL2 deletion, but not vice versa. Together, our data reveal the significance of the NudCL2/Hsp90/RCC2 pathway in cytokinesis at the midbody.
Collapse
Affiliation(s)
- Xiaoyang Xu
- Department of Cell Biology, Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yuliang Huang
- Department of Cell Biology, Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Feng Yang
- Research Center for Children’s Health and Innovation, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Xiaoxia Sun
- Department of Cell Biology, Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Rijin Lin
- Department of Cell Biology, Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jiaxing Feng
- Department of Cell Biology, Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Mingyang Yang
- Department of Cell Biology, Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jiaqi Shao
- Department of Cell Biology, Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Tianhua Zhou
- Department of Cell Biology, Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Center for RNA Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China
| | - Shanshan Xie
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Yuehong Yang
- Department of Cell Biology, Institute of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Fujii K, Kondo T, Kimura A. Enucleation of the C. elegans embryo revealed dynein-dependent spacing between microtubule asters. Life Sci Alliance 2024; 7:e202302427. [PMID: 37931957 PMCID: PMC10627822 DOI: 10.26508/lsa.202302427] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
The intracellular positioning of the centrosome, a major microtubule-organizing center, is important for cellular functions. One of the features of centrosome positioning is the spacing between centrosomes; however, the underlying mechanisms are not fully understood. To characterize the spacing activity in Caenorhabditis elegans embryos, a genetic setup was developed to produce enucleated embryos. The centrosome was duplicated multiple times in the enucleated embryo, which enabled us to characterize the chromosome-independent spacing activity between sister and non-sister centrosome pairs. We found that the timely spacing depended on cytoplasmic dynein, and we propose a stoichiometric model of cortical and cytoplasmic pulling forces for the spacing between centrosomes. We also observed dynein-independent but non-muscle myosin II-dependent movement of centrosomes in the later cell cycle phase. The spacing mechanisms revealed in this study are expected to function between centrosomes in general, regardless of the presence of a chromosome/nucleus between them, including centrosome separation and spindle elongation.
Collapse
Affiliation(s)
- Ken Fujii
- Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies) Mishima, Japan
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan
| | - Tomo Kondo
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan
| | - Akatsuki Kimura
- Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies) Mishima, Japan
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan
| |
Collapse
|
8
|
Li W, Crellin HA, Cheerambathur D, McNally FJ. Redundant microtubule crosslinkers prevent meiotic spindle bending to ensure diploid offspring in C. elegans. PLoS Genet 2023; 19:e1011090. [PMID: 38150489 PMCID: PMC10775986 DOI: 10.1371/journal.pgen.1011090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/09/2024] [Accepted: 12/05/2023] [Indexed: 12/29/2023] Open
Abstract
Oocyte meiotic spindles mediate the expulsion of ¾ of the genome into polar bodies to generate diploid zygotes in nearly all animal species. Failures in this process result in aneuploid or polyploid offspring that are typically inviable. Accurate meiotic chromosome segregation and polar body extrusion require the spindle to elongate while maintaining its structural integrity. Previous studies have implicated three hypothetical activities during this process, including microtubule crosslinking, microtubule sliding and microtubule polymerization. However, how these activities regulate spindle rigidity and elongation as well as the exact proteins involved in the activities remain unclear. We discovered that C. elegans meiotic anaphase spindle integrity is maintained through redundant microtubule crosslinking activities of the Kinesin-5 family motor BMK-1, the microtubule bundling protein SPD-1/PRC1, and the Kinesin-4 family motor, KLP-19. Using time-lapse imaging, we found that single depletion of KLP-19KIF4A, SPD-1PRC1 or BMK-1Eg5 had minimal effects on anaphase B spindle elongation velocity. In contrast, double depletion of SPD-1PRC1 and BMK-1Eg5 or double depletion of KLP-19KIF4A and BMK-1Eg5 resulted in spindles that elongated faster, bent in a myosin-dependent manner, and had a high rate of polar body extrusion errors. Bending spindles frequently extruded both sets of segregating chromosomes into two separate polar bodies. Normal anaphase B velocity was observed after double depletion of KLP-19KIF4A and SPD-1PRC1. These results suggest that KLP-19KIF4A and SPD-1PRC1 act in different pathways, each redundant with a separate BMK-1Eg5 pathway in regulating meiotic spindle elongation. Depletion of ZYG-8, a doublecortin-related microtubule binding protein, led to slower anaphase B spindle elongation. We found that ZYG-8DCLK1 acts by excluding SPD-1PRC1 from the spindle. Thus, three mechanistically distinct microtubule regulation modules, two based on crosslinking, and one based on exclusion of crosslinkers, power the mechanism that drives spindle elongation and structural integrity during anaphase B of C.elegans female meiosis.
Collapse
Affiliation(s)
- Wenzhe Li
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| | - Helena A. Crellin
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Dhanya Cheerambathur
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Francis J. McNally
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| |
Collapse
|
9
|
Gluszek‐Kustusz A, Craske B, Legal T, McHugh T, Welburn JPI. Phosphorylation controls spatial and temporal activities of motor-PRC1 complexes to complete mitosis. EMBO J 2023; 42:e113647. [PMID: 37592895 PMCID: PMC10620760 DOI: 10.15252/embj.2023113647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/30/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023] Open
Abstract
During mitosis, spindle architecture alters as chromosomes segregate into daughter cells. The microtubule crosslinker protein regulator of cytokinesis 1 (PRC1) is essential for spindle stability, chromosome segregation and completion of cytokinesis, but how it recruits motors to the central spindle to coordinate the segregation of chromosomes is unknown. Here, we combine structural and cell biology approaches to show that the human CENP-E motor, which is essential for chromosome capture and alignment by microtubules, binds to PRC1 through a conserved hydrophobic motif. This binding mechanism is also used by Kinesin-4 Kif4A:PRC1. Using in vitro reconstitution, we demonstrate that CENP-E slides antiparallel PRC1-crosslinked microtubules. We find that the regulation of CENP-E -PRC1 interaction is spatially and temporally coupled with relocalization to overlapping microtubules in anaphase. Finally, we demonstrate that the PRC1-microtubule motor interaction is essential in anaphase to control chromosome partitioning, retain central spindle integrity and ensure cytokinesis. Taken together our findings reveal the molecular basis for the cell cycle regulation of motor-PRC1 complexes to couple chromosome segregation and cytokinesis.
Collapse
Affiliation(s)
- Agata Gluszek‐Kustusz
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Benjamin Craske
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Thibault Legal
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
- McGill UniversityMontrealQCCanada
| | - Toni McHugh
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Julie PI Welburn
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
10
|
do Rosário CF, Zhang Y, Stadnicki J, Ross JL, Wadsworth P. Lateral and longitudinal compaction of PRC1 overlap zones drives stabilization of interzonal microtubules. Mol Biol Cell 2023; 34:ar100. [PMID: 37467037 PMCID: PMC10551706 DOI: 10.1091/mbc.e23-02-0049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023] Open
Abstract
During anaphase, antiparallel-overlapping midzone microtubules elongate and form bundles, contributing to chromosome segregation and the location of contractile ring formation. Midzone microtubules are dynamic in early but not late anaphase; however, the kinetics and mechanisms of stabilization are incompletely understood. Using photoactivation of cells expressing PA-EGFP-α-tubulin we find that immediately after anaphase onset, a single highly dynamic population of midzone microtubules is present; as anaphase progresses, both dynamic and stable populations of midzone microtubules coexist. By mid-cytokinesis, only static, non-dynamic microtubules are detected. The velocity of microtubule sliding also decreases as anaphase progresses, becoming undetectable by late anaphase. Following depletion of PRC1, midzone microtubules remain highly dynamic in anaphase and fail to form static arrays in telophase despite furrowing. Cells depleted of Kif4a contain elongated PRC1 overlap zones and fail to form static arrays in telophase. Cells blocked in cytokinesis form short PRC1 overlap zones that do not coalesce laterally; these cells also fail to form static arrays in telophase. Together, our results demonstrate that dynamic turnover and sliding of midzone microtubules is gradually reduced during anaphase and that the final transition to a static array in telophase requires both lateral and longitudinal compaction of PRC1 containing overlap zones.
