1
|
Seifert-Dávila W, Chaban A, Baudin F, Girbig M, Hauptmann L, Hoffmann T, Duss O, Eustermann S, Müller C. Structural and kinetic insights into tRNA promoter engagement by yeast general transcription factor TFIIIC. Nucleic Acids Res 2025; 53:gkae1174. [PMID: 39657784 PMCID: PMC11724288 DOI: 10.1093/nar/gkae1174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Transcription of transfer RNA (tRNA) genes by RNA polymerase (Pol) III requires the general transcription factor IIIC (TFIIIC), which recognizes intragenic A-box and B-box DNA motifs of type II gene promoters. However, the underlying mechanism has remained elusive, in part due to missing structural information for A-box recognition. In this study, we use single-particle cryogenic electron microscopy (cryo-EM) and single-molecule fluorescence resonance energy transfer (smFRET) to reveal structural and real-time kinetic insights into how the 520-kDa yeast TFIIIC complex engages A-box and B-box DNA motifs in the context of a tRNA gene promoter. Cryo-EM structures of τA and τB subcomplexes bound to the A-box and B-box were obtained at 3.7 and 2.5 Å resolution, respectively, while cryo-EM single-particle mapping determined the specific distance and relative orientation of the τA and τB subcomplexes revealing a fully engaged state of TFIIIC. smFRET experiments show that overall recruitment and residence times of TFIIIC on a tRNA gene are primarily governed by B-box recognition, while footprinting experiments suggest a key role of τA and the A-box in TFIIIB and Pol III recruitment following TFIIIC recognition of type II promoters.
Collapse
Affiliation(s)
- Wolfram Seifert-Dávila
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Anastasiia Chaban
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| | - Florence Baudin
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Mathias Girbig
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Luis Hauptmann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Thomas Hoffmann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Olivier Duss
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Sebastian Eustermann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Christoph W Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
2
|
Kravchenko P, Tachibana K. Rise and SINE: roles of transcription factors and retrotransposons in zygotic genome activation. Nat Rev Mol Cell Biol 2025; 26:68-79. [PMID: 39358607 DOI: 10.1038/s41580-024-00772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 10/04/2024]
Abstract
In sexually reproducing organisms, life begins with the fusion of transcriptionally silent gametes, the oocyte and sperm. Although initiation of transcription in the embryo, known as zygotic genome activation (ZGA), is universally required for development, the transcription factors regulating this process are poorly conserved. In this Perspective, we discuss recent insights into the mechanisms of ZGA in totipotent mammalian embryos, namely ZGA regulation by several transcription factors, including by orphan nuclear receptors (OrphNRs) such as the pioneer transcription factor NR5A2, and by factors of the DUX, TPRX and OBOX families. We performed a meta-analysis and compiled a list of pan-ZGA genes, and found that most of these genes are indeed targets of the above transcription factors. Remarkably, more than a third of these ZGA genes appear to be regulated both by OrphNRs such as NR5A2 and by OBOX proteins, whose motifs co-occur in SINE B1 retrotransposable elements, which are enriched near ZGA genes. We propose that ZGA in mice is activated by recruitment of multiple transcription factors to SINE B1 elements that function as enhancers, and discuss a potential relevance of this mechanism to Alu retrotransposable elements in human ZGA.
Collapse
Affiliation(s)
- Pavel Kravchenko
- Department of Totipotency, Max Planck Institute of Biochemistry, Munich, Germany
| | - Kikuë Tachibana
- Department of Totipotency, Max Planck Institute of Biochemistry, Munich, Germany.
| |
Collapse
|
3
|
De Hayr L, Blok LER, Dias KR, Long J, Begemann A, Moir RD, Willis IM, Mocera M, Siegel G, Steindl K, Evans CA, Zhu Y, Zhang F, Field M, Ma A, Adès L, Josephi-Taylor S, Pfundt R, Zaki MS, Tomoum H, Gregor A, Laube J, Reis A, Maddirevula S, Hashem MO, Zweier M, Alkuraya FS, Maroofian R, Buckley MF, Gleeson JG, Zweier C, Coll-Tané M, Koolen DA, Rauch A, Roscioli T, Schenck A, Harvey RJ. Biallelic variants in GTF3C3 result in an autosomal recessive disorder with intellectual disability. Genet Med 2025; 27:101253. [PMID: 39636576 DOI: 10.1016/j.gim.2024.101253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 12/07/2024] Open
Abstract
PURPOSE This study details a novel syndromic form of autosomal recessive intellectual disability resulting from recessive variants in GTF3C3, encoding a key component of the DNA-binding transcription factor IIIC, which has a conserved role in RNA polymerase III-mediated transcription. METHODS Exome sequencing, minigene analysis, molecular modeling, RNA polymerase III reporter gene assays, and Drosophila knockdown models were utilized to characterize GTF3C3 variants. RESULTS Twelve affected individuals from 7 unrelated families were identified with homozygous or compound heterozygous missense variants in GTF3C3 including c.503C>T p.(Ala168Val), c.1268T>C p.(Leu423Pro), c.1436A>G p.(Tyr479Cys), c.2419C>T p.(Arg807Cys), and c.2420G>A p.(Arg807His). The cohort presented with intellectual disability, variable nonfamilial facial features, motor impairments, seizures, and cerebellar/corpus callosum malformations. Consistent with disruptions in intra- and intermolecular interactions observed in molecular modeling, RNA polymerase III reporter assays confirmed that the majority of missense variants resulted in a loss of function. Minigene analysis of the recurrent c.503C>T p.(Ala168Val) variant confirmed the introduction of a cryptic donor site into exon 4, resulting in mRNA missplicing. Consistent with the clinical features of this cohort, neuronal loss of Gtf3c3 in Drosophila induced seizure-like behavior, motor impairment, and learning deficits. CONCLUSION These findings confirm that GTF3C3 variants result in an autosomal recessive form of syndromic intellectual disability.
Collapse
Affiliation(s)
- Lachlan De Hayr
- School of Health, University of the Sunshine Coast, Maroochydore, QLD, Australia; National PTSD Research Centre, Thompson Institute, Birtinya, QLD, Australia
| | - Laura E R Blok
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kerith-Rae Dias
- Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia; Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Jingyi Long
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anaïs Begemann
- Institute of Medical Genetics, University of Zürich, Schlieren-Zürich, Switzerland
| | - Robyn D Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | - Ian M Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | - Martina Mocera
- Institute of Medical Genetics, University of Zürich, Schlieren-Zürich, Switzerland
| | - Gabriele Siegel
- Institute of Medical Genetics, University of Zürich, Schlieren-Zürich, Switzerland
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zürich, Schlieren-Zürich, Switzerland
| | - Carey-Anne Evans
- Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia; New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Ying Zhu
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Futao Zhang
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Michael Field
- Genetics of Learning Disability Service, John Hunter Hospital, Waratah, NSW, Australia
| | - Alan Ma
- Department of Clinical Genetics, Children's Hospital Westmead, Sydney Children's Hospitals Network, Sydney, NSW, Australia; Specialty of Genomic Medicine, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Lesley Adès
- Department of Clinical Genetics, Children's Hospital Westmead, Sydney Children's Hospitals Network, Sydney, NSW, Australia; Specialty of Genomic Medicine, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Sarah Josephi-Taylor
- Department of Clinical Genetics, Children's Hospital Westmead, Sydney Children's Hospitals Network, Sydney, NSW, Australia; Specialty of Genomic Medicine, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maha S Zaki
- National Research Centre, Clinical Genetics Department, Human Genetics and Genome Research Institute, Cairo, Egypt
| | - Hoda Tomoum
- Ain Shams University, Department of Pediatrics, Cairo, Egypt
| | - Anne Gregor
- Inselspital, Bern University Hospital, University of Bern, Department of Human Genetics, Bern, Switzerland; Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Laube
- Institute of Medical Genetics, University of Zürich, Schlieren-Zürich, Switzerland
| | - André Reis
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mais O Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Markus Zweier
- Institute of Medical Genetics, University of Zürich, Schlieren-Zürich, Switzerland
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Prince Sultan Military Medical City, Department of Pediatrics, Riyadh, Saudi Arabia
| | - Reza Maroofian
- Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Michael F Buckley
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Joseph G Gleeson
- University of California, Department of Neurosciences, San Diego, CA; Rady Children's Institute for Genomic Medicine, San Diego, CA
| | - Christiane Zweier
- Inselspital, Bern University Hospital, University of Bern, Department of Human Genetics, Bern, Switzerland; Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mireia Coll-Tané
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - David A Koolen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anita Rauch
- Institute of Medical Genetics, University of Zürich, Schlieren-Zürich, Switzerland; ITINERARE - University of Zürich Research Priority Program, Zürich, Switzerland; University of Zürich and ETH Zürich, Neuroscience Center Zürich, Zürich, Switzerland
| | - Tony Roscioli
- Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia; Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robert J Harvey
- School of Health, University of the Sunshine Coast, Maroochydore, QLD, Australia; National PTSD Research Centre, Thompson Institute, Birtinya, QLD, Australia.
| |
Collapse
|
4
|
Mondragón-Rosas F, Florencio-Martínez LE, Villa-Delavequia GS, Manning-Cela RG, Carrero JC, Nepomuceno-Mejía T, Martínez-Calvillo S. Characterization of Tau95 led to the identification of a four-subunit TFIIIC complex in trypanosomatid parasites. Appl Microbiol Biotechnol 2024; 108:109. [PMID: 38204130 PMCID: PMC10781861 DOI: 10.1007/s00253-023-12903-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/20/2023] [Accepted: 09/30/2023] [Indexed: 01/12/2024]
Abstract
RNA polymerase III (RNAP III) synthetizes small essential non-coding RNA molecules such as tRNAs and 5S rRNA. In yeast and vertebrates, RNAP III needs general transcription factors TFIIIA, TFIIIB, and TFIIIC to initiate transcription. TFIIIC, composed of six subunits, binds to internal promoter elements in RNAP III-dependent genes. Limited information is available about RNAP III transcription in the trypanosomatid protozoa Trypanosoma brucei and Leishmania major, which diverged early from the eukaryotic lineage. Analyses of the first published draft of the trypanosomatid genome sequences failed to recognize orthologs of any of the TFIIIC subunits, suggesting that this transcription factor is absent in these parasites. However, a putative TFIIIC subunit was recently annotated in the databases. Here we characterize this subunit in T. brucei and L. major and demonstrate that it corresponds to Tau95. In silico analyses showed that both proteins possess the typical Tau95 sequences: the DNA binding region and the dimerization domain. As anticipated for a transcription factor, Tau95 localized to the nucleus in insect forms of both parasites. Chromatin immunoprecipitation (ChIP) assays demonstrated that Tau95 binds to tRNA and U2 snRNA genes in T. brucei. Remarkably, by performing tandem affinity purifications we identified orthologs of TFIIIC subunits Tau55, Tau131, and Tau138 in T. brucei and L. major. Thus, contrary to what was assumed, trypanosomatid parasites do possess a TFIIIC complex. Other putative interacting partners of Tau95 were identified in T. brucei and L. major. KEY POINTS: • A four-subunit TFIIIC complex is present in T. brucei and L. major • TbTau95 associates with tRNA and U2 snRNA genes • Putative interacting partners of Tau95 might include some RNAP II regulators.
