1
|
Das AS, Basu A, Mukhopadhyay R. Ribosomal proteins: the missing piece in the inflammation puzzle? Mol Cell Biochem 2025; 480:785-797. [PMID: 38951378 DOI: 10.1007/s11010-024-05050-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/09/2024] [Indexed: 07/03/2024]
Abstract
Ribosomal proteins (RPs) are constituents of macromolecular machinery, ribosome that translates genetic information into proteins. Besides ribosomal functions, RPs are now getting appreciated for their 'moonlighting'/extra-ribosomal functions modulating many cellular processes. Accumulating evidence suggests that a number of RPs are involved in inflammation. Though acute inflammation is a part of the innate immune response, uncontrolled inflammation is a driving factor for several chronic inflammatory diseases. An in-depth understanding of inflammation regulation has always been valued for the better management of associated diseases. Hence, this review first outlines the common livelihood of RPs and then provides a comprehensive account of five RPs that significantly contribute to the inflammation process. Finally, we discuss the possible therapeutic uses of RPs against chronic inflammatory diseases.
Collapse
Affiliation(s)
- Anindhya Sundar Das
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India.
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, 02912, USA.
| | - Anandita Basu
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, 02903, USA
| | - Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India.
| |
Collapse
|
2
|
Ewerling A, May-Simera HL. Evolutionary trajectory for nuclear functions of ciliary transport complex proteins. Microbiol Mol Biol Rev 2024; 88:e0000624. [PMID: 38995044 PMCID: PMC11426024 DOI: 10.1128/mmbr.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
SUMMARYCilia and the nucleus were two defining features of the last eukaryotic common ancestor. In early eukaryotic evolution, these structures evolved through the diversification of a common membrane-coating ancestor, the protocoatomer. While in cilia, the descendants of this protein complex evolved into parts of the intraflagellar transport complexes and BBSome, the nucleus gained its selectivity by recruiting protocoatomer-like proteins to the nuclear envelope to form the selective nuclear pore complexes. Recent studies show a growing number of proteins shared between the proteomes of the respective organelles, and it is currently unknown how ciliary transport proteins could acquire nuclear functions and vice versa. The nuclear functions of ciliary proteins are still observable today and remain relevant for the understanding of the disease mechanisms behind ciliopathies. In this work, we review the evolutionary history of cilia and nucleus and their respective defining proteins and integrate current knowledge into theories for early eukaryotic evolution. We postulate a scenario where both compartments co-evolved and that fits current models of eukaryotic evolution, explaining how ciliary proteins and nucleoporins acquired their dual functions.
Collapse
Affiliation(s)
- Alexander Ewerling
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Helen Louise May-Simera
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
3
|
Schierholz L, Brown CR, Helena-Bueno K, Uversky VN, Hirt RP, Barandun J, Melnikov SV. A Conserved Ribosomal Protein Has Entirely Dissimilar Structures in Different Organisms. Mol Biol Evol 2024; 41:msad254. [PMID: 37987564 PMCID: PMC10764239 DOI: 10.1093/molbev/msad254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/23/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
Ribosomes from different species can markedly differ in their composition by including dozens of ribosomal proteins that are unique to specific lineages but absent in others. However, it remains unknown how ribosomes acquire new proteins throughout evolution. Here, to help answer this question, we describe the evolution of the ribosomal protein msL1/msL2 that was recently found in ribosomes from the parasitic microorganism clade, microsporidia. We show that this protein has a conserved location in the ribosome but entirely dissimilar structures in different organisms: in each of the analyzed species, msL1/msL2 exhibits an altered secondary structure, an inverted orientation of the N-termini and C-termini on the ribosomal binding surface, and a completely transformed 3D fold. We then show that this fold switching is likely caused by changes in the ribosomal msL1/msL2-binding site, specifically, by variations in rRNA. These observations allow us to infer an evolutionary scenario in which a small, positively charged, de novo-born unfolded protein was first captured by rRNA to become part of the ribosome and subsequently underwent complete fold switching to optimize its binding to its evolving ribosomal binding site. Overall, our work provides a striking example of how a protein can switch its fold in the context of a complex biological assembly, while retaining its specificity for its molecular partner. This finding will help us better understand the origin and evolution of new protein components of complex molecular assemblies-thereby enhancing our ability to engineer biological molecules, identify protein homologs, and peer into the history of life on Earth.
