1
|
Wen Y, Wang LP, Wang JH, Yu YL, Chen S. Computer-Aided Design of 3D Non-Enzymatic Catalytic Cascade Systems for In Situ Multiplexed mRNA Imaging in Single-Cells. Anal Chem 2025; 97:4176-4184. [PMID: 39950583 DOI: 10.1021/acs.analchem.4c06589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
mRNA, a critical biomarker for various diseases and a promising target for cancer therapy, is central to biological and medical research. However, the development of multiplexed approaches for in situ monitoring of mRNA in live cells are limited by their reliance on enzyme-based signal amplification, challenges with in situ signal diffusion, and the complexity of nucleic acid design. In this study, we introduce a nonenzymatic catalytic DNA assembly (NEDA) technique to address these limitations. NEDA facilitates the precise in situ imaging of intracellular mRNA by assembling three free hairpin DNA amplifiers into a low-mobility, three-dimensional DNA spherical structure. This approach also enables the simultaneous detection of four distinct targets via the combination of fluorescent signals, with a detection limit as low as 141.2 pM for target mRNA. To enhance the efficiency of nucleic acid design, we employed computer-aided design (CAD) to rapidly generate feasible sequences for highly multiplexed detection. By integrating various machine learning algorithms, we achieved impressive accuracy of nearly 96.66% in distinguishing multiple cell types and 87.80% in identifying the same cell type under different drug stimulation conditions. Notably, our platform can also identify drug stimuli with similar mechanisms of action, highlighting its potential in drug development. This multiplexed 3D assembly sensing strategy with CAD not only enhances the ability to image nucleic acid sequences in situ simultaneously but also provides a novel platform for efficient molecular diagnostics and personalized therapy.
Collapse
Affiliation(s)
- Yun Wen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Li-Ping Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Shuai Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
- Foshan Graduate School of Innovation, Northeastern University, Foshan City, Guangdong 528311, China
| |
Collapse
|
2
|
Sato M, Rana V, Suda Y, Mizuno T, Irie K. The RNA-binding protein Puf5 and the HMGB protein Ixr1 regulate cell cycle-specific expression of CLB1 and CLB2 in Saccharomyces cerevisiae. PLoS One 2025; 20:e0316433. [PMID: 39899527 PMCID: PMC11790140 DOI: 10.1371/journal.pone.0316433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/10/2024] [Indexed: 02/05/2025] Open
Abstract
Clb1 and Clb2 are functionally redundant B-type cyclins, and the clb1Δ clb2Δ double mutant is lethal. In normal mitotic growth, Clb2 plays the central role in the G2-M progression. We previously demonstrated that the RNA-binding protein Puf5 positively regulates CLB1 expression by downregulating expression of the repressor Ixr1. The decreased expression of CLB1 by the puf5Δ mutation caused a severe growth defect of the puf5Δ clb2Δ double mutant. On the contrary, CLB2 expression was unchanged between wild-type strain and puf5Δ mutant in unsynchronized cultures, and the puf5Δ clb1Δ double mutant did not show growth retardation. Therefore, we assumed that CLB1 is the main target of Puf5 in the previous study. However, considering that CLB1 and CLB2 reportedly undergo a similar expression pattern during the cell cycle, we re-examined CLB2 expression in the puf5Δ mutant in cell cycle-synchronized cultures and found that CLB2 expression was decreased in the puf5Δ mutant strain. Deletion of IXR1 restored the decreased expression of CLB2 caused by the puf5Δ mutation. Moreover, we clarified that the decreased expression of CLB2 caused by the puf5Δ mutation resulted in the growth defect in the S-phase cyclin deficient condition: the puf5Δ clb1Δ clb5Δ clb6Δ quadruple mutant grew worse than clb1Δ clb5Δ clb6Δ triple mutant, and the slow growth of the puf5Δ clb1Δ clb5Δ clb6Δ quadruple mutant was suppressed by CLB2 overexpression. Moreover, the ixr1Δ mutation is known to be synthetically lethal with deletion of the DUN1 gene encoding the checkpoint kinase. We found that the clb2Δ mutation restored the lethality of ixr1Δ dun1Δ double mutant. Our results suggest that Puf5 and Ixr1 regulate the cell cycle-specific expression of both CLB1 and CLB2, that Clb5 and Clb6 have overlapping roles with Clb1 and Clb2, and that the regulation of CLB1 and CLB2 expression by Puf5 and Ixr1 is related to the function of Dun1 kinase.
Collapse
Affiliation(s)
- Megumi Sato
- Laboratory of Molecular Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Varsha Rana
- Laboratory of Molecular Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Doctoral Program in Human Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yasuyuki Suda
- Laboratory of Molecular Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan
| | - Tomoaki Mizuno
- Laboratory of Molecular Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kenji Irie
- Laboratory of Molecular Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
3
|
Qiu C, Crittenden SL, Carrick BH, Dillard LB, Costa Dos Santos SJ, Dandey VP, Dutcher RC, Viverette EG, Wine RN, Woodworth J, Campbell ZT, Wickens M, Borgnia MJ, Kimble J, Hall TMT. A higher order PUF complex is central to regulation of C. elegans germline stem cells. Nat Commun 2025; 16:123. [PMID: 39747099 PMCID: PMC11696143 DOI: 10.1038/s41467-024-55526-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
PUF RNA-binding proteins are broadly conserved stem cell regulators. Nematode PUF proteins maintain germline stem cells (GSCs) and, with key partner proteins, repress differentiation mRNAs, including gld-1. Here we report that PUF protein FBF-2 and its partner LST-1 form a ternary complex that represses gld-1 via a pair of adjacent FBF binding elements (FBEs) in its 3'UTR. One LST-1 molecule links two FBF-2 molecules via motifs in the LST-1 intrinsically-disordered region; the gld-1 FBE pair includes a well-established 'canonical' FBE and a newly-identified noncanonical FBE. Remarkably, this FBE pair drives both full RNA repression in GSCs and full RNA activation upon differentiation. Discoveries of the LST-1-FBF-2 ternary complex, the gld-1 adjacent FBEs, and their in vivo significance predict an expanded regulatory repertoire of different assemblies of PUF-partner-RNA higher order complexes in nematode GSCs. This also suggests analogous PUF controls may await discovery in other biological contexts and organisms.
Collapse
Affiliation(s)
- Chen Qiu
- Epigenetics and RNA Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | | | - Brian H Carrick
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Lucas B Dillard
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Venkata P Dandey
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Robert C Dutcher
- Epigenetics and RNA Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Elizabeth G Viverette
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Robert N Wine
- Epigenetics and RNA Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | | | - Zachary T Campbell
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Mario J Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA.
| | - Traci M Tanaka Hall
- Epigenetics and RNA Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
4
|
Qiu C, Crittenden SL, Carrick BH, Dillard LB, Costa Dos Santos SJ, Dandey VP, Dutcher RC, Viverette EG, Wine RN, Woodworth J, Campbell ZT, Wickens M, Borgnia MJ, Kimble J, Tanaka Hall TM. A higher order PUF complex is central to regulation of C. elegans germline stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599074. [PMID: 38915480 PMCID: PMC11195197 DOI: 10.1101/2024.06.14.599074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
PUF RNA-binding proteins are broadly conserved stem cell regulators. Nematode PUF proteins maintain germline stem cells (GSCs) and, with key partner proteins, repress differentiation mRNAs, including gld-1. Here we report that PUF protein FBF-2 and its partner LST-1 form a ternary complex that represses gld-1 via a pair of adjacent FBF-2 binding elements (FBEs) in its 3ÚTR. One LST-1 molecule links two FBF-2 molecules via motifs in the LST-1 intrinsically-disordered region; the gld-1 FBE pair includes a well-established 'canonical' FBE and a newly-identified noncanonical FBE. Remarkably, this FBE pair drives both full RNA repression in GSCs and full RNA activation upon differentiation. Discovery of the LST-1-FBF-2 ternary complex, the gld-1 adjacent FBEs, and their in vivo significance predicts an expanded regulatory repertoire of different assemblies of PUF-partner complexes in nematode germline stem cells. It also suggests analogous PUF controls may await discovery in other biological contexts and organisms.