Collapse
Affiliation(s)
- Fabiola Mondragón-Rosas
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| | - Luis E Florencio-Martínez
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| | - Gino S Villa-Delavequia
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| | - Rebeca G Manning-Cela
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Ciudad de Mexico, CP 07360, México
| | - Julio C Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de Mexico, 04510, México
| | - Tomás Nepomuceno-Mejía
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| | - Santiago Martínez-Calvillo
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México.
| |
Collapse
|
5
|
Tullius TW, Isaac RS, Dubocanin D, Ranchalis J, Churchman LS, Stergachis AB. RNA polymerases reshape chromatin architecture and couple transcription on individual fibers. Mol Cell 2024; 84:3209-3222.e5. [PMID: 39191261 PMCID: PMC11500009 DOI: 10.1016/j.molcel.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/02/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
RNA polymerases must initiate and pause within a complex chromatin environment, surrounded by nucleosomes and other transcriptional machinery. This environment creates a spatial arrangement along individual chromatin fibers ripe for both competition and coordination, yet these relationships remain largely unknown owing to the inherent limitations of traditional structural and sequencing methodologies. To address this, we employed long-read chromatin fiber sequencing (Fiber-seq) in Drosophila to visualize RNA polymerase (Pol) within its native chromatin context with single-molecule precision along up to 30 kb fibers. We demonstrate that Fiber-seq enables the identification of individual Pol II, nucleosome, and transcription factor footprints, revealing Pol II pausing-driven destabilization of downstream nucleosomes. Furthermore, we demonstrate pervasive direct distance-dependent transcriptional coupling between nearby Pol II genes, Pol III genes, and transcribed enhancers, modulated by local chromatin architecture. Overall, transcription initiation reshapes surrounding nucleosome architecture and couples nearby transcriptional machinery along individual chromatin fibers.
Collapse
Affiliation(s)
- Thomas W Tullius
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - R Stefan Isaac
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Danilo Dubocanin
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jane Ranchalis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Andrew B Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
| |
Collapse
|
6
|
van Breugel ME, Gerber A, van Leeuwen F. The choreography of chromatin in RNA polymerase III regulation. Biochem Soc Trans 2024; 52:1173-1189. [PMID: 38666598 PMCID: PMC11346459 DOI: 10.1042/bst20230770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/27/2024]
Abstract
Regulation of eukaryotic gene expression involves a dynamic interplay between the core transcriptional machinery, transcription factors, and chromatin organization and modification. While this applies to transcription by all RNA polymerase complexes, RNA polymerase III (RNAPIII) seems to be atypical with respect to its mechanisms of regulation. One distinctive feature of most RNAPIII transcribed genes is that they are devoid of nucleosomes, which relates to the high levels of transcription. Moreover, most of the regulatory sequences are not outside but within the transcribed open chromatin regions. Yet, several lines of evidence suggest that chromatin factors affect RNAPIII dynamics and activity and that gene sequence alone does not explain the observed regulation of RNAPIII. Here we discuss the role of chromatin modification and organization of RNAPIII transcribed genes and how they interact with the core transcriptional RNAPIII machinery and regulatory DNA elements in and around the transcribed genes.
Collapse
Affiliation(s)
- Maria Elize van Breugel
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Alan Gerber
- Department of Neurosurgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam 1081HV, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
7
|
Tullius TW, Isaac RS, Ranchalis J, Dubocanin D, Churchman LS, Stergachis AB. RNA polymerases reshape chromatin and coordinate transcription on individual fibers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573133. [PMID: 38187631 PMCID: PMC10769320 DOI: 10.1101/2023.12.22.573133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
During eukaryotic transcription, RNA polymerases must initiate and pause within a crowded, complex environment, surrounded by nucleosomes and other transcriptional activity. This environment creates a spatial arrangement along individual chromatin fibers ripe for both competition and coordination, yet these relationships remain largely unknown owing to the inherent limitations of traditional structural and sequencing methodologies. To address these limitations, we employed long-read chromatin fiber sequencing (Fiber-seq) to visualize RNA polymerases within their native chromatin context at single-molecule and near single-nucleotide resolution along up to 30 kb fibers. We demonstrate that Fiber-seq enables the identification of single-molecule RNA Polymerase (Pol) II and III transcription associated footprints, which, in aggregate, mirror bulk short-read sequencing-based measurements of transcription. We show that Pol II pausing destabilizes downstream nucleosomes, with frequently paused genes maintaining a short-term memory of these destabilized nucleosomes. Furthermore, we demonstrate pervasive direct coordination and anti-coordination between nearby Pol II genes, Pol III genes, transcribed enhancers, and insulator elements. This coordination is largely limited to spatially organized elements within 5 kb of each other, implicating short-range chromatin environments as a predominant determinant of coordinated polymerase initiation. Overall, transcription initiation reshapes surrounding nucleosome architecture and coordinates nearby transcriptional machinery along individual chromatin fibers.
Collapse
Affiliation(s)
- Thomas W Tullius
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - R Stefan Isaac
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jane Ranchalis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Danilo Dubocanin
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew B Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
- Department of Genome Sciences, University of Washington, Seattle, WA
| |
Collapse
|
8
|
Yang DL, Huang K, Deng D, Zeng Y, Wang Z, Zhang Y. DNA-dependent RNA polymerases in plants. THE PLANT CELL 2023; 35:3641-3661. [PMID: 37453082 PMCID: PMC10533338 DOI: 10.1093/plcell/koad195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 06/09/2023] [Accepted: 05/29/2023] [Indexed: 07/18/2023]
Abstract
DNA-dependent RNA polymerases (Pols) transfer the genetic information stored in genomic DNA to RNA in all organisms. In eukaryotes, the typical products of nuclear Pol I, Pol II, and Pol III are ribosomal RNAs, mRNAs, and transfer RNAs, respectively. Intriguingly, plants possess two additional Pols, Pol IV and Pol V, which produce small RNAs and long noncoding RNAs, respectively, mainly for silencing transposable elements. The five plant Pols share some subunits, but their distinct functions stem from unique subunits that interact with specific regulatory factors in their transcription cycles. Here, we summarize recent advances in our understanding of plant nucleus-localized Pols, including their evolution, function, structures, and transcription cycles.
Collapse
Affiliation(s)
- Dong-Lei Yang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Kun Huang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Deyin Deng
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin’an, Hangzhou 311300, China
| | - Yuan Zeng
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhenxing Wang
- College of Horticulture, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
9
|
Sachs P, Bergmaier P, Treutwein K, Mermoud JE. The Conserved Chromatin Remodeler SMARCAD1 Interacts with TFIIIC and Architectural Proteins in Human and Mouse. Genes (Basel) 2023; 14:1793. [PMID: 37761933 PMCID: PMC10530723 DOI: 10.3390/genes14091793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
In vertebrates, SMARCAD1 participates in transcriptional regulation, heterochromatin maintenance, DNA repair, and replication. The molecular basis underlying its involvement in these processes is not well understood. We identified the RNA polymerase III general transcription factor TFIIIC as an interaction partner of native SMARCAD1 in mouse and human models using endogenous co-immunoprecipitations. TFIIIC has dual functionality, acting as a general transcription factor and as a genome organizer separating chromatin domains. We found that its partnership with SMARCAD1 is conserved across different mammalian cell types, from somatic to pluripotent cells. Using purified proteins, we confirmed that their interaction is direct. A gene expression analysis suggested that SMARCAD1 is dispensable for TFIIIC function as an RNA polymerase III transcription factor in mouse ESCs. The distribution of TFIIIC and SMARCAD1 in the ESC genome is distinct, and unlike in yeast, SMARCAD1 is not enriched at active tRNA genes. Further analysis of SMARCAD1-binding partners in pluripotent and differentiated mammalian cells reveals that SMARCAD1 associates with several factors that have key regulatory roles in chromatin organization, such as cohesin, laminB, and DDX5. Together, our work suggests for the first time that the SMARCAD1 enzyme participates in genome organization in mammalian nuclei through interactions with architectural proteins.
Collapse
Affiliation(s)
- Parysatis Sachs
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, 35043 Marburg, Germany
- CMC Development, R&D, Sanofi, 65926 Frankfurt, Germany
| | - Philipp Bergmaier
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, 35043 Marburg, Germany
- Global Development Operations, R&D, Merck Healthcare, 64293 Darmstadt, Germany
| | - Katrin Treutwein
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, 35043 Marburg, Germany
| | - Jacqueline E. Mermoud
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, 35043 Marburg, Germany
| |
Collapse
|
10
|
Talyzina A, Han Y, Banerjee C, Fishbain S, Reyes A, Vafabakhsh R, He Y. Structural basis of TFIIIC-dependent RNA polymerase III transcription initiation. Mol Cell 2023; 83:2641-2652.e7. [PMID: 37402369 PMCID: PMC10528418 DOI: 10.1016/j.molcel.2023.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/02/2023] [Accepted: 06/08/2023] [Indexed: 07/06/2023]
Abstract
RNA polymerase III (Pol III) is responsible for transcribing 5S ribosomal RNA (5S rRNA), tRNAs, and other short non-coding RNAs. Its recruitment to the 5S rRNA promoter requires transcription factors TFIIIA, TFIIIC, and TFIIIB. Here, we use cryoelectron microscopy (cryo-EM) to visualize the S. cerevisiae complex of TFIIIA and TFIIIC bound to the promoter. Gene-specific factor TFIIIA interacts with DNA and acts as an adaptor for TFIIIC-promoter interactions. We also visualize DNA binding of TFIIIB subunits, Brf1 and TBP (TATA-box binding protein), which results in the full-length 5S rRNA gene wrapping around the complex. Our smFRET study reveals that the DNA within the complex undergoes both sharp bending and partial dissociation on a slow timescale, consistent with the model predicted from our cryo-EM results. Our findings provide new insights into the transcription initiation complex assembly on the 5S rRNA promoter and allow us to directly compare Pol III and Pol II transcription adaptations.
Collapse
Affiliation(s)
- Anna Talyzina
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - Yan Han
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Chiranjib Banerjee
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Susan Fishbain
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Alexis Reyes
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA; Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
11
|
Seifert-Davila W, Girbig M, Hauptmann L, Hoffmann T, Eustermann S, Müller CW. Structural insights into human TFIIIC promoter recognition. SCIENCE ADVANCES 2023; 9:eadh2019. [PMID: 37418517 PMCID: PMC11811891 DOI: 10.1126/sciadv.adh2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/02/2023] [Indexed: 07/09/2023]
Abstract
Transcription factor (TF) IIIC recruits RNA polymerase (Pol) III to most of its target genes. Recognition of intragenic A- and B-box motifs in transfer RNA (tRNA) genes by TFIIIC modules τA and τB is the first critical step for tRNA synthesis but is mechanistically poorly understood. Here, we report cryo-electron microscopy structures of the six-subunit human TFIIIC complex unbound and bound to a tRNA gene. The τB module recognizes the B-box via DNA shape and sequence readout through the assembly of multiple winged-helix domains. TFIIIC220 forms an integral part of both τA and τB connecting the two subcomplexes via a ~550-amino acid residue flexible linker. Our data provide a structural mechanism by which high-affinity B-box recognition anchors TFIIIC to promoter DNA and permits scanning for low-affinity A-boxes and TFIIIB for Pol III activation.
