1
|
Chen X, Wang L, Xie J, Nowak JS, Luo B, Zhang C, Jia G, Zou J, Huang D, Glatt S, Yang Y, Su Z. RNA sample optimization for cryo-EM analysis. Nat Protoc 2025; 20:1114-1157. [PMID: 39548288 DOI: 10.1038/s41596-024-01072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/12/2024] [Indexed: 11/17/2024]
Abstract
RNAs play critical roles in most biological processes. Although the three-dimensional (3D) structures of RNAs primarily determine their functions, it remains challenging to experimentally determine these 3D structures due to their conformational heterogeneity and intrinsic dynamics. Cryogenic electron microscopy (cryo-EM) has recently played an emerging role in resolving dynamic conformational changes and understanding structure-function relationships of RNAs including ribozymes, riboswitches and bacterial and viral noncoding RNAs. A variety of methods and pipelines have been developed to facilitate cryo-EM structure determination of challenging RNA targets with small molecular weights at subnanometer to near-atomic resolutions. While a wide range of conditions have been used to prepare RNAs for cryo-EM analysis, correlations between the variables in these conditions and cryo-EM visualizations and reconstructions remain underexplored, which continue to hinder optimizations of RNA samples for high-resolution cryo-EM structure determination. Here we present a protocol that describes rigorous screenings and iterative optimizations of RNA preparation conditions that facilitate cryo-EM structure determination, supplemented by cryo-EM data processing pipelines that resolve RNA dynamics and conformational changes and RNA modeling algorithms that generate atomic coordinates based on moderate- to high-resolution cryo-EM density maps. The current protocol is designed for users with basic skills and experience in RNA biochemistry, cryo-EM and RNA modeling. The expected time to carry out this protocol may range from 3 days to more than 3 weeks, depending on the many variables described in the protocol. For particularly challenging RNA targets, this protocol could also serve as a starting point for further optimizations.
Collapse
Affiliation(s)
- Xingyu Chen
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Liu Wang
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiahao Xie
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jakub S Nowak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Bingnan Luo
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Chong Zhang
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Guowen Jia
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Zou
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Dingming Huang
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Yang Yang
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhaoming Su
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Ekambaram S, Arakelov G, Dokholyan NV. The Evolving Landscape of Protein Allostery: From Computational and Experimental Perspectives. J Mol Biol 2025:169060. [PMID: 40043838 DOI: 10.1016/j.jmb.2025.169060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 03/16/2025]
Abstract
Protein allostery is a fundamental biological regulatory mechanism that allows communication between distant locations within a protein, modifying its function in response to signals. Experimental techniques, such as NMR spectroscopy and cryo-electron microscopy (cryo-EM), are critical validation tools for computational predictions and provide valuable insights into dynamic conformational changes. Combining these approaches has greatly improved our understanding of classical conformational allostery and complex dynamic coupling mechanisms. Recent advances in machine learning and enhanced sampling methods have broadened the scope of allostery research, identifying cryptic allosteric sites and directing new drug discovery approaches. Despite progress, bridging static structural data with dynamic functional states remains challenging. This review underscores the importance of combining experimental and computational approaches to comprehensively understand protein allostery and its diverse applications in biology and medicine.
Collapse
Affiliation(s)
- Srinivasan Ekambaram
- Department of Neuroscience and Experimental Therapeutics, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Grigor Arakelov
- Department of Neuroscience and Experimental Therapeutics, Penn State College of Medicine, Hershey, PA 17033, USA; Institute of Molecular Biology of the National Academy of Sciences of the Republic of Armenia, Yerevan 0014, Armenia
| | - Nikolay V Dokholyan
- Department of Neuroscience and Experimental Therapeutics, Penn State College of Medicine, Hershey, PA 17033, USA; Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA; Department of Chemistry, Penn State University, University Park, PA 16802, USA; Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA.
| |
Collapse
|
3
|
Gilloteaux J, Charlier C, Suain V, Nicaise C. Astrocyte alterations during Osmotic Demyelination Syndrome: intermediate filaments, aggresomes, proteasomes, and glycogen storages. Ultrastruct Pathol 2025; 49:170-215. [PMID: 40062739 DOI: 10.1080/01913123.2025.2468700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/31/2025] [Accepted: 02/14/2025] [Indexed: 03/27/2025]
Abstract
INTRODUCTION A murine model mimicking the human osmotic demyelination syndrome (ODS) revealed with histology demyelinated alterations in the relay posterolateral (VPL) and ventral posteromedial (VPM) thalamic nuclei 12 h and 48 h after chronic hyponatremia due to a fast reinstatement of osmolality. Abnormal expression astrocyte markers ALDHL1 and GFAP with immunohistochemistry in these ODS altered zones, prompted aims to verify in both protoplasmic and fibrillar astrocytes with ultrastructure those changes and other associated subcellular modifications. METHOD This ODS investigation included four groups of mice: Sham (NN; n = 13), hyponatremic (HN; n = 11), those sacrificed 12 h after a fast restoration of normal natremia (ODS12h; n = 6), and mice sacrificed 48 h afterward, or ODS48 h (n = 9). Out of those four groups of mice, with LM and ultrastructure microscopy, the thalamic zones included NN (n = 2), HN (n = 2), ODS12h (n = 3) and ODS48h (n = 3) samples. There, comparisons between astrocytes included organelles, GFAP, and glycogen content changes. RESULTS Thalamic ODS epicenter damages comprised both protoplasmic (PA) and fibrillar (FA) astrocyte necroses along with those of neuropil destructions and neuron Wallerian demyelinated injuries surrounded by a centrifugal region gradient revealing worse to mild destructions. Ultrastructure aspects of resilient HN and ODS12h PAs disclosed altered mitochondria and accumulations of beta- to alpha-glycogen granules that became eventually captured into phagophores as glycophagosomes in ODS48h. HN and ODS12h time lapse FAs accumulated ribonucleoproteins, cytoskeletal aggresomes, and proteasomes but distant and resilient ODS48h FAs maintained GFAP fibrils along with typical mitochondria and dispersed β-glycogen, including in their neuropil surroundings. Thus, ODS triggered astrocyte injuries that involved both post-transcriptional and post-translational modifications such that astrocytes were unable to use glycogen and metabolites due to their own mitochondria defects while accumulated stalled ribonucleoproteins, cytoskeletal aggresomes were associated with proteasomes and GFAP ablation. Resilient but distant astrocytes revealed restitution of amphibolism where typical carbohydrate storages were revealed along with GFAP, as tripartite extensions supply for restored nerve axon initial segments, neural Ranvier's junctions, and oligodendrocyte -neuron junctional contacts. CONCLUSION ODS caused astrocyte damage associated with adjacent neuropil destruction that included a regional demyelination caused by a loss of dispatched energetic and metabolic exchanges within the injured region, bearing proportional and collateral centrifugal injuries, which involved reactive repairs time after rebalanced osmolarity.
Collapse
Affiliation(s)
- Jacques Gilloteaux
- Department of Medicine, Laboratory of Neurodegeneration and Regeneration URPHyM, NARILIS, University of Namur, Namur, Belgium
- Department of Anatomical Sciences, St George's University School of Medicine, KB Taylor Global Scholar's Program at the Northumbria University, Newcastle upon Tyne, UK
| | - Corry Charlier
- Electron Microscopy Platform, MORPH-IM, Université de Namur, Bruxelles, Belgium
| | - Valérie Suain
- CMMI - The Center for Microscopy and Molecular Imaging, Gosselies, Belgium
| | - Charles Nicaise
- Department of Medicine, Laboratory of Neurodegeneration and Regeneration URPHyM, NARILIS, University of Namur, Namur, Belgium
| |
Collapse
|
4
|
Omura SN, Nureki O. General and robust sample preparation strategies for cryo-EM studies of CRISPR-Cas9 and Cas12 enzymes. Methods Enzymol 2025; 712:23-39. [PMID: 40121075 DOI: 10.1016/bs.mie.2025.01.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Cas9 and Cas12 are RNA-guided DNA endonucleases derived from prokaryotic CRISPR-Cas adaptive immune systems that have been repurposed as versatile genome-engineering tools. Computational mining of genomes and metagenomes has expanded the diversity of Cas9 and Cas12 enzymes that can be used to develop versatile, orthogonal molecular toolboxes. Structural information is pivotal to uncovering the precise molecular mechanisms of newly discovered Cas enzymes and providing a foundation for their application in genome editing. In this chapter, we describe detailed protocols for the preparation of Cas9 and Cas12 enzymes for cryo-electron microscopy. These methods will enable fast and robust structural determination of newly discovered Cas9 and Cas12 enzymes, which will enhance the understanding of diverse CRISPR-Cas effectors and provide a molecular framework for expanding CRISPR-based genome-editing technologies.
