1
|
Liu S, Li J, Wang A, Ng DKP, Zheng N. Multicomponent Polymerization toward Poly(BODIPY-sulfonamide)s as Unique SO 2 Generators for Sonodynamic and Gas Combination Therapy. Angew Chem Int Ed Engl 2025; 64:e202422362. [PMID: 39777843 DOI: 10.1002/anie.202422362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/15/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
In this work, a multicomponent polymerization (MCP) approach involving bipyrroles, sulfonyl azides, and diynes was developed to afford a library of poly(bipyrrole-sulfonylimide)s (PPSIs) in high yields and molecular weights, which were further modified to form unique sulfur dioxide (SO2) generators. Bipyrroles served as carbon-based nucleophiles to undergo Cu-catalyzed C-C coupling during the MCP. Upon post-MCP modification by transforming the bipyrrole unit to boron dipyrromethene (BODIPY) and the sulfonylimide moiety to sulfonamide, poly(BODIPY-sulfonamide)s (PBSAs) were obtained as potent anticancer therapeutic agents. This study disclosed the decomposition and SO2-releasing ability of PBSAs under ultrasound (US) irradiation. Furthermore, one of these polymers having a reactive oxygen species-cleavable thioketal linker was modified with triethylene glycol chains to give PBSA-EG, which was further studied for in vitro and in vivo US-induced anti-cancer therapy. Upon tail veil administration of PBSA-EG nanoparticles into tumor-bearing mice followed by US irradiation, remarkable tumor suppression was observed. This study demonstrates that the innovative and efficient MCP method can construct polymers bearing the BODIPY-sulfonamide moieties, which show a great potential as safe and potent materials for combined gas and sonodynamic therapy against cancer.
Collapse
Affiliation(s)
- Shuxin Liu
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Juan Li
- Department of Comparative Medicine Laboratory Animal Center, Dalian Medical University, Dalian, 116000, China
| | - Aiguo Wang
- Department of Comparative Medicine Laboratory Animal Center, Dalian Medical University, Dalian, 116000, China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, 999077, China
| | - Nan Zheng
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
2
|
Dol R, Kovljenic N, Dudding T. Polymer-supported strong Lewis acid phosphonium cation catalysis applied to sydnone synthesis. Chem Commun (Camb) 2024; 60:12253-12256. [PMID: 39370885 DOI: 10.1039/d4cc03412k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Organochlorophosphonium P(V) species are strong Lewis acids deriving from a low-lying σ* orbital at P opposite to Cl. Herein, applying this strong acidity to heterogenous reactivity, we introduce polymer-supported phosphorus(V)-mediated Lewis acid catalysis. Key to this innovation is the use of a recyclable solid support Merrifield resin P(V) Lewis acid catalyst with demonstrated utility for the one-pot synthesis of sydnones. This concept of pnictogen P(V) Lewis acid catalysis is simple to apply, selective, and benefits from mild conditions with short reaction times. Further, experimental and computational findings reveal the crucial mechanistic role of phosphonium cation P(V) species in these reactions.
Collapse
Affiliation(s)
- Ryan Dol
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St., Catharines, ON, L2S 3A1, Canada.
| | - Nenad Kovljenic
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St., Catharines, ON, L2S 3A1, Canada.
| | - Travis Dudding
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St., Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
3
|
Yuan R, Fang Z, Liu F, He X, Du S, Zhang N, Zeng Q, Wei Y, Wu Y, Tao L. Ferrocene-Based Antioxidant Self-Healing Hydrogel via the Biginelli Reaction for Wound Healing. ACS Macro Lett 2024; 13:475-482. [PMID: 38591821 DOI: 10.1021/acsmacrolett.4c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The development of antioxidant wound dressings to remove excessive free radicals around wounds is essential for wound healing. In this study, we developed an efficient strategy to prepare antioxidant self-healing hydrogels as wound dressings by combining multicomponent reactions (MCRs) and postpolymerization modification. A polymer containing ferrocene and phenylboronic acid groups was developed via the Biginelli reaction, followed by efficient modification. This polymer is antioxidant due to its ferrocene moieties and can rapidly cross-link poly(vinyl alcohol) to realize an antioxidant self-healing hydrogel through dynamic borate ester linkages. This hydrogel has low cytotoxicity and is biocompatible. In in vivo experiments, this hydrogel is superior to existing clinical dressings in promoting wound healing. This study demonstrates the value of the Biginelli reaction in exploring biomaterials, potentially offering insights into the design of other multifunctional polymers and related materials using different MCRs.
Collapse
Affiliation(s)
- Rui Yuan
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhao Fang
- Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials, Sinopec Beijing Research Institute of Chemical Industry, Beijing, 100013, P. R. China
| | - Fang Liu
- China-Japan Friendship Hospital, Beijing, 100029, P. R. China
| | - Xianzhe He
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Sa Du
- The Second Dental Center, Peking University School and Hospital of Stomatology, Beijing, 100101, P. R. China
| | - Nan Zhang
- Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials, Sinopec Beijing Research Institute of Chemical Industry, Beijing, 100013, P. R. China
| | - Qiang Zeng
- The Second Dental Center, Peking University School and Hospital of Stomatology, Beijing, 100101, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuwei Wu
- The Second Dental Center, Peking University School and Hospital of Stomatology, Beijing, 100101, P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
4
|
Wang L, Zhang J, Li C, Dang W, Guo W, Xie J, Zhou F, Zhang Q. Access to 2,4-Disubstituted Pyrrole-Based Polymer with Long-Wavelength and Stimuli-Responsive Properties via Copper-Catalyzed [3+2] Polycycloaddition. Macromol Rapid Commun 2024; 45:e2300652. [PMID: 38407457 DOI: 10.1002/marc.202300652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Pyrrole-based polymers (PBPs), a type of fascinating functional polymers, play a crucial role in materials science. However, efficient synthetic strategies of PBPs with diverse structures are mainly focused on conjugated polypyrroles and still remain challenging. Herein, an atom and step economy protocol is described to access various 2,4-disubstituted PBPs by in situ formation of pyrrole core structure via copper-catalyzed [3+2] polycycloaddition of dialkynones and diisocyanoacetates. A series of PBPs is prepared with high molecular weight (Mw up to 18 200 Da) and moderate to good yield (up to 87%), which possesses a fluorescent emission located in the green to yellow light region. Blending the PBPs with polyvinyl alcohol, the stretchable composite films exhibit a significant strengthening of the mechanical properties (tensile stress up to 59 MPa, elongation at break >400%) and an unprecedented stress-responsive luminescence enhancement that over fourfold fluorescent emission intensity is maintained upon stretching up to 100%. On the basis of computational studies, the unique photophysical and mechanical properties are attributed to the substitution of carbonyl chromophores on the pyrrole unit.