Collapse
Affiliation(s)
- Léon Schierholz
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Science for Life Laboratory, Umeå University, Umeå 901 87, Sweden
| | - Charlotte R Brown
- Biosciences Institute, Newcastle University School of Medicine, Newcastle upon Tyne NE2 4HH, UK
| | - Karla Helena-Bueno
- Biosciences Institute, Newcastle University School of Medicine, Newcastle upon Tyne NE2 4HH, UK
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Robert P Hirt
- Biosciences Institute, Newcastle University School of Medicine, Newcastle upon Tyne NE2 4HH, UK
| | - Jonas Barandun
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Science for Life Laboratory, Umeå University, Umeå 901 87, Sweden
| | - Sergey V Melnikov
- Biosciences Institute, Newcastle University School of Medicine, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
4
|
Steiner A, Favre S, Mack M, Hausharter A, Pillet B, Hafner J, Mitterer V, Kressler D, Pertschy B, Zierler I. Dissecting the Nuclear Import of the Ribosomal Protein Rps2 (uS5). Biomolecules 2023; 13:1127. [PMID: 37509163 PMCID: PMC10377357 DOI: 10.3390/biom13071127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The ribosome is assembled in a complex process mainly taking place in the nucleus. Consequently, newly synthesized ribosomal proteins have to travel from the cytoplasm into the nucleus, where they are incorporated into nascent ribosomal subunits. In this study, we set out to investigate the mechanism mediating nuclear import of the small subunit ribosomal protein Rps2. We demonstrate that an internal region in Rps2, ranging from amino acids 76 to 145, is sufficient to target a 3xyEGFP reporter to the nucleus. The importin-β Pse1 interacts with this Rps2 region and is involved in its import, with Rps2 residues arginine 95, arginine 97, and lysine 99 being important determinants for both Pse1 binding and nuclear localization. Moreover, our data reveal a second import mechanism involving the N-terminal region of Rps2, which depends on the presence of basic residues within amino acids 10 to 28. This Rps2 segment overlaps with the binding site of the dedicated chaperone Tsr4; however, the nuclear import of Rps2 via the internal as well as the N-terminal nuclear-targeting element does not depend on Tsr4. Taken together, our study has unveiled hitherto undescribed nuclear import signals, showcasing the versatility of the mechanisms coordinating the nuclear import of ribosomal proteins.
Collapse
Affiliation(s)
- Andreas Steiner
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria; (A.S.); (M.M.); (V.M.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Sébastien Favre
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland; (S.F.); (B.P.); (D.K.)
| | - Maximilian Mack
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria; (A.S.); (M.M.); (V.M.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Annika Hausharter
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria; (A.S.); (M.M.); (V.M.)
| | - Benjamin Pillet
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland; (S.F.); (B.P.); (D.K.)
| | - Jutta Hafner
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria; (A.S.); (M.M.); (V.M.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Valentin Mitterer
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria; (A.S.); (M.M.); (V.M.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland; (S.F.); (B.P.); (D.K.)
| | - Brigitte Pertschy
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria; (A.S.); (M.M.); (V.M.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Ingrid Zierler
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria; (A.S.); (M.M.); (V.M.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
5
|
Pillet B, Méndez-Godoy A, Murat G, Favre S, Stumpe M, Falquet L, Kressler D. Dedicated chaperones coordinate co-translational regulation of ribosomal protein production with ribosome assembly to preserve proteostasis. eLife 2022; 11:74255. [PMID: 35357307 PMCID: PMC8970588 DOI: 10.7554/elife.74255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/22/2022] [Indexed: 12/17/2022] Open
Abstract
The biogenesis of eukaryotic ribosomes involves the ordered assembly of around 80 ribosomal proteins. Supplying equimolar amounts of assembly-competent ribosomal proteins is complicated by their aggregation propensity and the spatial separation of their location of synthesis and pre-ribosome incorporation. Recent evidence has highlighted that dedicated chaperones protect individual, unassembled ribosomal proteins on their path to the pre-ribosomal assembly site. Here, we show that the co-translational recognition of Rpl3 and Rpl4 by their respective dedicated chaperone, Rrb1 or Acl4, reduces the degradation of the encoding RPL3 and RPL4 mRNAs in the yeast Saccharomyces cerevisiae. In both cases, negative regulation of mRNA levels occurs when the availability of the dedicated chaperone is limited and the nascent ribosomal protein is instead accessible to a regulatory machinery consisting of the nascent-polypeptide-associated complex and the Caf130-associated Ccr4-Not complex. Notably, deregulated expression of Rpl3 and Rpl4 leads to their massive aggregation and a perturbation of overall proteostasis in cells lacking the E3 ubiquitin ligase Tom1. Taken together, we have uncovered an unprecedented regulatory mechanism that adjusts the de novo synthesis of Rpl3 and Rpl4 to their actual consumption during ribosome assembly and, thereby, protects cells from the potentially detrimental effects of their surplus production. Living cells are packed full of molecules known as proteins, which perform many vital tasks the cells need to survive and grow. Machines called ribosomes inside the cells use template molecules called messenger RNAs (or mRNAs for short) to produce proteins. The newly-made proteins then have to travel to a specific location in the cell to perform their tasks. Some newly-made proteins are prone to forming clumps, so cells have other proteins known as chaperones that ensure these clumps do not form. The ribosomes themselves are made up of several proteins, some of which are also prone to clumping as they are being produced. To prevent this from happening, cells control how many ribosomal proteins they make, so there are just enough to form the ribosomes the cell needs at any given time. Previous studies found that, in yeast, two ribosomal proteins called Rpl3 and Rpl4 each have their own dedicated chaperone to prevent them from clumping. However, it remained unclear whether these chaperones are also involved in regulating the levels of Rpl3 and Rpl4. To address this question, Pillet et al. studied both of these dedicated chaperones in yeast cells. The experiments showed that the chaperones bound to their target proteins (either units of Rpl3 or Rpl4) as they were being produced on the ribosomes. This protected the template mRNAs the ribosomes were using to produce these proteins from being destroyed, thus allowing further units of Rpl3 and Rpl4 to be produced. When enough Rpl3 and Rpl4 units were made, there were not enough of the chaperones to bind them all, leaving the mRNA templates unprotected. This led to the destruction of the mRNA templates, which decreased the numbers of Rpl3 and Rpl4 units being produced. The work of Pillet et al. reveals a feedback mechanism that allows yeast to tightly control the levels of Rpl3 and Rpl4. In the future, these findings may help us understand diseases caused by defects in ribosomal proteins, such as Diamond-Blackfan anemia, and possibly also neurodegenerative diseases caused by clumps of proteins forming in cells. The next step will be to find out whether the mechanism uncovered by Pillet et al. also exists in human and other mammalian cells.