Collapse
Affiliation(s)
- Carline Fermino do Rosário
- Department of Biology, University of Massachusetts Amherst, Amherst MA 01003
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst MA 01003
| | - Ying Zhang
- Department of Biology, University of Massachusetts Amherst, Amherst MA 01003
| | - Jennifer Stadnicki
- Department of Biology, University of Massachusetts Amherst, Amherst MA 01003
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst MA 01003
| | | | - Patricia Wadsworth
- Department of Biology, University of Massachusetts Amherst, Amherst MA 01003
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst MA 01003
| |
Collapse
|
11
|
Warecki B, Tao L. Centralspindlin-mediated transport of RhoGEF positions the cleavage plane for cytokinesis. Sci Signal 2023; 16:eadh0601. [PMID: 37402224 PMCID: PMC10501416 DOI: 10.1126/scisignal.adh0601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/13/2023] [Indexed: 07/06/2023]
Abstract
During cytokinesis, the cell membrane furrows inward along a cleavage plane. The positioning of the cleavage plane is critical to faithful cell division and is determined by the Rho guanine nucleotide exchange factor (RhoGEF)-mediated activation of the small guanosine triphosphatase RhoA and the conserved motor protein complex centralspindlin. Here, we explored whether and how centralspindlin mediates the positioning of RhoGEF. In dividing neuroblasts from Drosophila melanogaster, we observed that immediately before cleavage, first centralspindlin and then RhoGEF localized to the sites where cleavage subsequently initiated. Using in vitro assays with purified Drosophila proteins and stabilized microtubules, we found that centralspindlin directly transported RhoGEF as cargo along single microtubules and sequestered it at microtubule plus-ends for prolonged periods of time. In addition, the binding of RhoGEF to centralspindlin appeared to stimulate centralspindlin motor activity. Thus, the motor activity and microtubule association of centralspindlin can translocate RhoGEF to areas where microtubule plus-ends are abundant, such as at overlapping astral microtubules, to locally activate RhoA and accurately position the cleavage plane during cell division.
Collapse
Affiliation(s)
- Brandt Warecki
- Department of Biology, University of Hawai’i at Hilo, HI 96720, USA
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz; Santa Cruz, CA 95064, USA
| | - Li Tao
- Department of Biology, University of Hawai’i at Hilo, HI 96720, USA
| |
Collapse
|
12
|
Wang H, Gao C, Peng B, Wu J, Wang X, Wei D, Tan L, Qin Z, Qin G. Ultra-high thermal conductivity of two-dimensional C 23. NANOTECHNOLOGY 2023; 34:175704. [PMID: 36779917 DOI: 10.1088/1361-6528/acb5fa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
High thermal conductivity is of great interest due to the novel applications in high-performance heat dissipation for microelectronic devices. Two-dimensional (2D) materials with graphene as a representative have attracted tremendous interest due to the excellent properties, where C23is an emerging 2D allotrope of carbon with a large bandgap. In this paper, by solving the Boltzmann transport equation based onstate-of-the-artfirst-principles calculations, the C23is predicted to have an ultrahigh thermal conductivity of 2051.47 Wm-1K-1, which is on the same order of magnitude as graphene. Based on the comparative analysis among C23, graphene, and penta-graphene, it is shown that the unique spatial structure and the orbital hybridization of C23lead to weak anharmonicity, which results in the large relaxation time of phonons and finally results in ultrahigh thermal conductivity. Our study is expected to promote the comprehensive understanding of thermal transport in C23and shed light on future exploration of novel materials with high thermal conductivity.
Collapse
Affiliation(s)
- Huimin Wang
- Hunan Key Laboratory for Micro-Nano Energy Materials & Device and School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, Hunan, People's Republic of China
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Chuanhao Gao
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Bo Peng
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Jing Wu
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Xiaoxia Wang
- Hunan Key Laboratory for Micro-Nano Energy Materials & Device and School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, Hunan, People's Republic of China
| | - Donghai Wei
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Ligang Tan
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Zhenzhen Qin
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Guangzhao Qin
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
13
|
Coupling of microtubule bundles isolates them from local disruptions to set the structural stability of the anaphase spindle. Proc Natl Acad Sci U S A 2022; 119:e2204068119. [PMID: 36122237 PMCID: PMC9522340 DOI: 10.1073/pnas.2204068119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chromosome segregation requires load-bearing interactions across kinetochore fibers and antiparallel microtubule bundles, which constitute the spindle midzone. Mechanical properties of kinetochore fibers have been characterized during metaphase, when the mitotic spindle achieves steady state. However, it has been difficult to probe the mechanics of the spindle midzone that elongates during anaphase. Here, we combine superresolution expansion and electron microscopies, lattice light-sheet imaging, and laser microsurgery to examine how midzone organization sets its mechanics. We find that individual midzone bundles extend out to multiple positions across chromosomes and form multiple apparent microtubule-based connections with each other. Across the spindle's short axis, these microtubule bundles exhibit restricted, submicrometer-amplitude motions, which are weakly correlated on <10s timescales. Severing individual midzone bundles near their center does not substantially affect positions of neighboring bundles, nor the overall structural stability of the midzone. In contrast, severing multiple midzone bundles or individual bundles at their chromosome-proximal ends significantly displaces neighboring microtubule bundles. Together, these data suggest a model wherein multiple midzone connections both reinforce its structure and mechanically isolate individual bundles from local perturbations. This feature sets the robust midzone architecture to accommodate disruptions, including those which result from lagging chromosomes, and achieve stereotypic outputs, such as proper chromosome separation.
Collapse
|
14
|
Lischnig A, Bergqvist M, Ochiya T, Lässer C. Quantitative Proteomics Identifies Proteins Enriched in Large and Small Extracellular Vesicles. Mol Cell Proteomics 2022; 21:100273. [PMID: 35918030 PMCID: PMC9486130 DOI: 10.1016/j.mcpro.2022.100273] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 06/13/2022] [Accepted: 07/14/2022] [Indexed: 12/19/2022] Open
Abstract
There is a long-held consensus that several proteins are unique to small extracellular vesicles (EVs), such as exosomes. However, recent studies have shown that several of these markers can also be present in other subpopulations of EVs to a similar degree. Furthermore, few markers have been identified as enriched or uniquely present in larger EVs, such as microvesicles. The aim of this study was to address these issues by conducting an in-depth comparison of the proteome of large and small EVs. Large (16,500g) and small EVs (118,000g) were isolated from three cell lines using a combination of differential ultracentrifugation and a density cushion and quantitative mass spectrometry (tandem mass tag-liquid chromatography-tandem mass spectrometry) was used to identify differently enriched proteins in large and small EVs. In total, 6493 proteins were quantified, with 818 and 1567 proteins significantly enriched in small and large EVs, respectively. Tetraspanins, ADAMs and ESCRT proteins, as well as SNAREs and Rab proteins associated with endosomes were enriched in small EVs compared with large EVs, whereas ribosomal, mitochondrial, and nuclear proteins, as well as proteins involved in cytokinesis, were enriched in large EVs compared with small EVs. However, Flotillin-1 was not differently expressed in large and small EVs. In conclusion, our study shows that the proteome of large and small EVs are substantially dissimilar. We validated several proteins previously suggested to be enriched in either small or large EVs (e.g., ADAM10 and Mitofilin, respectively), and we suggest several additional novel protein markers.