Collapse
Affiliation(s)
- Satoshi N Omura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
5
|
Zhao Z, Zhao L, Kong C, Zhou J, Zhou F. A review of biophysical strategies to investigate protein-ligand binding: What have we employed? Int J Biol Macromol 2024; 276:133973. [PMID: 39032877 DOI: 10.1016/j.ijbiomac.2024.133973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
The protein-ligand binding frequently occurs in living organisms and plays a crucial role in the execution of the functions of proteins and drugs. It is also an indispensable part of drug discovery and screening. While the methods for investigating protein-ligand binding are diverse, each has its own objectives, strengths, and limitations, which all influence the choice of method. Many studies concentrate on one or a few specific methods, suggesting that comprehensive summaries are lacking. Therefore in this review, these methods are comprehensively summarized and are discussed in detail: prediction and simulation methods, thermal and thermodynamic methods, spectroscopic methods, methods of determining three-dimensional structures of the complex, mass spectrometry-based methods and others. It is also important to integrate these methods based on the specific objectives of the research. With the aim of advancing pharmaceutical research, this review seeks to deepen the understanding of the protein-ligand binding process.
Collapse
Affiliation(s)
- Zhen Zhao
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Tsinghua East Road, Beijing 100083, China.
| | - Liang Zhao
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China.
| | - Chenxi Kong
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Tsinghua East Road, Beijing 100083, China
| | - Jingxuan Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Tsinghua East Road, Beijing 100083, China.
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Tsinghua East Road, Beijing 100083, China.
| |
Collapse
|
6
|
Lawong A, Gahalawat S, Ray S, Ho N, Han Y, Ward KE, Deng X, Chen Z, Kumar A, Xing C, Hosangadi V, Fairhurst KJ, Tashiro K, Liszczak G, Shackleford DM, Katneni K, Chen G, Saunders J, Crighton E, Casas A, Robinson JJ, Imlay LS, Zhang X, Lemoff A, Zhao Z, Angulo-Barturen I, Jiménez-Díaz MB, Wittlin S, Campbell SF, Fidock DA, Laleu B, Charman SA, Ready JM, Phillips MA. Identification of potent and reversible piperidine carboxamides that are species-selective orally active proteasome inhibitors to treat malaria. Cell Chem Biol 2024; 31:1503-1517.e19. [PMID: 39084225 PMCID: PMC11531662 DOI: 10.1016/j.chembiol.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/08/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
Malaria remains a global health concern as drug resistance threatens treatment programs. We identified a piperidine carboxamide (SW042) with anti-malarial activity by phenotypic screening. Selection of SW042-resistant Plasmodium falciparum (Pf) parasites revealed point mutations in the Pf_proteasome β5 active-site (Pfβ5). A potent analog (SW584) showed efficacy in a mouse model of human malaria after oral dosing. SW584 had a low propensity to generate resistance (minimum inoculum for resistance [MIR] >109) and was synergistic with dihydroartemisinin. Pf_proteasome purification was facilitated by His8-tag introduction onto β7. Inhibition of Pfβ5 correlated with parasite killing, without inhibiting human proteasome isoforms or showing cytotoxicity. The Pf_proteasome_SW584 cryoelectron microscopy (cryo-EM) structure showed that SW584 bound non-covalently distal from the catalytic threonine, in an unexplored pocket at the β5/β6/β3 subunit interface that has species differences between Pf and human proteasomes. Identification of a reversible, species selective, orally active series with low resistance propensity provides a path for drugging this essential target.
Collapse
Affiliation(s)
- Aloysus Lawong
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Suraksha Gahalawat
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Sneha Ray
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Nhi Ho
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Yan Han
- Department of Biophysics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Kurt E Ward
- Department of Microbiology and Immunology, and Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xiaoyi Deng
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Zhe Chen
- Department of Biophysics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Ashwani Kumar
- Department of Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Chao Xing
- Department of Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; Department of Bioinformatics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Varun Hosangadi
- Department of Microbiology and Immunology, and Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kate J Fairhurst
- Department of Microbiology and Immunology, and Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kyuto Tashiro
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Glen Liszczak
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - David M Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Kasiram Katneni
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Gong Chen
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Jessica Saunders
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Elly Crighton
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Arturo Casas
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Joshua J Robinson
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Leah S Imlay
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Xiaoyu Zhang
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Andrew Lemoff
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Zhiyu Zhao
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Iñigo Angulo-Barturen
- The Art of Discovery, Biscay Science and Technology Park, Astrondo Bidea, BIC Bizkaia Bd 612, Derio, 48160 Bizkaia, Basque Country, Spain
| | - María Belén Jiménez-Díaz
- The Art of Discovery, Biscay Science and Technology Park, Astrondo Bidea, BIC Bizkaia Bd 612, Derio, 48160 Bizkaia, Basque Country, Spain
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland; University of Basel Kreuzstrasse 2, 4123 Allschwil, Switzerland
| | | | - David A Fidock
- Department of Microbiology and Immunology, and Columbia University Irving Medical Center, New York, NY 10032, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Benoît Laleu
- Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Joseph M Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA.
| | - Margaret A Phillips
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA.
| |
Collapse
|
7
|
Carrascosa JL. Characterization of Complexes and Supramolecular Structures by Electron Microscopy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:191-205. [PMID: 38507208 DOI: 10.1007/978-3-031-52193-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Recent advancements in cryo-electron microscopy (cryo-TEM) have enabled the determination of structures of macromolecular complexes at near-atomic resolution, establishing it as a pivotal tool in Structural Biology. This high resolution allows for the detection of ligands and substrates under physiological conditions. Enhancements in detectors and imaging devices, like phase plates, improve signal quality, facilitating the reconstruction of even smaller macromolecular complexes. The 100-kDa barrier has been surpassed, presenting new opportunities for pharmacological research and expanding the scope of crystallographic analyses in the pharmaceutical industry. Cryo-TEM produces vast data sets from minimal samples, and refined classification methods can identify different conformational states of macromolecular complexes, offering deeper insights into the functional characteristics of macromolecular systems. Additionally, cryo-TEM is paving the way for time-resolved microscopy, with rapid freezing techniques capturing snapshots of vital structural changes in biological complexes. Finally, in Structural Cell Biology, advanced cryo-TEM, through tomographic procedures, is revealing conformational changes related to the specific subcellular localization of macromolecular systems and their interactions within cells.
Collapse
Affiliation(s)
- José L Carrascosa
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB, CSIC), Madrid, Spain.
| |
Collapse
|
8
|
Atta H, Alzahaby N, Hamdy NM, Emam SH, Sonousi A, Ziko L. New trends in synthetic drugs and natural products targeting 20S proteasomes in cancers. Bioorg Chem 2023; 133:106427. [PMID: 36841046 DOI: 10.1016/j.bioorg.2023.106427] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/15/2023] [Accepted: 02/12/2023] [Indexed: 02/19/2023]
Abstract
Cancer is a global health challenge that remains to be a field of extensive research aiming to find new anticancer therapeutics. The 20S proteasome complex is one of the targets of anticancerdrugs, as it is correlated with several cancer types. Herein, we aim to discuss the 20S proteasome subunits and investigatethe currently studied proteasome inhibitors targeting the catalytically active proteasome subunits. In this review, we summarize the proteindegradation mechanism of the 20S proteasome complex and compareit with the 26S proteasome complex. Afterwards, the localization of the 20S proteasome is summarized as well as its use as a diagnosticandprognostic marker. The FDA-approved proteasome inhibitors (PIs) under clinical trials are summarized and their current limited use in solid tumors is also reviewed in addition to the expression of theβ5 subunit in differentcell lines. The review discusses in-silico analysis of the active subunit of the 20S proteasome complex. For development of new proteasome inhibitor drugs, the natural products inhibiting the 20S proteasome are summarized, as well as novel methodologies and challenges for the natural product discovery and current information about the biosynthetic gene clusters encoding them. We herein briefly summarize some resistancemechanismsto the proteasomeinhibitors. Additionally, we focus on the three main classes of proteasome inhibitors: 1] boronic acid, 2] beta-lactone and 3] epoxide inhibitor classes, as well as other PI classes, and their IC50 values and their structure-activity relationship (SAR). Lastly,we summarize several future prospects of developing new proteasome inhibitors towards the treatment of tumors, especially solid tumors.