Collapse
Affiliation(s)
- Benjamin Pillet
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Guillaume Murat
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Sébastien Favre
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, Fribourg, Switzerland.,Metabolomics and Proteomics Platform, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Laurent Falquet
- Department of Biology, University of Fribourg, Fribourg, Switzerland.,Swiss Institute of Bioinformatics, University of Fribourg, Fribourg, Switzerland
| | - Dieter Kressler
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
6
|
Bykov YS, Flohr T, Boos F, Zung N, Herrmann JM, Schuldiner M. Widespread use of unconventional targeting signals in mitochondrial ribosome proteins. EMBO J 2022; 41:e109519. [PMID: 34786732 PMCID: PMC8724765 DOI: 10.15252/embj.2021109519] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial ribosomes are complex molecular machines indispensable for respiration. Their assembly involves the import of several dozens of mitochondrial ribosomal proteins (MRPs), encoded in the nuclear genome, into the mitochondrial matrix. Proteomic and structural data as well as computational predictions indicate that up to 25% of yeast MRPs do not have a conventional N-terminal mitochondrial targeting signal (MTS). We experimentally characterized a set of 15 yeast MRPs in vivo and found that five use internal MTSs. Further analysis of a conserved model MRP, Mrp17/bS6m, revealed the identity of the internal targeting signal. Similar to conventional MTS-containing proteins, the internal sequence mediates binding to TOM complexes. The entire sequence of Mrp17 contains positive charges mediating translocation. The fact that these sequence properties could not be reliably predicted by standard methods shows that mitochondrial protein targeting is more versatile than expected. We hypothesize that structural constraints imposed by ribosome assembly interfaces may have disfavored N-terminal presequences and driven the evolution of internal targeting signals in MRPs.
Collapse
Affiliation(s)
- Yury S Bykov
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Tamara Flohr
- Division of Cell BiologyUniversity of KaiserslauternKaiserslauternGermany
| | - Felix Boos
- Division of Cell BiologyUniversity of KaiserslauternKaiserslauternGermany
- Present address:
Department of GeneticsStanford UniversityStanfordCAUSA
| | - Naama Zung
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | | | - Maya Schuldiner
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
7
|
Kachaev ZM, Ivashchenko SD, Kozlov EN, Lebedeva LA, Shidlovskii YV. Localization and Functional Roles of Components of the Translation Apparatus in the Eukaryotic Cell Nucleus. Cells 2021; 10:3239. [PMID: 34831461 PMCID: PMC8623629 DOI: 10.3390/cells10113239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
Components of the translation apparatus, including ribosomal proteins, have been found in cell nuclei in various organisms. Components of the translation apparatus are involved in various nuclear processes, particularly those associated with genome integrity control and the nuclear stages of gene expression, such as transcription, mRNA processing, and mRNA export. Components of the translation apparatus control intranuclear trafficking; the nuclear import and export of RNA and proteins; and regulate the activity, stability, and functional recruitment of nuclear proteins. The nuclear translocation of these components is often involved in the cell response to stimulation and stress, in addition to playing critical roles in oncogenesis and viral infection. Many components of the translation apparatus are moonlighting proteins, involved in integral cell stress response and coupling of gene expression subprocesses. Thus, this phenomenon represents a significant interest for both basic and applied molecular biology. Here, we provide an overview of the current data regarding the molecular functions of translation factors and ribosomal proteins in the cell nucleus.