Collapse
Affiliation(s)
- Anna Lischnig
- Department of Internal Medicine and Clinical Nutrition, Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Markus Bergqvist
- Department of Internal Medicine and Clinical Nutrition, Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan; Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Cecilia Lässer
- Department of Internal Medicine and Clinical Nutrition, Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
15
|
Hirsch SM, Edwards F, Shirasu-Hiza M, Dumont J, Canman JC. Functional midbody assembly in the absence of a central spindle. J Cell Biol 2022; 221:e202011085. [PMID: 34994802 PMCID: PMC8751756 DOI: 10.1083/jcb.202011085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 10/13/2021] [Accepted: 12/10/2021] [Indexed: 12/28/2022] Open
Abstract
Contractile ring constriction during cytokinesis is thought to compact central spindle microtubules to form the midbody, an antiparallel microtubule bundle at the intercellular bridge. In Caenorhabditis elegans, central spindle microtubule assembly requires targeting of the CLASP family protein CLS-2 to the kinetochores in metaphase and spindle midzone in anaphase. CLS-2 targeting is mediated by the CENP-F-like HCP-1/2, but their roles in cytokinesis and midbody assembly are not known. We found that although HCP-1 and HCP-2 mostly function cooperatively, HCP-1 plays a more primary role in promoting CLS-2-dependent central spindle microtubule assembly. HCP-1/2 codisrupted embryos did not form central spindles but completed cytokinesis and formed functional midbodies capable of supporting abscission. These central spindle-independent midbodies appeared to form via contractile ring constriction-driven bundling of astral microtubules at the furrow tip. This work suggests that, in the absence of a central spindle, astral microtubules can support midbody assembly and that midbody assembly is more predictive of successful cytokinesis than central spindle assembly.
Collapse
Affiliation(s)
- Sophia M. Hirsch
- Department of Genetics and Development, Columbia University Medical Center, New York, NY
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY
| | - Frances Edwards
- Institut Jacques Monod, Centre national de la recherche scientifique, Université de Paris, Paris, France
| | - Mimi Shirasu-Hiza
- Department of Genetics and Development, Columbia University Medical Center, New York, NY
| | - Julien Dumont
- Institut Jacques Monod, Centre national de la recherche scientifique, Université de Paris, Paris, France
| | - Julie C. Canman
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY
| |
Collapse
|
16
|
Mechanistic insights into central spindle assembly mediated by the centralspindlin complex. Proc Natl Acad Sci U S A 2021; 118:2112039118. [PMID: 34588311 PMCID: PMC8501884 DOI: 10.1073/pnas.2112039118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Centralspindlin bundles microtubules to assemble the central spindle, being essential for cytokinesis of the cell. It is a heterotetramer formed by ZEN-4 and CYK-4 in a 2:2 manner. We determined the crystal structures of centralspindlin, which revealed the detailed mechanism of complex formation. We found that centralspindlin clustered to undergo liquid–liquid phase separation (LLPS), which depended on the complementary charged residues located at ZEN-4 and CYK-4, respectively, explaining the synergy of the two subunits for the function. The LLPS of centralspindlin is critical for the microtubule bundling activity in vitro and the assembly of the central spindle in vivo. Together, our study provides angstrom-to-micron mechanistic insights into central spindle assembly mediated by the centralspindlin complex. The central spindle spatially and temporally regulates the formation of division plane during cytokinesis in animal cells. The heterotetrameric centralspindlin complex bundles microtubules to assemble the central spindle, the mechanism of which is poorly understood. Here, we determined the crystal structures of the molecular backbone of ZEN-4/CYK-4 centralspindlin from Caenorhabditis elegans, which revealed the detailed mechanism of complex formation. The molecular backbone of centralspindlin has the intrinsic propensity to undergo liquid–liquid phase separation. The condensation of centralspindlin requires two patches of basic residues at ZEN-4 and multiple acidic residues at the intrinsically disordered region of CYK-4, explaining the synergy of the two subunits for the function. These complementary charged residues were critical for the microtubule bundling activity of centralspindlin in vitro and for the assembly of the central spindle in vivo. Together, our findings provide insights into the mechanism of central spindle assembly mediated by centralspindlin through charge-driven macromolecular condensation.
Collapse
|
17
|
Asthana J, Cade NI, Normanno D, Lim WM, Surrey T. Gradual compaction of the central spindle decreases its dynamicity in PRC1 and EB1 gene-edited cells. Life Sci Alliance 2021; 4:4/12/e202101222. [PMID: 34580180 PMCID: PMC8500333 DOI: 10.26508/lsa.202101222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/24/2022] Open
Abstract
Although different anaphase proteins bind with characteristically different strength to the central spindle, the overall central spindle dynamicity slows down as mitosis proceeds. During mitosis, the spindle undergoes morphological and dynamic changes. It reorganizes at the onset of the anaphase when the antiparallel bundler PRC1 accumulates and recruits central spindle proteins to the midzone. Little is known about how the dynamic properties of the central spindle change during its morphological changes in human cells. Using gene editing, we generated human cells that express from their endogenous locus fluorescent PRC1 and EB1 to quantify their native spindle distribution and binding/unbinding turnover. EB1 plus end tracking revealed a general slowdown of microtubule growth, whereas PRC1, similar to its yeast orthologue Ase1, binds increasingly strongly to compacting antiparallel microtubule overlaps. KIF4A and CLASP1 bind more dynamically to the central spindle, but also show slowing down turnover. These results show that the central spindle gradually becomes more stable during mitosis, in agreement with a recent “bundling, sliding, and compaction” model of antiparallel midzone bundle formation in the central spindle during late mitosis.
Collapse
Affiliation(s)
- Jayant Asthana
- The Francis Crick Institute, London, UK.,Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | - Davide Normanno
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Wei Ming Lim
- The Francis Crick Institute, London, UK.,Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Thomas Surrey
- The Francis Crick Institute, London, UK .,Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
18
|
Barbalinardo G, Chen Z, Dong H, Fan Z, Donadio D. Ultrahigh Convergent Thermal Conductivity of Carbon Nanotubes from Comprehensive Atomistic Modeling. PHYSICAL REVIEW LETTERS 2021; 127:025902. [PMID: 34296915 DOI: 10.1103/physrevlett.127.025902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Anomalous heat transport in one-dimensional nanostructures, such as nanotubes and nanowires, is a widely debated problem in condensed matter and statistical physics, with contradicting pieces of evidence from experiments and simulations. Using a comprehensive modeling approach, comprised of lattice dynamics and molecular dynamics simulations, we proved that the infinite length limit of the thermal conductivity of a (10,0) single-wall carbon nanotube is finite but this limit is reached only for macroscopic lengths due to a thermal phonon mean free path of several millimeters. Our calculations showed that the extremely high thermal conductivity of this system at room temperature is dictated by quantum effects. Modal analysis showed that the divergent nature of thermal conductivity, observed in one-dimensional model systems, is suppressed in carbon nanotubes by anharmonic scattering channels provided by the flexural and optical modes with polarization in the plane orthogonal to the transport direction.
Collapse
Affiliation(s)
- Giuseppe Barbalinardo
- Department of Chemistry, University of California, Davis, Davis, California 95616, USA
| | - Zekun Chen
- Department of Chemistry, University of California, Davis, Davis, California 95616, USA
| | - Haikuan Dong
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland
- College of Physical Science and Technology, Bohai University, Jinzhou, 121013, China
| | - Zheyong Fan
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland
- College of Physical Science and Technology, Bohai University, Jinzhou, 121013, China
| | - Davide Donadio
- Department of Chemistry, University of California, Davis, Davis, California 95616, USA
| |
Collapse
|
19
|
Zhou CJ, Wang DH, Kong XW, Han Z, Hao X, Wang XY, Wen X, Liang CG. Protein regulator of cytokinesis 1 regulates chromosome dynamics and cytoplasmic division during mouse oocyte meiotic maturation and early embryonic development. FEBS J 2021; 287:5130-5147. [PMID: 32562308 DOI: 10.1111/febs.15458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/01/2020] [Accepted: 06/15/2020] [Indexed: 11/28/2022]
Abstract
In contrast to the homeokinesis of mitosis, asymmetric division of cytoplasm is the conspicuous feature of meiosis in mammalian oocytes. Protein regulator of cytokinesis 1 (PRC1) is an important regulator during mitotic spindle assembly and cytoplasmic division, but its functions in oocyte meiosis and early embryo development have not been fully elucidated. In this study, we detected PRC1 expression and localization and revealed a nuclear, spindle midzone-related dynamic pattern throughout meiotic and mitotic progressions. Treatment of oocytes with the reagents taxol or nocodazole disturbed the distribution of PRC1 in metaphase II oocytes. Further, PRC1 depletion led to failure of first polar body (PB1) extrusion and spindle migration, aneuploidy and defective kinetochore-microtubule attachment and spindle assembly. Overexpression of PRC1 resulted in PB1 extrusion failure, aneuploidy and serious defects of spindle assembly. To investigate PRC1 function in early embryos, we injected Prc1 morpholino into zygotes and 2-cell stage embryos. Depletion of PRC1 in zygotes impaired 4-cell, morula and blastocyst formation. Loss of PRC1 in single or double blastomeres in 2-cell stage embryos significantly impaired cell division, indicating its indispensable role in early embryo development. Co-immunoprecipitation showed that PRC1 interacts with polo-like kinase 1 (PLK1), and functional knockdown and rescue experiments demonstrated that PRC1 recruits PLK1 to the spindle midzone to regulate cytoplasmic division during meiosis. Finally, kinesin family member 4 knockdown downregulates PRC1 expression and leads to PRC1 localization failure. Taken together, our data suggest PRC1 plays an important role during oocyte maturation and early embryonic development by regulating chromosome dynamics and cytoplasmic division.