Collapse
Affiliation(s)
- Wolfram Seifert-Davila
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Candidate for joint PhD degree from EMBL and Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Mathias Girbig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Luis Hauptmann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Thomas Hoffmann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Sebastian Eustermann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Christoph W. Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
12
|
Shekhar AC, Wu WJ, Chen HT. Mutational and biophysical analyses reveal a TFIIIC binding region in the TFIIF-related Rpc53 subunit of RNA polymerase III. J Biol Chem 2023; 299:104859. [PMID: 37230389 PMCID: PMC10404625 DOI: 10.1016/j.jbc.2023.104859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
The TFIIF-like Rpc53/Rpc37 heterodimer of RNA polymerase (pol) III is involved in various stages of transcription. The C-terminal region of Rpc53 dimerizes with Rpc37 to anchor on the lobe domain of the pol III cleft. However, structural and functional features of the Rpc53 N-terminal region had not been characterized previously. Here, we conducted site-directed alanine replacement mutagenesis on the Rpc53 N-terminus, generating yeast strains that exhibited a cold-sensitive growth defect and severely compromised pol III transcriptional activity. Circular dichroism and NMR spectroscopy revealed a highly disordered 57-amino acid polypeptide in the Rpc53 N-terminus. This polypeptide is a versatile protein-binding module displaying nanomolar-level binding affinities for Rpc37 and the Tfc4 subunit of the transcription initiation factor TFIIIC. Accordingly, we denote this Rpc53 N-terminus polypeptide as the TFIIIC-binding region or CBR. Alanine replacements in the CBR significantly reduced its binding affinity for Tfc4, highlighting its functional importance to cell growth and transcription in vitro. Our study reveals the functional basis for Rpc53's CBR in assembly of the pol III transcription initiation complex.
Collapse
Affiliation(s)
- Arvind Chandra Shekhar
- Molecular and Cell Biology, Taiwan International Graduate Program, Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C.; Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Hung-Ta Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, R.O.C..
| |
Collapse
|
13
|
Talyzina A, Han Y, Banerjee C, Fishbain S, Reyes A, Vafabakhsh R, He Y. Structural basis of TFIIIC-dependent RNA Polymerase III transcription initiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.540967. [PMID: 37292922 PMCID: PMC10245719 DOI: 10.1101/2023.05.16.540967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
RNA Polymerase III (Pol III) is responsible for transcribing 5S ribosomal RNA (5S rRNA), tRNAs, and other short non-coding RNAs. Its recruitment to the 5S rRNA promoter requires transcription factors TFIIIA, TFIIIC, and TFIIIB. Here we use cryo-electron microscopy to visualize the S. cerevisiae complex of TFIIIA and TFIIIC bound to the promoter. Brf1-TBP binding further stabilizes the DNA, resulting in the full-length 5S rRNA gene wrapping around the complex. Our smFRET study reveals that the DNA undergoes both sharp bending and partial dissociation on a slow timescale, consistent with the model predicted from our cryo-EM results. Our findings provide new insights into the mechanism of how the transcription initiation complex assembles on the 5S rRNA promoter, a crucial step in Pol III transcription regulation.
Collapse
Affiliation(s)
- Anna Talyzina
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States
| | - Yan Han
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
| | - Chiranjib Banerjee
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
| | - Susan Fishbain
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
| | - Alexis Reyes
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, United States
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University, Chicago, IL, United States
- Lead contact
| |
Collapse
|
14
|
Cabarcas-Petroski S, Olshefsky G, Schramm L. BDP1 as a biomarker in serous ovarian cancer. Cancer Med 2023; 12:6401-6418. [PMID: 36305848 PMCID: PMC10028122 DOI: 10.1002/cam4.5388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/19/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND TFIIIB, an RNA polymerase III specific transcription factor has been found to be deregulated in human cancers with much of the research focused on the TBP, BRF1, and BRF2 subunits. To date, the TFIIIB specific subunit BDP1 has not been investigated in ovarian cancer but has previously been shown to be deregulated in neuroblastoma, breast cancer, and Non-Hodgkins lymphoma. RESULTS Using in silico analysis of clinically derived platforms, we report a decreased BDP1 expression as a result of deletion in serous ovarian cancer and a correlation with higher and advanced ovarian stages. Further analysis in the context of TP53 mutations, a major contributor to ovarian tumorigenesis, suggests that high BDP1 expression is unfavorable for overall survival and high BDP1 expression occurs in stages 2, 3 and 4 serous ovarian cancer. Additionally, high BDP1 expression is disadvantageous and unfavorable for progression-free survival. Lastly, BDP1 expression significantly decreased in patients treated with first-line chemotherapy, platin and taxane, at twelve-month relapse-free survival. CONCLUSIONS Taken together with a ROC analysis, the data suggest BDP1 could be of clinical relevance as a predictive biomarker in serous ovarian cancer. Lastly, this study further demonstrates that both the over- and under expression of BDP1 warrants further investigation and suggests BDP1 may exhibit dual function in the context of tumorigenesis.
Collapse
Affiliation(s)
| | | | - Laura Schramm
- Biology Department, St. John's University, Queens, New York, USA
| |
Collapse
|
15
|
Lima ARJ, Silva HGD, Poubel S, Rosón JN, de Lima LPO, Costa-Silva HM, Gonçalves CS, Galante PAF, Holetz F, Motta MCMM, Silber AM, Elias MC, da Cunha JPC. Open chromatin analysis in Trypanosoma cruzi life forms highlights critical differences in genomic compartments and developmental regulation at tDNA loci. Epigenetics Chromatin 2022; 15:22. [PMID: 35650626 PMCID: PMC9158160 DOI: 10.1186/s13072-022-00450-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/18/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Genomic organization and gene expression regulation in trypanosomes are remarkable because protein-coding genes are organized into codirectional gene clusters with unrelated functions. Moreover, there is no dedicated promoter for each gene, resulting in polycistronic gene transcription, with posttranscriptional control playing a major role. Nonetheless, these parasites harbor epigenetic modifications at critical regulatory genome features that dynamically change among parasite stages, which are not fully understood. RESULTS Here, we investigated the impact of chromatin changes in a scenario commanded by posttranscriptional control exploring the parasite Trypanosoma cruzi and its differentiation program using FAIRE-seq approach supported by transmission electron microscopy. We identified differences in T. cruzi genome compartments, putative transcriptional start regions, and virulence factors. In addition, we also detected a developmental chromatin regulation at tRNA loci (tDNA), which could be linked to the intense chromatin remodeling and/or the translation regulatory mechanism required for parasite differentiation. We further integrated the open chromatin profile with public transcriptomic and MNase-seq datasets. Strikingly, a positive correlation was observed between active chromatin and steady-state transcription levels. CONCLUSION Taken together, our results indicate that chromatin changes reflect the unusual gene expression regulation of trypanosomes and the differences among parasite developmental stages, even in the context of a lack of canonical transcriptional control of protein-coding genes.
Collapse
Affiliation(s)
- Alex Ranieri Jerônimo Lima
- grid.418514.d0000 0001 1702 8585Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, SP Brazil ,grid.418514.d0000 0001 1702 8585Centro de Toxinas, Resposta Imune E Sinalização Celular (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Herbert Guimarães de
Sousa Silva
- grid.418514.d0000 0001 1702 8585Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, SP Brazil ,grid.418514.d0000 0001 1702 8585Centro de Toxinas, Resposta Imune E Sinalização Celular (CeTICS), Instituto Butantan, São Paulo, Brazil ,grid.411249.b0000 0001 0514 7202Departamento de Microbiologia, Universidade Federal de São Paulo, Escola Paulista de Medicina, Imunologia E Parasitologia, São Paulo, SP Brazil
| | - Saloe Poubel
- grid.418514.d0000 0001 1702 8585Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, SP Brazil ,grid.418514.d0000 0001 1702 8585Centro de Toxinas, Resposta Imune E Sinalização Celular (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Juliana Nunes Rosón
- grid.418514.d0000 0001 1702 8585Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, SP Brazil ,grid.418514.d0000 0001 1702 8585Centro de Toxinas, Resposta Imune E Sinalização Celular (CeTICS), Instituto Butantan, São Paulo, Brazil ,grid.411249.b0000 0001 0514 7202Departamento de Microbiologia, Universidade Federal de São Paulo, Escola Paulista de Medicina, Imunologia E Parasitologia, São Paulo, SP Brazil
| | - Loyze Paola Oliveira de Lima
- grid.418514.d0000 0001 1702 8585Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, SP Brazil ,grid.418514.d0000 0001 1702 8585Centro de Toxinas, Resposta Imune E Sinalização Celular (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Héllida Marina Costa-Silva
- grid.418514.d0000 0001 1702 8585Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, SP Brazil ,grid.418514.d0000 0001 1702 8585Centro de Toxinas, Resposta Imune E Sinalização Celular (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Camila Silva Gonçalves
- grid.8536.80000 0001 2294 473XLaboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, IBCCF, CCS, UFRJ, Cidade Universitária, Rio de Janeiro, RJ Brazil ,Centro Nacional de Biologia Estrutural E Bioimagem, Rio de Janeiro, RJ Brazil
| | - Pedro A. F. Galante
- grid.413471.40000 0000 9080 8521Centro de Oncologia Molecular, Hospital Sírio Libanês, São Paulo, SP Brazil
| | - Fabiola Holetz
- grid.418068.30000 0001 0723 0931Instituto Carlos Chagas, Fiocruz, Curitiba, PR Brazil
| | - Maria Cristina Machado M. Motta
- grid.8536.80000 0001 2294 473XLaboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, IBCCF, CCS, UFRJ, Cidade Universitária, Rio de Janeiro, RJ Brazil ,Centro Nacional de Biologia Estrutural E Bioimagem, Rio de Janeiro, RJ Brazil
| | - Ariel M. Silber
- grid.11899.380000 0004 1937 0722Universidade de São Paulo, São Paulo, SP Brazil
| | - M. Carolina Elias
- grid.418514.d0000 0001 1702 8585Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, SP Brazil ,grid.418514.d0000 0001 1702 8585Centro de Toxinas, Resposta Imune E Sinalização Celular (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Julia Pinheiro Chagas da Cunha
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil. .,Centro de Toxinas, Resposta Imune E Sinalização Celular (CeTICS), Instituto Butantan, São Paulo, Brazil.
| |
Collapse
|
16
|
Sizer RE, Chahid N, Butterfield SP, Donze D, Bryant NJ, White RJ. TFIIIC-based chromatin insulators through eukaryotic evolution. Gene X 2022; 835:146533. [PMID: 35623477 DOI: 10.1016/j.gene.2022.146533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 11/04/2022] Open
Abstract
Eukaryotic chromosomes are divided into domains with distinct structural and functional properties, such as differing levels of chromatin compaction and gene transcription. Domains of relatively compact chromatin and minimal transcription are termed heterochromatic, whereas euchromatin is more open and actively transcribed. Insulators separate these domains and maintain their distinct features. Disruption of insulators can cause diseases such as cancer. Many insulators contain tRNA genes (tDNAs), examples of which have been shown to block the spread of activating or silencing activities. This characteristic of specific tDNAs is conserved through evolution, such that human tDNAs can serve as barriers to the spread of silencing in fission yeast. Here we demonstrate that tDNAs from the methylotrophic fungus Pichia pastoris can function effectively as insulators in distantly-related budding yeast. Key to the function of tDNAs as insulators is TFIIIC, a transcription factor that is also required for their expression. TFIIIC binds additional loci besides tDNAs, some of which have insulator activity. Although the mechanistic basis of TFIIIC-based insulation has been studied extensively in yeast, it is largely uncharacterized in metazoa. Utilising publicly-available genome-wide ChIP-seq data, we consider the extent to which mechanisms conserved from yeast to man may suffice to allow efficient insulation by TFIIIC in the more challenging chromatin environments of metazoa and suggest features that may have been acquired during evolution to cope with new challenges. We demonstrate the widespread presence at human tDNAs of USF1, a transcription factor with well-established barrier activity in vertebrates. We predict that tDNA-based insulators in higher organisms have evolved through incorporation of modules, such as binding sites for factors like USF1 and CTCF that are absent from yeasts, thereby strengthening function and providing opportunities for regulation between cell types.