Collapse
Affiliation(s)
- Chen Qiu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | - Brian H. Carrick
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
- Current address: MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Lucas B. Dillard
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
- Current address: Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stephany J. Costa Dos Santos
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
- These authors contributed equally to the manuscript and are listed in alphabetical order
| | - Venkata P. Dandey
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
- These authors contributed equally to the manuscript and are listed in alphabetical order
| | - Robert C. Dutcher
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
- These authors contributed equally to the manuscript and are listed in alphabetical order
| | - Elizabeth G. Viverette
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
- These authors contributed equally to the manuscript and are listed in alphabetical order
- Current address: Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert N. Wine
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
- These authors contributed equally to the manuscript and are listed in alphabetical order
| | - Jennifer Woodworth
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
- These authors contributed equally to the manuscript and are listed in alphabetical order
| | - Zachary T. Campbell
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Mario J. Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Traci M. Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
- Lead contact
| |
Collapse
|
5
|
Patnaik PK, Barlit H, Labunskyy VM. Manipulating mRNA-binding protein Cth2 function in budding yeast Saccharomyces cerevisiae. STAR Protoc 2024; 5:102807. [PMID: 38165801 PMCID: PMC10797207 DOI: 10.1016/j.xpro.2023.102807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/14/2023] [Accepted: 12/14/2023] [Indexed: 01/04/2024] Open
Abstract
Here, we present a protocol for modulating the function of the Cth2 mRNA-binding protein (RBP) in Saccharomyces cerevisiae. We describe steps to amplify and integrate mutations in Cth2 that affect its stability and function. Next, we detail the functional assay to verify the activity of the wild-type and mutant versions of Cth2 in yeast cells. This protocol can be adopted to modify the function of other RBPs with their respective functional mutations. For complete details on the use and execution of this protocol, please refer to Patnaik et al. (2022).1.
Collapse
Affiliation(s)
- Praveen K Patnaik
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA.
| | - Hanna Barlit
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Vyacheslav M Labunskyy
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
6
|
Sadée C, Hagler LD, Becker WR, Jarmoskaite I, Vaidyanathan PP, Denny SK, Greenleaf WJ, Herschlag D. A comprehensive thermodynamic model for RNA binding by the Saccharomyces cerevisiae Pumilio protein PUF4. Nat Commun 2022; 13:4522. [PMID: 35927243 PMCID: PMC9352680 DOI: 10.1038/s41467-022-31968-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 07/07/2022] [Indexed: 11/12/2022] Open
Abstract
Genomic methods have been valuable for identifying RNA-binding proteins (RBPs) and the genes, pathways, and processes they regulate. Nevertheless, standard motif descriptions cannot be used to predict all RNA targets or test quantitative models for cellular interactions and regulation. We present a complete thermodynamic model for RNA binding to the S. cerevisiae Pumilio protein PUF4 derived from direct binding data for 6180 RNAs measured using the RNA on a massively parallel array (RNA-MaP) platform. The PUF4 model is highly similar to that of the related RBPs, human PUM2 and PUM1, with one marked exception: a single favorable site of base flipping for PUF4, such that PUF4 preferentially binds to a non-contiguous series of residues. These results are foundational for developing and testing cellular models of RNA-RBP interactions and function, for engineering RBPs, for understanding the biophysical nature of RBP binding and the evolutionary landscape of RNAs and RBPs.
Collapse
Affiliation(s)
- Christoph Sadée
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Lauren D Hagler
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Winston R Becker
- Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Inga Jarmoskaite
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Pavanapuresan P Vaidyanathan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Protillion Biosciences, Burlingame, CA, USA
| | - Sarah K Denny
- Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
- Scribe Therapeutics, Alameda, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
- ChEM-H Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
Regulation of CLB6 expression by the cytoplasmic deadenylase Ccr4 through its coding and 3’ UTR regions. PLoS One 2022; 17:e0268283. [PMID: 35522675 PMCID: PMC9075657 DOI: 10.1371/journal.pone.0268283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/26/2022] [Indexed: 01/14/2023] Open
Abstract
RNA stability control contributes to the proper expression of gene products. Messenger RNAs (mRNAs) in eukaryotic cells possess a 5’ cap structure and the 3’ poly(A) tail which are important for mRNA stability and efficient translation. The Ccr4-Not complex is a major cytoplasmic deadenylase and functions in mRNA degradation. The CLB1-6 genes in Saccharomyces cerevisiae encode B-type cyclins which are involved in the cell cycle progression together with the cyclin-dependent kinase Cdc28. The CLB genes consist of CLB1/2, CLB3/4, and CLB5/6 whose gene products accumulate at the G2-M, S-G2, and late G1 phase, respectively. These Clb protein levels are thought to be mainly regulated by the transcriptional control and the protein stability control. Here we investigated regulation of CLB1-6 expression by Ccr4. Our results show that all CLB1-6 mRNA levels were significantly increased in the ccr4Δ mutant compared to those in wild-type cells. Clb1, Clb4, and Clb6 protein levels were slightly increased in the ccr4Δ mutant, but the Clb2, Clb3, and Clb5 protein levels were similar to those in wild-type cells. Since both CLB6 mRNA and Clb6 protein levels were most significantly increased in the ccr4Δ mutant, we further analyzed the cis-elements for the Ccr4-mediated regulation within CLB6 mRNA. We found that there were destabilizing sequences in both coding sequence and 3’ untranslated region (3’ UTR). The destabilizing sequences in the coding region were found to be both within and outside the sequences corresponding the cyclin domain. The CLB6 3’ UTR was sufficient for mRNA destabilization and decrease of the reporter GFP gene and this destabilization involved Ccr4. Our results suggest that CLB6 expression is regulated by Ccr4 through the coding sequence and 3’ UTR of CLB6 mRNA.
Collapse
|
8
|
Qiu C, Wine RN, Campbell ZT, Hall T. Bipartite interaction sites differentially modulate RNA-binding affinity of a protein complex essential for germline stem cell self-renewal. Nucleic Acids Res 2022; 50:536-548. [PMID: 34908132 PMCID: PMC8754657 DOI: 10.1093/nar/gkab1220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/23/2021] [Accepted: 12/08/2021] [Indexed: 01/09/2023] Open
Abstract
In C. elegans, PUF proteins promote germline stem cell self-renewal. Their functions hinge on partnerships with two proteins that are redundantly required for stem cell maintenance. Here we focus on understanding how the essential partner protein, LST-1, modulates mRNA regulation by the PUF protein, FBF-2. LST-1 contains two nonidentical sites of interaction with FBF-2, LST-1 A and B. Our crystal structures of complexes of FBF-2, LST-1 A, and RNA visualize how FBF-2 associates with LST-1 A versus LST-1 B. One commonality is that FBF-2 contacts the conserved lysine and leucine side chains in the KxxL motifs in LST-1 A and B. A key difference is that FBF-2 forms unique contacts with regions N- and C-terminal to the KxxL motif. Consequently, LST-1 A does not modulate the RNA-binding affinity of FBF-2, whereas LST-1 B decreases RNA-binding affinity of FBF-2. The N-terminal region of LST-1 B, which binds near the 5' end of RNA elements, is essential to modulate FBF-2 RNA-binding affinity, while the C-terminal residues of LST-1 B contribute strong binding affinity to FBF-2. We conclude that LST-1 has the potential to impact which mRNAs are regulated depending on the precise nature of engagement through its functionally distinct FBF binding sites.
Collapse
Affiliation(s)
- Chen Qiu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Robert N Wine
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Zachary T Campbell
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75025, USA
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
9
|
Kochan DZ, Mawer JSP, Massen J, Tishinov K, Parekh S, Graef M, Spang A, Tessarz P. The RNA-binding protein Puf5 contributes to buffering of mRNA upon chromatin-mediated changes in nascent transcription. J Cell Sci 2021; 134:jcs259051. [PMID: 34350963 PMCID: PMC8353526 DOI: 10.1242/jcs.259051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/03/2021] [Indexed: 11/23/2022] Open
Abstract
Gene expression involves regulation of chromatin structure and transcription, as well as processing of the transcribed mRNA. While there are feedback mechanisms, it is not clear whether these include crosstalk between chromatin architecture and mRNA decay. To address this, we performed a genome-wide genetic screen using a Saccharomyces cerevisiae strain harbouring the H3K56A mutation, which is known to perturb chromatin structure and nascent transcription. We identified Puf5 (also known as Mpt5) as essential in an H3K56A background. Depletion of Puf5 in this background leads to downregulation of Puf5 targets. We suggest that Puf5 plays a role in post-transcriptional buffering of mRNAs, and support this by transcriptional shutoff experiments in which Puf5 mRNA targets are degraded slower in H3K56A cells compared to wild-type cells. Finally, we show that post-transcriptional buffering of Puf5 targets is widespread and does not occur only in an H3K56A mutant, but also in an H3K4R background, which leads to a global increase in nascent transcription. Our data suggest that Puf5 determines the fate of its mRNA targets in a context-dependent manner acting as an mRNA surveillance hub balancing deregulated nascent transcription to maintain physiological mRNA levels.