Collapse
Affiliation(s)
- Hind Atta
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Egypt
| | - Nouran Alzahaby
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia 11566, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia 11566, Cairo, Egypt
| | - Soha H Emam
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Amr Sonousi
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Egypt; Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Laila Ziko
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Egypt; Biology Department, School of Sciences and Engineering, American University in Cairo, Egypt.
| |
Collapse
|
9
|
Nickl P, Hilal T, Olal D, Donskyi IS, Radnik J, Ludwig K, Haag R. A New Support Film for Cryo Electron Microscopy Protein Structure Analysis Based on Covalently Functionalized Graphene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205932. [PMID: 36507556 DOI: 10.1002/smll.202205932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/25/2022] [Indexed: 06/18/2023]
Abstract
Protein adsorption at the air-water interface is a serious problem in cryogenic electron microscopy (cryoEM) as it restricts particle orientations in the vitrified ice-film and promotes protein denaturation. To address this issue, the preparation of a graphene-based modified support film for coverage of conventional holey carbon transmission electron microscopy (TEM) grids is presented. The chemical modification of graphene sheets enables the universal covalent anchoring of unmodified proteins via inherent surface-exposed lysine or cysteine residues in a one-step reaction. Langmuir-Blodgett (LB) trough approach is applied for deposition of functionalized graphene sheets onto commercially available holey carbon TEM grids. The application of the modified TEM grids in single particle analysis (SPA) shows high protein binding to the surface of the graphene-based support film. Suitability for high resolution structure determination is confirmed by SPA of apoferritin. Prevention of protein denaturation at the air-water interface and improvement of particle orientations is shown using human 20S proteasome, demonstrating the potential of the support film for structural biology.
Collapse
Affiliation(s)
- Philip Nickl
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
- Forschungszentrum für Elektronenmikroskopie und Core Facility BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 36a, 14195, Berlin, Germany
- Division 6.1 - Surface Analysis and Interfacial Chemistry, BAM - Federal Institute for Material Science and Testing, Unter den Eichen 44-46, 12205, Berlin, Germany
| | - Tarek Hilal
- Forschungszentrum für Elektronenmikroskopie und Core Facility BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 36a, 14195, Berlin, Germany
| | - Daniel Olal
- Forschungszentrum für Elektronenmikroskopie und Core Facility BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 36a, 14195, Berlin, Germany
| | - Ievgen Sergeevitch Donskyi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
- Division 6.1 - Surface Analysis and Interfacial Chemistry, BAM - Federal Institute for Material Science and Testing, Unter den Eichen 44-46, 12205, Berlin, Germany
| | - Jörg Radnik
- Division 6.1 - Surface Analysis and Interfacial Chemistry, BAM - Federal Institute for Material Science and Testing, Unter den Eichen 44-46, 12205, Berlin, Germany
| | - Kai Ludwig
- Forschungszentrum für Elektronenmikroskopie und Core Facility BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 36a, 14195, Berlin, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| |
Collapse
|
10
|
Fan H, Sun F. Developing Graphene Grids for Cryoelectron Microscopy. Front Mol Biosci 2022; 9:937253. [PMID: 35911962 PMCID: PMC9326159 DOI: 10.3389/fmolb.2022.937253] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cryogenic electron microscopy (cryo-EM) single particle analysis has become one of the major techniques used to study high-resolution 3D structures of biological macromolecules. Specimens are generally prepared in a thin layer of vitrified ice using a holey carbon grid. However, the sample quality using this type of grid is not always ideal for high-resolution imaging even when the specimens in the test tube behave ideally. Various problems occur during a vitrification procedure, including poor/nonuniform distribution of particles, preferred orientation of particles, specimen denaturation/degradation, high background from thick ice, and beam-induced motion, which have become important bottlenecks in high-resolution structural studies using cryo-EM in many projects. In recent years, grids with support films made of graphene and its derivatives have been developed to efficiently solve these problems. Here, the various advantages of graphene grids over conventional holey carbon film grids, functionalization of graphene support films, production methods of graphene grids, and origins of pristine graphene contamination are reviewed and discussed.
Collapse
Affiliation(s)
- Hongcheng Fan
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Sun
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Bioland Laboratory, Guangzhou, China
| |
Collapse
|
11
|
Yau MQ, Loo JSE. Consensus scoring evaluated using the GPCR-Bench dataset: Reconsidering the role of MM/GBSA. J Comput Aided Mol Des 2022; 36:427-441. [PMID: 35581483 DOI: 10.1007/s10822-022-00456-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 04/28/2022] [Indexed: 01/09/2023]
Abstract
The recent availability of large numbers of GPCR crystal structures has provided an unprecedented opportunity to evaluate their performance in virtual screening protocols using established benchmarking datasets. In this study, we evaluated the ability of MM/GBSA in consensus scoring-based virtual screening enrichment together with nine classical scoring functions, using the GPCR-Bench dataset consisting of 24 GPCR crystal structures and 254,646 actives and decoys. While the performance of consensus scoring was modest overall, combinations which included MM/GBSA performed relatively well compared to combinations of classical scoring functions. Combinations of MM/GBSA and good-performing scoring functions provided the highest proportion of improvements, with improvements observed in 32% and 19% of all combinations across all targets at the EF1% and EF5% levels respectively. Combinations of MM/GBSA and poor-performing scoring functions still outperformed classical scoring functions, with improvements observed in 26% and 17% of all combinations at the EF1% and EF5% levels. In comparison, only 14-22% and 6-11% of combinations of classical scoring functions produced improvements at EF1% and EF5% respectively. Efforts to improve performance by increasing the number of scoring functions in consensus scoring to three were mostly ineffective. We also observed that consensus scoring performed better for individual scoring functions possessing initially low enrichment factors, potentially implying their benefits are more relevant in such scenarios. Overall, this study demonstrated the first implementation of MM/GBSA in consensus scoring using the GPCR-Bench dataset and could provide a valuable benchmark of the performance of MM/GBSA in comparison to classical scoring functions in consensus scoring for GPCRs.
Collapse
Affiliation(s)
- Mei Qian Yau
- Centre for Drug Discovery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor's University, No. 1 Jalan Taylor's, 47500, Subang Jaya, Selangor, Malaysia.,School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, No. 1 Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Jason S E Loo
- Centre for Drug Discovery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor's University, No. 1 Jalan Taylor's, 47500, Subang Jaya, Selangor, Malaysia. .,School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, No. 1 Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
12
|
Pishesha N, Harmand TJ, Ploegh HL. A guide to antigen processing and presentation. Nat Rev Immunol 2022; 22:751-764. [PMID: 35418563 DOI: 10.1038/s41577-022-00707-2] [Citation(s) in RCA: 331] [Impact Index Per Article: 110.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2022] [Indexed: 12/13/2022]
Abstract
Antigen processing and presentation are the cornerstones of adaptive immunity. B cells cannot generate high-affinity antibodies without T cell help. CD4+ T cells, which provide such help, use antigen-specific receptors that recognize major histocompatibility complex (MHC) molecules in complex with peptide cargo. Similarly, eradication of virus-infected cells often depends on cytotoxic CD8+ T cells, which rely on the recognition of peptide-MHC complexes for their action. The two major classes of glycoproteins entrusted with antigen presentation are the MHC class I and class II molecules, which present antigenic peptides to CD8+ T cells and CD4+ T cells, respectively. This Review describes the essentials of antigen processing and presentation. These pathways are divided into six discrete steps that allow a comparison of the various means by which antigens destined for presentation are acquired and how the source proteins for these antigens are tagged for degradation, destroyed and ultimately displayed as peptides in complex with MHC molecules for T cell recognition.