Collapse
Affiliation(s)
- Rebecca E Sizer
- Department of Biology, The University of York, York YO10 5DD, UK
| | - Nisreen Chahid
- Department of Biology, The University of York, York YO10 5DD, UK
| | | | - David Donze
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Nia J Bryant
- Department of Biology, The University of York, York YO10 5DD, UK
| | - Robert J White
- Department of Biology, The University of York, York YO10 5DD, UK.
| |
Collapse
|
17
|
Wang Q, Daiß JL, Xu Y, Engel C. Snapshots of RNA polymerase III in action - A mini review. Gene 2022; 821:146282. [PMID: 35149153 DOI: 10.1016/j.gene.2022.146282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/20/2022] [Accepted: 02/03/2022] [Indexed: 11/04/2022]
Abstract
RNA polymerase (Pol) III is responsible for the transcription of tRNAs, 5S rRNA, U6 snRNA, and other non-coding RNAs. Transcription factors such as TFIIIA, -B, -C, SNAPc, and Maf1 are required for promoter recognition, promoter opening, and Pol III activity regulation. Recent developments in cryo-electron microscopy and advanced purification approaches for endogenous multi-subunit complexes accelerated structural studies resulting in detailed structural insights which allowed an in-depth understanding of the molecular mechanisms underlying Pol III transcription. Here, we summarize structural data on Pol III and its regulating factors providing a three-dimensional framework to guide further analysis of RNA polymerase III.
Collapse
Affiliation(s)
- Qianmin Wang
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Precision Medicine, Shanghai, China; Present address: Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Julia L Daiß
- Regensburg Center for Biochemistry, University of Regensburg, 93053, Regensburg, Germany
| | - Youwei Xu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Christoph Engel
- Regensburg Center for Biochemistry, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
18
|
Structural insights into nuclear transcription by eukaryotic DNA-dependent RNA polymerases. Nat Rev Mol Cell Biol 2022; 23:603-622. [PMID: 35505252 DOI: 10.1038/s41580-022-00476-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
The eukaryotic transcription apparatus synthesizes a staggering diversity of RNA molecules. The labour of nuclear gene transcription is, therefore, divided among multiple DNA-dependent RNA polymerases. RNA polymerase I (Pol I) transcribes ribosomal RNA, Pol II synthesizes messenger RNAs and various non-coding RNAs (including long non-coding RNAs, microRNAs and small nuclear RNAs) and Pol III produces transfer RNAs and other short RNA molecules. Pol I, Pol II and Pol III are large, multisubunit protein complexes that associate with a multitude of additional factors to synthesize transcripts that largely differ in size, structure and abundance. The three transcription machineries share common characteristics, but differ widely in various aspects, such as numbers of RNA polymerase subunits, regulatory elements and accessory factors, which allows them to specialize in transcribing their specific RNAs. Common to the three RNA polymerases is that the transcription process consists of three major steps: transcription initiation, transcript elongation and transcription termination. In this Review, we outline the common principles and differences between the Pol I, Pol II and Pol III transcription machineries and discuss key structural and functional insights obtained into the three stages of their transcription processes.
Collapse
|
19
|
Abascal-Palacios G, Jochem L, Pla-Prats C, Beuron F, Vannini A. Structural basis of Ty3 retrotransposon integration at RNA Polymerase III-transcribed genes. Nat Commun 2021; 12:6992. [PMID: 34848735 PMCID: PMC8632968 DOI: 10.1038/s41467-021-27338-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/15/2021] [Indexed: 12/29/2022] Open
Abstract
Retrotransposons are endogenous elements that have the ability to mobilise their DNA between different locations in the host genome. The Ty3 retrotransposon integrates with an exquisite specificity in a narrow window upstream of RNA Polymerase (Pol) III-transcribed genes, representing a paradigm for harmless targeted integration. Here we present the cryo-EM reconstruction at 4.0 Å of an active Ty3 strand transfer complex bound to TFIIIB transcription factor and a tRNA gene. The structure unravels the molecular mechanisms underlying Ty3 targeting specificity at Pol III-transcribed genes and sheds light into the architecture of retrotransposon machinery during integration. Ty3 intasome contacts a region of TBP, a subunit of TFIIIB, which is blocked by NC2 transcription regulator in RNA Pol II-transcribed genes. A newly-identified chromodomain on Ty3 integrase interacts with TFIIIB and the tRNA gene, defining with extreme precision the integration site position.
Collapse
Affiliation(s)
| | - Laura Jochem
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Carlos Pla-Prats
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Fabienne Beuron
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Alessandro Vannini
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK.
- Human Technopole, 20157, Milan, Italy.
| |
Collapse
|
20
|
Yamada N, Rossi MJ, Farrell N, Pugh BF, Mahony S. Alignment and quantification of ChIP-exo crosslinking patterns reveal the spatial organization of protein-DNA complexes. Nucleic Acids Res 2020; 48:11215-11226. [PMID: 32747934 PMCID: PMC7672471 DOI: 10.1093/nar/gkaa618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/25/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
The ChIP-exo assay precisely delineates protein-DNA crosslinking patterns by combining chromatin immunoprecipitation with 5' to 3' exonuclease digestion. Within a regulatory complex, the physical distance of a regulatory protein to DNA affects crosslinking efficiencies. Therefore, the spatial organization of a protein-DNA complex could potentially be inferred by analyzing how crosslinking signatures vary between its subunits. Here, we present a computational framework that aligns ChIP-exo crosslinking patterns from multiple proteins across a set of coordinately bound regulatory regions, and which detects and quantifies protein-DNA crosslinking events within the aligned profiles. By producing consistent measurements of protein-DNA crosslinking strengths across multiple proteins, our approach enables characterization of relative spatial organization within a regulatory complex. Applying our approach to collections of ChIP-exo data, we demonstrate that it can recover aspects of regulatory complex spatial organization at yeast ribosomal protein genes and yeast tRNA genes. We also demonstrate the ability to quantify changes in protein-DNA complex organization across conditions by applying our approach to analyze Drosophila Pol II transcriptional components. Our results suggest that principled analyses of ChIP-exo crosslinking patterns enable inference of spatial organization within protein-DNA complexes.
Collapse
Affiliation(s)
- Naomi Yamada
- Center for Eukaryotic Gene Regulation, Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew J Rossi
- Center for Eukaryotic Gene Regulation, Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nina Farrell
- Center for Eukaryotic Gene Regulation, Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - B Franklin Pugh
- Center for Eukaryotic Gene Regulation, Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
21
|
Structure of the TFIIIC subcomplex τA provides insights into RNA polymerase III pre-initiation complex formation. Nat Commun 2020; 11:4905. [PMID: 32999288 PMCID: PMC7528018 DOI: 10.1038/s41467-020-18707-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/08/2020] [Indexed: 01/05/2023] Open
Abstract
Transcription factor (TF) IIIC is a conserved eukaryotic six-subunit protein complex with dual function. It serves as a general TF for most RNA polymerase (Pol) III genes by recruiting TFIIIB, but it is also involved in chromatin organization and regulation of Pol II genes through interaction with CTCF and condensin II. Here, we report the structure of the S. cerevisiae TFIIIC subcomplex τA, which contains the most conserved subunits of TFIIIC and is responsible for recruitment of TFIIIB and transcription start site (TSS) selection at Pol III genes. We show that τA binding to its promoter is auto-inhibited by a disordered acidic tail of subunit τ95. We further provide a negative-stain reconstruction of τA bound to the TFIIIB subunits Brf1 and TBP. This shows that a ruler element in τA achieves positioning of TFIIIB upstream of the TSS, and suggests remodeling of the complex during assembly of TFIIIB by TFIIIC.
Collapse
|
22
|
Zhao H, Qin Y, Xiao Z, Li Q, Yang N, Pan Z, Gong D, Sun Q, Yang F, Zhang Z, Wu Y, Xu C, Qiu F. Loss of Function of an RNA Polymerase III Subunit Leads to Impaired Maize Kernel Development. PLANT PHYSIOLOGY 2020; 184:359-373. [PMID: 32591429 PMCID: PMC7479876 DOI: 10.1104/pp.20.00502] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/15/2020] [Indexed: 05/03/2023]
Abstract
Kernel size is an important factor determining grain yield. Although a number of genes affecting kernel development in maize (Zea mays) have been identified by analyzing kernel mutants, most of the corresponding mutants cannot be used in maize breeding programs due to low germination or incomplete seed development. Here, we characterized small kernel7, a recessive small-kernel mutant with a mutation in the gene encoding the second-largest subunit of RNA polymerase III (RNAPΙΙΙ; NRPC2). A frame shift in ZmNRPC2 leads to a premature stop codon, resulting in significantly reduced levels of transfer RNAs and 5S ribosomal RNA, which are transcribed by RNAPΙΙΙ. Loss-of-function nrpc2 mutants created by CRISPR/CAS9 showed significantly reduced kernel size due to altered endosperm cell size and number. ZmNRPC2 affects RNAPIII activity and the expression of genes involved in cell proliferation and endoreduplication to control kernel development via physically interacting with RNAPIII subunits RPC53 and AC40, transcription factor class C1 and Floury3. Notably, unlike the semidominant negative mutant floury3, which has defects in starchy endosperm, small kernel7 only affects kernel size but not the composition of kernel storage proteins. Our findings provide novel insights into the molecular network underlying maize kernel size, which could facilitate the genetic improvement of maize in the future.
Collapse
Affiliation(s)
- Hailiang Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | | | - Ziyi Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Li
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Science Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ning Yang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenyuan Pan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Dianming Gong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Science Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Cao Xu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Fazhan Qiu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
23
|
Assembly of SNAPc, Bdp1, and TBP on the U6 snRNA Gene Promoter in Drosophila melanogaster. Mol Cell Biol 2020; 40:MCB.00641-19. [PMID: 32253345 DOI: 10.1128/mcb.00641-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/27/2020] [Indexed: 01/03/2023] Open
Abstract
U6 snRNA is transcribed by RNA polymerase III (Pol III) and has an external upstream promoter that consists of a TATA sequence recognized by the TBP subunit of the Pol III basal transcription factor IIIB and a proximal sequence element (PSE) recognized by the small nuclear RNA activating protein complex (SNAPc). Previously, we found that Drosophila melanogaster SNAPc (DmSNAPc) bound to the U6 PSE can recruit the Pol III general transcription factor Bdp1 to form a stable complex with the DNA. Here, we show that DmSNAPc-Bdp1 can recruit TBP to the U6 promoter, and we identify a region of Bdp1 that is sufficient for TBP recruitment. Moreover, we find that this same region of Bdp1 cross-links to nucleotides within the U6 PSE at positions that also cross-link to DmSNAPc. Finally, cross-linking mass spectrometry reveals likely interactions of specific DmSNAPc subunits with Bdp1 and TBP. These data, together with previous findings, have allowed us to build a more comprehensive model of the DmSNAPc-Bdp1-TBP complex on the U6 promoter that includes nearly all of DmSNAPc, a portion of Bdp1, and the conserved region of TBP.
Collapse
|
24
|
Vorländer MK, Baudin F, Moir RD, Wetzel R, Hagen WJH, Willis IM, Müller CW. Structural basis for RNA polymerase III transcription repression by Maf1. Nat Struct Mol Biol 2020; 27:229-232. [PMID: 32066962 PMCID: PMC7104376 DOI: 10.1038/s41594-020-0383-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/16/2020] [Indexed: 01/10/2023]
Abstract
Maf1 is a conserved inhibitor of RNA polymerase III (Pol III) that influences phenotypes from metabolic efficiency to lifespan. Here, we present a 3.3 Å cryo-EM structure of yeast Maf1 bound to Pol III, establishing that Maf1 sequesters Pol III elements involved in transcription initiation and binds the mobile C34 WH2 domain, sealing off the active site. The Maf1 binding site overlaps with that of TFIIIB in the pre-initiation complex.