Collapse
Affiliation(s)
- Cheng-Jie Zhou
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Dong-Hui Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China.,Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, Sichuan Province, China
| | - Xiang-Wei Kong
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Zhe Han
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Xin Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Xing-Yue Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Xin Wen
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Cheng-Guang Liang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| |
Collapse
|
20
|
Qiao Y, Pei Y, Luo M, Rajasekaran M, Hui KM, Chen J. Cytokinesis regulators as potential diagnostic and therapeutic biomarkers for human hepatocellular carcinoma. Exp Biol Med (Maywood) 2021; 246:1343-1354. [PMID: 33899543 DOI: 10.1177/15353702211008380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cytokinesis, the final step of mitosis, is critical for maintaining the ploidy level of cells. Cytokinesis is a complex, highly regulated process and its failure can lead to genetic instability and apoptosis, contributing to the development of cancer. Human hepatocellular carcinoma is often accompanied by a high frequency of aneuploidy and the DNA ploidy pattern observed in human hepatocellular carcinoma results mostly from impairments in cytokinesis. Many key regulators of cytokinesis are abnormally expressed in human hepatocellular carcinoma, and their expression levels are often correlated with patient prognosis. Moreover, preclinical studies have demonstrated that the inhibition of key cytokinesis regulators can suppress the growth of human hepatocellular carcinoma. Here, we provide an overview of the current understanding of the signaling networks regulating cytokinesis, the key cytokinesis regulators involved in the initiation and development of human hepatocellular carcinoma, and their applications as potential diagnostic and therapeutic biomarkers.
Collapse
Affiliation(s)
- Yiting Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P. R. China
| | - Yunxin Pei
- Pharmacy Institute and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Miao Luo
- Pharmacy Institute and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Muthukumar Rajasekaran
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore
| | - Kam M Hui
- Pharmacy Institute and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore.,Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore.,Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jianxiang Chen
- Pharmacy Institute and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore
| |
Collapse
|
21
|
Chapa-Y-Lazo B, Hamanaka M, Wray A, Balasubramanian MK, Mishima M. Polar relaxation by dynein-mediated removal of cortical myosin II. J Cell Biol 2021; 219:151836. [PMID: 32497213 PMCID: PMC7401816 DOI: 10.1083/jcb.201903080] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 02/03/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Nearly six decades ago, Lewis Wolpert proposed the relaxation of the polar cell cortex by the radial arrays of astral microtubules as a mechanism for cleavage furrow induction. While this mechanism has remained controversial, recent work has provided evidence for polar relaxation by astral microtubules, although its molecular mechanisms remain elusive. Here, using C. elegans embryos, we show that polar relaxation is achieved through dynein-mediated removal of myosin II from the polar cortexes. Mutants that position centrosomes closer to the polar cortex accelerated furrow induction, whereas suppression of dynein activity delayed furrowing. We show that dynein-mediated removal of myosin II from the polar cortexes triggers a bidirectional cortical flow toward the cell equator, which induces the assembly of the actomyosin contractile ring. These results provide a molecular mechanism for the aster-dependent polar relaxation, which works in parallel with equatorial stimulation to promote robust cytokinesis.
Collapse
Affiliation(s)
- Bernardo Chapa-Y-Lazo
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry, UK
| | - Motonari Hamanaka
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry, UK.,Hokkaido University, Sapporo, Japan
| | - Alexander Wray
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry, UK.,University of Nottingham, Nottingham, UK
| | - Mohan K Balasubramanian
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry, UK
| | - Masanori Mishima
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry, UK
| |
Collapse
|
22
|
Horváth P, Müller-Reichert T. A Structural View on ESCRT-Mediated Abscission. Front Cell Dev Biol 2020; 8:586880. [PMID: 33240884 PMCID: PMC7680848 DOI: 10.3389/fcell.2020.586880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/16/2020] [Indexed: 11/25/2022] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) mediates cellular processes that are related to membrane remodeling, such as multivesicular body (MVB) formation, viral budding and cytokinesis. Abscission is the final stage of cytokinesis that results in the physical separation of the newly formed two daughter cells. Although abscission has been investigated for decades, there are still fundamental open questions related to the spatio-temporal organization of the molecular machinery involved in this process. Reviewing knowledge obtained from in vitro as well as in vivo experiments, we give a brief overview on the role of ESCRT components in abscission mainly focussing on mammalian cells.
Collapse
Affiliation(s)
- Péter Horváth
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
23
|
Abstract
Modern life is replete with function-expanding dongles, and life at the molecular scale is, it turns out, no exception. Hanging out of the back of the Kif14 molecular motor is an intrinsically disordered domain that gives it superpowers.
Collapse
Affiliation(s)
- Yean Ming Chew
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Coventry CV4 7LA, UK
| | - Robert A Cross
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Coventry CV4 7LA, UK.
| |
Collapse
|
24
|
Bai X, Melesse M, Sorensen Turpin CG, Sloan DE, Chen CY, Wang WC, Lee PY, Simmons JR, Nebenfuehr B, Mitchell D, Klebanow LR, Mattson N, Betzig E, Chen BC, Cheerambathur D, Bembenek JN. Aurora B functions at the apical surface after specialized cytokinesis during morphogenesis in C. elegans. Development 2020; 147:dev.181099. [PMID: 31806662 PMCID: PMC6983721 DOI: 10.1242/dev.181099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022]
Abstract
Although cytokinesis has been intensely studied, the way it is executed during development is not well understood, despite a long-standing appreciation that various aspects of cytokinesis vary across cell and tissue types. To address this, we investigated cytokinesis during the invariant Caenorhabditis elegans embryonic divisions and found several parameters that are altered at different stages in a reproducible manner. During early divisions, furrow ingression asymmetry and midbody inheritance is consistent, suggesting specific regulation of these events. During morphogenesis, we found several unexpected alterations to cytokinesis, including apical midbody migration in polarizing epithelial cells of the gut, pharynx and sensory neurons. Aurora B kinase, which is essential for several aspects of cytokinesis, remains apically localized in each of these tissues after internalization of midbody ring components. Aurora B inactivation disrupts cytokinesis and causes defects in apical structures, even if inactivated post-mitotically. Therefore, we demonstrate that cytokinesis is implemented in a specialized way during epithelial polarization and that Aurora B has a role in the formation of the apical surface.