Collapse
Affiliation(s)
- Novalia Pishesha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Society of Fellows, Harvard University, Cambridge, MA, USA.,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Thibault J Harmand
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Creekmore BC, Chang YW, Lee EB. The Cryo-EM Effect: Structural Biology of Neurodegenerative Disease Proteostasis Factors. J Neuropathol Exp Neurol 2021; 80:494-513. [PMID: 33860329 PMCID: PMC8177850 DOI: 10.1093/jnen/nlab029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases are characterized by the accumulation of misfolded proteins. This protein aggregation suggests that abnormal proteostasis contributes to aging-related neurodegeneration. A better fundamental understanding of proteins that regulate proteostasis may provide insight into the pathophysiology of neurodegenerative disease and may perhaps reveal novel therapeutic opportunities. The 26S proteasome is the key effector of the ubiquitin-proteasome system responsible for degrading polyubiquitinated proteins. However, additional factors, such as valosin-containing protein (VCP/p97/Cdc48) and C9orf72, play a role in regulation and trafficking of substrates through the normal proteostasis systems of a cell. Nonhuman AAA+ ATPases, such as the disaggregase Hsp104, also provide insights into the biochemical processes that regulate protein aggregation. X-ray crystallography and cryo-electron microscopy (cryo-EM) structures not bound to substrate have provided meaningful information about the 26S proteasome, VCP, and Hsp104. However, recent cryo-EM structures bound to substrate have provided new information about the function and mechanism of these proteostasis factors. Cryo-EM and cryo-electron tomography data combined with biochemical data have also increased the understanding of C9orf72 and its role in maintaining proteostasis. These structural insights provide a foundation for understanding proteostasis mechanisms with near-atomic resolution upon which insights can be gleaned regarding the pathophysiology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Benjamin C Creekmore
- From the Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yi-Wei Chang
- From the Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Association with proteasome determines pathogenic threshold of polyglutamine expansion diseases. Biochem Biophys Res Commun 2020; 536:95-99. [PMID: 33370719 DOI: 10.1016/j.bbrc.2020.12.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 11/21/2022]
Abstract
Expansion of glutamine residue track (polyQ) within soluble protein is responsible for eight autosomal-dominant genetic neurodegenerative disorders. These disorders affect cerebellum, striatum, basal ganglia and other brain regions. Each disease develops when polyQ expansion exceeds a pathogenic threshold (Qth). A pathogenic threshold is unique for each disease but the reasons for variability in Qth within this family of proteins are poorly understood. In the previous publication we proposed that polarity of the regions flanking polyQ track in each protein plays a key role in defining Qth value [1]. To explain the correlation between the polarity of the flanking sequences and Qth we performed quantitative analysis of interactions between polyQ-expanded proteins and proteasome. Based on structural and theoretical modeling, we predict that Qth value is determined by the energy of polar interaction of the flanking regions with the polyQ and proteasome. More polar flanking regions facilitate unfolding of α-helical polyQ conformation adopted inside the proteasome and as a result, increase Qth. Predictions of our model are consistent with Qth values observed in clinic for each of the eight polyQ-expansion disorders. Our results suggest that the agents that can destabilize polyQ α-helical structure may have a beneficial therapeutic effect for treatment of polyQ-expansion disorders.
Collapse
|
15
|
Classification of Single Particles from Human Cell Extract Reveals Distinct Structures. Cell Rep 2019; 24:259-268.e3. [PMID: 29972786 PMCID: PMC6109231 DOI: 10.1016/j.celrep.2018.06.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/09/2018] [Accepted: 06/05/2018] [Indexed: 01/27/2023] Open
Abstract
Multi-protein complexes are necessary for nearly all cellular processes, and understanding their structure is required for elucidating their function. Current high-resolution strategies in structural biology are effective but lag behind other fields (e.g., genomics and proteomics) due to their reliance on purified samples rather than heterogeneous mixtures. Here, we present a method combining single-particle analysis by electron microscopy with protein identification by mass spectrometry to structurally characterize macromolecular complexes from human cell extract. We identify HSP60 through two-dimensional classification and obtain three-dimensional structures of native proteasomes directly from ab initio classification of a heterogeneous mixture of protein complexes. In addition, we reveal an ∼1-MDa-size structure of unknown composition and reference our proteomics data to suggest possible identities. Our study shows the power of using a shotgun approach to electron microscopy (shotgun EM) when coupled with mass spectrometry as a tool to uncover the structures of macromolecular machines.
Collapse
|
16
|
Carragher B, Cheng Y, Frost A, Glaeser RM, Lander GC, Nogales E, Wang HW. Current outcomes when optimizing 'standard' sample preparation for single-particle cryo-EM. J Microsc 2019; 276:39-45. [PMID: 31553060 PMCID: PMC7050573 DOI: 10.1111/jmi.12834] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/10/2019] [Accepted: 09/19/2019] [Indexed: 12/27/2022]
Abstract
Although high-resolution single-particle cryo-electron microscopy (cryo-EM) is now producing a rapid stream of breakthroughs in structural biology, it nevertheless remains the case that the preparation of suitable frozen-hydrated samples on electron microscopy grids is often quite challenging. Purified samples that are intact and structurally homogeneous - while still in the test tube - may not necessarily survive the standard methods of making extremely thin, aqueous films on grids. As a result, it is often necessary to try a variety of experimental conditions before finally finding an approach that is optimal for the specimen at hand. Here, we summarize some of our collective experiences to date in optimizing sample preparation, in the hope that doing so will be useful to others, especially those new to the field. We also hope that an open discussion of these common challenges will encourage the development of more generally applicable methodology. Our collective experiences span a diverse range of biochemical samples and most of the commonly used variations in how grids are currently prepared. Unfortunately, none of the currently used optimization methods can be said, in advance, to be the one that ultimately will work when a project first begins. Nevertheless, there are some preferred first steps to explore when facing specific problems that can be more generally recommended, based on our experience and that of many others in the cryo-EM field.
Collapse
Affiliation(s)
- B Carragher
- Simon Electron Microscopy Center, New York Structural Biology Center, New York, U.S.A
| | - Y Cheng
- HHMI and Department of Biochemistry and Biophysics, University of California, San Francisco, California, U.S.A
| | - A Frost
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, U.S.A
| | - R M Glaeser
- Lawrence Berkeley National Laboratory, University of California, Berkeley, California, U.S.A
| | - G C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, U.S.A
| | - E Nogales
- Molecular and Cell Biology Department, University of California Berkeley, Berkeley, California, U.S.A
- MBIB Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California, U.S.A
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, California, U.S.A
| | - H-W Wang
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center of Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
17
|
Toste Rêgo A, da Fonseca PCA. Characterization of Fully Recombinant Human 20S and 20S-PA200 Proteasome Complexes. Mol Cell 2019; 76:138-147.e5. [PMID: 31473102 PMCID: PMC6863390 DOI: 10.1016/j.molcel.2019.07.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/27/2019] [Accepted: 07/10/2019] [Indexed: 12/31/2022]
Abstract
Proteasomes are essential in all eukaryotic cells. However, their function and regulation remain considerably elusive, particularly those of less abundant variants. We demonstrate the human 20S proteasome recombinant assembly and confirmed the recombinant complex integrity biochemically and with a 2.6 Å resolution cryo-EM map. To assess its competence to form higher-order assemblies, we prepared and analyzed recombinant human 20S-PA200, a poorly characterized nuclear complex. Its 3.0 Å resolution cryo-EM structure reveals the PA200 unique architecture; the details of its intricate interactions with the proteasome, resulting in unparalleled proteasome α ring rearrangements; and the molecular basis for PA200 allosteric modulation of the proteasome active sites. Non-protein cryo-EM densities could be assigned to PA200-bound inositol phosphates, and we speculate regarding their functional role. Here we open extensive opportunities to study the fundamental properties of the diverse and distinct eukaryotic proteasome variants and to improve proteasome targeting under different therapeutic conditions. Recombinant human 20S proteasomes and 20S-PA200 complexes are characterized Cryo-EM reveals intricate 20S-PA200 interactions and PA200-bound cofactors PA200 binding is allosterically communicated to the proteolytic active sites Basis to fully characterize the function and regulation of proteasome variants
Collapse
Affiliation(s)
- Ana Toste Rêgo
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Paula C A da Fonseca
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
18
|
Abstract
The recent improvements in cryogenic electron microscopy (cryo-EM) caused a revolution in structural biology. However, 1) protein isolation and 2) sample preparation methods lag behind, and cryo-EM is performed at far from full efficiency. Here, we present a microfluidic method for the rapid isolation of a target protein from minimal amounts of cell lysate and for its direct preparation for high-resolution cryo-EM. Our technology opens more avenues for structural biology: High-throughput structure determination of proteins in a multitude of conditions, ultrafast isolation and structure determination of sensitive proteins, and the analysis of proteins that cannot be produced in sufficient amounts using conventional approaches. High-resolution structural information is essential to understand protein function. Protein-structure determination needs a considerable amount of protein, which can be challenging to produce, often involving harsh and lengthy procedures. In contrast, the several thousand to a few million protein particles required for structure determination by cryogenic electron microscopy (cryo-EM) can be provided by miniaturized systems. Here, we present a microfluidic method for the rapid isolation of a target protein and its direct preparation for cryo-EM. Less than 1 μL of cell lysate is required as starting material to solve the atomic structure of the untagged, endogenous human 20S proteasome. Our work paves the way for high-throughput structure determination of proteins from minimal amounts of cell lysate and opens more opportunities for the isolation of sensitive, endogenous protein complexes.