Collapse
Affiliation(s)
- Matthias K Vorländer
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Collaboration for Joint PhD Degree between EMBL and Heidelberg University Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Florence Baudin
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Robyn D Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - René Wetzel
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Wim J H Hagen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Ian M Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Christoph W Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
25
|
Mallam AL, Sae-Lee W, Schaub JM, Tu F, Battenhouse A, Jang YJ, Kim J, Wallingford JB, Finkelstein IJ, Marcotte EM, Drew K. Systematic Discovery of Endogenous Human Ribonucleoprotein Complexes. Cell Rep 2019; 29:1351-1368.e5. [PMID: 31665645 PMCID: PMC6873818 DOI: 10.1016/j.celrep.2019.09.060] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/30/2019] [Accepted: 09/18/2019] [Indexed: 12/16/2022] Open
Abstract
RNA-binding proteins (RBPs) play essential roles in biology and are frequently associated with human disease. Although recent studies have systematically identified individual RNA-binding proteins, their higher-order assembly into ribonucleoprotein (RNP) complexes has not been systematically investigated. Here, we describe a proteomics method for systematic identification of RNP complexes in human cells. We identify 1,428 protein complexes that associate with RNA, indicating that more than 20% of known human protein complexes contain RNA. To explore the role of RNA in the assembly of each complex, we identify complexes that dissociate, change composition, or form stable protein-only complexes in the absence of RNA. We use our method to systematically identify cell-type-specific RNA-associated proteins in mouse embryonic stem cells and finally, distribute our resource, rna.MAP, in an easy-to-use online interface (rna.proteincomplexes.org). Our system thus provides a methodology for explorations across human tissues, disease states, and throughout all domains of life.
Collapse
Affiliation(s)
- Anna L Mallam
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Wisath Sae-Lee
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffrey M Schaub
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Fan Tu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Anna Battenhouse
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Yu Jin Jang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Jonghwan Kim
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Kevin Drew
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
26
|
Kling E, Spaller T, Schiefner J, Bönisch D, Winckler T. Convergent evolution of integration site selection upstream of tRNA genes by yeast and amoeba retrotransposons. Nucleic Acids Res 2019; 46:7250-7260. [PMID: 29945249 PMCID: PMC6101501 DOI: 10.1093/nar/gky582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022] Open
Abstract
Transposable elements amplify in genomes as selfish DNA elements and challenge host fitness because their intrinsic integration steps during mobilization can compromise genome integrity. In gene-dense genomes, transposable elements are notably under selection to avoid insertional mutagenesis of host protein-coding genes. We describe an example of convergent evolution in the distantly related amoebozoan Dictyostelium discoideum and the yeast Saccharomyces cerevisiae, in which the D. discoideum retrotransposon DGLT-A and the yeast Ty3 element developed different mechanisms to facilitate position-specific integration at similar sites upstream of tRNA genes. Transcription of tRNA genes by RNA polymerase III requires the transcription factor complexes TFIIIB and TFIIIC. Whereas Ty3 recognizes tRNA genes mainly through interactions of its integrase with TFIIIB subunits, the DGLT-A-encoded ribonuclease H contacts TFIIIC subunit Tfc4 at an interface that covers tetratricopeptide repeats (TPRs) 7 and 8. A major function of this interface is to connect TFIIIC subcomplexes τA and τB and to facilitate TFIIIB assembly. During the initiation of tRNA gene transcription τB is displaced from τA, which transiently exposes the TPR 7/8 surface of Tfc4 on τA. We propose that the DGLT-A intasome uses this binding site to obtain access to genomic DNA for integration during tRNA gene transcription.
Collapse
Affiliation(s)
- Eva Kling
- Pharmaceutical Biology, Institute of Pharmacy, Friedrich Schiller University Jena, Germany
| | - Thomas Spaller
- Pharmaceutical Biology, Institute of Pharmacy, Friedrich Schiller University Jena, Germany
| | - Jana Schiefner
- Pharmaceutical Biology, Institute of Pharmacy, Friedrich Schiller University Jena, Germany
| | - Doreen Bönisch
- Pharmaceutical Biology, Institute of Pharmacy, Friedrich Schiller University Jena, Germany
| | - Thomas Winckler
- Pharmaceutical Biology, Institute of Pharmacy, Friedrich Schiller University Jena, Germany
| |
Collapse
|
27
|
Ciesla M, Skowronek E, Boguta M. Function of TFIIIC, RNA polymerase III initiation factor, in activation and repression of tRNA gene transcription. Nucleic Acids Res 2019; 46:9444-9455. [PMID: 30053100 PMCID: PMC6182151 DOI: 10.1093/nar/gky656] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/10/2018] [Indexed: 01/09/2023] Open
Abstract
Transcription of transfer RNA genes by RNA polymerase III (Pol III) is controlled by general factors, TFIIIB and TFIIIC, and a negative regulator, Maf1. Here we report the interplay between TFIIIC and Maf1 in controlling Pol III activity upon the physiological switch of yeast from fermentation to respiration. TFIIIC directly competes with Pol III for chromatin occupancy as demonstrated by inversely correlated tDNA binding. The association of TFIIIC with tDNA was stronger under unfavorable respiratory conditions and in the presence of Maf1. Induction of tDNA transcription by glucose-activated protein kinase A (PKA) was correlated with the down-regulation of TFIIIC occupancy on tDNA. The conditions that activate the PKA signaling pathway promoted the binding of TFIIIB subunits, Brf1 and Bdp1, with tDNA, but decreased their interaction with TFIIIC. Association of Brf1 and Bdp1 with TFIIIC was much stronger under repressive conditions, potentially restricting TFIIIB recruitment to tDNA and preventing Pol III recruitment. Altogether, we propose a model in which, depending on growth conditions, TFIIIC promotes activation or repression of tDNA transcription.
Collapse
Affiliation(s)
- Malgorzata Ciesla
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Ewa Skowronek
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Magdalena Boguta
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| |
Collapse
|
28
|
Herrera MC, Chymkowitch P, Robertson JM, Eriksson J, Bøe SO, Alseth I, Enserink JM. Cdk1 gates cell cycle-dependent tRNA synthesis by regulating RNA polymerase III activity. Nucleic Acids Res 2019; 46:11698-11711. [PMID: 30247619 PMCID: PMC6294503 DOI: 10.1093/nar/gky846] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/10/2018] [Indexed: 01/14/2023] Open
Abstract
tRNA genes are transcribed by RNA polymerase III (RNAPIII). During recent years it has become clear that RNAPIII activity is strictly regulated by the cell in response to environmental cues and the homeostatic status of the cell. However, the molecular mechanisms that control RNAPIII activity to regulate the amplitude of tDNA transcription in normally cycling cells are not well understood. Here, we show that tRNA levels fluctuate during the cell cycle and reveal an underlying molecular mechanism. The cyclin Clb5 recruits the cyclin dependent kinase Cdk1 to tRNA genes to boost tDNA transcription during late S phase. At tDNA genes, Cdk1 promotes the recruitment of TFIIIC, stimulates the interaction between TFIIIB and TFIIIC, and increases the dynamics of RNA polymerase III in vivo. Furthermore, we identified Bdp1 as a putative Cdk1 substrate in this process. Preventing Bdp1 phosphorylation prevented cell cycle-dependent recruitment of TFIIIC and abolished the cell cycle-dependent increase in tDNA transcription. Our findings demonstrate that under optimal growth conditions Cdk1 gates tRNA synthesis in S phase by regulating the RNAPIII machinery, revealing a direct link between the cell cycle and RNAPIII activity.
Collapse
Affiliation(s)
- Maria C Herrera
- Department of Molecular Cell Biology, Institute for Cancer Research, the Norwegian Radium Hospital, Montebello, N-0379 Oslo, Norway.,Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,The Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371, Norway
| | - Pierre Chymkowitch
- Department of Molecular Cell Biology, Institute for Cancer Research, the Norwegian Radium Hospital, Montebello, N-0379 Oslo, Norway
| | - Joseph M Robertson
- Department of Molecular Cell Biology, Institute for Cancer Research, the Norwegian Radium Hospital, Montebello, N-0379 Oslo, Norway.,Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jens Eriksson
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Stig Ove Bøe
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Ingrun Alseth
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Jorrit M Enserink
- Department of Molecular Cell Biology, Institute for Cancer Research, the Norwegian Radium Hospital, Montebello, N-0379 Oslo, Norway.,Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,The Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371, Norway
| |
Collapse
|
29
|
Patterson K, Shavarebi F, Magnan C, Chang I, Qi X, Baldi P, Bilanchone V, Sandmeyer SB. Local features determine Ty3 targeting frequency at RNA polymerase III transcription start sites. Genome Res 2019; 29:1298-1309. [PMID: 31249062 PMCID: PMC6673722 DOI: 10.1101/gr.240861.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 06/12/2019] [Indexed: 12/27/2022]
Abstract
Retroelement integration into host genomes affects chromosome structure and function. A goal of a considerable number of investigations is to elucidate features influencing insertion site selection. The Saccharomyces cerevisiae Ty3 retrotransposon inserts proximal to the transcription start sites (TSS) of genes transcribed by RNA polymerase III (RNAP3). In this study, differential patterns of insertion were profiled genome-wide using a random barcode-tagged Ty3. Saturation transposition showed that tRNA genes (tDNAs) are targeted at widely different frequencies even within isoacceptor families. Ectopic expression of Ty3 integrase (IN) showed that it localized to targets independent of other Ty3 proteins and cDNA. IN, RNAP3, and transcription factor Brf1 were enriched at tDNA targets with high frequencies of transposition. To examine potential effects of cis-acting DNA features on transposition, targeting was tested on high-copy plasmids with restricted amounts of 5′ flanking sequence plus tDNA. Relative activity of targets was reconstituted in these constructions. Weighting of genomic insertions according to frequency identified an A/T-rich sequence followed by C as the dominant site of strand transfer. This site lies immediately adjacent to the adenines previously implicated in the RNAP3 TSS motif (CAA). In silico DNA structural analysis upstream of this motif showed that targets with elevated DNA curvature coincide with reduced integration. We propose that integration mediated by the Ty3 intasome complex (IN and cDNA) is subject to inputs from a combination of host factor occupancy and insertion site architecture, and that this results in the wide range of Ty3 targeting frequencies.
Collapse
Affiliation(s)
- Kurt Patterson
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| | - Farbod Shavarebi
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| | - Christophe Magnan
- School of Information and Computer Sciences, University of California, Irvine, Irvine, California 92697, USA
| | - Ivan Chang
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| | - Xiaojie Qi
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| | - Pierre Baldi
- School of Information and Computer Sciences, University of California, Irvine, Irvine, California 92697, USA
| | - Virginia Bilanchone
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| | - Suzanne B Sandmeyer
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| |
Collapse
|
30
|
Kovanich D, Saisawang C, Sittipaisankul P, Ramphan S, Kalpongnukul N, Somparn P, Pisitkun T, Smith DR. Analysis of the Zika and Japanese Encephalitis Virus NS5 Interactomes. J Proteome Res 2019; 18:3203-3218. [PMID: 31199156 DOI: 10.1021/acs.jproteome.9b00318] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mosquito-borne flaviviruses, including dengue virus (DENV), Japanese encephalitis virus (JEV), and Zika virus (ZIKV), are major human pathogens. Among the flaviviral proteins, the nonstructural protein 5 (NS5) is the largest, most conserved, and major enzymatic component of the viral replication complex. Disruption of the common key NS5-host protein-protein interactions critical for viral replication could aid in the development of broad-spectrum antiflaviviral therapeutics. Hundreds of NS5 interactors have been identified, but these are mostly DENV-NS5 interactors. To this end, we sought to investigate the JEV- and ZIKV-NS5 interactomes using EGFP immunoprecipitation with label-free quantitative mass spectrometry analysis. We report here a total of 137 NS5 interactors with a significant enrichment of spliceosomal and spliceosomal-associated proteins. The transcription complex Paf1C and phosphatase 6 were identified as common NS5-associated complexes. PAF1 was shown to play opposite roles in JEV and ZIKV infections. Additionally, we validated several NS5 targets and proposed their possible roles in infection. These include lipid-shuttling proteins OSBPL9 and OSBPL11, component of RNAP3 transcription factor TFIIIC, minichromosome maintenance, and cochaperone PAQosome. Mining this data set, our study expands the current interaction landscape of NS5 and uncovers several NS5 targets that are new to flavivirus biology.