Collapse
Affiliation(s)
- Zaur M. Kachaev
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Sergey D. Ivashchenko
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Eugene N. Kozlov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Lyubov A. Lebedeva
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Yulii V. Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| |
Collapse
|
8
|
Molecular coevolution of nuclear and nucleolar localization signals inside basic domain of HIV-1 Tat. J Virol 2021; 96:e0150521. [PMID: 34613791 DOI: 10.1128/jvi.01505-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
During evolution, viruses had to adapt to an increasingly complex environment of eukaryotic cells. Viral proteins that need to enter the cell nucleus or associate with nucleoli possess nuclear localization signals (NLSs) and nucleolar localization signals (NoLSs) for nuclear and nucleolar accumulation, respectively. As viral proteins are relatively small, acquisition of novel sequences seems to be a more complicated task for viruses than for eukaryotes. Here, we carried out a comprehensive analysis of the basic domain (BD) of HIV-1 Tat to show how viral proteins might evolve with NLSs and NoLSs without an increase in protein size. The HIV-1 Tat BD is involved in several functions, the most important being the transactivation of viral transcription. The BD also functions as an NLS, although it is substantially longer than a typical NLS. It seems that different regions in the BD could function as NLSs due to its enrichment with positively charged amino acids. Additionally, the high positive net charge inevitably causes the BD to function as an NoLS through a charge-specific mechanism. The integration of NLSs and NoLSs into functional domains enriched with positively charged amino acids might be a mechanism that allows the condensation of different functional sequences in small protein regions and, as a result, to reduce protein size, influencing the origin and evolution of NLSs and NoLSs in viruses. IMPORTANCE Here, we investigated the molecular mechanism of NLS and NoLS integration into the basic domain of HIV-1 Tat (49RKKRRQRRR57), and found that these two supplementary functions (i.e., function of NLS and NoLS) are embedded in the basic domain amino acid sequence. The integration of NLSs and NoLSs into functional domains of viral proteins enriched with positively charged amino acids is a mechanism that allows the concentration of different functions within small protein regions. Integration of NLS and NoLS into functional protein domains might have influenced the viral evolution, as this could prevent an increase in the protein size.
Collapse
|
9
|
Li J, Wu F, Cheng L, Zhang J, Cha C, Chen L, Feng T, Zhang J, Guo G. A nuclear localization signal is required for the nuclear translocation of Fign and its microtubule‑severing function. Mol Med Rep 2020; 21:2367-2374. [PMID: 32236575 PMCID: PMC7185285 DOI: 10.3892/mmr.2020.11040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 03/04/2020] [Indexed: 01/21/2023] Open
Abstract
It is commonly known that the specific function of a given ATPase associated with diverse cellular activities protein (i.e., a member of the AAA superfamily of proteins) depends primarily on its subcellular location. The microtubule-severing protein fidgetin (Fign) possesses a nuclear localization signal (NLS) that facilitates its translocation to the nucleus, where its assembly is finalized; here, Fign contributes to the regulation of microtubule configuration by cutting and trimming microtubule polymers. In the present study, Fign was found to be a nuclear protein, whose N-terminal sequence (SSLKRKAFYM; residues 314–323) acts as an NLS. Following substitution (KR to NN; 317–318) or deletion (NT; 314–323) mutations within the NLS, Fign, which is predominantly expressed in the nucleus, was found to reside in the cytoplasm of transfected cells. Furthermore, Fign was found to have an essential role in microtubule severing by preferentially targeting highly-tyrosinated microtubules (tyr-MTs). Mutation of the Fign NLS did not affect its microtubule-severing function or the cleavage of tyr-MTs, but did affect the cellular distribution of the Fign protein itself. Taken altogether, an NLS for Fign was identified, and it was demonstrated that the basic amino acids K317 and R318 are necessary for regulating its entry into the nucleus, whereas an increase in Fign in the cytosol due to mutations of the NLS did not affect its cleavage function.
Collapse
Affiliation(s)
- Jiong Li
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Fengming Wu
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Longfei Cheng
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Jiaqi Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Caihui Cha
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Li Chen
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Taoshan Feng
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Jifeng Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Guoqing Guo
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
10
|
Melnikov S, Kwok HS, Manakongtreecheep K, van den Elzen A, Thoreen CC, Söll D. Archaeal Ribosomal Proteins Possess Nuclear Localization Signal-Type Motifs: Implications for the Origin of the Cell Nucleus. Mol Biol Evol 2020; 37:124-133. [PMID: 31501901 DOI: 10.1093/molbev/msz207] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Eukaryotic cells are divided into the nucleus and the cytosol, and, to enter the nucleus, proteins typically possess short signal sequences, known as nuclear localization signals (NLSs). Although NLSs have long been considered as features unique to eukaryotic proteins, we show here that similar or identical protein segments are present in ribosomal proteins from the Archaea. Specifically, the ribosomal proteins uL3, uL15, uL18, and uS12 possess NLS-type motifs that are conserved across all major branches of the Archaea, including the most ancient groups Microarchaeota and Diapherotrites, pointing to the ancient origin of NLS-type motifs in the Archaea. Furthermore, by using fluorescence microscopy, we show that the archaeal NLS-type motifs can functionally substitute eukaryotic NLSs and direct the transport of ribosomal proteins into the nuclei of human cells. Collectively, these findings illustrate that the origin of NLSs preceded the origin of the cell nucleus, suggesting that the initial function of NLSs was not related to intracellular trafficking, but possibly was to improve recognition of nucleic acids by cellular proteins. Overall, our study reveals rare evolutionary intermediates among archaeal cells that can help elucidate the sequence of events that led to the origin of the eukaryotic cell.