Collapse
Affiliation(s)
- Lingna Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jianbo Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Chunmei Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wanbin Dang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wei Guo
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Junjian Xie
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Fengtao Zhou
- School of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
5
|
Li X, Li W, Liu X, Zhang M, Yu EY, Law AWK, Ou X, Zhang J, Sung HHY, Tan X, Sun J, Lam JWY, Guo Z, Tang BZ. A Photoactivatable Luminescent Motif through Ring-Flipping Isomerization for Multiple Photopatterning. J Am Chem Soc 2023. [PMID: 38051539 DOI: 10.1021/jacs.3c07478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Photoactivatable luminescent materials have garnered enormous attention in the field of intelligent responsive materials, yet their design and applications remain challenging due to the limited variety of photoactivatable motifs. In the work described herein, we discovered a new photoactivatable luminescent motif that underwent ring-flipping isomerization under UV irradiation. The emission of this motif exhibited a rapid transformation from dark yellow to bright green, accompanied by a significant enhancement of quantum yield from 1.9% to 34.2%. Experimental and theoretical studies revealed that the effective intramolecular motion (EIM) was crucial to the distinct luminescence performance between two isomers. In addition, polymers containing this motif were achieved through a one-pot alkyne polymerization, exhibiting both photofluorochromic and photo-cross-linking properties. Furthermore, multiple types of photopatterning, including luminescent encryption, fluorescent grayscale imaging, and high-resolution photolithographic patterns, were realized. This work developed a new photoactivatable luminescent motif and demonstrated its potential applications in both small molecules and macromolecules, which will help in the future design of photoactivatable luminescent materials.
Collapse
Affiliation(s)
- Xin Li
- Department of Chemistry and the Hong Kong Branch of the Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Wenlang Li
- Department of Chemistry and the Hong Kong Branch of the Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Xinyue Liu
- Department of Chemistry and the Hong Kong Branch of the Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Minjie Zhang
- Department of Chemistry and the Hong Kong Branch of the Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Eric Y Yu
- Department of Chemistry and the Hong Kong Branch of the Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Anthony W K Law
- Department of Chemistry and the Hong Kong Branch of the Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Xinwen Ou
- Department of Chemistry and the Hong Kong Branch of the Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jianyu Zhang
- Department of Chemistry and the Hong Kong Branch of the Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Herman H Y Sung
- Department of Chemistry and the Hong Kong Branch of the Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Xuefeng Tan
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China
| | | | - Jacky W Y Lam
- Department of Chemistry and the Hong Kong Branch of the Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Zhihong Guo
- Department of Chemistry and the Hong Kong Branch of the Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ben Zhong Tang
- Department of Chemistry and the Hong Kong Branch of the Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
6
|
Ma Z, Zhao S, Zhai H, Yuan R, Wei Y, Feng L, Tao L. Superhydrophobic Coatings Composed of Multifunctional Polymers Synthesized Using Successive Modification of Dihydropyrimidin-2(1 H)-thione. ACS Macro Lett 2023; 12:1491-1497. [PMID: 37874180 DOI: 10.1021/acsmacrolett.3c00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Polymer synthesis via multicomponent reactions (MCRs) has opened avenues in polymer chemistry and led to the development of various types of functional polymers. Herein, we developed a strategy to prepare multifunctional polymers via the successive modification of dihydropyrimidin-2(1H)-thione (DHPMT), which can be generated by the tricomponent Biginelli reaction. Four hydrophobic polymers were efficiently prepared by using DHPMT derivatives. These polymers can be dip-coated onto the oxidized copper mesh to obtain superhydrophobic meshes because of the strong attractive forces between the DHPMT derivatives and Cu(II). The optimized mesh has self-cleaning properties and outstanding stability in various liquid environments; it has also been successfully applied for oil/water separation with high separation efficiency and good durability. These results demonstrate that successive modification of DHPMT is a promising method for fabricating multifunctional polymers, which may have applications in polymer chemistry and materials science.
Collapse
Affiliation(s)
- Zeyu Ma
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shuaiheng Zhao
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Huajun Zhai
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Rui Yuan
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lin Feng
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
7
|
Pan S, Zhang N, He X, Fang Z, Wu Y, Wei Y, Tao L. Poly(vinyl alcohol) Modified via the Hantzsch Reaction for Biosafe Antioxidant Self-Healing Hydrogel. ACS Macro Lett 2023; 12:1037-1044. [PMID: 37440314 DOI: 10.1021/acsmacrolett.3c00298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Efficient routes for the preparation of functional self-healing hydrogels from functional polymers are needed. In this study, we developed a strategy to effectively produce a vanillin-modified poly(vinyl alcohol) (PVA-vanillin) through the Hantzsch reaction. This polymer was cross-linked with a phenylboronic acid-containing polymer (PB) that was also prepared using the Hantzsch reaction to fabricate a hydrogel through borate ester linkages under mild conditions (25 °C, pH ∼ 7.4). This hydrogel had excellent antioxidant abilities due to the 1,4-dihydropyridine (DHP) rings and the vanillin moieties in the hydrogel structures; it was also self-healable and injectable owing to the dynamic borate ester linkages. Furthermore, the antioxidant self-healing hydrogel had low cytotoxicity and exhibited favorable safety in animal experiments, indicating its potential as a safe implantable cell or drug carrier. This study developed a method for preparing functional polymers and related self-healing hydrogels in a facile manner; it demonstrated the value of the Hantzsch reaction in exploiting antioxidant self-healing hydrogels for biomedical applications, which may provide insight into the design of other functional self-healing hydrogels through different multicomponent reactions.
Collapse
Affiliation(s)
- Siyu Pan
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Nan Zhang
- Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials, Sinopec Beijing Research Institute of Chemical Industry, Beijing 100013, P. R. China
| | - Xianzhe He
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhao Fang
- Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials, Sinopec Beijing Research Institute of Chemical Industry, Beijing 100013, P. R. China
| | - Yuwei Wu
- The Second Dental Center, Peking University School and Hospital of Stomatology, Beijing 100101, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
8
|
Zhang Q, Yue P, Lei H, Zhou CY, Wang C. Metal- and light-free approach to polyheterocycles via a quinone-Cs2CO3 couple promoted regioselective cascade radical cyclization. GREEN SYNTHESIS AND CATALYSIS 2023. [DOI: 10.1016/j.gresc.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
|
9
|
Lu D, Zou X, Li C. Advances in the application of named reactions in polymer synthesis. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083221143691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
With the development of polymer science, more and more named reactions have been applied to synthesizing polymers. Introducing new reactions into polymer synthesis is undoubtedly an excellent expansion for monomer and polymer libraries. In this review, the named reactions employed in polymer-chain synthesis were divided into seven types: electrophilic reactions, nucleophilic reactions, transition metal-mediated cross-coupling reactions, free radical reactions, pericyclic reactions, multi-component reactions and rearrangement reactions. The discussion was mainly focused on the progress in the utilization of these named reactions in polymer synthesis, which could be a valuable reference for researchers in the polymer field.