Collapse
Affiliation(s)
- Duangnapa Kovanich
- Institute of Molecular Biosciences, Mahidol University , Nakhon Pathom , Thailand
| | - Chonticha Saisawang
- Institute of Molecular Biosciences, Mahidol University , Nakhon Pathom , Thailand
| | | | - Suwipa Ramphan
- Institute of Molecular Biosciences, Mahidol University , Nakhon Pathom , Thailand
| | - Nuttiya Kalpongnukul
- Center of Excellence in Systems Biology, Research affairs, Faculty of Medicine , Chulalongkorn University , Bangkok , Thailand
| | - Poorichaya Somparn
- Center of Excellence in Systems Biology, Research affairs, Faculty of Medicine , Chulalongkorn University , Bangkok , Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Research affairs, Faculty of Medicine , Chulalongkorn University , Bangkok , Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University , Nakhon Pathom , Thailand
| |
Collapse
|
31
|
Hummel G, Warren J, Drouard L. The multi-faceted regulation of nuclear tRNA gene transcription. IUBMB Life 2019; 71:1099-1108. [PMID: 31241827 DOI: 10.1002/iub.2097] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/16/2019] [Indexed: 12/31/2022]
Abstract
Transfer RNAs are among the most ancient molecules of life on earth. Beyond their crucial role in protein synthesis as carriers of amino acids, they are also important players in a plethora of other biological processes. Many debates in term of biogenesis, regulation and function persist around these fascinating non-coding RNAs. Our review focuses on the first step of their biogenesis in eukaryotes, i.e. their transcription from nuclear genes. Numerous and complementary ways have emerged during evolution to regulate transfer RNA gene transcription. Here, we will summarize the different actors implicated in this process: cis-elements, trans-factors, genomic contexts, epigenetic environments and finally three-dimensional organization of nuclear genomes. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1099-1108, 2019.
Collapse
Affiliation(s)
- Guillaume Hummel
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Jessica Warren
- Department of biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Laurence Drouard
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| |
Collapse
|
32
|
Santos M, Fidalgo A, Varanda AS, Oliveira C, Santos MAS. tRNA Deregulation and Its Consequences in Cancer. Trends Mol Med 2019; 25:853-865. [PMID: 31248782 DOI: 10.1016/j.molmed.2019.05.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023]
Abstract
The expression of transfer RNAs (tRNAs) is deregulated in cancer cells but the mechanisms and functional meaning of such deregulation are poorly understood. The proteome of cancer cells is not fully encoded by their transcriptome, however, the contribution of mRNA translation to such diversity remains to be elucidated. We review data supporting the hypothesis that tRNA expression deregulation and translational error rate is an important contributor to proteome diversity and cell population heterogeneity, genome instability, and drug resistance in tumors. This hypothesis is aligned with recent data in various model organisms, showing unanticipated adaptive roles of translational errors (adaptive mistranslation), expression control of specific gene subsets by tRNAs, and proteome diversification by elevation of translational error rates in tumors.
Collapse
Affiliation(s)
- Mafalda Santos
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal; Institute of Molecular Pathology and Immunology University of Porto (IPATIMUP), Porto, Portugal; Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Ana Fidalgo
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - A Sofia Varanda
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal; Institute of Molecular Pathology and Immunology University of Porto (IPATIMUP), Porto, Portugal; Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Carla Oliveira
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal; Institute of Molecular Pathology and Immunology University of Porto (IPATIMUP), Porto, Portugal; Department of Pathology, Medical Faculty of Porto, Porto, Portugal.
| | - Manuel A S Santos
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
33
|
Abstract
In all living organisms, the flow of genetic information is a two-step process: first DNA is transcribed into RNA, which is subsequently used as template for protein synthesis during translation. In bacteria, archaea and eukaryotes, transcription is carried out by multi-subunit RNA polymerases (RNAPs) sharing a conserved architecture of the RNAP core. RNAPs catalyse the highly accurate polymerisation of RNA from NTP building blocks, utilising DNA as template, being assisted by transcription factors during the initiation, elongation and termination phase of transcription. The complexity of this highly dynamic process is reflected in the intricate network of protein-protein and protein-nucleic acid interactions in transcription complexes and the substantial conformational changes of the RNAP as it progresses through the transcription cycle.In this chapter, we will first briefly describe the early work that led to the discovery of multisubunit RNAPs. We will then discuss the three-dimensional organisation of RNAPs from the bacterial, archaeal and eukaryotic domains of life, highlighting the conserved nature, but also the domain-specific features of the transcriptional apparatus. Another section will focus on transcription factors and their role in regulating the RNA polymerase throughout the different phases of the transcription cycle. This includes a discussion of the molecular mechanisms and dynamic events that govern transcription initiation, elongation and termination.
Collapse
|
34
|
Transcription initiation factor TBP: old friend new questions. Biochem Soc Trans 2019; 47:411-423. [DOI: 10.1042/bst20180623] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 12/14/2022]
Abstract
Abstract
In all domains of life, the regulation of transcription by DNA-dependent RNA polymerases (RNAPs) is achieved at the level of initiation to a large extent. Whereas bacterial promoters are recognized by a σ-factor bound to the RNAP, a complex set of transcription factors that recognize specific promoter elements is employed by archaeal and eukaryotic RNAPs. These initiation factors are of particular interest since the regulation of transcription critically relies on initiation rates and thus formation of pre-initiation complexes. The most conserved initiation factor is the TATA-binding protein (TBP), which is of crucial importance for all archaeal-eukaryotic transcription initiation complexes and the only factor required to achieve full rates of initiation in all three eukaryotic and the archaeal transcription systems. Recent structural, biochemical and genome-wide mapping data that focused on the archaeal and specialized RNAP I and III transcription system showed that the involvement and functional importance of TBP is divergent from the canonical role TBP plays in RNAP II transcription. Here, we review the role of TBP in the different transcription systems including a TBP-centric discussion of archaeal and eukaryotic initiation complexes. We furthermore highlight questions concerning the function of TBP that arise from these findings.
Collapse
|
35
|
Greber BJ, Nogales E. The Structures of Eukaryotic Transcription Pre-initiation Complexes and Their Functional Implications. Subcell Biochem 2019; 93:143-192. [PMID: 31939151 DOI: 10.1007/978-3-030-28151-9_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transcription is a highly regulated process that supplies living cells with coding and non-coding RNA molecules. Failure to properly regulate transcription is associated with human pathologies, including cancers. RNA polymerase II is the enzyme complex that synthesizes messenger RNAs that are then translated into proteins. In spite of its complexity, RNA polymerase requires a plethora of general transcription factors to be recruited to the transcription start site as part of a large transcription pre-initiation complex, and to help it gain access to the transcribed strand of the DNA. This chapter reviews the structure and function of these eukaryotic transcription pre-initiation complexes, with a particular emphasis on two of its constituents, the multisubunit complexes TFIID and TFIIH. We also compare the overall architecture of the RNA polymerase II pre-initiation complex with those of RNA polymerases I and III, involved in transcription of ribosomal RNA and non-coding RNAs such as tRNAs and snRNAs, and discuss the general, conserved features that are applicable to all eukaryotic RNA polymerase systems.
Collapse
Affiliation(s)
- Basil J Greber
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Eva Nogales
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
36
|
Papuc SM, Abela L, Steindl K, Begemann A, Simmons TL, Schmitt B, Zweier M, Oneda B, Socher E, Crowther LM, Wohlrab G, Gogoll L, Poms M, Seiler M, Papik M, Baldinger R, Baumer A, Asadollahi R, Kroell-Seger J, Schmid R, Iff T, Schmitt-Mechelke T, Otten K, Hackenberg A, Addor MC, Klein A, Azzarello-Burri S, Sticht H, Joset P, Plecko B, Rauch A. The role of recessive inheritance in early-onset epileptic encephalopathies: a combined whole-exome sequencing and copy number study. Eur J Hum Genet 2018; 27:408-421. [PMID: 30552426 PMCID: PMC6460568 DOI: 10.1038/s41431-018-0299-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 10/05/2018] [Accepted: 10/25/2018] [Indexed: 11/16/2022] Open
Abstract
Early-onset epileptic encephalopathy (EE) and combined developmental and epileptic encephalopathies (DEE) are clinically and genetically heterogeneous severely devastating conditions. Recent studies emphasized de novo variants as major underlying cause suggesting a generally low-recurrence risk. In order to better understand the full genetic landscape of EE and DEE, we performed high-resolution chromosomal microarray analysis in combination with whole-exome sequencing in 63 deeply phenotyped independent patients. After bioinformatic filtering for rare variants, diagnostic yield was improved for recessive disorders by manual data curation as well as molecular modeling of missense variants and untargeted plasma-metabolomics in selected patients. In total, we yielded a diagnosis in ∼42% of cases with causative copy number variants in 6 patients (∼10%) and causative sequence variants in 16 established disease genes in 20 patients (∼32%), including compound heterozygosity for causative sequence and copy number variants in one patient. In total, 38% of diagnosed cases were caused by recessive genes, of which two cases escaped automatic calling due to one allele occurring de novo. Notably, we found the recessive gene SPATA5 causative in as much as 3% of our cohort, indicating that it may have been underdiagnosed in previous studies. We further support candidacy for neurodevelopmental disorders of four previously described genes (PIK3AP1, GTF3C3, UFC1, and WRAP53), three of which also followed a recessive inheritance pattern. Our results therefore confirm the importance of de novo causative gene variants in EE/DEE, but additionally illustrate the major role of mostly compound heterozygous or hemizygous recessive inheritance and consequently high-recurrence risk.