Collapse
Affiliation(s)
- David Z. Kochan
- Max Planck Research Group ‘Chromatin and Ageing’, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Julia S. P. Mawer
- Max Planck Research Group ‘Chromatin and Ageing’, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Jennifer Massen
- Max Planck Research Group ‘Chromatin and Ageing’, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Kiril Tishinov
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Swati Parekh
- Max Planck Research Group ‘Chromatin and Ageing’, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Martin Graef
- Max Planck Research Group ‘Autophagy and Cellular Ageing’, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
- Cologne Excellence Cluster on Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Anne Spang
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Peter Tessarz
- Max Planck Research Group ‘Chromatin and Ageing’, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
- Cologne Excellence Cluster on Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| |
Collapse
|
10
|
Son SH, Jang SY, Park HS. Functions of PUF Family RNA-Binding Proteins in Aspergillus nidulans. J Microbiol Biotechnol 2021; 31:676-685. [PMID: 33746193 PMCID: PMC9706018 DOI: 10.4014/jmb.2101.01011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022]
Abstract
RNA-binding proteins are involved in RNA metabolism and posttranscriptional regulation of various fundamental biological processes. The PUF family of RNA-binding proteins is highly conserved in eukaryotes, and its members regulate gene expression, mitochondrial biogenesis, and RNA processing. However, their biological functions in Aspergillus species remain mostly unknown in filamentous fungi. Here we have characterized the puf genes in the model organism Aspergillus nidulans. We generated deletion mutant strains for the five putative puf genes present in the A. nidulans genome and investigated their developmental phenotypes. Deletion of pufA or pufE affected fungal growth and asexual development. pufA mutants exhibited decreased production of asexual spores and reduced mRNA expression of genes regulating asexual development. The pufE deletion reduced colony growth, increased formation of asexual spores, and delayed production of sexual fruiting bodies. In addition, the absence of pufE reduced both sterigmatocystin production and the mRNA levels of genes in the sterigmatocystin cluster. Finally, pufE deletion mutants showed reduced trehalose production and lower resistance to thermal stress. Overall, these results demonstrate that PufA and PufE play roles in the development and sterigmatocystin metabolism in A. nidulans.
Collapse
Affiliation(s)
- Sung-Hun Son
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seo-Yeong Jang
- Department of Integrative Biology, Kyungpook National University; Daegu 41566, Republic of Korea
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea,Department of Integrative Biology, Kyungpook National University; Daegu 41566, Republic of Korea,Corresponding author Phone: +82-53-950-5751 Fax: +82-53-950-6750 E-mail:
| |
Collapse
|
11
|
Ho JJD, Man JHS, Schatz JH, Marsden PA. Translational remodeling by RNA-binding proteins and noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1647. [PMID: 33694288 DOI: 10.1002/wrna.1647] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022]
Abstract
Responsible for generating the proteome that controls phenotype, translation is the ultimate convergence point for myriad upstream signals that influence gene expression. System-wide adaptive translational reprogramming has recently emerged as a pillar of cellular adaptation. As classic regulators of mRNA stability and translation efficiency, foundational studies established the concept of collaboration and competition between RNA-binding proteins (RBPs) and noncoding RNAs (ncRNAs) on individual mRNAs. Fresh conceptual innovations now highlight stress-activated, evolutionarily conserved RBP networks and ncRNAs that increase the translation efficiency of populations of transcripts encoding proteins that participate in a common cellular process. The discovery of post-transcriptional functions for long noncoding RNAs (lncRNAs) was particularly intriguing given their cell-type-specificity and historical definition as nuclear-functioning epigenetic regulators. The convergence of RBPs, lncRNAs, and microRNAs on functionally related mRNAs to enable adaptive protein synthesis is a newer biological paradigm that highlights their role as "translatome (protein output) remodelers" and reinvigorates the paradigm of "RNA operons." Together, these concepts modernize our understanding of cellular stress adaptation and strategies for therapeutic development. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Translation Regulation Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- J J David Ho
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA.,Division of Hematology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Jeffrey H S Man
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Respirology, University Health Network, Latner Thoracic Research Laboratories, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan H Schatz
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA.,Division of Hematology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Philip A Marsden
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Wang X, Ellenbecker M, Hickey B, Day NJ, Osterli E, Terzo M, Voronina E. Antagonistic control of Caenorhabditis elegans germline stem cell proliferation and differentiation by PUF proteins FBF-1 and FBF-2. eLife 2020; 9:52788. [PMID: 32804074 PMCID: PMC7467723 DOI: 10.7554/elife.52788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
Stem cells support tissue maintenance, but the mechanisms that coordinate the rate of stem cell self-renewal with differentiation at a population level remain uncharacterized. We find that two PUF family RNA-binding proteins FBF-1 and FBF-2 have opposite effects on Caenorhabditis elegans germline stem cell dynamics: FBF-1 restricts the rate of meiotic entry, while FBF-2 promotes both cell division and meiotic entry rates. Antagonistic effects of FBFs are mediated by their distinct activities toward the shared set of target mRNAs, where FBF-1-mediated post-transcriptional control requires the activity of CCR4-NOT deadenylase, while FBF-2 is deadenylase-independent and might protect the targets from deadenylation. These regulatory differences depend on protein sequences outside of the conserved PUF family RNA-binding domain. We propose that the opposing FBF-1 and FBF-2 activities serve to modulate stem cell division rate simultaneously with the rate of meiotic entry.
Collapse
Affiliation(s)
- Xiaobo Wang
- Division of Biological Sciences, University of Montana, Missoula, United States
| | - Mary Ellenbecker
- Division of Biological Sciences, University of Montana, Missoula, United States
| | - Benjamin Hickey
- Division of Biological Sciences, University of Montana, Missoula, United States
| | - Nicholas J Day
- Division of Biological Sciences, University of Montana, Missoula, United States
| | - Emily Osterli
- Division of Biological Sciences, University of Montana, Missoula, United States
| | - Mikaya Terzo
- Division of Biological Sciences, University of Montana, Missoula, United States
| | - Ekaterina Voronina
- Division of Biological Sciences, University of Montana, Missoula, United States
| |
Collapse
|
13
|
Zhang J, Teramoto T, Qiu C, Wine RN, Gonzalez LE, Baserga SJ, Tanaka Hall TM. Nop9 recognizes structured and single-stranded RNA elements of preribosomal RNA. RNA (NEW YORK, N.Y.) 2020; 26:1049-1059. [PMID: 32371454 PMCID: PMC7373996 DOI: 10.1261/rna.075416.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/29/2020] [Indexed: 05/04/2023]
Abstract
Nop9 is an essential factor in the processing of preribosomal RNA. Its absence in yeast is lethal, and defects in the human ortholog are associated with breast cancer, autoimmunity, and learning/language impairment. PUF family RNA-binding proteins are best known for sequence-specific RNA recognition, and most contain eight α-helical repeats that bind to the RNA bases of single-stranded RNA. Nop9 is an unusual member of this family in that it contains eleven repeats and recognizes both RNA structure and sequence. Here we report a crystal structure of Saccharomyces cerevisiae Nop9 in complex with its target RNA within the 20S preribosomal RNA. This structure reveals that Nop9 brings together a carboxy-terminal module recognizing the 5' single-stranded region of the RNA and a bifunctional amino-terminal module recognizing the central double-stranded stem region. We further show that the 3' single-stranded region of the 20S target RNA adds sequence-independent binding energy to the RNA-Nop9 interaction. Both the amino- and carboxy-terminal modules retain the characteristic sequence-specific recognition of PUF proteins, but the amino-terminal module has also evolved a distinct interface, which allows Nop9 to recognize either single-stranded RNA sequences or RNAs with a combination of single-stranded and structured elements.