Collapse
Affiliation(s)
- Xiaofei Bai
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Michael Melesse
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | | | - Dillon E. Sloan
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chin-Yi Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Wen-Cheng Wang
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Po-Yi Lee
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - James R. Simmons
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Benjamin Nebenfuehr
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Diana Mitchell
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lindsey R. Klebanow
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Nicholas Mattson
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Eric Betzig
- Janelia Research Campus, HHMI, Ashburn, VA 20147, USA
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan,Janelia Research Campus, HHMI, Ashburn, VA 20147, USA
| | - Dhanya Cheerambathur
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Joshua N. Bembenek
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA,Author for correspondence ()
| |
Collapse
|
25
|
Drechsler H, Xu Y, Geyer VF, Zhang Y, Diez S. Multivalent electrostatic microtubule interactions of synthetic peptides are sufficient to mimic advanced MAP-like behavior. Mol Biol Cell 2019; 30:2953-2968. [PMID: 31599700 PMCID: PMC6857568 DOI: 10.1091/mbc.e19-05-0247] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Microtubule-associated proteins (MAPs) are a functionally highly diverse class of proteins that help to adjust the shape and function of the microtubule cytoskeleton in space and time. For this purpose, MAPs structurally support microtubules, modulate their dynamic instability, or regulate the activity of associated molecular motors. The microtubule-binding domains of MAPs are structurally divergent, but often depend on electrostatic interactions with the negatively charged surface of the microtubule. This suggests that the surface exposure of positive charges rather than a certain structural fold is sufficient for a protein to associate with microtubules. Consistently, positively charged artificial objects have been shown to associate with microtubules and to diffuse along their lattice. Natural MAPs, however, show a more sophisticated functionality beyond lattice-diffusion. Here, we asked whether basic electrostatic interactions are sufficient to also support advanced MAP functionality. To test this hypothesis, we studied simple positively charged peptide sequences for the occurrence of typical MAP-like behavior. We found that a multivalent peptide construct featuring four lysine-alanine heptarepeats (starPEG-(KA7)4)-but not its monovalent KA7-subunits-show advanced, biologically relevant MAP-like behavior: starPEG-(KA7)4 binds microtubules in the low nanomolar range, diffuses along their lattice with the ability to switch between intersecting microtubules, and tracks depolymerizing microtubule ends. Further, starPEG-(KA7)4 promotes microtubule nucleation and growth, mediates depolymerization coupled pulling at plus ends, and bundles microtubules without significantly interfering with other proteins on the microtubule lattice (as exemplified by the motor kinesin-1). Our results show that positive charges and multivalency are sufficient to mimic advanced MAP-like behavior.
Collapse
Affiliation(s)
- Hauke Drechsler
- B CUBE-Center for Molecular Bioengineering, Technische -Universität -Dresden, Dresden 01307, Germany
| | - Yong Xu
- B CUBE-Center for Molecular Bioengineering, Technische -Universität -Dresden, Dresden 01307, Germany
| | - Veikko F Geyer
- B CUBE-Center for Molecular Bioengineering, Technische -Universität -Dresden, Dresden 01307, Germany
| | - Yixin Zhang
- B CUBE-Center for Molecular Bioengineering, Technische -Universität -Dresden, Dresden 01307, Germany
| | - Stefan Diez
- B CUBE-Center for Molecular Bioengineering, Technische -Universität -Dresden, Dresden 01307, Germany.,Cluster of Excellence Physics of Life, Technische -Universität -Dresden, Dresden 01307, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| |
Collapse
|
26
|
Abstract
The active form of the small GTPase RhoA is necessary and sufficient for formation of a cytokinetic furrow in animal cells. Despite the conceptual simplicity of the process, the molecular mechanisms that control it are intricate and involve redundancy at multiple levels. Here, we discuss our current knowledge of the mechanisms underlying spatiotemporal regulation of RhoA during cytokinesis by upstream activators. The direct upstream activator, the RhoGEF Ect2, requires activation due to autoinhibition. Ect2 is primarily activated by the centralspindlin complex, which contains numerous domains that regulate its subcellular localization, oligomeric state, and Ect2 activation. We review the functions of these domains and how centralspindlin is regulated to ensure correctly timed, equatorial RhoA activation. Highlighting recent evidence, we propose that although centralspindlin does not always prominently accumulate on the plasma membrane, it is the site where it promotes RhoA activation during cytokinesis.
Collapse
|
27
|
The midbody interactome reveals unexpected roles for PP1 phosphatases in cytokinesis. Nat Commun 2019; 10:4513. [PMID: 31586073 PMCID: PMC6778137 DOI: 10.1038/s41467-019-12507-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/13/2019] [Indexed: 12/20/2022] Open
Abstract
The midbody is an organelle assembled at the intercellular bridge between the two daughter cells at the end of mitosis. It controls the final separation of the daughter cells and has been involved in cell fate, polarity, tissue organization, and cilium and lumen formation. Here, we report the characterization of the intricate midbody protein-protein interaction network (interactome), which identifies many previously unknown interactions and provides an extremely valuable resource for dissecting the multiple roles of the midbody. Initial analysis of this interactome revealed that PP1β-MYPT1 phosphatase regulates microtubule dynamics in late cytokinesis and de-phosphorylates the kinesin component MKLP1/KIF23 of the centralspindlin complex. This de-phosphorylation antagonizes Aurora B kinase to modify the functions and interactions of centralspindlin in late cytokinesis. Our findings expand the repertoire of PP1 functions during mitosis and indicate that spatiotemporal changes in the distribution of kinases and counteracting phosphatases finely tune the activity of cytokinesis proteins. The midbody is an organelle present at the bridge connecting two cells at the end of cell division. Here, the authors use mass spectrometry to define the midbody interactome and uncover a role for PP1 phosphatases in microtubule dynamics and regulation of cytokinesis.
Collapse
|
28
|
She ZY, Wei YL, Lin Y, Li YL, Lu MH. Mechanisms of the Ase1/PRC1/MAP65 family in central spindle assembly. Biol Rev Camb Philos Soc 2019; 94:2033-2048. [PMID: 31343816 DOI: 10.1111/brv.12547] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 06/27/2019] [Accepted: 07/03/2019] [Indexed: 01/08/2023]
Abstract
During cytokinesis, the organization of the spindle midzone and chromosome segregation is controlled by the central spindle, a microtubule cytoskeleton containing kinesin motors and non-motor microtubule-associated proteins. The anaphase spindle elongation 1/protein regulator of cytokinesis 1/microtubule associated protein 65 (Ase1/PRC1/MAP65) family of microtubule-bundling proteins are key regulators of central spindle assembly, mediating microtubule crosslinking and spindle elongation in the midzone. Ase1/PRC1/MAP65 serves as a complex regulatory platform for the recruitment of other midzone proteins at the spindle midzone. Herein, we summarize recent advances in understanding of the structural domains and molecular kinetics of the Ase1/PRC1/MAP65 family. We summarize the regulatory network involved in post-translational modifications of Ase1/PRC1 by cyclin-dependent kinase 1 (Cdk1), cell division cycle 14 (Cdc14) and Polo-like kinase 1 (Plk1) and also highlight multiple functions of Ase1/PRC1 in central spindle organization, spindle elongation and cytokinesis during cell division.
Collapse
Affiliation(s)
- Zhen-Yu She
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Ya-Lan Wei
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Yang Lin
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Yue-Ling Li
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Ming-Hui Lu
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| |
Collapse
|
29
|
Pamula MC, Carlini L, Forth S, Verma P, Suresh S, Legant WR, Khodjakov A, Betzig E, Kapoor TM. High-resolution imaging reveals how the spindle midzone impacts chromosome movement. J Cell Biol 2019; 218:2529-2544. [PMID: 31248912 PMCID: PMC6683753 DOI: 10.1083/jcb.201904169] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/21/2019] [Accepted: 05/30/2019] [Indexed: 12/11/2022] Open
Abstract
Microtubule bundles in the spindle midzone have been reported to either promote or hinder chromosome movement. Pamula et al. examine the assembly dynamics of midzone microtubule bundles during anaphase and how chromosome segregation is impacted by aberrant bundle assembly. In the spindle midzone, microtubules from opposite half-spindles form bundles between segregating chromosomes. Microtubule bundles can either push or restrict chromosome movement during anaphase in different cellular contexts, but how these activities are achieved remains poorly understood. Here, we use high-resolution live-cell imaging to analyze individual microtubule bundles, growing filaments, and chromosome movement in dividing human cells. Within bundles, filament overlap length marked by the cross-linking protein PRC1 decreases during anaphase as chromosome segregation slows. Filament ends within microtubule bundles appear capped despite dynamic PRC1 turnover and submicrometer proximity to growing microtubules. Chromosome segregation distance and rate are increased in two human cell lines when microtubule bundle assembly is prevented via PRC1 knockdown. Upon expressing a mutant PRC1 with reduced microtubule affinity, bundles assemble but chromosome hypersegregation is still observed. We propose that microtubule overlap length reduction, typically linked to pushing forces generated within filament bundles, is needed to properly restrict spindle elongation and position chromosomes within daughter cells.