Collapse
Affiliation(s)
- Sorina M Papuc
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland.,Victor Babes National Institute of Pathology, Bucharest, 050096, Romania
| | - Lucia Abela
- Division of Child Neurology, University Children's Hospital Zurich, Zurich, 8032, Switzerland.,CRC Clinical Research Center University, Children's Hospital Zurich, Zurich, 8032, Switzerland.,radiz-Rare Disease Initiative Zürich, Clinical Research Priority Program for Rare Diseases University of Zurich, Zurich, 8032, Switzerland
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland
| | - Anaïs Begemann
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland
| | - Thomas L Simmons
- Division of Child Neurology, University Children's Hospital Zurich, Zurich, 8032, Switzerland
| | - Bernhard Schmitt
- Division of Child Neurology, University Children's Hospital Zurich, Zurich, 8032, Switzerland.,CRC Clinical Research Center University, Children's Hospital Zurich, Zurich, 8032, Switzerland
| | - Markus Zweier
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland
| | - Beatrice Oneda
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland
| | - Eileen Socher
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, 91054, Germany
| | - Lisa M Crowther
- Division of Child Neurology, University Children's Hospital Zurich, Zurich, 8032, Switzerland
| | - Gabriele Wohlrab
- Division of Child Neurology, University Children's Hospital Zurich, Zurich, 8032, Switzerland
| | - Laura Gogoll
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland
| | - Martin Poms
- Division of Child Neurology, University Children's Hospital Zurich, Zurich, 8032, Switzerland
| | - Michelle Seiler
- Pediatric Emergency Department, University Children's Hospital Zurich, Zurich, 8032, Switzerland
| | - Michael Papik
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland
| | - Rosa Baldinger
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland
| | - Alessandra Baumer
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland
| | - Reza Asadollahi
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland
| | - Judith Kroell-Seger
- Children's department, Swiss Epilepsy Centre, Clinic Lengg, Zurich, 8000, Switzerland
| | - Regula Schmid
- Division of Child Neurology, Kantonsspital Winterthur, Winterthur, 8401, Switzerland
| | - Tobias Iff
- Municipal Hospital of Zurich Triemli, Zurich, 8063, Switzerland
| | | | - Karoline Otten
- Children's department, Swiss Epilepsy Centre, Clinic Lengg, Zurich, 8000, Switzerland
| | - Annette Hackenberg
- Division of Child Neurology, University Children's Hospital Zurich, Zurich, 8032, Switzerland
| | - Marie-Claude Addor
- Department of Woman-Mother-Child, University Medical Center CHUV, Lausanne, 1015, Switzerland
| | - Andrea Klein
- Division of Paediatric Neurology, University Childerns Hospital Basel, UKBB, 4031, Basel, Switzerland.,Division of Paediatric Neurology, Development and Rehabilitation, University Children's Hospital, 3010, Bern, Switzerland
| | - Silvia Azzarello-Burri
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland
| | - Heinrich Sticht
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, 91054, Germany
| | - Pascal Joset
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland
| | - Barbara Plecko
- Division of Child Neurology, University Children's Hospital Zurich, Zurich, 8032, Switzerland.,CRC Clinical Research Center University, Children's Hospital Zurich, Zurich, 8032, Switzerland.,radiz-Rare Disease Initiative Zürich, Clinical Research Priority Program for Rare Diseases University of Zurich, Zurich, 8032, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, 8057, Switzerland.,Division of General Pediatrics, Department of Pediatrics, Medical University of Graz, 8036, Graz, Austria
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland. .,radiz-Rare Disease Initiative Zürich, Clinical Research Priority Program for Rare Diseases University of Zurich, Zurich, 8032, Switzerland. .,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, 8057, Switzerland. .,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, 8057, Switzerland.
| |
Collapse
|
37
|
Song L, Ouedraogo JP, Kolbusz M, Nguyen TTM, Tsang A. Efficient genome editing using tRNA promoter-driven CRISPR/Cas9 gRNA in Aspergillus niger. PLoS One 2018; 13:e0202868. [PMID: 30142205 PMCID: PMC6108506 DOI: 10.1371/journal.pone.0202868] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/11/2018] [Indexed: 11/18/2022] Open
Abstract
As a powerful tool for fast and precise genome editing, the CRISPR/Cas9 system has been applied in filamentous fungi to improve the efficiency of genome alteration. However, the method of delivering guide RNA (gRNA) remains a bottleneck in performing CRISPR mutagenesis in Aspergillus species. Here we report a gRNA transcription driven by endogenous tRNA promoters which include a tRNA gene plus 100 base pairs of upstream sequence. Co-transformation of a cas9-expressing plasmid with a linear DNA coding for gRNA demonstrated that 36 of the 37 tRNA promoters tested were able to generate the intended mutation in A. niger. When gRNA and cas9 were expressed in a single extra-chromosomal plasmid, the efficiency of gene mutation was as high as 97%. Co-transformation with DNA template for homologous recombination, the CRISPR/Cas9 system resulted ~42% efficiency of gene replacement in a strain with a functioning non-homologous end joining machinery (kusA+), and an efficiency of >90% gene replacement in a kusA- background. Our results demonstrate that tRNA promoter-mediated gRNA expressions are reliable and efficient in genome editing in A. niger.
Collapse
Affiliation(s)
- Letian Song
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Jean-Paul Ouedraogo
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Magdalena Kolbusz
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Thi Truc Minh Nguyen
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| |
Collapse
|
38
|
Molecular mechanism of promoter opening by RNA polymerase III. Nature 2018; 553:295-300. [PMID: 29345638 PMCID: PMC5777638 DOI: 10.1038/nature25440] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/08/2017] [Indexed: 01/03/2023]
Abstract
RNA polymerase III (Pol III) assembles together with transcription factor IIIB (TFIIIB) on different promoter types to initiate the transcription of small, structured RNAs. Here, we present structures of Pol III pre-initiation complexes comprising the 17-subunit Pol III and hetero-trimeric transcription factor TFIIIB with subunits TATA-binding protein (TBP), B-related factor 1 (Brf1) and B double prime 1 (Bdp1) bound to a natural promoter in different functional states. Electron cryo-microscopy (cryo-EM) reconstructions varying from 3.7 Å to 5.5 Å resolution include two early intermediates in which the DNA duplex is closed, an open DNA complex and an initially transcribing complex with RNA in the active site. Our structures reveal an extremely tight and multivalent interaction of TFIIIB with promoter DNA and explain how TFIIIB recruits Pol III. TFIIIB and Pol III subunit C37 together activate the intrinsic transcription factor-like activity of the Pol III-specific heterotrimer to initiate melting of double-stranded DNA in a mechanism similar as used in the Pol II system.
Collapse
|
39
|
Cheung S, Manhas S, Measday V. Retrotransposon targeting to RNA polymerase III-transcribed genes. Mob DNA 2018; 9:14. [PMID: 29713390 PMCID: PMC5911963 DOI: 10.1186/s13100-018-0119-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/16/2018] [Indexed: 12/20/2022] Open
Abstract
Retrotransposons are genetic elements that are similar in structure and life cycle to retroviruses by replicating via an RNA intermediate and inserting into a host genome. The Saccharomyces cerevisiae (S. cerevisiae) Ty1-5 elements are long terminal repeat (LTR) retrotransposons that are members of the Ty1-copia (Pseudoviridae) or Ty3-gypsy (Metaviridae) families. Four of the five S. cerevisiae Ty elements are inserted into the genome upstream of RNA Polymerase (Pol) III-transcribed genes such as transfer RNA (tRNA) genes. This particular genomic locus provides a safe environment for Ty element insertion without disruption of the host genome and is a targeting strategy used by retrotransposons that insert into compact genomes of hosts such as S. cerevisiae and the social amoeba Dictyostelium. The mechanism by which Ty1 targeting is achieved has been recently solved due to the discovery of an interaction between Ty1 Integrase (IN) and RNA Pol III subunits. We describe the methods used to identify the Ty1-IN interaction with Pol III and the Ty1 targeting consequences if the interaction is perturbed. The details of Ty1 targeting are just beginning to emerge and many unexplored areas remain including consideration of the 3-dimensional shape of genome. We present a variety of other retrotransposon families that insert adjacent to Pol III-transcribed genes and the mechanism by which the host machinery has been hijacked to accomplish this targeting strategy. Finally, we discuss why retrotransposons selected Pol III-transcribed genes as a target during evolution and how retrotransposons have shaped genome architecture.
Collapse
Affiliation(s)
- Stephanie Cheung
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Savrina Manhas
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Vivien Measday
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, Room 325-2205 East Mall, Vancouver, British Columbia V6T 1Z4 Canada
| |
Collapse
|
40
|
Ramsay EP, Vannini A. Structural rearrangements of the RNA polymerase III machinery during tRNA transcription initiation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:285-294. [PMID: 29155071 DOI: 10.1016/j.bbagrm.2017.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/07/2017] [Accepted: 11/11/2017] [Indexed: 01/03/2023]
Abstract
RNA polymerase III catalyses the synthesis of tRNAs in eukaryotic organisms. Through combined biochemical and structural characterisation, multiple auxiliary factors have been identified alongside RNA Polymerase III as critical in both facilitating and regulating transcription. Together, this machinery forms dynamic multi-protein complexes at tRNA genes which are required for polymerase recruitment, DNA opening and initiation and elongation of the tRNA transcripts. Central to the function of these complexes is their ability to undergo multiple conformational changes and rearrangements that regulate each step. Here, we discuss the available biochemical and structural data on the structural plasticity of multi-protein complexes involved in RNA Polymerase III transcriptional initiation and facilitated re-initiation during tRNA synthesis. Increasingly, structural information is becoming available for RNA polymerase III and its functional complexes, allowing for a deeper understanding of tRNA transcriptional initiation. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
MESH Headings
- Animals
- Eukaryotic Cells/metabolism
- Humans
- Models, Genetic
- Multiprotein Complexes/metabolism
- Promoter Regions, Genetic/genetics
- Protein Subunits
- RNA Polymerase III/chemistry
- RNA Polymerase III/metabolism
- RNA, Transfer/biosynthesis
- RNA, Transfer/genetics
- RNA, Transfer, Amino Acid-Specific/biosynthesis
- RNA, Transfer, Amino Acid-Specific/genetics
- Transcription Elongation, Genetic
- Transcription Factors/genetics
- Transcription Initiation, Genetic
Collapse
|
41
|
Graczyk D, Cieśla M, Boguta M. Regulation of tRNA synthesis by the general transcription factors of RNA polymerase III - TFIIIB and TFIIIC, and by the MAF1 protein. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:320-329. [DOI: 10.1016/j.bbagrm.2018.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/20/2018] [Accepted: 01/21/2018] [Indexed: 01/03/2023]
|
42
|
Leśniewska E, Boguta M. Novel layers of RNA polymerase III control affecting tRNA gene transcription in eukaryotes. Open Biol 2017; 7:rsob.170001. [PMID: 28228471 PMCID: PMC5356446 DOI: 10.1098/rsob.170001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 01/31/2017] [Indexed: 12/20/2022] Open
Abstract
RNA polymerase III (Pol III) transcribes a limited set of short genes in eukaryotes producing abundant small RNAs, mostly tRNA. The originally defined yeast Pol III transcriptome appears to be expanding owing to the application of new methods. Also, several factors required for assembly and nuclear import of Pol III complex have been identified recently. Models of Pol III based on cryo-electron microscopy reconstructions of distinct Pol III conformations reveal unique features distinguishing Pol III from other polymerases. Novel concepts concerning Pol III functioning involve recruitment of general Pol III-specific transcription factors and distinctive mechanisms of transcription initiation, elongation and termination. Despite the short length of Pol III transcription units, mapping of transcriptionally active Pol III with nucleotide resolution has revealed strikingly uneven polymerase distribution along all genes. This may be related, at least in part, to the transcription factors bound at the internal promoter regions. Pol III uses also a specific negative regulator, Maf1, which binds to polymerase under stress conditions; however, a subset of Pol III genes is not controlled by Maf1. Among other RNA polymerases, Pol III machinery represents unique features related to a short transcript length and high transcription efficiency.