Collapse
Affiliation(s)
- Dawei Lu
- Beijing University of Chemical Technology, Beijing, China
| | - Xudong Zou
- Beijing University of Chemical Technology, Beijing, China
| | | |
Collapse
|
10
|
Stepping Further from Coupling Tools: Development of Functional Polymers via the Biginelli Reaction. Molecules 2022; 27:molecules27227886. [PMID: 36431987 PMCID: PMC9698737 DOI: 10.3390/molecules27227886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
Multicomponent reactions (MCRs) have been used to prepare polymers with appealing functions. The Biginelli reaction, one of the oldest and most famous MCRs, has sparked new scientific discoveries in polymer chemistry since 2013. Recent years have seen the Biginelli reaction stepping further from simple coupling tools; for example, the functions of the Biginelli product 3,4-dihydropyrimidin-2(1H)-(thi)ones (DHPM(T)) have been gradually exploited to develop new functional polymers. In this mini-review, we mainly summarize the recent progress of using the Biginelli reaction to identify polymers for biomedical applications. These polymers have been documented as antioxidants, anticancer agents, and bio-imaging probes. Moreover, we also provide a brief introduction to some emerging applications of the Biginelli reaction in materials and polymer science. Finally, we present our perspectives for the further development of the Biginelli reaction in polymer chemistry.
Collapse
|
11
|
Wang Y, Zhang Z. Multicomponent Synthesis of Imidazole-Based Cross-Conjugated Polymers via Bimetallic Cu(I)/Rh(II) Relay Catalysis. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ying Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Zhen Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Polymer Processing Engineering (South China University of Technology), Ministry of Education, Guangzhou 510641, P. R. China
| |
Collapse
|
12
|
Li B, Wang J, He B, Qin A, Tang BZ. Activated Internal
Alkyne‐Based
Polymerization. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Baixue Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation Induced Emission, AIE Institute South China University of Technology Guangzhou 510640 China
| | - Jia Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation Induced Emission, AIE Institute South China University of Technology Guangzhou 510640 China
| | - Benzhao He
- Center for Advanced Materials Research, Advanced Institute of Natural Sciences Beijing Normal University at Zhuhai Zhuhai 519085 China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation Induced Emission, AIE Institute South China University of Technology Guangzhou 510640 China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation Induced Emission, AIE Institute South China University of Technology Guangzhou 510640 China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology, Clear Water Bay Kowloon Hong Kong, China
| |
Collapse
|
13
|
|
14
|
Stiernet P, Debuigne A. Imine-Based Multicomponent Polymerization: Concepts, Structural Diversity and Applications. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
He X, Zeng Y, Liu G, Tian Y, Wei Y, Zhao L, Yang L, Tao L. Magnetic Self-Healing Hydrogel from Difunctional Polymers Prepared via the Kabachnik-Fields Reaction. ACS Macro Lett 2022; 11:39-45. [PMID: 35574804 DOI: 10.1021/acsmacrolett.1c00720] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The development of high quality magnetic self-healing hydrogels containing well-dispersed magnetic nanoparticle has been a challenging procedure due to unavailable methods of facilely introducing groups that can efficiently stabilize these magnetic nanoparticles in the self-healing hydrogels. In this research, a polymer containing both phenylboronic acid (PBA) and phosphonic acid (PA) groups has been developed by the Kabachnik-Fields (KF) reaction. This polymer well disperses iron oxide nanoparticles (IONPs) through the strong interactions between the PA groups and the surface of the IONPs; thus, this polymer effectively mixed IONPs and poly(vinyl alcohol) (PVA) to form a hydrogel containing well-dispersed IONPs. The resulting hydrogel is self-healing, owing to the dynamic borate ester linkages. Moreover, the presence of the IONPs endowed the hydrogel with magnetic properties, also making it heat-responsive in an alternating magnetic field and expanding its application as a contrast agent for magnetic resonance imaging. The magnetic self-healing hydrogel showed excellent biosafety properties in animal experiments, suggesting its potential as an injectable implant material for biological and medical applications. This research exploits a biocompatible magnetic self-healing hydrogel with well-dispersed IONPs, demonstrating the value of the KF reaction in the development of functional polymers and smart materials, which might prompt a broad study of multicomponent reactions in interdisciplinary fields.
Collapse
Affiliation(s)
- Xianzhe He
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Yuan Zeng
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Guoqiang Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Ye Tian
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Lingyun Zhao
- Key Laboratory of Advanced Materials, Ministry of Education, Institute of Regenerative Medicine and Biomimetic Material Science and Technology, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Lei Yang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People’s Republic of China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
16
|
Ma Z, Zeng Y, He X, Pan S, Wei Y, Wang B, Tao L. Introducing the aza-Michael addition reaction between acrylate and dihydropyrimidin-2(1 H)-thione into polymer chemistry. Polym Chem 2022. [DOI: 10.1039/d2py01130a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aza-Michael addition reaction between dihydropyrimidin-2(1H)-thione and acrylate has been used to fabricate new polymers through different synthesis routes.
Collapse
Affiliation(s)
- Zeyu Ma
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yuan Zeng
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xianzhe He
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Siyu Pan
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Bo Wang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
17
|
Liu G, Xu Z, Dai X, Zeng Y, Wei Y, He X, Yan LT, Tao L. De Novo Design of Entropy-Driven Polymers Resistant to Bacterial Attachment via Multicomponent Reactions. J Am Chem Soc 2021; 143:17250-17260. [PMID: 34618447 DOI: 10.1021/jacs.1c08332] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nonbactericidal polymers that prevent bacterial attachment are important for public health, environmental protection, and avoiding the generation of superbugs. Here, inspired by the physical bactericidal process of carbon nanotubes and graphene derivatives, we develop nonbactericidal polymers resistant to bacterial attachment by using multicomponent reactions (MCRs) to introduce molecular "needles" (rigid aliphatic chains) and molecular "razors" (multicomponent structures) into polymer side chains. Computer simulation reveals the occurrence of spontaneous entropy-driven interactions between the bacterial bilayers and the "needles" and "razors" in polymer structures and provides guidance for the optimization of this type of polymers for enhanced resistibility to bacterial attachment. The blending of the optimized polymer with commercially available polyurethane produces a film with remarkably superior stability of the resistance to bacterial adhesion after wear compared with that of commercial mobile phone shells made by the Sharklet technology. This proof-of-concept study explores entropy-driven polymers resistant to bacterial attachment via a combination of MCRs, computer simulation, and polymer chemistry, paving the way for the de novo design of nonbactericidal polymers to prevent bacterial contamination.
Collapse
Affiliation(s)
- Guoqiang Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Ziyang Xu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yuan Zeng
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xianzhe He
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
18
|
Wu X, He J, Hu R, Tang BZ. Room-Temperature Metal-Free Multicomponent Polymerizations of Elemental Selenium toward Stable Alicyclic Poly(oxaselenolane)s with High Refractive Index. J Am Chem Soc 2021; 143:15723-15731. [PMID: 34520199 DOI: 10.1021/jacs.1c06732] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Selenium-containing polymers are a group of fascinating functional polymers with unique structures, properties, and applications, which have been developed recently but only with limited examples. The challenges of developing selenium-containing polymers with structural and functional diversity include the lack of economic and safe monomers, lack of efficient and convenient synthetic approaches, and poor stability of selenium-involving covalent bonds. In this work, room-temperature metal-free multicomponent polymerizations (MCPs) of elemental selenium, diisocyanides, and dipropargyl alcohols were developed, and polymers with a selenium-containing aliphatic heterocycle, 1,3-oxaselenolane, were synthesized through these MCPs directly from elemental selenium. The alicyclic poly(oxaselenolane)s enjoyed high yields (up to 93%), high molecular weights (up to 15 600 g/mol), high thermal and chemical stability, good solubility and processability. With the structural design of the poly(oxaselenolane)s and their high selenium contents of up to 33.7 wt %, the refractive indices of their spin-coated thin films could reach 1.8026 at 633 nm and maintain 1.7770 at 1700 nm. It is anticipated that these efficient, convenient, mild, and economic multicomponent polymerizations of elemental selenium can promote the selenium-related polymer chemistry and accelerate the exploration of diversified selenium-containing functional polymer materials.