Collapse
Affiliation(s)
- Sergey Melnikov
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
| | - Hui-Si Kwok
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
| | | | | | - Carson C Thoreen
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
- Department of Chemistry, Yale University, New Haven, CT
| |
Collapse
|
11
|
Kour R, Komar AA, Mazumder B. Mutually exclusive amino acid residues of L13a are responsible for its ribosomal incorporation and translational silencing leading to resolution of inflammation. RNA (NEW YORK, N.Y.) 2019; 25:1377-1392. [PMID: 31308261 PMCID: PMC6800476 DOI: 10.1261/rna.071118.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/11/2019] [Indexed: 05/09/2023]
Abstract
Eukaryotic ribosomal protein L13a is a member of the conserved universal ribosomal uL13 protein family. Structurally, L13a is distinguished from its prokaryotic counterparts by the presence of an ∼55 amino acid-long carboxy-terminal α-helical extension. The importance of these evolved residues in the carboxy-terminal extension for mammalian ribosome biogenesis as well as L13a's extraribosomal function in GAIT (γ interferon-activated inhibitor of translation) complex-mediated translation silencing during inflammation is not understood. Here, we present biochemical analyses of L13a mutant variants identifying several mutually exclusive amino acid residues in the eukaryote-specific carboxy-terminal extension of human L13a (Tyr149-Val203) important for ribosomal incorporation and translational silencing. Specifically, we show that mutation of Arg169, Lys170, and Lys171 to Ala abrogate GAIT-mediated translational silencing, but not L13a incorporation into ribosomes. Moreover, we show that the carboxy-terminal helix alone can silence translation of GAIT element-containing mRNAs in vitro. We also show through cellular immunofluorescence experiments that nuclear but not nucleolar localization of L13a is resistant to extensive amino acid alterations, suggesting that multiple complex nuclear import signals are present within this protein. These studies provide new insights into L13a structure and its ribosomal and extraribosomal functions in model human cells.
Collapse
Affiliation(s)
- Ravinder Kour
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115, USA
| | - Anton A Komar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115, USA
| | - Barsanjit Mazumder
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115, USA
| |
Collapse
|
12
|
Sleiman S, Dragon F. Recent Advances on the Structure and Function of RNA Acetyltransferase Kre33/NAT10. Cells 2019; 8:cells8091035. [PMID: 31491951 PMCID: PMC6770127 DOI: 10.3390/cells8091035] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 02/07/2023] Open
Abstract
Ribosome biogenesis is one of the most energy demanding processes in the cell. In eukaryotes, the main steps of this process occur in the nucleolus and include pre-ribosomal RNA (pre-rRNA) processing, post-transcriptional modifications, and assembly of many non-ribosomal factors and ribosomal proteins in order to form mature and functional ribosomes. In yeast and humans, the nucleolar RNA acetyltransferase Kre33/NAT10 participates in different maturation events, such as acetylation and processing of 18S rRNA, and assembly of the 40S ribosomal subunit. Here, we review the structural and functional features of Kre33/NAT10 RNA acetyltransferase, and we underscore the importance of this enzyme in ribosome biogenesis, as well as in acetylation of non-ribosomal targets. We also report on the role of human NAT10 in Hutchinson-Gilford progeria syndrome.
Collapse
Affiliation(s)
- Sophie Sleiman
- Département des Sciences Biologiques and Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada.
| | - Francois Dragon
- Département des Sciences Biologiques and Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada.
| |
Collapse
|
13
|
Kudva R, Tian P, Pardo-Avila F, Carroni M, Best RB, Bernstein HD, von Heijne G. The shape of the bacterial ribosome exit tunnel affects cotranslational protein folding. eLife 2018; 7:36326. [PMID: 30475203 PMCID: PMC6298777 DOI: 10.7554/elife.36326] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 11/26/2018] [Indexed: 12/13/2022] Open
Abstract
The E. coli ribosome exit tunnel can accommodate small folded proteins, while larger ones fold outside. It remains unclear, however, to what extent the geometry of the tunnel influences protein folding. Here, using E. coli ribosomes with deletions in loops in proteins uL23 and uL24 that protrude into the tunnel, we investigate how tunnel geometry determines where proteins of different sizes fold. We find that a 29-residue zinc-finger domain normally folding close to the uL23 loop folds deeper in the tunnel in uL23 Δloop ribosomes, while two ~ 100 residue proteins normally folding close to the uL24 loop near the tunnel exit port fold at deeper locations in uL24 Δloop ribosomes, in good agreement with results obtained by coarse-grained molecular dynamics simulations. This supports the idea that cotranslational folding commences once a protein domain reaches a location in the exit tunnel where there is sufficient space to house the folded structure.
Collapse
Affiliation(s)
- Renuka Kudva
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Pengfei Tian
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Fátima Pardo-Avila
- Department of Structural Biology, Stanford University, Stanford, United States
| | - Marta Carroni
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna, Sweden
| |
Collapse
|
14
|
Nguyen T, Pappireddi N, Wühr M. Proteomics of nucleocytoplasmic partitioning. Curr Opin Chem Biol 2018; 48:55-63. [PMID: 30472625 DOI: 10.1016/j.cbpa.2018.10.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/21/2022]
Abstract
The partitioning of the proteome between nucleus and cytoplasm affects nearly every aspect of eukaryotic biology. Despite this central role, we still have a poor understanding of which proteins localize in the nucleus and how this varies in different cell types and conditions. Recent advances in quantitative proteomics and high-throughput imaging are starting to close this knowledge gap. Studies on protein interaction are beginning to reveal the spectrum of cargos of nuclear import and export receptors. We anticipate that it will soon be possible to predict each protein's nucleocytoplasmic localization based on its importin/exportin interactions and its estimated diffusion rate through the nuclear pore. This insight is likely to provide us with a fundamental understanding of how cells use nucleocytoplasmic partitioning to encode and relay information.