Collapse
|
19
|
Sharma R, Demény M, Ambrus V, Király SB, Kurtán T, Gatti-Lafranconi P, Fuxreiter M. Specific and Fuzzy Interactions Cooperate in Modulating Protein Half-Life. J Mol Biol 2019; 431:1700-1707. [PMID: 30790629 DOI: 10.1016/j.jmb.2019.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/24/2019] [Accepted: 02/03/2019] [Indexed: 11/29/2022]
Abstract
Protein degradation is critical for maintaining cellular homeostasis. The 20S proteasome is selective for unfolded, extended polypeptide chains without ubiquitin tags. Sequestration of such segments by protein partners, however, may provide a regulatory mechanism. Here we used the AP-1 complex to study how c-Fos turnover is controlled by interactions with c-Jun. We show that heterodimerization with c-Jun increases c-Fos half-life. Mutations affecting specific contact sites (L165V, L172V) or charge separation (E175D, E189D, K190R) with c-Jun both modulate c-Fos turnover, proportionally to their impact on binding affinity. The fuzzy tail beyond the structured b-HLH/ZIP domain (~165 residues) also contributes to the stabilization of the AP-1 complex, removal of which decreases c-Fos half-life. Thus, protein turnover by 20S proteasome is fine-tuned by both specific and fuzzy interactions, consistently with the previously proposed "nanny" model.
Collapse
Affiliation(s)
- Rashmi Sharma
- MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Máté Demény
- MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Viktor Ambrus
- MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | | | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, Debrecen, Hungary
| | | | - Monika Fuxreiter
- MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
20
|
Abstract
The ubiquitin proteasome system (UPS) degrades individual proteins in a highly regulated fashion and is responsible for the degradation of misfolded, damaged, or unneeded cellular proteins. During the past 20 years, investigators have established a critical role for the UPS in essentially every cellular process, including cell cycle progression, transcriptional regulation, genome integrity, apoptosis, immune responses, and neuronal plasticity. At the center of the UPS is the proteasome, a large and complex molecular machine containing a multicatalytic protease complex. When the efficiency of this proteostasis system is perturbed, misfolded and damaged protein aggregates can accumulate to toxic levels and cause neuronal dysfunction, which may underlie many neurodegenerative diseases. In addition, many cancers rely on robust proteasome activity for degrading tumor suppressors and cell cycle checkpoint inhibitors necessary for rapid cell division. Thus, proteasome inhibitors have proven clinically useful to treat some types of cancer, especially multiple myeloma. Numerous cellular processes rely on finely tuned proteasome function, making it a crucial target for future therapeutic intervention in many diseases, including neurodegenerative diseases, cystic fibrosis, atherosclerosis, autoimmune diseases, diabetes, and cancer. In this review, we discuss the structure and function of the proteasome, the mechanisms of action of different proteasome inhibitors, various techniques to evaluate proteasome function in vitro and in vivo, proteasome inhibitors in preclinical and clinical development, and the feasibility for pharmacological activation of the proteasome to potentially treat neurodegenerative disease.
Collapse
Affiliation(s)
- Tiffany A Thibaudeau
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
| | - David M Smith
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
21
|
Natesh R. Single-Particle cryo-EM as a Pipeline for Obtaining Atomic Resolution Structures of Druggable Targets in Preclinical Structure-Based Drug Design. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2019. [PMCID: PMC7121590 DOI: 10.1007/978-3-030-05282-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single-particle cryo-electron microscopy (cryo-EM) and three-dimensional (3D) image processing have gained importance in the last few years to obtain atomic structures of drug targets. Obtaining atomic-resolution 3D structure better than ~2.5 Å is a standard approach in pharma companies to design and optimize therapeutic compounds against drug targets like proteins. Protein crystallography is the main technique in solving the structures of drug targets at atomic resolution. However, this technique requires protein crystals which in turn is a major bottleneck. It was not possible to obtain the structure of proteins better than 2.5 Å resolution by any other methods apart from protein crystallography until 2015. Recent advances in single-particle cryo-EM and 3D image processing have led to a resolution revolution in the field of structural biology that has led to high-resolution protein structures, thus breaking the cryo-EM resolution barriers to facilitate drug discovery. There are 24 structures solved by single-particle cryo-EM with resolution 2.5 Å or better in the EMDataBank (EMDB) till date. Among these, five cryo-EM 3D reconstructions of proteins in the EMDB have their associated coordinates deposited in Protein Data Bank (PDB), with bound inhibitor/ ligand. Thus, for the first time, single-particle cryo-EM was included in the structure-based drug design (SBDD) pipeline for solving protein structures independently or where crystallography has failed to crystallize the protein. Further, this technique can be complementary and supplementary to protein crystallography field in solving 3D structures. Thus, single-particle cryo-EM can become a standard approach in pharmaceutical industry in the design, validation, and optimization of therapeutic compounds targeting therapeutically important protein molecules during preclinical drug discovery research. The present chapter will describe briefly the history and the principles of single-particle cryo-EM and 3D image processing to obtain atomic-resolution structure of proteins and their complex with their drug targets/ligands.
Collapse
|
22
|
Drulyte I, Johnson RM, Hesketh EL, Hurdiss DL, Scarff CA, Porav SA, Ranson NA, Muench SP, Thompson RF. Approaches to altering particle distributions in cryo-electron microscopy sample preparation. Acta Crystallogr D Struct Biol 2018; 74:560-571. [PMID: 29872006 PMCID: PMC6096488 DOI: 10.1107/s2059798318006496] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/26/2018] [Indexed: 11/23/2022] Open
Abstract
Cryo-electron microscopy (cryo-EM) can now be used to determine high-resolution structural information on a diverse range of biological specimens. Recent advances have been driven primarily by developments in microscopes and detectors, and through advances in image-processing software. However, for many single-particle cryo-EM projects, major bottlenecks currently remain at the sample-preparation stage; obtaining cryo-EM grids of sufficient quality for high-resolution single-particle analysis can require the careful optimization of many variables. Common hurdles to overcome include problems associated with the sample itself (buffer components, labile complexes), sample distribution (obtaining the correct concentration, affinity for the support film), preferred orientation, and poor reproducibility of the grid-making process within and between batches. This review outlines a number of methodologies used within the electron-microscopy community to address these challenges, providing a range of approaches which may aid in obtaining optimal grids for high-resolution data collection.