Collapse
Affiliation(s)
- Melissa C Pamula
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY
| | - Lina Carlini
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY
| | - Scott Forth
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY
| | - Priyanka Verma
- Department of Cancer Biology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Subbulakshmi Suresh
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY
| | - Wesley R Legant
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC.,Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, NC
| | - Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, NY
| | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA.,Department of Physics and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY
| |
Collapse
|
30
|
Adriaans IE, Basant A, Ponsioen B, Glotzer M, Lens SM. PLK1 plays dual roles in centralspindlin regulation during cytokinesis. J Cell Biol 2019; 218:1250-1264. [PMID: 30728176 PMCID: PMC6446842 DOI: 10.1083/jcb.201805036] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 12/26/2018] [Accepted: 01/23/2019] [Indexed: 11/26/2022] Open
Abstract
Cytokinesis begins upon anaphase onset. An early step involves local activation of the small GTPase RhoA, which triggers assembly of an actomyosin-based contractile ring at the equatorial cortex. Here, we delineated the contributions of PLK1 and Aurora B to RhoA activation and cytokinesis initiation in human cells. Knock-down of PRC1, which disrupts the spindle midzone, revealed the existence of two pathways that can initiate cleavage furrow ingression. One pathway depends on a well-organized spindle midzone and PLK1, while the other depends on Aurora B activity and centralspindlin at the equatorial cortex and can operate independently of PLK1. We further show that PLK1 inhibition sequesters centralspindlin onto the spindle midzone, making it unavailable for Aurora B at the equatorial cortex. We propose that PLK1 activity promotes the release of centralspindlin from the spindle midzone through inhibition of PRC1, allowing centralspindlin to function as a regulator of spindle midzone formation and as an activator of RhoA at the equatorial cortex.
Collapse
Affiliation(s)
- Ingrid E. Adriaans
- Oncode Institute, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Angika Basant
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL
| | - Bas Ponsioen
- Oncode Institute, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Michael Glotzer
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL
| | - Susanne M.A. Lens
- Oncode Institute, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
31
|
Allahyar A, Ubels J, de Ridder J. A data-driven interactome of synergistic genes improves network-based cancer outcome prediction. PLoS Comput Biol 2019; 15:e1006657. [PMID: 30726216 PMCID: PMC6380593 DOI: 10.1371/journal.pcbi.1006657] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 02/19/2019] [Accepted: 11/20/2018] [Indexed: 12/13/2022] Open
Abstract
Robustly predicting outcome for cancer patients from gene expression is an important challenge on the road to better personalized treatment. Network-based outcome predictors (NOPs), which considers the cellular wiring diagram in the classification, hold much promise to improve performance, stability and interpretability of identified marker genes. Problematically, reports on the efficacy of NOPs are conflicting and for instance suggest that utilizing random networks performs on par to networks that describe biologically relevant interactions. In this paper we turn the prediction problem around: instead of using a given biological network in the NOP, we aim to identify the network of genes that truly improves outcome prediction. To this end, we propose SyNet, a gene network constructed ab initio from synergistic gene pairs derived from survival-labelled gene expression data. To obtain SyNet, we evaluate synergy for all 69 million pairwise combinations of genes resulting in a network that is specific to the dataset and phenotype under study and can be used to in a NOP model. We evaluated SyNet and 11 other networks on a compendium dataset of >4000 survival-labelled breast cancer samples. For this purpose, we used cross-study validation which more closely emulates real world application of these outcome predictors. We find that SyNet is the only network that truly improves performance, stability and interpretability in several existing NOPs. We show that SyNet overlaps significantly with existing gene networks, and can be confidently predicted (~85% AUC) from graph-topological descriptions of these networks, in particular the breast tissue-specific network. Due to its data-driven nature, SyNet is not biased to well-studied genes and thus facilitates post-hoc interpretation. We find that SyNet is highly enriched for known breast cancer genes and genes related to e.g. histological grade and tamoxifen resistance, suggestive of a role in determining breast cancer outcome.
Collapse
Affiliation(s)
- Amin Allahyar
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Delft Bioinformatics Lab, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - Joske Ubels
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Skyline DX, Rotterdam
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam
| | - Jeroen de Ridder
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
32
|
Pintard L, Bowerman B. Mitotic Cell Division in Caenorhabditis elegans. Genetics 2019; 211:35-73. [PMID: 30626640 PMCID: PMC6325691 DOI: 10.1534/genetics.118.301367] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/24/2018] [Indexed: 11/18/2022] Open
Abstract
Mitotic cell divisions increase cell number while faithfully distributing the replicated genome at each division. The Caenorhabditis elegans embryo is a powerful model for eukaryotic cell division. Nearly all of the genes that regulate cell division in C. elegans are conserved across metazoan species, including humans. The C. elegans pathways tend to be streamlined, facilitating dissection of the more redundant human pathways. Here, we summarize the virtues of C. elegans as a model system and review our current understanding of centriole duplication, the acquisition of pericentriolar material by centrioles to form centrosomes, the assembly of kinetochores and the mitotic spindle, chromosome segregation, and cytokinesis.
Collapse
Affiliation(s)
- Lionel Pintard
- Equipe labellisée Ligue contre le Cancer, Institut Jacques Monod, Team Cell Cycle and Development UMR7592, Centre National de la Recherche Scientifique - Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| |
Collapse
|
33
|
Abstract
During cytokinesis, the cell employs various molecular machineries to separate into two daughters. Many signaling pathways are required to ensure temporal and spatial coordination of the molecular and mechanical events. Cells can also coordinate division with neighboring cells to maintain tissue integrity and flexibility. In this review, we focus on recent advances in the understanding of the molecular underpinnings of cytokinesis.
Collapse
Affiliation(s)
- Yinan Liu
- Departments of Cell Biology and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Douglas Robinson
- Departments of Cell Biology and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| |
Collapse
|
34
|
Dekraker C, Boucher E, Mandato CA. Regulation and Assembly of Actomyosin Contractile Rings in Cytokinesis and Cell Repair. Anat Rec (Hoboken) 2018; 301:2051-2066. [PMID: 30312008 DOI: 10.1002/ar.23962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 01/17/2023]
Abstract
Cytokinesis and single-cell wound repair both involve contractile assemblies of filamentous actin (F-actin) and myosin II organized into characteristic ring-like arrays. The assembly of these actomyosin contractile rings (CRs) is specified spatially and temporally by small Rho GTPases, which trigger local actin polymerization and myosin II contractility via a variety of downstream effectors. We now have a much clearer view of the Rho GTPase signaling cascade that leads to the formation of CRs, but some factors involved in CR positioning, assembly, and function remain poorly understood. Recent studies show that this regulation is multifactorial and goes beyond the long-established Ca2+ -dependent processes. There is substantial evidence that the Ca2+ -independent changes in cell shape, tension, and plasma membrane composition that characterize cytokinesis and single-cell wound repair also regulate CR formation. Elucidating the regulation and mechanistic properties of CRs is important to our understanding of basic cell biology and holds potential for therapeutic applications in human disease. In this review, we present a primer on the factors influencing and regulating CR positioning, assembly, and contraction as they occur in a variety of cytokinetic and single-cell wound repair models. Anat Rec, 301:2051-2066, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Corina Dekraker
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Eric Boucher
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Craig A Mandato
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
35
|
Ohashi A, Ohori M, Iwai K. Motor activity of centromere-associated protein-E contributes to its localization at the center of the midbody to regulate cytokinetic abscission. Oncotarget 2018; 7:79964-79980. [PMID: 27835888 PMCID: PMC5346764 DOI: 10.18632/oncotarget.13206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/26/2016] [Indexed: 11/25/2022] Open
Abstract
Accurate control of cytokinesis is critical for genomic stability to complete high-fidelity transmission of genetic material to the next generation. A number of proteins accumulate in the intercellular bridge (midbody) during cytokinesis, and the dynamics of these proteins are temporally and spatially orchestrated to complete the process. In this study, we demonstrated that localization of centromere-associated protein-E (CENP-E) at the midbody is involved in cytokinetic abscission. The motor activity of CENP-E and the C-terminal midbody localization domain, which includes amino acids 2659-2666 (RYFDNSSL), are involved in the anchoring of CENP-E to the center of the midbody. Furthermore, CENP-E motor activity contributes to the accumulation of protein regulator of cytokinesis 1 (PRC1) in the midbody during cytokinesis. Midbody localization of PRC1 is critical to the antiparallel microtubule structure and recruitment of other midbody-associated proteins. Therefore, CENP-E motor activity appears to play important roles in the organization of these proteins to complete cytokinetic abscission. Our findings will be helpful for understanding how each step of cytokinesis is regulated to complete cytokinetic abscission.