Collapse
Affiliation(s)
- Ewa Leśniewska
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Magdalena Boguta
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
43
|
Li Q, Wang J, Ye J, Zheng X, Xiang X, Li C, Fu M, Wang Q, Zhang Z, Wu Y. The Maize Imprinted Gene Floury3 Encodes a PLATZ Protein Required for tRNA and 5S rRNA Transcription through Interaction with RNA Polymerase III. THE PLANT CELL 2017; 29:2661-2675. [PMID: 28874509 PMCID: PMC5774582 DOI: 10.1105/tpc.17.00576] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 05/03/2023]
Abstract
Maize (Zea mays) floury3 (fl3) is a classic semidominant negative mutant that exhibits severe defects in the endosperm but fl3 plants otherwise appear normal. We cloned the fl3 gene and determined that it encodes a PLATZ (plant AT-rich sequence and zinc binding) protein. The mutation in fl3 resulted in an Asn-to-His replacement in the conserved PLATZ domain, creating a dominant allele. Fl3 is specifically expressed in starchy endosperm cells and regulated by genomic imprinting, which leads to the suppressed expression of fl3 when transmitted through the male, perhaps as a consequence the semidominant behavior. Yeast two-hybrid screening and bimolecular luciferase complementation experiments revealed that FL3 interacts with the RNA polymerase III subunit 53 (RPC53) and transcription factor class C 1 (TFC1), two critical factors of the RNA polymerase III (RNAPIII) transcription complex. In the fl3 endosperm, the levels of many tRNAs and 5S rRNA that are transcribed by RNAPIII are significantly reduced, suggesting that the incorrectly folded fl3 protein may impair the function of RNAPIII. The transcriptome is dramatically altered in fl3 mutants, in which the downregulated genes are primarily enriched in pathways related to translation, ribosome, misfolded protein responses, and nutrient reservoir activity. Collectively, these changes may lead to defects in endosperm development and storage reserve filling in fl3 seeds.
Collapse
Affiliation(s)
- Qi Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jiechen Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jianwei Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xixi Zheng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoli Xiang
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Science, Chengdu 610061, China
| | - Changsheng Li
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Miaomiao Fu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qiong Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhiyong Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
44
|
Van Bortle K, Phanstiel DH, Snyder MP. Topological organization and dynamic regulation of human tRNA genes during macrophage differentiation. Genome Biol 2017; 18:180. [PMID: 28931413 PMCID: PMC5607496 DOI: 10.1186/s13059-017-1310-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/25/2017] [Indexed: 12/11/2022] Open
Abstract
Background The human genome is hierarchically organized into local and long-range structures that help shape cell-type-specific transcription patterns. Transfer RNA (tRNA) genes (tDNAs), which are transcribed by RNA polymerase III (RNAPIII) and encode RNA molecules responsible for translation, are dispersed throughout the genome and, in many cases, linearly organized into genomic clusters with other tDNAs. Whether the location and three-dimensional organization of tDNAs contribute to the activity of these genes has remained difficult to address, due in part to unique challenges related to tRNA sequencing. We therefore devised integrated tDNA expression profiling, a method that combines RNAPIII mapping with biotin-capture of nascent tRNAs. We apply this method to the study of dynamic tRNA gene regulation during macrophage development and further integrate these data with high-resolution maps of 3D chromatin structure. Results Integrated tDNA expression profiling reveals domain-level and loop-based organization of tRNA gene transcription during cellular differentiation. tRNA genes connected by DNA loops, which are proximal to CTCF binding sites and expressed at elevated levels compared to non-loop tDNAs, change coordinately with tDNAs and protein-coding genes at distal ends of interactions mapped by in situ Hi-C. We find that downregulated tRNA genes are specifically marked by enhanced promoter-proximal binding of MAF1, a transcriptional repressor of RNAPIII activity, altogether revealing multiple levels of tDNA regulation during cellular differentiation. Conclusions We present evidence of both local and coordinated long-range regulation of human tDNA expression, suggesting the location and organization of tRNA genes contribute to dynamic tDNA activity during macrophage development. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1310-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kevin Van Bortle
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Douglas H Phanstiel
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, 27599, USA.,Thurston Arthritis Research Center and Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
45
|
Khatter H, Vorländer MK, Müller CW. RNA polymerase I and III: similar yet unique. Curr Opin Struct Biol 2017; 47:88-94. [PMID: 28743025 DOI: 10.1016/j.sbi.2017.05.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/22/2017] [Indexed: 01/03/2023]
Abstract
The majority of non-protein-coding RNAs present in eukaryotic cells comprises rRNAs, tRNAs and U6 snRNA that are involved in protein biosynthesis and are synthesized by DNA-dependent-RNA polymerase I and III. The transcription cycle (initiation, elongation and termination) has similar principles in all three nuclear RNA polymerases with specific features that are reflected back in their structures. Recently, owing to the 'resolution revolution' in electron cryo-microscopy, there has been a significant advancement in the understanding of these molecular machines. Here, we highlight the structure-function adaptation in specificity and activity of these molecular machines and present parallels and distinctions between their transcription mechanisms.
Collapse
Affiliation(s)
- Heena Khatter
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Matthias K Vorländer
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Christoph W Müller
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
46
|
Lössl P, van de Waterbeemd M, Heck AJ. The diverse and expanding role of mass spectrometry in structural and molecular biology. EMBO J 2016; 35:2634-2657. [PMID: 27797822 PMCID: PMC5167345 DOI: 10.15252/embj.201694818] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/25/2016] [Accepted: 10/07/2016] [Indexed: 12/20/2022] Open
Abstract
The emergence of proteomics has led to major technological advances in mass spectrometry (MS). These advancements not only benefitted MS-based high-throughput proteomics but also increased the impact of mass spectrometry on the field of structural and molecular biology. Here, we review how state-of-the-art MS methods, including native MS, top-down protein sequencing, cross-linking-MS, and hydrogen-deuterium exchange-MS, nowadays enable the characterization of biomolecular structures, functions, and interactions. In particular, we focus on the role of mass spectrometry in integrated structural and molecular biology investigations of biological macromolecular complexes and cellular machineries, highlighting work on CRISPR-Cas systems and eukaryotic transcription complexes.
Collapse
Affiliation(s)
- Philip Lössl
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Michiel van de Waterbeemd
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Albert Jr Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| |
Collapse
|
47
|
Abstract
The structures of RNA Polymerase (Pol) II pre-initiation complexes (PIC) have recently been determined at near-atomic resolution, elucidating unprecedented mechanistic details of promoter opening during transcription initiation. The key structural features of promoter opening are summarized here. Structural knowledge of Pol I and III PIC is also briefly discussed.
Collapse
Affiliation(s)
- Yan Han
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA,CONTACT Yan Han , Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
48
|
Spaller T, Kling E, Glöckner G, Hillmann F, Winckler T. Convergent evolution of tRNA gene targeting preferences in compact genomes. Mob DNA 2016; 7:17. [PMID: 27583033 PMCID: PMC5006619 DOI: 10.1186/s13100-016-0073-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/20/2016] [Indexed: 11/30/2022] Open
Abstract
Background In gene-dense genomes, mobile elements are confronted with highly selective pressure to amplify without causing excessive damage to the host. The targeting of tRNA genes as potentially safe integration sites has been developed by retrotransposons in various organisms such as the social amoeba Dictyostelium discoideum and the yeast Saccharomyces cerevisiae. In D. discoideum, tRNA gene-targeting retrotransposons have expanded to approximately 3 % of the genome. Recently obtained genome sequences of species representing the evolutionary history of social amoebae enabled us to determine whether the targeting of tRNA genes is a generally successful strategy for mobile elements to colonize compact genomes. Results During the evolution of dictyostelids, different retrotransposon types independently developed the targeting of tRNA genes at least six times. DGLT-A elements are long terminal repeat (LTR) retrotransposons that display integration preferences ~15 bp upstream of tRNA gene-coding regions reminiscent of the yeast Ty3 element. Skipper elements are chromoviruses that have developed two subgroups: one has canonical chromo domains that may favor integration in centromeric regions, whereas the other has diverged chromo domains and is found ~100 bp downstream of tRNA genes. The integration of D. discoideum non-LTR retrotransposons ~50 bp upstream (TRE5 elements) and ~100 bp downstream (TRE3 elements) of tRNA genes, respectively, likely emerged at the root of dictyostelid evolution. We identified two novel non-LTR retrotransposons unrelated to TREs: one with a TRE5-like integration behavior and the other with preference ~4 bp upstream of tRNA genes. Conclusions Dictyostelid retrotransposons demonstrate convergent evolution of tRNA gene targeting as a probable means to colonize the compact genomes of their hosts without being excessively mutagenic. However, high copy numbers of tRNA gene-associated retrotransposons, such as those observed in D. discoideum, are an exception, suggesting that the targeting of tRNA genes does not necessarily favor the amplification of position-specific integrating elements to high copy numbers under the repressive conditions that prevail in most host cells. Electronic supplementary material The online version of this article (doi:10.1186/s13100-016-0073-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Spaller
- Institute of Pharmacy, Department of Pharmaceutical Biology, Friedrich Schiller University Jena, Semmelweisstraße 10, Jena, 07743 Germany
| | - Eva Kling
- Institute of Pharmacy, Department of Pharmaceutical Biology, Friedrich Schiller University Jena, Semmelweisstraße 10, Jena, 07743 Germany
| | - Gernot Glöckner
- Institute for Biochemistry I, Medical Faculty, University of Cologne, Berlin, Germany ; Institute for Freshwater Ecology and Inland Fisheries, IGB, Berlin, Germany
| | - Falk Hillmann
- Junior Research Group Evolution of Microbial Interaction, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Thomas Winckler
- Institute of Pharmacy, Department of Pharmaceutical Biology, Friedrich Schiller University Jena, Semmelweisstraße 10, Jena, 07743 Germany
| |
Collapse
|
49
|
Hoffmann NA, Sadian Y, Tafur L, Kosinski J, Müller CW. Specialization versus conservation: How Pol I and Pol III use the conserved architecture of the pre-initiation complex for specialized transcription. Transcription 2016; 7:127-32. [PMID: 27327079 PMCID: PMC4984676 DOI: 10.1080/21541264.2016.1203628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Here, we discuss the overall architecture of the RNA polymerase I (Pol I) and III (Pol III) core enzymes and their associated general transcription factors in the context of models of the Pol I and Pol III pre-initiation complexes, thereby highlighting potential functional adaptations of the Pol I and Pol III enzymes to their respective transcription tasks. Several new insights demonstrate the great degree of specialization of each of the eukaryotic RNA polymerases that is only beginning to be revealed as the structural and functional characterization of all eukaryotic RNA polymerases and their pre-initiation complexes progresses.
Collapse
Affiliation(s)
- Niklas A Hoffmann
- a European Molecular Biology Laboratory (EMBL) , Structural and Computational Biology Unit , Heidelberg , Germany
| | - Yashar Sadian
- a European Molecular Biology Laboratory (EMBL) , Structural and Computational Biology Unit , Heidelberg , Germany
| | - Lucas Tafur
- a European Molecular Biology Laboratory (EMBL) , Structural and Computational Biology Unit , Heidelberg , Germany
| | - Jan Kosinski
- a European Molecular Biology Laboratory (EMBL) , Structural and Computational Biology Unit , Heidelberg , Germany
| | - Christoph W Müller
- a European Molecular Biology Laboratory (EMBL) , Structural and Computational Biology Unit , Heidelberg , Germany
| |
Collapse
|
50
|
Reuter LM, Sträßer K. Falling for the dark side of transcription: Nab2 fosters RNA polymerase III transcription. Transcription 2016; 7:69-74. [PMID: 27049816 PMCID: PMC4984684 DOI: 10.1080/21541264.2016.1170252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RNA polymerase III (RNAPIII) synthesizes diverse, small, non-coding RNAs with many important roles in the cellular metabolism. One of the open questions of RNAPIII transcription is whether and how additional factors are involved. Recently, Nab2 was identified as the first messenger ribonucleoprotein particle (mRNP) biogenesis factor with a function in RNAPIII transcription.
Collapse
Affiliation(s)
- L Maximilian Reuter
- a Institute of Biochemistry, Justus Liebig University Giessen , Giessen , Germany
| | - Katja Sträßer
- a Institute of Biochemistry, Justus Liebig University Giessen , Giessen , Germany
| |
Collapse
|