Collapse
Affiliation(s)
- Thao Nguyen
- Department of Molecular Biology & the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Nishant Pappireddi
- Department of Molecular Biology & the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Martin Wühr
- Department of Molecular Biology & the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
15
|
Melnikov S, Manakongtreecheep K, Söll D. Revising the Structural Diversity of Ribosomal Proteins Across the Three Domains of Life. Mol Biol Evol 2018; 35:1588-1598. [PMID: 29529322 PMCID: PMC5995209 DOI: 10.1093/molbev/msy021] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ribosomal proteins are indispensable components of a living cell, and yet their structures are remarkably diverse in different species. Here we use manually curated structural alignments to provide a comprehensive catalog of structural variations in homologous ribosomal proteins from bacteria, archaea, eukaryotes, and eukaryotic organelles. By resolving numerous ambiguities and errors of automated structural and sequence alignments, we uncover a whole new class of structural variations that reside within seemingly conserved segments of ribosomal proteins. We then illustrate that these variations reflect an apparent adaptation of ribosomal proteins to the specific environments and lifestyles of living species. Finally, we show that most of these structural variations reside within nonglobular extensions of ribosomal proteins-protein segments that are thought to promote ribosome biogenesis by stabilizing the proper folding of ribosomal RNA. We show that although the extensions are thought to be the most ancient peptides on our planet, they are in fact the most rapidly evolving and most structurally and functionally diverse segments of ribosomal proteins. Overall, our work illustrates that, despite being long considered as slowly evolving and highly conserved, ribosomal proteins are more complex and more specialized than is generally recognized.
Collapse
Affiliation(s)
- Sergey Melnikov
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
| | | | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
- Department of Chemistry, Yale University, New Haven, CT
| |
Collapse
|
16
|
Fu HR, Zhao Y, Zhou Z, Yang XG, Ma LF. Neutral ligand TIPA-based two 2D metal–organic frameworks: ultrahigh selectivity of C2H2/CH4and efficient sensing and sorption of Cr(vi). Dalton Trans 2018; 47:3725-3732. [DOI: 10.1039/c8dt00206a] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Two 2D porous frameworks are synthesized base on tri(4-imidazolylphenyl)amine. Compound1exhibits that the ultrahigh selectivity of C2H2/CH4, the highest one reported to date. Compound2combines the ultrahigh sensitivity and trapping for Cr2O72−in aqueous solution.
Collapse
Affiliation(s)
- Hong-Ru Fu
- College of Chemistry and Chemical Engineering
- Henan Province Function-oriented Porous Materials Key Laboratory
- Luoyang Normal University
- Luoyang 471934
- P. R. China
| | - Ying Zhao
- College of Chemistry and Chemical Engineering
- Henan Province Function-oriented Porous Materials Key Laboratory
- Luoyang Normal University
- Luoyang 471934
- P. R. China
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering
- Henan Province Function-oriented Porous Materials Key Laboratory
- Luoyang Normal University
- Luoyang 471934
- P. R. China
| | - Xiao-Gang Yang
- College of Chemistry and Chemical Engineering
- Henan Province Function-oriented Porous Materials Key Laboratory
- Luoyang Normal University
- Luoyang 471934
- P. R. China
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering
- Henan Province Function-oriented Porous Materials Key Laboratory
- Luoyang Normal University
- Luoyang 471934
- P. R. China
| |
Collapse
|
17
|
Brito Querido J, Mancera-Martínez E, Vicens Q, Bochler A, Chicher J, Simonetti A, Hashem Y. The cryo-EM Structure of a Novel 40S Kinetoplastid-Specific Ribosomal Protein. Structure 2017; 25:1785-1794.e3. [DOI: 10.1016/j.str.2017.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/20/2017] [Accepted: 09/20/2017] [Indexed: 12/01/2022]
|
18
|
Espinar-Marchena FJ, Babiano R, Cruz J. Placeholder factors in ribosome biogenesis: please, pave my way. MICROBIAL CELL 2017; 4:144-168. [PMID: 28685141 PMCID: PMC5425277 DOI: 10.15698/mic2017.05.572] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The synthesis of cytoplasmic eukaryotic ribosomes is an extraordinarily energy-demanding cellular activity that occurs progressively from the nucleolus to the cytoplasm. In the nucleolus, precursor rRNAs associate with a myriad of trans-acting factors and some ribosomal proteins to form pre-ribosomal particles. These factors include snoRNPs, nucleases, ATPases, GTPases, RNA helicases, and a vast list of proteins with no predicted enzymatic activity. Their coordinate activity orchestrates in a spatiotemporal manner the modification and processing of precursor rRNAs, the rearrangement reactions required for the formation of productive RNA folding intermediates, the ordered assembly of the ribosomal proteins, and the export of pre-ribosomal particles to the cytoplasm; thus, providing speed, directionality and accuracy to the overall process of formation of translation-competent ribosomes. Here, we review a particular class of trans-acting factors known as "placeholders". Placeholder factors temporarily bind selected ribosomal sites until these have achieved a structural context that is appropriate for exchanging the placeholder with another site-specific binding factor. By this strategy, placeholders sterically prevent premature recruitment of subsequently binding factors, premature formation of structures, avoid possible folding traps, and act as molecular clocks that supervise the correct progression of pre-ribosomal particles into functional ribosomal subunits. We summarize the current understanding of those factors that delay the assembly of distinct ribosomal proteins or subsequently bind key sites in pre-ribosomal particles. We also discuss recurrent examples of RNA-protein and protein-protein mimicry between rRNAs and/or factors, which have clear functional implications for the ribosome biogenesis pathway.