Collapse
Affiliation(s)
- Jun Zhang
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Takamasa Teramoto
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Chen Qiu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Robert N Wine
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Lauren E Gonzalez
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Susan J Baserga
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
14
|
Prenatal mold exposure is associated with development of atopic dermatitis in infants through allergic inflammation. JORNAL DE PEDIATRIA (VERSÃO EM PORTUGUÊS) 2020. [DOI: 10.1016/j.jpedp.2018.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
15
|
Lee E, Choi KY, Kang MJ, Lee SY, Yoon J, Cho HJ, Jung S, Lee SH, Suh DI, Shin YH, Kim KW, Ahn K, Hong SJ. Prenatal mold exposure is associated with development of atopic dermatitis in infants through allergic inflammation. J Pediatr (Rio J) 2020; 96:125-131. [PMID: 30243937 PMCID: PMC9432247 DOI: 10.1016/j.jped.2018.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 07/06/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Mold exposure in early life may be associated with development of atopic dermatitis; however, studies of this link are inconclusive and evidence for the underlying mechanism(s) is lacking. This study identified the association between the time of mold exposure and development of atopic dermatitis and investigated the underlying mechanisms. METHOD The association between atopic dermatitis and mold exposure was examined in the Cohort for Childhood Origin of Asthma and Allergic Diseases birth cohort study (n=1446). Atopic dermatitis was diagnosed at 1 year of age by pediatric allergists. Exposure to mold was assessed by questionnaire. The Illumina MiSeq platform was used to examine the environmental mycobiome in 20 randomly selected healthy infants and 20 infants with atopic dermatitis at 36 weeks of gestation. RESULTS Prenatal, but not postnatal, mold exposure was significantly associated with atopic dermatitis (adjusted odds ratio, 1.36; 95% confidence interval, 1.01-1.83). Levels of total serum IgE at 1 year of age were higher in infants with atopic dermatitis exposed to mold during pregnancy than in healthy infants not exposed to mold during pregnancy (p=0.021). The relative abundance of uncultured Ascomycota was higher in infants with atopic dermatitis than in healthy infants. The relative abundance of uncultured Ascomycota correlated with total serum IgE levels at 1 year of age (r=0.613, p<0.001). CONCLUSION Indoor mold exposure during the fetal period is associated with development of atopic dermatitis via IgE-mediated allergic inflammation. Avoidance of mold exposure during this critical period might prevent the development of atopic dermatitis.
Collapse
Affiliation(s)
- Eun Lee
- Chonnam National University Hospital, Chonnam National University Medical School, Department of Pediatrics, Gwangju, Republic of Korea
| | - Kil Yong Choi
- Pusan National University, Department of Environmental Engineering, Busan, Republic of Korea
| | - Mi-Jin Kang
- University of Ulsan College of Medicine, Asan Institute for Life Sciences, Seoul, Republic of Korea
| | - So-Yeon Lee
- University of Ulsan College of Medicine, Childhood Asthma and Atopy Center, Department of Pediatrics, Seoul, Republic of Korea
| | - Jisun Yoon
- Mediplex Sejong Hospital, Department of Pediatrics, Incheon, Republic of Korea
| | - Hyun-Ju Cho
- International St. Mary's Hospital, Catholic Kwandong University, Department of Pediatrics, Incheon, Republic of Korea
| | - Sungsu Jung
- University of Ulsan College of Medicine, Childhood Asthma and Atopy Center, Department of Pediatrics, Seoul, Republic of Korea
| | - Si Hyeon Lee
- University of Ulsan College of Medicine, Asan Institute for Life Sciences, Seoul, Republic of Korea
| | - Dong In Suh
- Seoul National University College of Medicine, Department of Pediatrics, Seoul, Republic of Korea
| | - Youn Ho Shin
- CHA Medical Center, CHA University School of Medicine, Department of Pediatrics, Seoul, Republic of Korea
| | - Kyung Won Kim
- Severance Children's Hospital, College of Medicine, Yonsei University, Department of Pediatrics, Seoul, Republic of Korea
| | - Kangmo Ahn
- Sungkyunkwan University School of Medicine, Samsung Medical Center, Department of Pediatrics, Seoul, Republic of Korea
| | - Soo-Jong Hong
- University of Ulsan College of Medicine, Childhood Asthma and Atopy Center, Department of Pediatrics, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Qiu C, Dutcher RC, Porter DF, Arava Y, Wickens M, Hall TM. Distinct RNA-binding modules in a single PUF protein cooperate to determine RNA specificity. Nucleic Acids Res 2019; 47:8770-8784. [PMID: 31294800 PMCID: PMC7145691 DOI: 10.1093/nar/gkz583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 01/07/2023] Open
Abstract
PUF proteins, named for Drosophila Pumilio (PUM) and Caenorhabditis elegans fem-3-binding factor (FBF), recognize specific sequences in the mRNAs they bind and control. RNA binding by classical PUF proteins is mediated by a characteristic PUM homology domain (PUM-HD). The Puf1 and Puf2 proteins possess a distinct architecture and comprise a highly conserved subfamily among fungal species. Puf1/Puf2 proteins contain two types of RNA-binding domain: a divergent PUM-HD and an RNA recognition motif (RRM). They recognize RNAs containing UAAU motifs, often in clusters. Here, we report a crystal structure of the PUM-HD of a fungal Puf1 in complex with a dual UAAU motif RNA. Each of the two UAAU tetranucleotides are bound by a Puf1 PUM-HD forming a 2:1 protein-to-RNA complex. We also determined crystal structures of the Puf1 RRM domain that identified a dimerization interface. The PUM-HD and RRM domains act in concert to determine RNA-binding specificity: the PUM-HD dictates binding to UAAU, and dimerization of the RRM domain favors binding to dual UAAU motifs rather than a single UAAU. Cooperative action of the RRM and PUM-HD identifies a new mechanism by which multiple RNA-binding modules in a single protein collaborate to create a unique RNA-binding specificity.
Collapse
Affiliation(s)
- Chen Qiu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Robert C Dutcher
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Douglas F Porter
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yoav Arava
- Department of Biology, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA,Correspondence may also be addressed to Marvin Wickens. Tel: +1 608 263 0858; Fax: +1 608 262 9108;
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA,To whom correspondence should be addressed. Tel: +1 984 287 3556; Fax: +1 310 480 3055;
| |
Collapse
|
17
|
Jarmoskaite I, Denny SK, Vaidyanathan PP, Becker WR, Andreasson JOL, Layton CJ, Kappel K, Shivashankar V, Sreenivasan R, Das R, Greenleaf WJ, Herschlag D. A Quantitative and Predictive Model for RNA Binding by Human Pumilio Proteins. Mol Cell 2019; 74:966-981.e18. [PMID: 31078383 DOI: 10.1101/403006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/31/2019] [Accepted: 04/05/2019] [Indexed: 05/20/2023]
Abstract
High-throughput methodologies have enabled routine generation of RNA target sets and sequence motifs for RNA-binding proteins (RBPs). Nevertheless, quantitative approaches are needed to capture the landscape of RNA-RBP interactions responsible for cellular regulation. We have used the RNA-MaP platform to directly measure equilibrium binding for thousands of designed RNAs and to construct a predictive model for RNA recognition by the human Pumilio proteins PUM1 and PUM2. Despite prior findings of linear sequence motifs, our measurements revealed widespread residue flipping and instances of positional coupling. Application of our thermodynamic model to published in vivo crosslinking data reveals quantitative agreement between predicted affinities and in vivo occupancies. Our analyses suggest a thermodynamically driven, continuous Pumilio-binding landscape that is negligibly affected by RNA structure or kinetic factors, such as displacement by ribosomes. This work provides a quantitative foundation for dissecting the cellular behavior of RBPs and cellular features that impact their occupancies.