Collapse
Affiliation(s)
- Xiuying Wu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Junxia He
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Rongrong Hu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China.,Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen City, Guangdong 518172, China.,AIE Institute, Guangzhou 510530, China
| |
Collapse
|
19
|
Wang X, Li B, Peng J, Wang B, Qin A, Tang BZ. Multicomponent Polymerization of Alkynes, Isocyanides, and Isocyanates toward Heterocyclic Polymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Xiaoheng Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Baixue Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Jianwen Peng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Bingnan Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
| |
Collapse
|
20
|
Porte K, Riomet M, Figliola C, Audisio D, Taran F. Click and Bio-Orthogonal Reactions with Mesoionic Compounds. Chem Rev 2021; 121:6718-6743. [PMID: 33238101 DOI: 10.1021/acs.chemrev.0c00806] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Click and bio-orthogonal reactions are dominated by cycloaddition reactions in general and 1,3-dipolar cycloadditions in particular. Among the dipoles routinely used for click chemistry, azides, nitrones, isonitriles, and nitrile oxides are the most popular. This review is focused on the emerging click chemistry that uses mesoionic compounds as dipole partners. Mesoionics are a very old family of molecules, but their use as reactants for click and bio-orthogonal chemistry is quite recent. The facility to derivatize these dipoles and to tune their reactivity toward cycloaddition reactions makes mesoionics an attractive opportunity for future click chemistry development. In addition, some compounds from this family are able to undergo click-and-release reactions, finding interesting applications in cells, as well as in animals. This review covers the synthetic access to main mesoionics, their reaction with dipolarophiles, and recent applications in chemical biology and heterocycle synthesis.
Collapse
Affiliation(s)
- Karine Porte
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| | - Margaux Riomet
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| | - Carlotta Figliola
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| | - Davide Audisio
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| | - Frédéric Taran
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| |
Collapse
|
21
|
Roy SA, Zgheib J, Zhou C, Arndtsen BA. Palladium catalyzed synthesis of indolizines via the carbonylative coupling of bromopyridines, imines and alkynes. Chem Sci 2020; 12:2251-2256. [PMID: 34163991 PMCID: PMC8179343 DOI: 10.1039/d0sc03977b] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/02/2020] [Indexed: 12/27/2022] Open
Abstract
We report herein the development of a palladium-catalyzed, multicomponent synthesis of indolizines. The reaction proceeds via the carbonylative formation of a high energy, mesoionic pyridine-based 1,3-dipole, which can undergo spontaneous cycloaddition with alkynes. Overall, this provides a route to prepare indolizines in a modular fashion from combinations of commercially available or easily generated reagents: 2-bromopyridines, imines and alkynes.
Collapse
Affiliation(s)
- Sébastien A Roy
- Department of Chemistry, McGill University 801 Sherbrooke Street W. Montreal QC H3A 0B8 Canada
| | - José Zgheib
- Department of Chemistry, McGill University 801 Sherbrooke Street W. Montreal QC H3A 0B8 Canada
| | - Cuihan Zhou
- Department of Chemistry, McGill University 801 Sherbrooke Street W. Montreal QC H3A 0B8 Canada
| | - Bruce A Arndtsen
- Department of Chemistry, McGill University 801 Sherbrooke Street W. Montreal QC H3A 0B8 Canada
| |
Collapse
|
22
|
Yoon KY, Dong G. Multicomponent Polymerization for π-Conjugated Polymers. Macromol Rapid Commun 2020; 42:e2000646. [PMID: 33325573 DOI: 10.1002/marc.202000646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Indexed: 11/11/2022]
Abstract
Structurally complex π-conjugated polymers hold great promise as key components in sensor and electronic devices; however, their syntheses have not been a trivial task. From a synthetic efficiency perspective, it would be more attractive to access these materials using convenient and efficient methods from simple building blocks. One such synthetic tool, multicomponent polymerization, can accommodate modularity and provide highly efficient syntheses. This feature article outlines several multicomponent polymerization strategies for the synthesis of various π-conjugated polymers, which are classified based upon how the monomers are aligned during polymerization. Additionally, the challenges and outlooks of this field are highlighted and discussed.
Collapse
Affiliation(s)
- Ki-Young Yoon
- Dr. K.-Y. Yoon, Prof. G. Dong, Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Guangbin Dong
- Dr. K.-Y. Yoon, Prof. G. Dong, Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
23
|
Wu X, Li W, Hu R, Tang BZ. Catalyst-Free Four-Component Polymerization of Propiolic Acids, Benzylamines, Organoboronic Acids, and Formaldehyde toward Functional Poly(propargylamine)s. Macromol Rapid Commun 2020; 42:e2000633. [PMID: 33314555 DOI: 10.1002/marc.202000633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/10/2020] [Indexed: 12/31/2022]
Abstract
Multicomponent polymerizations (MCPs) are a group of fascinating polymer synthesis approaches that are developed rapidly in the recent decade. As a popular alkyne-based MCP, the A3 -polycouplings of alkynes, aldehydes, and amines are developed for the synthesis of poly(propargylamine)s under the catalysis of metal catalysts. In this work, through the design of carboxylic acid group-activated alkyne monomers, a catalyst-free, four-component polymerization of propiolic acids, benzylamines, organoboronic acids, and formaldehyde is reported under mild condition at 45 °C in dichloroethane. This four-component polymerization is applicable to different monomer structures, which can afford seven poly(propargylamine)s with up to 94% yields and molecular weights of up to 13 900 g mol-1 . Moreover, the poly(propargylamine)s demonstrate good solubility and processibility, high thermal stability and light refractivity, unique photophysical property, and so on. The simple monomers, mild condition, low cost, high efficiency, and procedure simplicity of this catalyst-free four-component polymerization demonstrates an elegant example of functional polymer synthesis.