Collapse
Affiliation(s)
- Ieva Drulyte
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Rachel M. Johnson
- School of Biomedical Sciences, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, England
- School of Chemistry, Faculty of Mathematics and Physical Chemistry and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Emma L. Hesketh
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Daniel L. Hurdiss
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Charlotte A. Scarff
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Sebastian A. Porav
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Neil A. Ranson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Stephen P. Muench
- School of Biomedical Sciences, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Rebecca F. Thompson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, England
| |
Collapse
|
23
|
Mishra R, Upadhyay A, Prajapati VK, Mishra A. Proteasome-mediated proteostasis: Novel medicinal and pharmacological strategies for diseases. Med Res Rev 2018; 38:1916-1973. [DOI: 10.1002/med.21502] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/13/2018] [Accepted: 04/04/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Ribhav Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| | - Vijay Kumar Prajapati
- Department of Biochemistry; School of Life Sciences; Central University of Rajasthan; Rajasthan India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| |
Collapse
|
24
|
Santos RDLA, Bai L, Singh PK, Murakami N, Fan H, Zhan W, Zhu Y, Jiang X, Zhang K, Assker JP, Nathan CF, Li H, Azzi J, Lin G. Structure of human immunoproteasome with a reversible and noncompetitive inhibitor that selectively inhibits activated lymphocytes. Nat Commun 2017; 8:1692. [PMID: 29167449 PMCID: PMC5700161 DOI: 10.1038/s41467-017-01760-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 10/13/2017] [Indexed: 11/13/2022] Open
Abstract
Proteasome inhibitors benefit patients with multiple myeloma and B cell-dependent autoimmune disorders but exert toxicity from inhibition of proteasomes in other cells. Toxicity should be minimized by reversible inhibition of the immunoproteasome β5i subunit while sparing the constitutive β5c subunit. Here we report β5i-selective inhibition by asparagine-ethylenediamine (AsnEDA)-based compounds and present the high-resolution cryo-EM structural analysis of the human immunoproteasome. Despite inhibiting noncompetitively, an AsnEDA inhibitor binds the active site. Hydrophobic interactions are accompanied by hydrogen bonding with β5i and β6 subunits. The inhibitors are far more cytotoxic for myeloma and lymphoma cell lines than for hepatocarcinoma or non-activated lymphocytes. They block human B-cell proliferation and promote apoptotic cell death selectively in antibody-secreting B cells, and to a lesser extent in activated human T cells. Reversible, β5i-selective inhibitors may be useful for treatment of diseases involving activated or neoplastic B cells or activated T cells.
Collapse
Affiliation(s)
| | - Lin Bai
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Pradeep K Singh
- Department of Biochemistry and Milstein Chemistry Core Facility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Naoka Murakami
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hao Fan
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Wenhu Zhan
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Yingrong Zhu
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Xiuju Jiang
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kaiming Zhang
- National Center for Macromolecular Imaging and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jean Pierre Assker
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Carl F Nathan
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Huilin Li
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, 49503, USA.
| | - Jamil Azzi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Gang Lin
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
25
|
Boland A, Chang L, Barford D. The potential of cryo-electron microscopy for structure-based drug design. Essays Biochem 2017; 61:543-560. [PMID: 29118099 DOI: 10.1042/ebc20170032] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/17/2022]
Abstract
Structure-based drug design plays a central role in therapeutic development. Until recently, protein crystallography and NMR have dominated experimental approaches to obtain structural information of biological molecules. However, in recent years rapid technical developments in single particle cryo-electron microscopy (cryo-EM) have enabled the determination to near-atomic resolution of macromolecules ranging from large multi-subunit molecular machines to proteins as small as 64 kDa. These advances have revolutionized structural biology by hugely expanding both the range of macromolecules whose structures can be determined, and by providing a description of macromolecular dynamics. Cryo-EM is now poised to similarly transform the discipline of structure-based drug discovery. This article reviews the potential of cryo-EM for drug discovery with reference to protein ligand complex structures determined using this technique.
Collapse
Affiliation(s)
- Andreas Boland
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - Leifu Chang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - David Barford
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K.
| |
Collapse
|
26
|
van Montfort RLM, Workman P. Structure-based drug design: aiming for a perfect fit. Essays Biochem 2017; 61:431-437. [PMID: 29118091 PMCID: PMC5869280 DOI: 10.1042/ebc20170052] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 02/07/2023]
Abstract
Knowledge of the three-dimensional structure of therapeutically relevant targets has informed drug discovery since the first protein structures were determined using X-ray crystallography in the 1950s and 1960s. In this editorial we provide a brief overview of the powerful impact of structure-based drug design (SBDD), which has its roots in computational and structural biology, with major contributions from both academia and industry. We describe advances in the application of SBDD for integral membrane protein targets that have traditionally proved very challenging. We emphasize the major progress made in fragment-based approaches for which success has been exemplified by over 30 clinical drug candidates and importantly three FDA-approved drugs in oncology. We summarize the articles in this issue that provide an excellent snapshot of the current state of the field of SBDD and fragment-based drug design and which offer key insights into exciting new developments, such as the X-ray free-electron laser technology, cryo-electron microscopy, open science approaches and targeted protein degradation. We stress the value of SBDD in the design of high-quality chemical tools that are used to interrogate biology and disease pathology, and to inform target validation. We emphasize the need to maintain the scientific rigour that has been traditionally associated with structural biology and extend this to other methods used in drug discovery. This is particularly important because the quality and robustness of any form of contributory data determines its usefulness in accelerating drug design, and therefore ultimately in providing patient benefit.
Collapse
Affiliation(s)
- Rob L M van Montfort
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, U.K.
- Division of Structural Biology, The Institute of Cancer Research, London SW3 6JB, U.K
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, U.K.
| |
Collapse
|
27
|
Wlodawer A, Li M, Dauter Z. High-Resolution Cryo-EM Maps and Models: A Crystallographer's Perspective. Structure 2017; 25:1589-1597.e1. [PMID: 28867613 PMCID: PMC5657611 DOI: 10.1016/j.str.2017.07.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/17/2017] [Accepted: 07/26/2017] [Indexed: 12/22/2022]
Abstract
The appearance of ten high-resolution cryoelectron microscopy (cryo-EM) maps of proteins, ribosomes, and viruses was compared with the experimentally phased crystallographic electron density maps of four proteins. We found that maps calculated at a similar resolution by the two techniques are quite comparable in their appearance, although cryo-EM maps, even when sharpened, seem to be a little less detailed. An analysis of models fitted to the cryo-EM maps indicated the presence of significant problems in almost all of them, including incorrect geometry, clashes between atoms, and discrepancies between the map density and the fitted models. In particular, the treatment of the atomic displacement (B) factors was meaningless in almost all analyzed cryo-EM models. Stricter cryo-EM structure deposition standards and their better enforcement are needed.
Collapse
Affiliation(s)
- Alexander Wlodawer
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA.
| | - Mi Li
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, NCI, Argonne National Laboratory, Argonne, IL 60439, USA
| |
Collapse
|
28
|
Morris EP, da Fonseca PCA. High-resolution cryo-EM proteasome structures in drug development. Acta Crystallogr D Struct Biol 2017; 73:522-533. [PMID: 28580914 PMCID: PMC5458494 DOI: 10.1107/s2059798317007021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/10/2017] [Indexed: 11/16/2022] Open
Abstract
With the recent advances in biological structural electron microscopy (EM), protein structures can now be obtained by cryo-EM and single-particle analysis at resolutions that used to be achievable only by crystallographic or NMR methods. We have explored their application to study protein-ligand interactions using the human 20S proteasome, a well established target for cancer therapy that is also being investigated as a target for an increasing range of other medical conditions. The map of a ligand-bound human 20S proteasome served as a proof of principle that cryo-EM is emerging as a realistic approach for more general structural studies of protein-ligand interactions, with the potential benefits of extending such studies to complexes that are unfavourable to other methods and allowing structure determination under conditions that are closer to physiological, preserving ligand specificity towards closely related binding sites. Subsequently, the cryo-EM structure of the Plasmodium falciparum 20S proteasome, with a new prototype specific inhibitor bound, revealed the molecular basis for the ligand specificity towards the parasite complex, which provides a framework to guide the development of highly needed new-generation antimalarials. Here, the cryo-EM analysis of the ligand-bound human and P. falciparum 20S proteasomes is reviewed, and a complete description of the methods used for structure determination is provided, including the strategy to overcome the bias orientation of the human 20S proteasome on electron-microscope grids and details of the icr3d software used for three-dimensional reconstruction.
Collapse
Affiliation(s)
- Edward P. Morris
- Division of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, England
| | | |
Collapse
|
29
|
Bibo-Verdugo B, Jiang Z, Caffrey CR, O'Donoghue AJ. Targeting proteasomes in infectious organisms to combat disease. FEBS J 2017; 284:1503-1517. [PMID: 28122162 DOI: 10.1111/febs.14029] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/21/2016] [Accepted: 01/23/2017] [Indexed: 01/04/2023]
Abstract
Proteasomes are multisubunit, energy-dependent, proteolytic complexes that play an essential role in intracellular protein turnover. They are present in eukaryotes, archaea, and in some actinobacteria species. Inhibition of proteasome activity has emerged as a powerful strategy for anticancer therapy and three drugs have been approved for treatment of multiple myeloma. These compounds react covalently with a threonine residue located in the active site of a proteasome subunit to block protein degradation. Proteasomes in pathogenic organisms such as Mycobacterium tuberculosis and Plasmodium falciparum also have a nucleophilic threonine residue in the proteasome active site and are therefore sensitive to these anticancer drugs. This review summarizes efforts to validate the proteasome in pathogenic organisms as a therapeutic target. We describe several strategies that have been used to develop inhibitors with increased potency and selectivity for the pathogen proteasome relative to the human proteasome. In addition, we highlight a cell-based chemical screening approach that identified a potent, allosteric inhibitor of proteasomes found in Leishmania and Trypanosoma species. Finally, we discuss the development of proteasome inhibitors as anti-infective agents.