Collapse
Affiliation(s)
- Inga Jarmoskaite
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sarah K Denny
- Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Scribe Therapeutics, Berkeley, CA, 94704, USA
| | | | - Winston R Becker
- Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Johan O L Andreasson
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Curtis J Layton
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kalli Kappel
- Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Raashi Sreenivasan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
18
|
Jarmoskaite I, Denny SK, Vaidyanathan PP, Becker WR, Andreasson JOL, Layton CJ, Kappel K, Shivashankar V, Sreenivasan R, Das R, Greenleaf WJ, Herschlag D. A Quantitative and Predictive Model for RNA Binding by Human Pumilio Proteins. Mol Cell 2019; 74:966-981.e18. [PMID: 31078383 DOI: 10.1016/j.molcel.2019.04.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/31/2019] [Accepted: 04/05/2019] [Indexed: 01/09/2023]
Abstract
High-throughput methodologies have enabled routine generation of RNA target sets and sequence motifs for RNA-binding proteins (RBPs). Nevertheless, quantitative approaches are needed to capture the landscape of RNA-RBP interactions responsible for cellular regulation. We have used the RNA-MaP platform to directly measure equilibrium binding for thousands of designed RNAs and to construct a predictive model for RNA recognition by the human Pumilio proteins PUM1 and PUM2. Despite prior findings of linear sequence motifs, our measurements revealed widespread residue flipping and instances of positional coupling. Application of our thermodynamic model to published in vivo crosslinking data reveals quantitative agreement between predicted affinities and in vivo occupancies. Our analyses suggest a thermodynamically driven, continuous Pumilio-binding landscape that is negligibly affected by RNA structure or kinetic factors, such as displacement by ribosomes. This work provides a quantitative foundation for dissecting the cellular behavior of RBPs and cellular features that impact their occupancies.
Collapse
Affiliation(s)
- Inga Jarmoskaite
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sarah K Denny
- Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Scribe Therapeutics, Berkeley, CA, 94704, USA
| | | | - Winston R Becker
- Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Johan O L Andreasson
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Curtis J Layton
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kalli Kappel
- Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Raashi Sreenivasan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
19
|
Nyikó T, Auber A, Bucher E. Functional and molecular characterization of the conserved Arabidopsis PUMILIO protein, APUM9. PLANT MOLECULAR BIOLOGY 2019; 100:199-214. [PMID: 30868544 PMCID: PMC6513901 DOI: 10.1007/s11103-019-00853-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/01/2019] [Indexed: 05/08/2023]
Abstract
Here we demonstrate that the APUM9 RNA-binding protein and its co-factors play a role in mRNA destabilization and how this activity might regulate early plant development. APUM9 is a conserved PUF RNA-binding protein (RBP) under complex transcriptional control mediated by a transposable element (TE) that restricts its expression in Arabidopsis. Currently, little is known about the functional and mechanistic details of the plant PUF regulatory system and the biological relevance of the TE-mediated repression of APUM9 in plant development and stress responses. By combining a range of transient assays, we show here, that APUM9 binding to target transcripts can trigger their rapid decay via its conserved C-terminal RNA-binding domain. APUM9 directly interacts with DCP2, the catalytic subunit of the decapping complex and DCP2 overexpression induces rapid decay of APUM9 targeted mRNAs. We show that APUM9 negatively regulates the expression of ABA signaling genes during seed imbibition, and thereby might contribute to the switch from dormant stage to seed germination. By contrast, strong TE-mediated repression of APUM9 is important for normal plant growth in the later developmental stages. Finally, APUM9 overexpression plants show slightly enhanced heat tolerance suggesting that TE-mediated control of APUM9, might have a role not only in embryonic development, but also in plant adaptation to heat stress conditions.
Collapse
Affiliation(s)
- Tünde Nyikó
- Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences (IRHS-INRA), 42 rue Georges Morel, 24, 49071, Beaucouzé, France
- Agricultural Biotechnology Institute, Szent-Györgyi Albert 4, Gödöllő, 2100, Hungary
| | - Andor Auber
- Agricultural Biotechnology Institute, Szent-Györgyi Albert 4, Gödöllő, 2100, Hungary
| | - Etienne Bucher
- Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences (IRHS-INRA), 42 rue Georges Morel, 24, 49071, Beaucouzé, France.
| |
Collapse
|
20
|
Bhat VD, McCann KL, Wang Y, Fonseca DR, Shukla T, Alexander JC, Qiu C, Wickens M, Lo TW, Tanaka Hall TM, Campbell ZT. Engineering a conserved RNA regulatory protein repurposes its biological function in vivo. eLife 2019; 8:43788. [PMID: 30652968 PMCID: PMC6351103 DOI: 10.7554/elife.43788] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/15/2019] [Indexed: 12/18/2022] Open
Abstract
PUF (PUmilio/FBF) RNA-binding proteins recognize distinct elements. In C. elegans, PUF-8 binds to an 8-nt motif and restricts proliferation in the germline. Conversely, FBF-2 recognizes a 9-nt element and promotes mitosis. To understand how motif divergence relates to biological function, we first determined a crystal structure of PUF-8. Comparison of this structure to that of FBF-2 revealed a major difference in a central repeat. We devised a modified yeast 3-hybrid screen to identify mutations that confer recognition of an 8-nt element to FBF-2. We identified several such mutants and validated structurally and biochemically their binding to 8-nt RNA elements. Using genome engineering, we generated a mutant animal with a substitution in FBF-2 that confers preferential binding to the PUF-8 element. The mutant largely rescued overproliferation in animals that spontaneously generate tumors in the absence of puf-8. This work highlights the critical role of motif length in the specification of biological function.
Collapse
Affiliation(s)
- Vandita D Bhat
- Department of Biological Sciences, University of Texas Dallas, Richardson, United States
| | - Kathleen L McCann
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - Yeming Wang
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | | | - Tarjani Shukla
- Department of Biological Sciences, University of Texas Dallas, Richardson, United States
| | | | - Chen Qiu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - Marv Wickens
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Te-Wen Lo
- Department of Biology, Ithaca College, Ithaca, United States
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - Zachary T Campbell
- Department of Biological Sciences, University of Texas Dallas, Richardson, United States
| |
Collapse
|
21
|
Porter DF, Prasad A, Carrick BH, Kroll-Connor P, Wickens M, Kimble J. Toward Identifying Subnetworks from FBF Binding Landscapes in Caenorhabditis Spermatogenic or Oogenic Germlines. G3 (BETHESDA, MD.) 2019; 9:153-165. [PMID: 30459181 PMCID: PMC6325917 DOI: 10.1534/g3.118.200300] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 11/09/2018] [Indexed: 12/31/2022]
Abstract
Metazoan PUF (Pumilio and FBF) RNA-binding proteins regulate various biological processes, but a common theme across phylogeny is stem cell regulation. In Caenorhabditis elegans, FBF (fem-3 Binding Factor) maintains germline stem cells regardless of which gamete is made, but FBF also functions in the process of spermatogenesis. We have begun to "disentangle" these biological roles by asking which FBF targets are gamete-independent, as expected for stem cells, and which are gamete-specific. Specifically, we compared FBF iCLIP binding profiles in adults making sperm to those making oocytes. Normally, XX adults make oocytes. To generate XX adults making sperm, we used a fem-3(gf) mutant requiring growth at 25°; for comparison, wild-type oogenic hermaphrodites were also raised at 25°. Our FBF iCLIP data revealed FBF binding sites in 1522 RNAs from oogenic adults and 1704 RNAs from spermatogenic adults. More than half of these FBF targets were independent of germline gender. We next clustered RNAs by FBF-RNA complex frequencies and found four distinct blocks. Block I RNAs were enriched in spermatogenic germlines, and included validated target fog-3, while Block II and III RNAs were common to both genders, and Block IV RNAs were enriched in oogenic germlines. Block II (510 RNAs) included almost all validated FBF targets and was enriched for cell cycle regulators. Block III (21 RNAs) was enriched for RNA-binding proteins, including previously validated FBF targets gld-1 and htp-1 We suggest that Block I RNAs belong to the FBF network for spermatogenesis, and that Blocks II and III are associated with stem cell functions.