Collapse
Affiliation(s)
- Xiuying Wu
- State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Weizhang Li
- State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Rongrong Hu
- State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology (SCUT), Guangzhou, 510640, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,AIE Institute, South China University of Technology (SCUT), Guangzhou, 510530, China
| |
Collapse
|
24
|
Tian Y, Zeng Y, Li Y, He X, Wu H, Wei Y, Wu Y, Wang X, Tao L. Polyanionic self-healing hydrogels for the controlled release of cisplatin. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109773] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
25
|
Dong L, Fu W, Liu P, Shi J, Tong B, Cai Z, Zhi J, Dong Y. Spontaneous Multicomponent Polymerization of Imidazole, Diacetylenic Esters, and Diisocyanates for the Preparation of Poly(β-aminoacrylate)s with Cluster-Induced Emission Characteristics. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02192] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lichao Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Weiqiang Fu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Pai Liu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jianbing Shi
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Bin Tong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhengxu Cai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Junge Zhi
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuping Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
26
|
Tang X, Zhang L, Hu R, Tang BZ. Multicomponent Tandem Polymerization of Aromatic Alkynes, Carbonyl Chloride, and Fischer's Base toward Poly(diene merocyanine)s. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiaojuan Tang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation‐Induced EmissionSouth China University of Technology Guangzhou Guangdong 510640 China
| | - Lihui Zhang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation‐Induced EmissionSouth China University of Technology Guangzhou Guangdong 510640 China
| | - Rongrong Hu
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation‐Induced EmissionSouth China University of Technology Guangzhou Guangdong 510640 China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation‐Induced EmissionSouth China University of Technology Guangzhou Guangdong 510640 China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and ReconstructionThe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong, China
| |
Collapse
|
27
|
Saranya S, Rohit KR, Radhika S, Anilkumar G. Palladium-catalyzed multicomponent reactions: an overview. Org Biomol Chem 2019; 17:8048-8061. [PMID: 31410440 DOI: 10.1039/c9ob01538h] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This first review on this topic focuses on the developments in the chemistry of Pd-catalyzed multi-component reactions (MCRs). MCRs are generally atom economic, ideal and eco-friendly reactions, and often the final products are generated almost without any by-products. In this review, the developments in Pd-catalyzed MCRs are categorized based on the products formed such as acyclic compounds, carbocyclic compounds, heterocyclic compounds and miscellaneous compounds. MCRs have great applications in various fields like medicinal chemistry, combinatorial synthesis, heterocyclic chemistry etc. and this review covers the literature up to 2019.
Collapse
Affiliation(s)
- Salim Saranya
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P O, Kottayam, Kerala 686 560, India.
| | - K R Rohit
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P O, Kottayam, Kerala 686 560, India.
| | - Sankaran Radhika
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P O, Kottayam, Kerala 686 560, India.
| | - Gopinathan Anilkumar
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P O, Kottayam, Kerala 686 560, India. and Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Priyadarsini Hills P O, Kottayam, Kerala 686 560, India
| |
Collapse
|
28
|
Qi C, Zheng C, Hu R, Tang BZ. Direct Construction of Acid-Responsive Poly(indolone)s through Multicomponent Tandem Polymerizations. ACS Macro Lett 2019; 8:569-575. [PMID: 35619365 DOI: 10.1021/acsmacrolett.9b00297] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Multicomponent polymerizations (MCPs) as a burgeoning field in polymer chemistry has proved to be a powerful and popular tool for the synthesis of functional polymer materials with diverse and complex structures. To explore the general applicability of MCPs and enrich the product structures of MCPs, multicomponent tandem polymerizations (MCTPs) with great synthetic simplicity and efficiency were pursued. In this work, MCTPs of N-(2-iodophenyl)-3-phenyl-N-tosylpropiolamide, aromatic terminal alkynes, and diamines were explored through combining Sonogashira coupling and Michael addition reaction in a one-pot procedure. The MCTPs could proceed efficiently and conveniently under mild conditions with Pd(PPh3)2Cl2, CuI, and i-Pr2NEt, affording 12 poly(indolone)s with unique structures and high Mws (up to 30400 g/mol) in high yields (up to 97%). The poly(indolone)s possess a unique acid-triggered fluorescence "turn-on" response which could realize specific detection of CF3SO3H from other inorganic and organic acids through a rapid acid-catalyzed reaction from enamine to ketone.
Collapse
Affiliation(s)
- Chunxuan Qi
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510641, China
| | - Chao Zheng
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510641, China
| | - Rongrong Hu
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510641, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510641, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
29
|
Fu W, Kong L, Shi J, Tong B, Cai Z, Zhi J, Dong Y. Synthesis of Poly(amine–furan–arylene)s through a One-Pot Catalyst-Free in Situ Cyclopolymerization of Diisocyanide, Dialkylacetylene Dicarboxylates, and Dialdehyde. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02251] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Moquin A, Hanna R, Liang T, Erguven H, Gran ER, Arndtsen BA, Maysinger D, Kakkar A. PEG-conjugated pyrrole-based polymers: one-pot multicomponent synthesis and self-assembly into soft nanoparticles for drug delivery. Chem Commun (Camb) 2019; 55:9829-9832. [DOI: 10.1039/c9cc04000e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A simple one-pot methodology provides easy access to amphiphilic PEG–pyrrole backbone polymers, which self-assemble into soft nanoparticles enabling efficient drug loading/sustained release and can be detected inside cells.
Collapse
Affiliation(s)
- Alexandre Moquin
- Department of Chemistry
- McGill University
- Montreal
- Canada
- Department of Pharmacology and Therapeutics
| | - Ramez Hanna
- Department of Chemistry
- McGill University
- Montreal
- Canada
| | - Tongyue Liang
- Department of Chemistry
- McGill University
- Montreal
- Canada
| | | | - Evan Rizzel Gran
- Department of Pharmacology and Therapeutics
- McGill University
- Montreal
- Canada
| | | | - Dusica Maysinger
- Department of Pharmacology and Therapeutics
- McGill University
- Montreal
- Canada
| | - Ashok Kakkar
- Department of Chemistry
- McGill University
- Montreal
- Canada
| |
Collapse
|
31
|
Zhou Q, Gao Y, Xiao Y, Yu L, Fu Z, Li Z, Wang J. Palladium-catalyzed carbene coupling of N-tosylhydrazones and arylbromides to synthesize cross-conjugated polymers. Polym Chem 2019. [DOI: 10.1039/c8py01529e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Palladium-catalyzed cross-coupling reactions of N-tosylhydrazones and arylbromides have been applied for the first time in the synthesis of cross-conjugated polymers, namely poly(arylene-1,1-vinylidene)s (iso-PAVs).