Collapse
Affiliation(s)
- Betsaida Bibo-Verdugo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.,Center for Discovery and Innovation in Parasitic Diseases, University of California San Diego, La Jolla, CA, USA
| | - Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.,Chemistry & Biochemistry Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Conor R Caffrey
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.,Center for Discovery and Innovation in Parasitic Diseases, University of California San Diego, La Jolla, CA, USA
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.,Center for Discovery and Innovation in Parasitic Diseases, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
30
|
Merino F, Raunser S. Kryo-Elektronenmikroskopie als Methode für die strukturbasierte Wirkstoffentwicklung. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201608432] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Felipe Merino
- Strukturelle Biochemie; Max-Planck-Institut für Molekulare Physiologie; 44227 Dortmund Deutschland
| | - Stefan Raunser
- Strukturelle Biochemie; Max-Planck-Institut für Molekulare Physiologie; 44227 Dortmund Deutschland
| |
Collapse
|
31
|
Merino F, Raunser S. Electron Cryo-microscopy as a Tool for Structure-Based Drug Development. Angew Chem Int Ed Engl 2017; 56:2846-2860. [PMID: 27860084 DOI: 10.1002/anie.201608432] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Indexed: 12/15/2022]
Abstract
For decades, X-ray crystallography and NMR have been the most important techniques for studying the atomic structure of macromolecules. However, as a result of size, instability, low yield, and other factors, many macromolecules are difficult to crystallize or unsuitable for NMR studies. Electron cryo-microscopy (cryo-EM) does not depend on crystals and has therefore been the method of choice for many macromolecular complexes that cannot be crystallized, but atomic resolution has mostly been beyond its reach. A new generation of detectors that are capable of sensing directly the incident electrons has recently revolutionized the field, with structures of macromolecules now routinely being solved to near-atomic resolution. In this review, we summarize some of the most recent examples of high-resolution cryo-EM structures. We put particular emphasis on proteins with pharmacological relevance that have traditionally been inaccessible to crystallography. Furthermore, we discuss examples where interactions with small molecules have been fully characterized at atomic resolution. Finally, we stress the current limits of cryo-EM, and methodological issues related to its usage as a tool for drug development.
Collapse
Affiliation(s)
- Felipe Merino
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
| |
Collapse
|
32
|
Subramaniam S, Earl LA, Falconieri V, Milne JL, Egelman EH. Resolution advances in cryo-EM enable application to drug discovery. Curr Opin Struct Biol 2016; 41:194-202. [PMID: 27552081 DOI: 10.1016/j.sbi.2016.07.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/23/2022]
Abstract
The prospect that the structures of protein assemblies, small and large, can be determined using cryo-electron microscopy (cryo-EM) is beginning to transform the landscape of structural biology and cell biology. Great progress is being made in determining 3D structures of biological assemblies ranging from icosahedral viruses and helical arrays to small membrane proteins and protein complexes. Here, we review recent advances in this field, focusing especially on the emerging use of cryo-EM in mapping the binding of drugs and inhibitors to protein targets, an application that requires structure determination at the highest possible resolutions. We discuss methods used to evaluate the information contained in cryo-EM density maps and consider strengths and weaknesses of approaches currently used to measure map resolution.
Collapse
Affiliation(s)
- Sriram Subramaniam
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Lesley A Earl
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Veronica Falconieri
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jacqueline Ls Milne
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
33
|
Schrader J, Henneberg F, Mata RA, Tittmann K, Schneider TR, Stark H, Bourenkov G, Chari A. The inhibition mechanism of human 20Sproteasomes enables next-generation inhibitor design. Science 2016; 353:594-8. [DOI: 10.1126/science.aaf8993] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 07/14/2016] [Indexed: 01/02/2023]
|
34
|
Huang X, Luan B, Wu J, Shi Y. An atomic structure of the human 26S proteasome. Nat Struct Mol Biol 2016; 23:778-85. [PMID: 27428775 DOI: 10.1038/nsmb.3273] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/08/2016] [Indexed: 12/12/2022]
Abstract
We report the cryo-EM structure of the human 26S proteasome at an average resolution of 3.5 Å, allowing atomic modeling of 28 subunits in the core particle (CP) and 18 subunits in the regulatory particle (RP). The C-terminal residues of Rpt3 and Rpt5 subunits in the RP can be seen inserted into surface pockets formed between adjacent α subunits in the CP. Each of the six Rpt subunits contains a bound nucleotide, and the central gate of the CP α-ring is closed despite RP association. The six pore 1 loops in the Rpt ring are arranged similarly to a spiral staircase along the axial channel of substrate transport, which is constricted by the pore 2 loops. We also determined the cryo-EM structure of the human proteasome bound to the deubiquitinating enzyme USP14 at 4.35-Å resolution. Together, our structures provide a framework for mechanistic understanding of eukaryotic proteasome function.
Collapse
Affiliation(s)
- Xiuliang Huang
- Ministry of Education Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bai Luan
- Ministry of Education Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jianping Wu
- Ministry of Education Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yigong Shi
- Ministry of Education Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
35
|
Li H, Bogyo M, da Fonseca PCA. The cryo-EM structure of the Plasmodium falciparum 20S proteasome and its use in the fight against malaria. FEBS J 2016; 283:4238-4243. [PMID: 27286897 DOI: 10.1111/febs.13780] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/09/2016] [Indexed: 11/28/2022]
Abstract
Plasmodium falciparum is the parasite responsible for the most severe form of malaria. Its increasing resistance to existing antimalarials represents a major threat to human health and urges the development of new therapeutic strategies to fight malaria. The proteasome is a protease complex essential in all eukaryotes. Accordingly, inhibition of the Plasmodium 20S proteasome is highly toxic for the parasite at all of its infective and developmental stages. Proteasome inhibitors have antimalarial potential both as curative and transmission blocking agents, but in order to have therapeutic application, they must specifically target the Plasmodium proteasome and not its human counterpart. X-ray crystallography has been widely used to determine structures of yeast and mammalian 20S proteasomes with ligands. However, crystallisation of the Plasmodium proteasome is challenging, as only small quantities of the complex can be directly purified from the parasite. Furthermore, most X-ray structures of proteasome-inhibitor complexes require soaking of crystals with high concentrations of ligand, thus preventing analysis of inhibitor subunit specificity. Instead we chose to determine the Plasmodium falciparum 20S proteasome structure, in the presence of a new rationally designed parasite-specific inhibitor, by high-resolution electron cryo-microscopy and single particle analysis. The resulting map, at a resolution of about 3.6 Å, allows a direct molecular analysis of inhibitor/enzyme interactions. Here we present an overview of this structure, and how it provides valuable information that can be used to assist in the design of improved proteasome inhibitors with the potential to be developed as next-generation antimalarial drugs.