Collapse
Affiliation(s)
- Douglas F Porter
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin 53706
| | - Aman Prasad
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin 53706
| | - Brian H Carrick
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin 53706
| | - Peggy Kroll-Connor
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Wisconsin 53706
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin 53706
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin 53706
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Wisconsin 53706
| |
Collapse
|
22
|
Webster MW, Stowell JA, Passmore LA. RNA-binding proteins distinguish between similar sequence motifs to promote targeted deadenylation by Ccr4-Not. eLife 2019; 8:40670. [PMID: 30601114 PMCID: PMC6340701 DOI: 10.7554/elife.40670] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/28/2018] [Indexed: 12/17/2022] Open
Abstract
The Ccr4-Not complex removes mRNA poly(A) tails to regulate eukaryotic mRNA stability and translation. RNA-binding proteins contribute to specificity by interacting with both Ccr4-Not and target mRNAs, but this is not fully understood. Here, we reconstitute accelerated and selective deadenylation of RNAs containing AU-rich elements (AREs) and Pumilio-response elements (PREs). We find that the fission yeast homologues of Tristetraprolin/TTP and Pumilio/Puf (Zfs1 and Puf3) interact with Ccr4-Not via multiple regions within low-complexity sequences, suggestive of a multipartite interface that extends beyond previously defined interactions. Using a two-color assay to simultaneously monitor poly(A) tail removal from different RNAs, we demonstrate that Puf3 can distinguish between RNAs of very similar sequence. Analysis of binding kinetics reveals that this is primarily due to differences in dissociation rate constants. Consequently, motif quality is a major determinant of mRNA stability for Puf3 targets in vivo and can be used for the prediction of mRNA targets. When a cell needs to make a particular protein, it first copies the instructions from the matching gene into a molecule known as a messenger RNA (or an mRNA for short). The more mRNA copies it makes, the more protein it can produce. A simple way to control protein production is to raise or lower the number of these mRNA messages, and living cells have lots of ways to make this happen. One method involves codes built into the mRNAs themselves. The mRNAs can carry short sequences of genetic letters that can trigger their own destruction. Known as “destabilising motifs”, these sequences attract the attention of a group of proteins called Ccr4-Not. Together these proteins shorten the end of the mRNAs, preparing the molecules for degradation. But how does Ccr4-Not choose which mRNAs to target? Different mRNAs carry different destabilising motifs. This means that when groups of mRNAs all carry the same motif, the cell can destroy them all together. This allows the cell to switch networks of related genes off together without affecting the mRNAs it still needs. What is puzzling is that the destabilising motifs that control different groups of mRNAs can be very similar, and scientists do not yet know how Ccr4-Not can tell the difference, or what triggers it to start breaking down groups of mRNAs. To find out, Webster et al. recreated the system in the laboratory using purified molecules. The test-tube system confirmed previous suggestions that a protein called Puf3 forms a bridge between Ccr4-Not and mRNAs. It acts as a tether, recognising a destabilising motif and linking it to Ccr4-Not. Labelling different mRNAs with two colours of fluorescent dye showed how Puf3 helps the cell to choose which to destroy. Puf3 allows Ccr4-Not to select specific mRNAs from a mixture of molecules. Puf3 could distinguish between mRNAs that differed in a single letter of genetic code. When it matched with the wrong mRNA, it disconnected much faster than when it matched with the right one, preventing Ccr4-Not from linking up. The ability to destroy specific mRNA messages is critical for cell survival. It happens when cells divide, during immune responses such as inflammation, and in early development. Understanding the targets of tethers like Puf3 could help scientists to predict which genes will switch off and when. This could reveal genes that work together, helping to unravel their roles inside cells.
Collapse
Affiliation(s)
| | | | - Lori A Passmore
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
23
|
Qiu C, Bhat VD, Rajeev S, Zhang C, Lasley AE, Wine RN, Campbell ZT, Hall TMT. A crystal structure of a collaborative RNA regulatory complex reveals mechanisms to refine target specificity. eLife 2019; 8:48968. [PMID: 31397673 PMCID: PMC6697444 DOI: 10.7554/elife.48968] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/09/2019] [Indexed: 01/09/2023] Open
Abstract
In the Caenorhabditis elegans germline, fem-3 Binding Factor (FBF) partners with LST-1 to maintain stem cells. A crystal structure of an FBF-2/LST-1/RNA complex revealed that FBF-2 recognizes a short RNA motif different from the characteristic 9-nt FBF binding element, and compact motif recognition coincided with curvature changes in the FBF-2 scaffold. Previously, we engineered FBF-2 to favor recognition of shorter RNA motifs without curvature change (Bhat et al., 2019). In vitro selection of RNAs bound by FBF-2 suggested sequence specificity in the central region of the compact element. This bias, reflected in the crystal structure, was validated in RNA-binding assays. FBF-2 has the intrinsic ability to bind to this shorter motif. LST-1 weakens FBF-2 binding affinity for short and long motifs, which may increase target selectivity. Our findings highlight the role of FBF scaffold flexibility in RNA recognition and suggest a new mechanism by which protein partners refine target site selection.
Collapse
Affiliation(s)
- Chen Qiu
- Epigenetics and Stem Cell Biology LaboratoryNational Institute of Environmental Health Sciences, National Institutes of HealthResearch Triangle ParkUnited States
| | - Vandita D Bhat
- Department of Biological SciencesUniversity of Texas at DallasRichardsonUnited States
| | - Sanjana Rajeev
- Department of Biological SciencesUniversity of Texas at DallasRichardsonUnited States
| | - Chi Zhang
- Department of Biological SciencesUniversity of Texas at DallasRichardsonUnited States
| | - Alexa E Lasley
- Department of Biological SciencesUniversity of Texas at DallasRichardsonUnited States
| | - Robert N Wine
- Epigenetics and Stem Cell Biology LaboratoryNational Institute of Environmental Health Sciences, National Institutes of HealthResearch Triangle ParkUnited States
| | - Zachary T Campbell
- Department of Biological SciencesUniversity of Texas at DallasRichardsonUnited States
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology LaboratoryNational Institute of Environmental Health Sciences, National Institutes of HealthResearch Triangle ParkUnited States
| |
Collapse
|
24
|
Preparation of cooperative RNA recognition complexes for crystallographic structural studies. Methods Enzymol 2019; 623:1-22. [PMID: 31239042 PMCID: PMC6697268 DOI: 10.1016/bs.mie.2019.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
It is essential that mRNA-binding proteins recognize specific motifs in target mRNAs to control their processing, localization, and expression. Although mRNAs are typically targets of many different regulatory factors, our understanding of how they work together is limited. In some cases, RNA-binding proteins work cooperatively to regulate an mRNA target. A classic example is Drosophila melanogaster Pumilio (Pum) and Nanos (Nos). Pum is a sequence-specific RNA-binding protein. Nos also binds RNA, but interaction with some targets requires Pum to bind first. We recently determined crystal structures of complexes of Pum and Nos with two different target RNA sequences. A crystal structure in complex with the hunchback mRNA element showed how Pum and Nos together can recognize an extended RNA sequence with Nos binding to an A/U-rich sequence 5' of the Pum sequence element. Nos also enables recognition of elements that contain an A/U-rich 5' sequence, but imperfectly match the Pum sequence element. We determined a crystal structure of Pum and Nos in complex with the Cyclin B mRNA element, which demonstrated how Nos clamps the Pum-RNA complex and enables recognition of the imperfect element. Here, we describe methods for expression and purification of stable Pum-Nos-RNA complexes for crystallization, details of the crystallization and structure determination, and guidance on how to analyze protein-RNA structures and evaluate structure-driven hypotheses. We aim to provide tips and guidance that can be applied to other protein-RNA complexes. With hundreds of mRNA-binding proteins identified, combinatorial control is likely to be common, and much work remains to understand them structurally.