Collapse
Affiliation(s)
- Qi Zhou
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Yunpeng Gao
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Yiyang Xiao
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Lefei Yu
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Zihao Fu
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Zichen Li
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871
| |
Collapse
|
32
|
Song S, Sahoo D, Kumar M, Barkley DA, Heiney PA, Rudick JG. Identifying Structural Determinants of Mesomorphism from Focused Libraries of Tripedal Mesogens Prepared via the Passerini Three‐Component Reaction. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shuang Song
- Department of Chemistry Stony Brook University 11794‐3400 Stony Brook New York USA
| | - Dipankar Sahoo
- Department of Chemistry Stony Brook University 11794‐3400 Stony Brook New York USA
| | - Manoj Kumar
- Department of Chemistry Stony Brook University 11794‐3400 Stony Brook New York USA
| | - Deborah A. Barkley
- Department of Chemistry Stony Brook University 11794‐3400 Stony Brook New York USA
| | - Paul A. Heiney
- Department of Physics and Astronomy University of Pennsylvania 19104‐6396 Philadelphia PA USA
| | - Jonathan G. Rudick
- Department of Chemistry Stony Brook University 11794‐3400 Stony Brook New York USA
| |
Collapse
|
33
|
Qiu Z, Liu X, Lam JWY, Tang BZ. The Marriage of Aggregation-Induced Emission with Polymer Science. Macromol Rapid Commun 2018; 40:e1800568. [DOI: 10.1002/marc.201800568] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/28/2018] [Indexed: 01/23/2023]
Affiliation(s)
- Zijie Qiu
- HKUST-Shenzhen Research Institute; No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan Shenzhen 518057 China
- Department of Chemistry; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong China
| | - Xiaolin Liu
- HKUST-Shenzhen Research Institute; No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan Shenzhen 518057 China
- Department of Chemistry; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong China
| | - Jacky W. Y. Lam
- HKUST-Shenzhen Research Institute; No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan Shenzhen 518057 China
- Department of Chemistry; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong China
- Center for Aggregation-Induced Emission; SCUT-HKUST Joint Research Institute; State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 China
| | - Ben Zhong Tang
- HKUST-Shenzhen Research Institute; No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan Shenzhen 518057 China
- Department of Chemistry; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong China
- Center for Aggregation-Induced Emission; SCUT-HKUST Joint Research Institute; State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 China
| |
Collapse
|
34
|
Han T, Zhang Y, He B, Lam JWY, Tang BZ. Functional Poly(dihalopentadiene)s: Stereoselective Synthesis, Aggregation-Enhanced Emission and Sensitive Detection of Explosives. Polymers (Basel) 2018; 10:E821. [PMID: 30960746 PMCID: PMC6403696 DOI: 10.3390/polym10080821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/22/2018] [Accepted: 07/23/2018] [Indexed: 01/05/2023] Open
Abstract
The development of polymeric materials with novel structures and unique properties and functionalities is of both academic and industrial significance. In this work, functional poly(dihalopentadiene)s were synthesized by boron trihalide-mediated multicomponent polymerization routes in a stereoselective manner. The polymerizations of tetraphenylethylene-containing diyne, BX₃ (X = Cl, Br) and p-tolualdehyde proceed smoothly in dichloromethane under mild conditions to afford high molecular weight poly(dihalopentadiene)s with a predominant (Z,Z)-configuration in moderate to good yields. The reaction conditions and the boron trihalide used were found to have great effects on the stereochemistry of the resulting polymer structures. The obtained poly(1,5-dihalo-(Z,Z)-1,4-pentadiene)s possess high thermal stability and good film-forming ability. Their thin films show high refractive index of 1.9007⁻1.6462 in a wide wavelength region of 380⁻890 nm with low optical dispersion. The polymers are weakly emissive in dilute solutions but become highly emissive upon aggregated, demonstrating a unique phenomenon of aggregation-enhanced emission. Their nanoaggregates in aqueous media can serve as sensitive fluorescent chemosensors for the detection of explosives with a superamplification effect and a low detection limit.
Collapse
Affiliation(s)
- Ting Han
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China.
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Yun Zhang
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China.
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Benzhao He
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China.
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Jacky W Y Lam
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China.
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Ben Zhong Tang
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China.
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
- NSFC Center for Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
35
|
Wu H, Gou Y, Wang J, Tao L. Multicomponent Reactions for Surface Modification. Macromol Rapid Commun 2018; 39:e1800064. [DOI: 10.1002/marc.201800064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/08/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Haibo Wu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education); Department of Chemistry; Tsinghua University; Beijing 100084 P. R. China
| | - Yanzi Gou
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory; National University of Defense Technology; Changsha 410073 P. R. China
| | - Jun Wang
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory; National University of Defense Technology; Changsha 410073 P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education); Department of Chemistry; Tsinghua University; Beijing 100084 P. R. China
| |
Collapse
|
36
|
Mao T, Liu G, Wu H, Wei Y, Gou Y, Wang J, Tao L. High Throughput Preparation of UV-Protective Polymers from Essential Oil Extracts via the Biginelli Reaction. J Am Chem Soc 2018; 140:6865-6872. [PMID: 29627974 DOI: 10.1021/jacs.8b01576] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A high throughput (HTP) system has been developed to exploit new functional polymers. We synthesized 25 monomers in a mini-HTP manner through the tricomponent Biginelli reaction with high yields. The starting materials were five aldehydes extracted from essential oils. The 25 corresponding polymers were conveniently prepared via mini-HTP radical polymerization initially realizing the benefit of HTP methods to quickly fabricate sample libraries. The distinct radical scavenging ability of these Biginelli polymers was evaluated through a HTP measurement to choose the three best radical scavengers. This confirms the superiority of the HTP strategy to rapidly collect and analyze data. The selected polymers have been upgraded and screened according to different requirements for biomaterials and offer water-soluble and biocompatible copolymers that effectively protect cells from the fatal UV damage. This research is a straightforward way to establish new libraries of monomers with abundant diversity. It offers polymers with interesting functionalities. This suggests that a broader study of multicomponent reactions and HTP methods might be useful in many interdisciplinary fields. To the best of our knowledge, this is the first report of a HTP study of the Biginelli reaction to develop a promising polymeric biomaterial, which might have important implications for the organic chemistry and polymer communities.
Collapse
Affiliation(s)
- Tengfei Mao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China.,Science and Technology on Advanced Ceramic Fibers and Composites Laboratory , National University of Defense Technology , Changsha , 410073 , P. R. China
| | - Guoqiang Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| | - Haibo Wu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| | - Yanzi Gou
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory , National University of Defense Technology , Changsha , 410073 , P. R. China
| | - Jun Wang
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory , National University of Defense Technology , Changsha , 410073 , P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| |
Collapse
|
37
|
Han T, Deng H, Qiu Z, Zhao Z, Zhang H, Zou H, Leung NLC, Shan G, Elsegood MRJ, Lam JWY, Tang BZ. Facile Multicomponent Polymerizations toward Unconventional Luminescent Polymers with Readily Openable Small Heterocycles. J Am Chem Soc 2018; 140:5588-5598. [DOI: 10.1021/jacs.8b01991] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ting Han
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Haiqin Deng
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Zijie Qiu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Zheng Zhao
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Haoke Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Hang Zou
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Nelson L. C. Leung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Guogang Shan
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Mark R. J. Elsegood
- Chemistry Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, U.K
| | - Jacky W. Y. Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- China NSFC Center for Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
38
|
Kumar R, Asthana M, Singh RM. Pd-Catalyzed One-Pot Stepwise Synthesis of Benzo[b][1,6]naphthyridines from 2-Chloroquinoline-3-carbonitriles Using Sulfur and Amines As Nucleophiles. J Org Chem 2017; 82:11531-11542. [PMID: 28980473 DOI: 10.1021/acs.joc.7b02147] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A palladium-catalyzed one-pot stepwise coupling-annulation reaction of 2-chloroqunoline-3-carbonitriles enabled the direct synthesis of sulfur-substituted benzo[b][1,6]naphthyridines via multiple bond formation. The reaction provided an unusual mode for cyclization as sodium sulfide, a soft nucleophile, preferred to attack on the carbon of the nitrile group rather than on the C-C triple bond. The developed chemistry was extended with the secondary amines as nucleophiles to afford nitrogen-substituted benzo[b][1,6]naphythyridines while primary amines afforded hydroamination products . The hydromination products were transformed to benzo[b][1,6]naphthyridones via a base-mediated cyclization reaction. The developed protocol features inexpensive and easily synthesizable starting materials, easy operations, and a high efficiency and tolerance to a broad range of substrates.