Collapse
Affiliation(s)
- Francisco J Espinar-Marchena
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, E-41013, Seville, Spain
| | - Reyes Babiano
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, E-41013, Seville, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, E-41013, Seville, Spain
| | - Jesús Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, E-41013, Seville, Spain
| |
Collapse
|
19
|
Wasmuth EV, Lima CD. The Rrp6 C-terminal domain binds RNA and activates the nuclear RNA exosome. Nucleic Acids Res 2016; 45:846-860. [PMID: 27899565 PMCID: PMC5314766 DOI: 10.1093/nar/gkw1152] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 10/17/2016] [Accepted: 11/03/2016] [Indexed: 12/14/2022] Open
Abstract
The eukaryotic RNA exosome is an essential, multi-subunit complex that catalyzes RNA turnover, maturation, and quality control processes. Its non-catalytic donut-shaped core includes 9 subunits that associate with the 3′ to 5′ exoribonucleases Rrp6, and Rrp44/Dis3, a subunit that also catalyzes endoribonuclease activity. Although recent structures and biochemical studies of RNA bound exosomes from S. cerevisiae revealed that the Exo9 central channel guides RNA to either Rrp6 or Rrp44 using partially overlapping and mutually exclusive paths, several issues related to RNA recruitment remain. Here, we identify activities for the highly basic Rrp6 C-terminal tail that we term the ‘lasso’ because it binds RNA and stimulates ribonuclease activities associated with Rrp44 and Rrp6 within the 11-subunit nuclear exosome. Stimulation is dependent on the Exo9 central channel, and the lasso contributes to degradation and processing activities of exosome substrates in vitro and in vivo. Finally, we present evidence that the Rrp6 lasso may be a conserved feature of the eukaryotic RNA exosome.
Collapse
Affiliation(s)
- Elizabeth V Wasmuth
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA .,Howard Hughes Medical Institute, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
20
|
Pillet B, Mitterer V, Kressler D, Pertschy B. Hold on to your friends: Dedicated chaperones of ribosomal proteins: Dedicated chaperones mediate the safe transfer of ribosomal proteins to their site of pre-ribosome incorporation. Bioessays 2016; 39:1-12. [PMID: 27859409 DOI: 10.1002/bies.201600153] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Eukaryotic ribosomes are assembled from their components, the ribosomal RNAs and ribosomal proteins, in a tremendously complex, multi-step process, which primarily takes place in the nuclear compartment. Therefore, most ribosomal proteins have to travel from the cytoplasm to their incorporation site on pre-ribosomes within the nucleus. However, due to their particular characteristics, such as a highly basic amino acid composition and the presence of unstructured extensions, ribosomal proteins are especially prone to aggregation and degradation in their unassembled state, hence specific mechanisms must operate to ensure their safe delivery. Recent studies have uncovered a group of proteins, termed dedicated chaperones, specialized in accompanying and guarding individual ribosomal proteins. In this essay, we review how these dedicated chaperones utilize different folds to interact with their ribosomal protein clients and how they ensure their soluble expression and interconnect their intracellular transport with their efficient assembly into pre-ribosomes.
Collapse
Affiliation(s)
- Benjamin Pillet
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Valentin Mitterer
- Institut für Molekulare Biowissenschaften, Universität Graz, Graz, Austria
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Brigitte Pertschy
- Institut für Molekulare Biowissenschaften, Universität Graz, Graz, Austria
| |
Collapse
|
21
|
Mitterer V, Gantenbein N, Birner-Gruenberger R, Murat G, Bergler H, Kressler D, Pertschy B. Nuclear import of dimerized ribosomal protein Rps3 in complex with its chaperone Yar1. Sci Rep 2016; 6:36714. [PMID: 27819319 PMCID: PMC5098186 DOI: 10.1038/srep36714] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/19/2016] [Indexed: 11/08/2022] Open
Abstract
After their cytoplasmic synthesis, ribosomal proteins need to be transported into the nucleus, where they assemble with ribosomal RNA into pre-ribosomal particles. Due to their physicochemical properties, they need protection from aggregation on this path. Newly synthesized ribosomal protein Rps3 forms a dimer that is associated with one molecule of its specific chaperone Yar1. Here we report that redundant pathways contribute to the nuclear import of Rps3, with the classical importin α/β pathway (Kap60/Kap95 in yeast) constituting a main import route. The Kap60/Kap95 heterodimer mediates efficient nuclear import of Rps3 by recognition of an N-terminal monopartite nuclear localization signal (NLS). This Rps3-NLS is located directly adjacent to the Yar1-binding site and, upon binding of Kap60 to Rps3, Yar1 is displaced from the ribosomal protein in vitro. While Yar1 does not directly interact with Kap60 in vitro, affinity purifications of Yar1 and Rps3, however, revealed that Kap60 is present in the Rps3/Yar1 complex in vivo. Indeed we could reconstitute such a protein complex containing Rps3 and both Yar1 and Kap60 in vitro. Our data suggest that binding of Yar1 to one N-domain and binding of Kap60 to the second N-domain of dimerized Rps3 orchestrates import and protection of the ribosomal protein.