Collapse
Affiliation(s)
- Akihiro Ohashi
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Momoko Ohori
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Kenichi Iwai
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| |
Collapse
|
36
|
Li J, Dallmayer M, Kirchner T, Musa J, Grünewald TGP. PRC1: Linking Cytokinesis, Chromosomal Instability, and Cancer Evolution. Trends Cancer 2017; 4:59-73. [PMID: 29413422 DOI: 10.1016/j.trecan.2017.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/26/2017] [Accepted: 11/03/2017] [Indexed: 12/15/2022]
Abstract
Cytokinesis is the final event of the cell cycle dividing one cell into two daughter cells. The protein regulator of cytokinesis (PRC)1 is essential for cytokinesis and normal cell cleavage. Deregulation of PRC1 causes cytokinesis defects that promote chromosomal instability (CIN) and thus tumor heterogeneity and cancer evolution. Consistently, abnormal PRC1 expression correlates with poor patient outcome in various malignancies, which may be caused by PRC1-mediated CIN and aneuploidy. Here, we review the physiological functions of PRC1 in cell cycle regulation and its contribution to tumorigenesis and intratumoral heterogeneity. We discuss targeting PRC1 within the complementary approaches of either normalizing CIN in aneuploid cancers or creating chromosomal chaos in genomically stable cancers to induce apoptosis.
Collapse
Affiliation(s)
- Jing Li
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Marlene Dallmayer
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Thomas Kirchner
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julian Musa
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany; Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
37
|
Mullen TJ, Wignall SM. Interplay between microtubule bundling and sorting factors ensures acentriolar spindle stability during C. elegans oocyte meiosis. PLoS Genet 2017; 13:e1006986. [PMID: 28910277 PMCID: PMC5614648 DOI: 10.1371/journal.pgen.1006986] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/26/2017] [Accepted: 08/17/2017] [Indexed: 11/18/2022] Open
Abstract
In many species, oocyte meiosis is carried out in the absence of centrioles. As a result, microtubule organization, spindle assembly, and chromosome segregation proceed by unique mechanisms. Here, we report insights into the principles underlying this specialized form of cell division, through studies of C. elegans KLP-15 and KLP-16, two highly homologous members of the kinesin-14 family of minus-end-directed kinesins. These proteins localize to the acentriolar oocyte spindle and promote microtubule bundling during spindle assembly; following KLP-15/16 depletion, microtubule bundles form but then collapse into a disorganized array. Surprisingly, despite this defect we found that during anaphase, microtubules are able to reorganize into a bundled array that facilitates chromosome segregation. This phenotype therefore enabled us to identify factors promoting microtubule organization during anaphase, whose contributions are normally undetectable in wild-type worms; we found that SPD-1 (PRC1) bundles microtubules and KLP-18 (kinesin-12) likely sorts those bundles into a functional orientation capable of mediating chromosome segregation. Therefore, our studies have revealed an interplay between distinct mechanisms that together promote spindle formation and chromosome segregation in the absence of structural cues such as centrioles.
Collapse
Affiliation(s)
- Timothy J. Mullen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| | - Sarah M. Wignall
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
- * E-mail:
| |
Collapse
|
38
|
Johnson CA, Wright CE, Ghashghaei HT. Regulation of cytokinesis during corticogenesis: focus on the midbody. FEBS Lett 2017; 591:4009-4026. [PMID: 28493553 DOI: 10.1002/1873-3468.12676] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/23/2017] [Accepted: 05/07/2017] [Indexed: 12/21/2022]
Abstract
Development of the cerebral cortices depends on tight regulation of cell divisions. In this system, stem and progenitor cells undergo symmetric and asymmetric divisions to ultimately produce neurons that establish the layers of the cortex. Cell division culminates with the formation of the midbody, a transient organelle that establishes the site of abscission between nascent daughter cells. During cytokinetic abscission, the final stage of cell division, one daughter cell will inherit the midbody remnant, which can then maintain or expel the remnant, but mechanisms and circumstances influencing this decision are unclear. This review describes the midbody and its constituent proteins, as well as the known consequences of their manipulation during cortical development. The potential functional relevance of midbody mechanisms is discussed.
Collapse
Affiliation(s)
- Caroline A Johnson
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Comparative Biomedical Sciences Graduate Program, Neurosciences Concentration Area, North Carolina State University, Raleigh, NC, USA
| | - Catherine E Wright
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - H Troy Ghashghaei
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Comparative Biomedical Sciences Graduate Program, Neurosciences Concentration Area, North Carolina State University, Raleigh, NC, USA.,Program in Genetics, North Carolina State University, Raleigh, NC, USA.,Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
39
|
Qin Z, Qin G, Zuo X, Xiong Z, Hu M. Orbitally driven low thermal conductivity of monolayer gallium nitride (GaN) with planar honeycomb structure: a comparative study. NANOSCALE 2017; 9:4295-4309. [PMID: 28295111 DOI: 10.1039/c7nr01271c] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Two-dimensional (2D) materials with graphene as a representative have been intensively studied for a long time. Recently, monolayer gallium nitride (ML GaN) with honeycomb structure was successfully fabricated in experiments, generating enormous research interest for its promising applications in nano- and opto-electronics. Considering all these applications are inevitably involved with thermal transport, systematic investigation of the phonon transport properties of 2D GaN is in demand. In this paper, by solving the Boltzmann transport equation (BTE) based on first-principles calculations, we performed a comprehensive study of the phonon transport properties of ML GaN, with detailed comparison to bulk GaN, 2D graphene, silicene and ML BN with similar honeycomb structure. Considering the similar planar structure of ML GaN to graphene, it is quite intriguing to find that the thermal conductivity (κ) of ML GaN (14.93 W mK-1) is more than two orders of magnitude lower than that of graphene and is even lower than that of silicene with a buckled structure. Systematic analysis is performed based on the study of the contribution from phonon branches, comparison among the mode level phonon group velocity and lifetime, the detailed process and channels of phonon-phonon scattering, and phonon anharmonicity with potential energy well. We found that, different from graphene and ML BN, the phonon-phonon scattering selection rule in 2D GaN is slightly broken by the lowered symmetry due to the large difference in the atomic radius and mass between Ga and N atoms. Further deep insight is gained from the electronic structure. Resulting from the special sp orbital hybridization mediated by the Ga-d orbital in ML GaN, the strongly polarized Ga-N bond, localized charge density, and its inhomogeneous distribution induce large phonon anharmonicity and lead to the intrinsic low κ of ML GaN. The orbitally driven low κ of ML GaN unraveled in this work would make 2D GaN prospective for applications in energy conversion such as thermoelectrics. Our study offers fundamental understanding of phonon transport in ML GaN within the framework of BTE and further electronic structure, which will enrich the studies of nanoscale phonon transport in 2D materials and shed light on further studies.