Collapse
Affiliation(s)
- Ritush Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati , Assam-781039, India.,Department of Chemistry, Institute of Science, Centre of Advanced Study, Banaras Hindu University , Varanasi-221005, India
| | - Mrityunjaya Asthana
- Department of Chemistry, Indian Institute of Technology Guwahati , Assam-781039, India
| | - Radhey M Singh
- Department of Chemistry, Institute of Science, Centre of Advanced Study, Banaras Hindu University , Varanasi-221005, India
| |
Collapse
|
39
|
Champagne PA, Houk KN. Influence of Endo- and Exocyclic Heteroatoms on Stabilities and 1,3-Dipolar Cycloaddition Reactivities of Mesoionic Azomethine Ylides and Imines. J Org Chem 2017; 82:10980-10988. [PMID: 28876936 DOI: 10.1021/acs.joc.7b01928] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The geometries, stabilities, and 1,3-dipolar cycloaddition reactivities of 24 mesoionic azomethine ylides and imines were investigated using density functional theory calculations at the M06-2X/6-311+G-(d,p)/M06-2X/6-31G-(d) level. The computed structures highlight how the commonly used "aromatic" resonance form should be replaced by two more accurate resonance structures. Stabilities of the dipoles were assessed by various homodesmotic schemes and are consistent with these compounds being nonaromatic. The activation free energies with ethylene or acetylene range from 11.8 to 36.6 kcal/mol. Within each dipole type, the predicted cycloaddition reactivities correlate with the reaction energies and the resonance stabilization energies provided by the various substituents. Endocyclic (X) heteroatoms increase the reactivity of the 1,3-dipoles in the order of O > NH ≅ S, whereas exocyclic (Y) substituents increase it in the order of CH2 > NH > O > S. Distortion/interaction analysis indicated that the difference in reactivity between differently substituted 1,3-dipoles is driven by distortion, whereas the difference between azomethine ylides and imines is related to lower interaction energies of imines with the dipolarophiles.
Collapse
Affiliation(s)
- Pier Alexandre Champagne
- Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States
| |
Collapse
|
40
|
Qiu Z, Han T, Lam JWY, Tang BZ. Recent New Methodologies for Acetylenic Polymers with Advanced Functionalities. Top Curr Chem (Cham) 2017; 375:70. [DOI: 10.1007/s41061-017-0157-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/16/2017] [Indexed: 10/19/2022]
|
41
|
Nallagangula M, Namitharan K. Copper-Catalyzed Sulfonyl Azide-Alkyne Cycloaddition Reactions: Simultaneous Generation and Trapping of Copper-Triazoles and -Ketenimines for the Synthesis of Triazolopyrimidines. Org Lett 2017; 19:3536-3539. [PMID: 28609631 DOI: 10.1021/acs.orglett.7b01500] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
First simultaneous generation and utilization of both copper-triazole and -ketenimine intermediates in copper-catalyzed sulfonyl azide-alkyne cycloaddition reactions is achieved for the one-pot synthesis of triazolopyrimidines via a novel copper-catalyzed multicomponent cascade of sulfonyl azides, alkynes, and azirines. Significantly, the reaction proceeds under very mild conditions in good yields.
Collapse
Affiliation(s)
- Madhu Nallagangula
- Organic Synthesis and Catalysis Laboratory, SRM Research Institute, SRM University , Chennai-603203, India
| | - Kayambu Namitharan
- Organic Synthesis and Catalysis Laboratory, SRM Research Institute, SRM University , Chennai-603203, India
| |
Collapse
|
42
|
Sun Q, Liu G, Wu H, Xue H, Zhao Y, Wang Z, Wei Y, Wang Z, Tao L. Fluorescent Cell-Conjugation by a Multifunctional Polymer: A New Application of the Hantzsch Reaction. ACS Macro Lett 2017; 6:550-555. [PMID: 35610883 DOI: 10.1021/acsmacrolett.7b00220] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multicomponent reactions (MCRs) can form unique structures with interesting functions, therefore, multifunctional polymers might be simply prepared using MCRs as coupling tools to simultaneously link and generate different functional groups. To verify this concept, a new fluorescent polymer containing phenylboronic acid has been facilely prepared via a one pot method by combining the Hantzsch reaction with reversible addition-fragmentation chain transfer (RAFT) polymerization. The Hantzsch-RAFT system has been found robust to smoothly achieve predesigned multifunctional polymer, which can be used for cell conjugation through the interaction between phenylboronic acid and glycoprotein on cell membrane. The conjugated cells could be directly observed due to the fluorescent Hantzsch moiety in the polymer chain, demonstrating a new application of the old Hantzsch reaction (>130 years) outside organic chemistry. Meanwhile, the conjugated cells remained excellent dispersity in the presence of coagulation protein (lectin), implying that multifunctional polymer a possible anticoagulant for cell separation. We believe that the current research paves a new way to exploit new applications of MCRs in interdisciplinary fields and might prompt the development of other multifunctional polymers based on different MCRs.
Collapse
Affiliation(s)
- Qiang Sun
- The
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Guoqiang Liu
- The
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Haibo Wu
- The
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
- College
of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, People’s Republic of China
| | - Haodong Xue
- The
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
- College
of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, People’s Republic of China
| | - Yuan Zhao
- The
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Zilin Wang
- The
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Yen Wei
- The
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Zhiming Wang
- College
of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, People’s Republic of China
| | - Lei Tao
- The
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
43
|
Wei B, Li W, Zhao Z, Qin A, Hu R, Tang BZ. Metal-Free Multicomponent Tandem Polymerizations of Alkynes, Amines, and Formaldehyde toward Structure- and Sequence-Controlled Luminescent Polyheterocycles. J Am Chem Soc 2017; 139:5075-5084. [PMID: 28318273 DOI: 10.1021/jacs.6b12767] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sequence-controlled polymers, including biopolymers such as DNA, RNA, and proteins, have attracted much attention recently because of their sequence-dependent functionalities. The development of an efficient synthetic approach for non-natural sequence-controlled polymers is hence of great importance. Multicomponent polymerizations (MCPs) as a powerful and popular synthetic approach for functional polymers with great structural diversity have been demonstrated to be a promising tool for the synthesis of sequence-controlled polymers. In this work, we developed a facile metal-free one-pot multicomponent tandem polymerization (MCTP) of activated internal alkynes, aromatic diamines, and formaldehyde to successfully synthesize structural-regulated and sequence-controlled polyheterocycles with high molecular weights (up to 69 800 g/mol) in high yields (up to 99%). Through such MCTP, polymers with the in situ generated multisubstituted tetrahydropyrimidines or dihydropyrrolones in the backbone and inherent luminescence can be easily obtained with high atom economy and environmental benefit, which is inaccessible by other synthetic approaches.