Collapse
|
25
|
Viet NTM, Duy DL, Saito K, Irie K, Suda Y, Mizuno T, Irie K. Regulation of
LRG1
expression by RNA‐binding protein Puf5 in the budding yeast cell wall integrity pathway. Genes Cells 2018; 23:988-997. [DOI: 10.1111/gtc.12646] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/19/2018] [Accepted: 09/23/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Nguyen Thi Minh Viet
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine University of Tsukuba Tsukuba Japan
| | - Duong Long Duy
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine University of Tsukuba Tsukuba Japan
| | - Kazuhiro Saito
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine University of Tsukuba Tsukuba Japan
| | - Kaoru Irie
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine University of Tsukuba Tsukuba Japan
| | - Yasuyuki Suda
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine University of Tsukuba Tsukuba Japan
- Live Cell Super‐resolution Imaging Research Team RIKEN Center for Advanced Photonics Wako, Saitama Japan
| | - Tomoaki Mizuno
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine University of Tsukuba Tsukuba Japan
| | - Kenji Irie
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine University of Tsukuba Tsukuba Japan
| |
Collapse
|
26
|
Abstract
Cells must make careful use of the resources available to them. A key area of cellular regulation involves the biogenesis of ribosomes. Transcriptional regulation of ribosome biogenesis factor genes through alterations in histone acetylation has been well studied. This work identifies a post-transcriptional mechanism of ribosome biogenesis regulation by Puf protein control of mRNA stability. Puf proteins are eukaryotic mRNA binding proteins that play regulatory roles in mRNA degradation and translation via association with specific conserved elements in the 3' untranslated region (UTR) of target mRNAs and with degradation and translation factors. We demonstrate that several ribosome biogenesis factor mRNAs in Saccharomyces cerevisiae containing a canonical Puf4p element in their 3' UTRs are destabilized by Puf2p, Puf4, and Puf5p, yet stabilized by Puf1p and Puf3p. In the absence of all Puf proteins, these ribosome biogenesis mRNAs are destabilized by a secondary mechanism involving the same 3' UTR element. Unlike other targets of Puf4p regulation, the decay of these transcripts is not altered by carbon source. Overexpression of Puf4p results in delayed ribosomal RNA processing and altered ribosomal subunit trafficking. These results represent a novel role for Puf proteins in yeast as regulators of ribosome biogenesis transcript stability.
Collapse
Affiliation(s)
- Anthony D Fischer
- a Department of Biology , University of Missouri-St. Louis , St. Louis , MO , USA
| | - Wendy M Olivas
- a Department of Biology , University of Missouri-St. Louis , St. Louis , MO , USA
| |
Collapse
|
27
|
Lee E, Lee SY, Yoon JS, Jung S, Hong SJ. Mold exposure affects the development of atopic dermatitis in infants with skin barrier dysfunction. Ann Allergy Asthma Immunol 2018; 121:372-374.e1. [PMID: 30220297 DOI: 10.1016/j.anai.2018.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/20/2018] [Accepted: 06/28/2018] [Indexed: 11/17/2022]
Affiliation(s)
- Eun Lee
- Department of Pediatrics Chonnam National University Hospital Chonnam National University Medical School Gwangju, Republic of Korea
| | - So-Yeon Lee
- Department of Pediatrics Childhood Asthma Atopy Center Environmental Health Center Asan Medical Center University of Ulsan College of Medicine Seoul, Republic of Korea
| | - Ji-Sun Yoon
- Department of Pediatrics Childhood Asthma Atopy Center Environmental Health Center Asan Medical Center University of Ulsan College of Medicine Seoul, Republic of Korea
| | - Sungsu Jung
- Department of Pediatrics Childhood Asthma Atopy Center Environmental Health Center Asan Medical Center University of Ulsan College of Medicine Seoul, Republic of Korea
| | - Soo-Jong Hong
- Department of Pediatrics Childhood Asthma Atopy Center Environmental Health Center Asan Medical Center University of Ulsan College of Medicine Seoul, Republic of Korea.
| |
Collapse
|
28
|
Zhao YY, Mao MW, Zhang WJ, Wang J, Li HT, Yang Y, Wang Z, Wu JW. Expanding RNA binding specificity and affinity of engineered PUF domains. Nucleic Acids Res 2018; 46:4771-4782. [PMID: 29490074 PMCID: PMC5961129 DOI: 10.1093/nar/gky134] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/08/2018] [Accepted: 02/16/2018] [Indexed: 12/26/2022] Open
Abstract
Specific manipulation of RNA is necessary for the research in biotechnology and medicine. The RNA-binding domains of Pumilio/fem-3 mRNA binding factors (PUF domains) are programmable RNA binding scaffolds used to engineer artificial proteins that specifically modulate RNAs. However, the native PUF domains generally recognize 8-nt RNAs, limiting their applications. Here, we modify the PUF domain of human Pumilio1 to engineer PUFs that recognize RNA targets of different length. The engineered PUFs bind to their RNA targets specifically and PUFs with more repeats have higher binding affinity than the canonical eight-repeat domains; however, the binding affinity reaches the peak at those with 9 and 10 repeats. Structural analysis on PUF with nine repeats reveals a higher degree of curvature, and the RNA binding unexpectedly and dramatically opens the curved structure. Investigation of the residues positioned in between two RNA bases demonstrates that tyrosine and arginine have favored stacking interactions. Further tests on the availability of the engineered PUFs in vitro and in splicing function assays indicate that our engineered PUFs bind RNA targets with high affinity in a programmable way.
Collapse
Affiliation(s)
- Yang-Yang Zhao
- Center for Life Sciences, Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Miao-Wei Mao
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biological Science, Shanghai 200031, China
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wen-Jing Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Jue Wang
- Institute of Molecular Enzymology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hai-Tao Li
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yi Yang
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zefeng Wang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biological Science, Shanghai 200031, China
- Enzerna Biosciences, Inc., 125 South Road, 925B Kenan Labs, CB#3266, Chapel Hill, NC 27599, USA
| | - Jia-Wei Wu
- Center for Life Sciences, Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Institute of Molecular Enzymology, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
29
|
Lloyd NR, Wuttke DS. Discrimination against RNA Backbones by a ssDNA Binding Protein. Structure 2018; 26:722-733.e2. [PMID: 29681468 DOI: 10.1016/j.str.2018.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 01/10/2018] [Accepted: 03/27/2018] [Indexed: 11/18/2022]
Abstract
Pot1 is the shelterin component responsible for the protection of the single-stranded DNA (ssDNA) overhang at telomeres in nearly all eukaryotic organisms. The C-terminal domain of the DNA-binding domain, Pot1pC, exhibits non-specific ssDNA recognition, achieved through thermodynamically equivalent alternative binding conformations. Given this flexibility, it is unclear how specificity for ssDNA over RNA, an activity required for biological function, is achieved. Examination of the ribose-position specificity of Pot1pC shows that ssDNA specificity is additive but not uniformly distributed across the ligand. High-resolution structures of several Pot1pC complexes with RNA-DNA chimeric ligands reveal Pot1pC discriminates against RNA by utilizing non-compensatory binding modes that feature significant rearrangement of the binding interface. These alternative conformations, accessed through both ligand and protein flexibility, recover much, but not all, of the binding energy, leading to the observed reduction in affinities. These findings suggest that intermolecular interfaces are remarkably sophisticated in their tuning of specificity toward flexible ligands.
Collapse
Affiliation(s)
- Neil R Lloyd
- Department of Chemistry and Biochemistry, University of Colorado, UCB 596, Boulder, CO 80309-0596, USA
| | - Deborah S Wuttke
- Department of Chemistry and Biochemistry, University of Colorado, UCB 596, Boulder, CO 80309-0596, USA.
| |
Collapse
|
30
|
Wang M, Ogé L, Perez-Garcia MD, Hamama L, Sakr S. The PUF Protein Family: Overview on PUF RNA Targets, Biological Functions, and Post Transcriptional Regulation. Int J Mol Sci 2018; 19:ijms19020410. [PMID: 29385744 PMCID: PMC5855632 DOI: 10.3390/ijms19020410] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 12/13/2022] Open
Abstract
Post-transcriptional regulation of gene expression plays a crucial role in many processes. In cells, it is mediated by diverse RNA-binding proteins. These proteins can influence mRNA stability, translation, and localization. The PUF protein family (Pumilio and FBF) is composed of RNA-binding proteins highly conserved among most eukaryotic organisms. Previous investigations indicated that they could be involved in many processes by binding corresponding motifs in the 3′UTR or by interacting with other proteins. To date, most of the investigations on PUF proteins have been focused on Caenorhabditis elegans, Drosophila melanogaster, and Saccharomyces cerevisiae, while only a few have been conducted on Arabidopsis thaliana. The present article provides an overview of the PUF protein family. It addresses their RNA-binding motifs, biological functions, and post-transcriptional control mechanisms in Caenorhabditis elegans, Drosophila melanogaster, Saccharomyces cerevisiae, and Arabidopsis thaliana. These items of knowledge open onto new investigations into the relevance of PUF proteins in specific plant developmental processes.