Collapse
Affiliation(s)
- Hao Li
- Department of Pathology, Stanford University School of Medicine, CA, USA.,Department of Chemical and Systems Biology, Stanford University School of Medicine, CA, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, CA, USA
| | | |
Collapse
|
36
|
Takano Y, Tashita R, Suzuki M, Nagase S, Imahori H, Akasaka T. Molecular Location Sensing Approach by Anisotropic Magnetism of an Endohedral Metallofullerene. J Am Chem Soc 2016; 138:8000-6. [PMID: 27314267 DOI: 10.1021/jacs.6b04037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Location recognition at the molecular scale provides valuable information about the nature of functional molecular materials. This study presents a novel location sensing approach based on an endohedral metallofullerene, Ce@C82, using its anisotropic magnetic properties, which lead to temperature-dependent paramagnetic shifts in (1)H NMR spectra. Five site-isomers of Ce@C82CH2-3,5-C6H3Me2 were synthesized to demonstrate the spatial sensing ability of Ce@C82. Single-crystal structures, absorption spectra, and density functional theory calculations were used to select the plausible addition positions in the radical coupling reaction, which preferentially happens on the carbon atoms with high electron density of the singly occupied molecular orbital (SOMO) and positive charge. Temperature-dependent NMR measurements demonstrated unique paramagnetic shifts of the (1)H peaks, which were derived from the anisotropic magnetism of the f-electron in the Ce atom of the isomers. It was found that the magnetic anisotropy axes can be easily predicted by theoretical calculations using the Gaussian 09 package. Further analysis revealed that the temperature-dependent trend in the shifts is clearly predictable from the distance and relative position of the proton from the Ce atom. Hence, the Ce-encapsulated metallofullerene Ce@C82 can provide spatial location information about nearby atoms through the temperature-dependent paramagnetic shifts of its NMR signals. It can act as a molecular probe for location sensing by utilizing the anisotropic magnetism of the encapsulated Ce atom. The potentially low toxicity and stability of the endohedral fullerene would make Ce@C82 suitable for applications in biology and material science.
Collapse
Affiliation(s)
- Yuta Takano
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University , Sakyo-ku, Kyoto 606-8501, Japan
| | - Ryo Tashita
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba , Tsukuba, Ibaraki 305-8577, Japan
| | - Mitsuaki Suzuki
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba , Tsukuba, Ibaraki 305-8577, Japan.,Department of Chemistry, Tokyo Gakugei University , Tokyo 184-8501, Japan
| | - Shigeru Nagase
- Fukui Institute for Fundamental Chemistry, Kyoto University , Sakyo-ku, Kyoto 606-8103, Japan
| | - Hiroshi Imahori
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University , Sakyo-ku, Kyoto 606-8501, Japan.,Department of Molecular Engineering, Graduate School of Engineering, Kyoto University , Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takeshi Akasaka
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba , Tsukuba, Ibaraki 305-8577, Japan.,Department of Chemistry, Tokyo Gakugei University , Tokyo 184-8501, Japan.,State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, China.,Foundation for Advancement of International Science , Tsukuba, Ibaraki 305-0821, Japan
| |
Collapse
|
37
|
Abstract
Imaging a material with electrons at near-atomic resolution requires a thin specimen that is stable in the vacuum of the transmission electron microscope. For biological samples, this comprises a thin layer of frozen aqueous solution containing the biomolecular complex of interest. The process of preparing a high-quality specimen is often the limiting step in the determination of structures by single-particle electron cryomicroscopy (cryo-EM). Here, we describe a systematic approach for going from a purified biomolecular complex in aqueous solution to high-resolution electron micrographs that are suitable for 3D structure determination. This includes a series of protocols for the preparation of vitrified specimens on various supports, including all-gold and graphene. We also describe techniques for troubleshooting when a preparation fails to yield suitable specimens, and common mistakes to avoid during each part of the process. Finally, we include recommendations for obtaining the highest quality micrographs from prepared specimens with current microscope, detector, and support technology.
Collapse
Affiliation(s)
- L A Passmore
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.
| | - C J Russo
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.
| |
Collapse
|
38
|
Le Chapelain C, Groll M. Rationales Design eines Proteasominhibitors als Anti-Malaria-Wirkstoff. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Camille Le Chapelain
- Center for Integrated Protein Science Munich (CIPSM), Department Chemie; Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Michael Groll
- Center for Integrated Protein Science Munich (CIPSM), Department Chemie; Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| |
Collapse
|
39
|
Le Chapelain C, Groll M. Rational Design of Proteasome Inhibitors as Antimalarial Drugs. Angew Chem Int Ed Engl 2016; 55:6370-2. [DOI: 10.1002/anie.201602519] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Camille Le Chapelain
- Center for Integrated Protein Science Munich (CIPSM), Department Chemie; Technische Universität München; Lichtenbergstrasse 4 85748 Garching Germany
| | - Michael Groll
- Center for Integrated Protein Science Munich (CIPSM), Department Chemie; Technische Universität München; Lichtenbergstrasse 4 85748 Garching Germany
| |
Collapse
|
40
|
Structure- and function-based design of Plasmodium-selective proteasome inhibitors. Nature 2016; 530:233-6. [PMID: 26863983 PMCID: PMC4755332 DOI: 10.1038/nature16936] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 12/18/2015] [Indexed: 12/13/2022]
Abstract
The proteasome is a multi-component protease complex responsible for regulating key processes such as the cell cycle and antigen presentation1. Compounds that target the proteasome are potentially valuable tools for the treatment of pathogens that depend on proteasome function for survival and replication. In particular, proteasome inhibitors have been shown to be toxic for the malaria parasite Plasmodium falciparum at all stages of its life cycle2-5. Most compounds that have been tested against the parasite also inhibit the mammalian proteasome resulting in toxicity that precludes their use as therapeutic agents2,6. Therefore, better definition of the substrate specificity and structural properties of the Plasmodium proteasome could enable the development of compounds with sufficient selectivity to allow their use as anti-malarial agents. To accomplish this goal, we used a substrate profiling method to uncover differences in the specificities of the human and P. falciparum proteasome. We designed inhibitors based on amino acid preferences specific to the parasite proteasome, and found that they preferentially inhibit the β 2 subunit. We determined the structure of the P. falciparum 20S proteasome bound to the inhibitor using cryo-electron microscopy (cryo-EM) and single particle analysis, to a resolution of 3.6 Å. These data reveal the unusually open P. falciparum β2 active site and provide valuable information regarding active site architecture that can be used to further refine inhibitor design. Furthermore, consistent with the recent finding that the proteasome is important for stress pathways associated with resistance of artemisinin (ART) family anti-malarials7,8, we observed growth inhibition synergism with low doses of this β 2 selective inhibitor in ART sensitive and resistant parasites. Finally, we demonstrated that a parasite selective inhibitor could be used to attenuate parasite growth in vivo without significant toxicity to the host. Thus, the Plasmodium proteasome is a chemically tractable target that could be exploited by next generation anti-malarial agents.
Collapse
|
41
|
The Role of Proteases in Hippocampal Synaptic Plasticity: Putting Together Small Pieces of a Complex Puzzle. Neurochem Res 2015; 41:156-82. [DOI: 10.1007/s11064-015-1752-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 12/17/2022]
|
42
|
Brath U, Swamy SI, Veiga AX, Tung CC, Van Petegem F, Erdélyi M. Paramagnetic Ligand Tagging To Identify Protein Binding Sites. J Am Chem Soc 2015; 137:11391-8. [PMID: 26289584 PMCID: PMC4583072 DOI: 10.1021/jacs.5b06220] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Transient
biomolecular interactions are the cornerstones of the
cellular machinery. The identification of the binding sites for low
affinity molecular encounters is essential for the development of
high affinity pharmaceuticals from weakly binding leads but is hindered
by the lack of robust methodologies for characterization of weakly
binding complexes. We introduce a paramagnetic ligand tagging approach
that enables localization of low affinity protein–ligand binding
clefts by detection and analysis of intermolecular protein NMR pseudocontact
shifts, which are invoked by the covalent attachment of a paramagnetic
lanthanoid chelating tag to the ligand of interest. The methodology
is corroborated by identification of the low millimolar volatile anesthetic
interaction site of the calcium sensor protein calmodulin. It presents
an efficient route to binding site localization for low affinity complexes
and is applicable to rapid screening of protein–ligand systems
with varying binding affinity.
Collapse
Affiliation(s)
- Ulrika Brath
- Department of Chemistry and Molecular Biology and the Swedish NMR Centre, University of Gothenburg , SE-412 96 Gothenburg, Sweden
| | - Shashikala I Swamy
- Department of Chemistry and Molecular Biology and the Swedish NMR Centre, University of Gothenburg , SE-412 96 Gothenburg, Sweden
| | - Alberte X Veiga
- Department of Chemistry and Molecular Biology and the Swedish NMR Centre, University of Gothenburg , SE-412 96 Gothenburg, Sweden
| | - Ching-Chieh Tung
- Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, BC V6T 1Z3, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, BC V6T 1Z3, Canada
| | - Máté Erdélyi
- Department of Chemistry and Molecular Biology and the Swedish NMR Centre, University of Gothenburg , SE-412 96 Gothenburg, Sweden
| |
Collapse
|