Collapse
Affiliation(s)
- Bo Wei
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology , Guangzhou 510640, China
| | - Weizhang Li
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology , Guangzhou 510640, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology , Guangzhou 510640, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology , Guangzhou 510640, China
| | - Rongrong Hu
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology , Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology , Guangzhou 510640, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology , Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
44
|
Wu H, Yang L, Tao L. Polymer synthesis by mimicking nature's strategy: the combination of ultra-fast RAFT and the Biginelli reaction. Polym Chem 2017. [DOI: 10.1039/c7py01313b] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A two-stage method has been developed by mimicking nature's protein synthesis strategy to prepare plenty of polymers using limited monomers.
Collapse
Affiliation(s)
- Haibo Wu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Lei Yang
- Cancer Institute & Hospital
- Peking Union Medical College & Chinese Academy of Medical Sciences
- Beijing
- China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| |
Collapse
|
45
|
Wang Z, Yu Y, Li Y, Yang L, Zhao Y, Liu G, Wei Y, Wang X, Tao L. Post-polymerization modification via the Biginelli reaction to prepare water-soluble polymer adhesives. Polym Chem 2017. [DOI: 10.1039/c7py01163f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A copolymer precursor containing the β-ketoester moiety has been modified through the Biginelli reaction to get several water-soluble adhesives which are comparable to commercial glues.
Collapse
Affiliation(s)
- Zilin Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P.R. China
| | - Ying Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P.R. China
| | - Yongsan Li
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P.R. China
| | - Lei Yang
- Cancer Institute & Hospital
- Peking Union Medical College & Chinese Academy of Medical Science
- Beijing
- 100021
- China
| | - Yuan Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P.R. China
| | - Guoqiang Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P.R. China
| | - Yen Wei
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P.R. China
| | - Xing Wang
- The State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| | - Lei Tao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P.R. China
| |
Collapse
|
46
|
Wu H, Wang Z, Tao L. The Hantzsch reaction in polymer chemistry: synthesis and tentative application. Polym Chem 2017. [DOI: 10.1039/c7py01718a] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recent utilization of the tetra-component Hantzsch reaction in polymer chemistry has been summarized.
Collapse
Affiliation(s)
- Haibo Wu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Zhiming Wang
- College of Pharmaceutical Science
- Zhejiang Chinese Medical University
- Hangzhou
- People's Republic of China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| |
Collapse
|
47
|
Erguven H, Leitch DC, Keyzer EN, Arndtsen BA. Development and Cycloaddition Reactivity of a New Class of Pyridine-Based Mesoionic 1,3-Dipole. Angew Chem Int Ed Engl 2016; 56:6078-6082. [DOI: 10.1002/anie.201609726] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Huseyin Erguven
- Department of Chemistry; McGill University; 801 Sherbrooke St. W Montreal Quebec H3A 0B8 Canada
| | - David C. Leitch
- Department of Chemistry; McGill University; 801 Sherbrooke St. W Montreal Quebec H3A 0B8 Canada
| | - Evan N. Keyzer
- Department of Chemistry; McGill University; 801 Sherbrooke St. W Montreal Quebec H3A 0B8 Canada
| | - Bruce A. Arndtsen
- Department of Chemistry; McGill University; 801 Sherbrooke St. W Montreal Quebec H3A 0B8 Canada
| |
Collapse
|
48
|
Erguven H, Leitch DC, Keyzer EN, Arndtsen BA. Development and Cycloaddition Reactivity of a New Class of Pyridine-Based Mesoionic 1,3-Dipole. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201609726] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Huseyin Erguven
- Department of Chemistry; McGill University; 801 Sherbrooke St. W Montreal Quebec H3A 0B8 Canada
| | - David C. Leitch
- Department of Chemistry; McGill University; 801 Sherbrooke St. W Montreal Quebec H3A 0B8 Canada
| | - Evan N. Keyzer
- Department of Chemistry; McGill University; 801 Sherbrooke St. W Montreal Quebec H3A 0B8 Canada
| | - Bruce A. Arndtsen
- Department of Chemistry; McGill University; 801 Sherbrooke St. W Montreal Quebec H3A 0B8 Canada
| |
Collapse
|
49
|
Tjutrins J, Dhawan R, Lu Y, Arndtsen BA. Mechanism of the Palladium-Catalyzed Synthesis of Münchnones: The Role of Ligands in N-Acyl Iminium Salt Carbonylation. Chemistry 2016; 22:15945-15954. [PMID: 27643406 DOI: 10.1002/chem.201603400] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Indexed: 11/06/2022]
Abstract
The palladium-catalyzed carbonylative coupling of imines, acid chlorides, and dipolarophiles can provide efficient routes to prepare nitrogen-containing heterocycles. One challenge in developing this reaction, and in the creation of more active catalyst systems, is the lack of data on how this complex transformation proceeds. To address this, we report here the results of our mechanistic studies on this system, and in particular the formation of mesoionic münchnones. This includes the synthesis of key catalytic intermediates, model reactions, and kinetic studies that support the role of these compounds in catalysis. Together, these studies provide a clear picture of the impact of catalyst structure, ligands, and palladium nanoparticles on facilitating the carbonylation of in situ generated iminium salts, and suggest an avenue for the creation of more active catalyst systems.
Collapse
Affiliation(s)
- Jevgenijs Tjutrins
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Rajiv Dhawan
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Yingdong Lu
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Bruce A Arndtsen
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada.
| |
Collapse
|
50
|
Kayser LV, Vollmer M, Welnhofer M, Krikcziokat H, Meerholz K, Arndtsen BA. Metal-Free, Multicomponent Synthesis of Pyrrole-Based π-Conjugated Polymers from Imines, Acid Chlorides, and Alkynes. J Am Chem Soc 2016; 138:10516-21. [PMID: 27471822 DOI: 10.1021/jacs.6b05035] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multicomponent coupling reactions (MCRs) are becoming increasingly used in the synthesis of macromolecules, as they can allow the rapid generation of libraries of materials as a method to tune properties. MCRs could prove particularly useful in the synthesis of π-conjugated polymers in which structural changes are necessary for fine-tuning of electronic properties. We describe here the first metal-free multicomponent approach to conjugated polymers. This reaction exploits the coupling of imines, acid chlorides, and (catechyl)PPh to generate phospha-münchnone-containing polymers, which can be converted to poly(pyrroles) via cycloaddition. The platform allows for the efficient synthesis of families of high molecular weight polymers in one step from readily available monomers.
Collapse
Affiliation(s)
- Laure V Kayser
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Moritz Vollmer
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada.,Department of Chemistry, University of Cologne , Luxemburgerstrasse 116, 50939 Cologne, Germany
| | - Merve Welnhofer
- Department of Chemistry, University of Cologne , Luxemburgerstrasse 116, 50939 Cologne, Germany
| | - Hanna Krikcziokat
- Department of Chemistry, University of Cologne , Luxemburgerstrasse 116, 50939 Cologne, Germany
| | - Klaus Meerholz
- Department of Chemistry, University of Cologne , Luxemburgerstrasse 116, 50939 Cologne, Germany
| | - Bruce A Arndtsen
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|