Collapse
Affiliation(s)
- Zhenzhen Qin
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China.
| | - Guangzhao Qin
- Institute of Mineral Engineering, Division of Materials Science and Engineering, Faculty of Georesources and Materials Engineering, RWTH Aachen University, Aachen 52064, Germany.
| | - Xu Zuo
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China.
| | - Zhihua Xiong
- Key Laboratory for Optoelectronics and Communication of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang 330038, China.
| | - Ming Hu
- Institute of Mineral Engineering, Division of Materials Science and Engineering, Faculty of Georesources and Materials Engineering, RWTH Aachen University, Aachen 52064, Germany. and Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University, Aachen 52062, Germany
| |
Collapse
|
40
|
Mishima M. Preparation of centralspindlin as an active heterotetramer of kinesin and GTPase activating protein subunits for in vitro structural and functional assays. Methods Cell Biol 2017; 137:371-385. [DOI: 10.1016/bs.mcb.2016.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
41
|
Scholey JM, Civelekoglu-Scholey G, Brust-Mascher I. Anaphase B. BIOLOGY 2016; 5:biology5040051. [PMID: 27941648 PMCID: PMC5192431 DOI: 10.3390/biology5040051] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 11/16/2022]
Abstract
Anaphase B spindle elongation is characterized by the sliding apart of overlapping antiparallel interpolar (ip) microtubules (MTs) as the two opposite spindle poles separate, pulling along disjoined sister chromatids, thereby contributing to chromosome segregation and the propagation of all cellular life. The major biochemical “modules” that cooperate to mediate pole–pole separation include: (i) midzone pushing or (ii) braking by MT crosslinkers, such as kinesin-5 motors, which facilitate or restrict the outward sliding of antiparallel interpolar MTs (ipMTs); (iii) cortical pulling by disassembling astral MTs (aMTs) and/or dynein motors that pull aMTs outwards; (iv) ipMT plus end dynamics, notably net polymerization; and (v) ipMT minus end depolymerization manifest as poleward flux. The differential combination of these modules in different cell types produces diversity in the anaphase B mechanism. Combinations of antagonist modules can create a force balance that maintains the dynamic pre-anaphase B spindle at constant length. Tipping such a force balance at anaphase B onset can initiate and control the rate of spindle elongation. The activities of the basic motor filament components of the anaphase B machinery are controlled by a network of non-motor MT-associated proteins (MAPs), for example the key MT cross-linker, Ase1p/PRC1, and various cell-cycle kinases, phosphatases, and proteases. This review focuses on the molecular mechanisms of anaphase B spindle elongation in eukaryotic cells and briefly mentions bacterial DNA segregation systems that operate by spindle elongation.
Collapse
Affiliation(s)
- Jonathan M Scholey
- Department of Molecular and Cell Biology, University of California, Davis, CA 95616, USA.
| | | | - Ingrid Brust-Mascher
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
42
|
Abstract
Proteins that associate with microtubules (MTs) are crucial to generate MT arrays and establish different cellular architectures. One example is PRC1 (protein regulator of cytokinesis 1), which cross-links antiparallel MTs and is essential for the completion of mitosis and cytokinesis. Here we describe a 4-Å-resolution cryo-EM structure of monomeric PRC1 bound to MTs. Residues in the spectrin domain of PRC1 contacting the MT are highly conserved and interact with the same pocket recognized by kinesin. We additionally found that PRC1 promotes MT assembly even in the presence of the MT stabilizer taxol. Interestingly, the angle of the spectrin domain on the MT surface corresponds to the previously observed cross-bridge angle between MTs cross-linked by full-length, dimeric PRC1. This finding, together with molecular dynamic simulations describing the intrinsic flexibility of PRC1, suggests that the MT-spectrin domain interface determines the geometry of the MT arrays cross-linked by PRC1.
Collapse
|
43
|
Mishima M. Centralspindlin in Rappaport’s cleavage signaling. Semin Cell Dev Biol 2016; 53:45-56. [DOI: 10.1016/j.semcdb.2016.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 03/02/2016] [Indexed: 02/07/2023]
|
44
|
Affiliation(s)
- Masanori Mishima
- a Division of Biomedical Cell Biology; Warwick Medical School ; University of Warwick ; Coventry , UK
| | - Kian-Yong Lee
- b Ludwig Institute for Cancer Research ; University of California San Diego ; La Jolla , CA USA
| |
Collapse
|
45
|
Tikhonenko I, Irizarry K, Khodjakov A, Koonce MP. Organization of microtubule assemblies in Dictyostelium syncytia depends on the microtubule crosslinker, Ase1. Cell Mol Life Sci 2016; 73:859-68. [PMID: 26298292 PMCID: PMC4738076 DOI: 10.1007/s00018-015-2026-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/27/2015] [Accepted: 08/18/2015] [Indexed: 11/30/2022]
Abstract
It has long been known that the interphase microtubule (MT) array is a key cellular scaffold that provides structural support and directs organelle trafficking in eukaryotic cells. Although in animal cells, a combination of centrosome nucleating properties and polymer dynamics at the distal microtubule ends is generally sufficient to establish a radial, polar array of MTs, little is known about how effector proteins (motors and crosslinkers) are coordinated to produce the diversity of interphase MT array morphologies found in nature. This diversity is particularly important in multinucleated environments where multiple MT arrays must coexist and function. We initiate here a study to address the higher ordered coordination of multiple, independent MT arrays in a common cytoplasm. Deletion of a MT crosslinker of the MAP65/Ase1/PRC1 family disrupts the spatial integrity of multiple arrays in Dictyostelium discoideum, reducing the distance between centrosomes and increasing the intermingling of MTs with opposite polarity. This result, coupled with previous dynein disruptions suggest a robust mechanism by which interphase MT arrays can utilize motors and crosslinkers to sense their position and minimize overlap in a common cytoplasm.
Collapse
Affiliation(s)
- Irina Tikhonenko
- Division of Translational Medicine, NYS Department of Health, Wadsworth Center, Empire State Plaza, PO Box 509, Albany, NY, 12201-0509, USA
| | - Karen Irizarry
- Division of Translational Medicine, NYS Department of Health, Wadsworth Center, Empire State Plaza, PO Box 509, Albany, NY, 12201-0509, USA
| | - Alexey Khodjakov
- Division of Translational Medicine, NYS Department of Health, Wadsworth Center, Empire State Plaza, PO Box 509, Albany, NY, 12201-0509, USA
| | - Michael P Koonce
- Division of Translational Medicine, NYS Department of Health, Wadsworth Center, Empire State Plaza, PO Box 509, Albany, NY, 12201-0509, USA.
| |
Collapse
|
46
|
D'Avino PP, Capalbo L. Regulation of midbody formation and function by mitotic kinases. Semin Cell Dev Biol 2016; 53:57-63. [PMID: 26802517 DOI: 10.1016/j.semcdb.2016.01.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/14/2016] [Indexed: 12/22/2022]
Abstract
Cytokinesis is the final phase of cell division and safeguards the correct distribution of genomic and cytoplasmic materials between the two nascent daughter cells. The final separation, or abscission, of the daughter cells depends on the proper assembly of an organelle at the intercellular bridge, the midbody, which acts as a platform for the recruitment and organisation of various proteins involved in both the control and execution of the abscission process. Recent studies have led to the identification of the mechanisms, signalling pathways and molecules that control the two tightly linked processes of midbody formation and abscission. Here we review our current knowledge of the role that mitotic kinases play in these processes and offer our perspectives on the potential future challenges that await researchers in the field.
Collapse
Affiliation(s)
- Pier Paolo D'Avino
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Luisa Capalbo
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
47
|
Microtubule-bundling activity of the centrosomal protein, Cep169, and its binding to microtubules. Biochem Biophys Res Commun 2015; 467:754-9. [PMID: 26482847 DOI: 10.1016/j.bbrc.2015.10.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/12/2015] [Indexed: 11/24/2022]
Abstract
CDK5RAP2 is a centrosomal protein that regulates the recruitment of a γ-tubulin ring complex (γ-TuRC) onto centrosomes and microtubules (MTs) dynamics as a member of MT plus-end-tracking proteins (+TIPs). In our previous report, we found mammalian Cep169 as a CDK5RAP2 binding partner, and Cep169 accumulates at the distal ends of MTs and centrosomes, and coincides with CDK5RAP2. Depletion of Cep169 induces MT depolymerization, indicating that Cep169 targets MT tips and regulates stability and dynamics of MTs. However, how Cep169 contributes to the stabilization of MT remains unclear. Here we show that Cep169 is able to stabilize MTs and induces formation of long MT bundles with intense acetylation of MTs with CDK5RAP2, when expressed at higher levels in U2OS cells. In addition, we demonstrated that Cep169 forms homodimers through its N-terminal domain and directly interacts with MTs through its C-terminal domain. Interestingly, Cep169 mutants, which lack each domains, completely abolished the activity, respectively. Therefore, Cep169 bundles MTs and induces solid structure of MTs by crosslinking each adjacent MTs as a homodimer.
Collapse
|