Collapse
Affiliation(s)
- Valentin Mitterer
- Institut für Molekulare Biowissenschaften, Universität Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Nadine Gantenbein
- Institut für Molekulare Biowissenschaften, Universität Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Ruth Birner-Gruenberger
- Institute of Pathology, Research Unit Functional Proteomics and Metabolic Pathways, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Stiftingtalstrasse 24, 8010 Graz, Austria
| | - Guillaume Murat
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Helmut Bergler
- Institut für Molekulare Biowissenschaften, Universität Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Brigitte Pertschy
- Institut für Molekulare Biowissenschaften, Universität Graz, Humboldtstrasse 50, 8010 Graz, Austria
| |
Collapse
|
22
|
Fernández-Pevida A, Martín-Villanueva S, Murat G, Lacombe T, Kressler D, de la Cruz J. The eukaryote-specific N-terminal extension of ribosomal protein S31 contributes to the assembly and function of 40S ribosomal subunits. Nucleic Acids Res 2016; 44:7777-91. [PMID: 27422873 PMCID: PMC5027506 DOI: 10.1093/nar/gkw641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/07/2016] [Indexed: 11/12/2022] Open
Abstract
The archaea-/eukaryote-specific 40S-ribosomal-subunit protein S31 is expressed as an ubiquitin fusion protein in eukaryotes and consists of a conserved body and a eukaryote-specific N-terminal extension. In yeast, S31 is a practically essential protein, which is required for cytoplasmic 20S pre-rRNA maturation. Here, we have studied the role of the N-terminal extension of the yeast S31 protein. We show that deletion of this extension partially impairs cell growth and 40S subunit biogenesis and confers hypersensitivity to aminoglycoside antibiotics. Moreover, the extension harbours a nuclear localization signal that promotes active nuclear import of S31, which associates with pre-ribosomal particles in the nucleus. In the absence of the extension, truncated S31 inefficiently assembles into pre-40S particles and two subpopulations of mature small subunits, one lacking and another one containing truncated S31, can be identified. Plasmid-driven overexpression of truncated S31 partially suppresses the growth and ribosome biogenesis defects but, conversely, slightly enhances the hypersensitivity to aminoglycosides. Altogether, these results indicate that the N-terminal extension facilitates the assembly of S31 into pre-40S particles and contributes to the optimal translational activity of mature 40S subunits but has only a minor role in cytoplasmic cleavage of 20S pre-rRNA at site D.
Collapse
Affiliation(s)
- Antonio Fernández-Pevida
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot, s/n; E-41013 Seville, Spain Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Sara Martín-Villanueva
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot, s/n; E-41013 Seville, Spain Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Guillaume Murat
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Thierry Lacombe
- Department of Microbiology and Molecular Medicine, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot, s/n; E-41013 Seville, Spain Departamento de Genética, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
23
|
Lawrence MG, Shamsuzzaman M, Kondopaka M, Pascual C, Zengel JM, Lindahl L. The extended loops of ribosomal proteins uL4 and uL22 of Escherichia coli contribute to ribosome assembly and protein translation. Nucleic Acids Res 2016; 44:5798-810. [PMID: 27257065 PMCID: PMC4937340 DOI: 10.1093/nar/gkw493] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 05/21/2016] [Indexed: 11/13/2022] Open
Abstract
Nearly half of ribosomal proteins are composed of a domain on the ribosome surface and a loop or extension that penetrates into the organelle's RNA core. Our previous work showed that ribosomes lacking the loops of ribosomal proteins uL4 or uL22 are still capable of entering polysomes. However, in those experiments we could not address the formation of mutant ribosomes, because we used strains that also expressed wild-type uL4 and uL22. Here, we have focused on ribosome assembly and function in strains in which loop deletion mutant genes are the only sources of uL4 or uL22 protein. The uL4 and uL22 loop deletions have different effects, but both mutations result in accumulation of immature particles that do not accumulate in detectable amounts in wild-type strains. Thus, our results suggest that deleting the loops creates kinetic barriers in the normal assembly pathway, possibly resulting in assembly via alternate pathway(s). Furthermore, deletion of the uL4 loop results in cold-sensitive ribosome assembly and function. Finally, ribosomes carrying either of the loop-deleted proteins responded normally to the secM translation pausing peptide, but the uL4 mutant responded very inefficiently to the cmlAcrb pause peptide.
Collapse
Affiliation(s)
- Marlon G Lawrence
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Md Shamsuzzaman
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Maithri Kondopaka
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Clarence Pascual
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Janice M Zengel
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Lasse Lindahl
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|