Collapse
Affiliation(s)
- Ming Wang
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Laurent Ogé
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | | | - Latifa Hamama
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Soulaiman Sakr
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| |
Collapse
|
31
|
Genome-Wide Mapping of Decay Factor-mRNA Interactions in Yeast Identifies Nutrient-Responsive Transcripts as Targets of the Deadenylase Ccr4. G3-GENES GENOMES GENETICS 2018; 8:315-330. [PMID: 29158339 PMCID: PMC5765359 DOI: 10.1534/g3.117.300415] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Ccr4 (carbon catabolite repression 4)-Not complex is a major regulator of stress responses that controls gene expression at multiple levels, from transcription to mRNA decay. Ccr4, a “core” subunit of the complex, is the main cytoplasmic deadenylase in Saccharomyces cerevisiae; however, its mRNA targets have not been mapped on a genome-wide scale. Here, we describe a genome-wide approach, RNA immunoprecipitation (RIP) high-throughput sequencing (RIP-seq), to identify the RNAs bound to Ccr4, and two proteins that associate with it, Dhh1 and Puf5. All three proteins were preferentially bound to lowly abundant mRNAs, most often at the 3′ end of the transcript. Furthermore, Ccr4, Dhh1, and Puf5 are recruited to mRNAs that are targeted by other RNA-binding proteins that promote decay and mRNA transport, and inhibit translation. Although Ccr4-Not regulates mRNA transcription and decay, Ccr4 recruitment to mRNAs correlates better with decay rates, suggesting it imparts greater control over transcript abundance through decay. Ccr4-enriched mRNAs are refractory to control by the other deadenylase complex in yeast, Pan2/3, suggesting a division of labor between these deadenylation complexes. Finally, Ccr4 and Dhh1 associate with mRNAs whose abundance increases during nutrient starvation, and those that fluctuate during metabolic and oxygen consumption cycles, which explains the known genetic connections between these factors and nutrient utilization and stress pathways.
Collapse
|
32
|
Wang C, Schmich F, Srivatsa S, Weidner J, Beerenwinkel N, Spang A. Context-dependent deposition and regulation of mRNAs in P-bodies. eLife 2018; 7:29815. [PMID: 29297464 PMCID: PMC5752201 DOI: 10.7554/elife.29815] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/13/2017] [Indexed: 12/21/2022] Open
Abstract
Cells respond to stress by remodeling their transcriptome through transcription and degradation. Xrn1p-dependent degradation in P-bodies is the most prevalent decay pathway, yet, P-bodies may facilitate not only decay, but also act as a storage compartment. However, which and how mRNAs are selected into different degradation pathways and what determines the fate of any given mRNA in P-bodies remain largely unknown. We devised a new method to identify both common and stress-specific mRNA subsets associated with P-bodies. mRNAs targeted for degradation to P-bodies, decayed with different kinetics. Moreover, the localization of a specific set of mRNAs to P-bodies under glucose deprivation was obligatory to prevent decay. Depending on its client mRNA, the RNA-binding protein Puf5p either promoted or inhibited decay. Furthermore, the Puf5p-dependent storage of a subset of mRNAs in P-bodies under glucose starvation may be beneficial with respect to chronological lifespan.
Collapse
Affiliation(s)
- Congwei Wang
- Growth and Development, Biozentrum, University of Basel, Basel, Switzerland
| | - Fabian Schmich
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Sumana Srivatsa
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Julie Weidner
- Growth and Development, Biozentrum, University of Basel, Basel, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Anne Spang
- Growth and Development, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
33
|
Reply to Hogan: Direct evidence of RNA–protein interactions and rewiring. Proc Natl Acad Sci U S A 2017; 114:E10854-E10855. [DOI: 10.1073/pnas.1717585114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
34
|
Bao H, Wang N, Wang C, Jiang Y, Liu J, Xu L, Wu J, Shi Y. Structural basis for the specific recognition of 18S rRNA by APUM23. Nucleic Acids Res 2017; 45:12005-12014. [PMID: 29036323 PMCID: PMC5714250 DOI: 10.1093/nar/gkx872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 09/19/2017] [Indexed: 01/26/2023] Open
Abstract
PUF (Pumilio/fem-3 mRNA binding factor) proteins, a conserved family of RNA-binding proteins, recognize specific single-strand RNA targets in a specific modular way. Although plants have a greater number of PUF protein members than do animal and fungal systems, they have been the subject of fewer structural and functional investigations. The aim of this study was to elucidate the involvement of APUM23, a nucleolar PUF protein in the plant Arabidopsis, in pre-rRNA processing. APUM23 is distinct from classical PUF family proteins, which are located in the cytoplasm and bind to 3'UTRs of mRNA to modulate mRNA expression and localization. We found that the complete RNA target sequence of APUM23 comprises 11 nt in 18S rRNA at positions 1141-1151. The complex structure shows that APUM23 has 10 PUF repeats; it assembles into a C-shape, with an insertion located within the inner concave surface. We found several different RNA recognition features. A notable structural feature of APUM23 is an insertion in the third PUF repeat that participates in nucleotide recognition and maintains the correct conformation of the target RNA. Our findings elucidate the mechanism for APUM23's-specific recognition of 18S rRNA.
Collapse
Affiliation(s)
- Hongyu Bao
- Hefei National Laboratory for Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Na Wang
- Hefei National Laboratory for Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chongyuan Wang
- Hefei National Laboratory for Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yiyang Jiang
- Hefei National Laboratory for Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jiuyang Liu
- Hefei National Laboratory for Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Li Xu
- Hefei National Laboratory for Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jihui Wu
- Hefei National Laboratory for Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yunyu Shi
- Hefei National Laboratory for Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
35
|
Lapointe CP, Preston MA, Wilinski D, Saunders HAJ, Campbell ZT, Wickens M. Architecture and dynamics of overlapped RNA regulatory networks. RNA (NEW YORK, N.Y.) 2017; 23:1636-1647. [PMID: 28768715 PMCID: PMC5648032 DOI: 10.1261/rna.062687.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
A single protein can bind and regulate many mRNAs. Multiple proteins with similar specificities often bind and control overlapping sets of mRNAs. Yet little is known about the architecture or dynamics of overlapped networks. We focused on three proteins with similar structures and related RNA-binding specificities-Puf3p, Puf4p, and Puf5p of S. cerevisiae Using RNA Tagging, we identified a "super-network" comprised of four subnetworks: Puf3p, Puf4p, and Puf5p subnetworks, and one controlled by both Puf4p and Puf5p. The architecture of individual subnetworks, and thus the super-network, is determined by competition among particular PUF proteins to bind mRNAs, their affinities for binding elements, and the abundances of the proteins. The super-network responds dramatically: The remaining network can either expand or contract. These strikingly opposite outcomes are determined by an interplay between the relative abundance of the RNAs and proteins, and their affinities for one another. The diverse interplay between overlapping RNA-protein networks provides versatile opportunities for regulation and evolution.
Collapse
Affiliation(s)
- Christopher P Lapointe
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Melanie A Preston
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Daniel Wilinski
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Harriet A J Saunders
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Zachary T Campbell
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
36
|
Wang B, Ye K. Nop9 binds the central pseudoknot region of 18S rRNA. Nucleic Acids Res 2017; 45:3559-3567. [PMID: 28053123 PMCID: PMC5389560 DOI: 10.1093/nar/gkw1323] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/19/2016] [Indexed: 01/21/2023] Open
Abstract
The assembly of eukaryotic ribosomes requires numerous factors that transiently associate with evolving pre-ribosomal particles. The Pumilio repeat-containing protein Nop9 briefly associates with the 90S pre-ribosome during its co-transcriptional assembly. Here, we show that Nop9 specifically binds an 11-nucleotide sequence of 18S rRNA that forms the 3΄ side of the central pseudoknot and helix 28 in the mature subunit. Crystal structures of Nop9 in the free and RNA-bound states reveal a new type of Pumilio repeat protein with a distinct structure, target sequence and RNA-binding mode. Nop9 contains 10 Pumilio repeats arranged into a U-shaped scaffold. The target RNA is recognized by two stretches of repeats in a bipartite manner, and three central bases are unrecognized as a result of the degeneracy of repeats 6 and 7. Our data suggest that Nop9 regulates the folding of 18S rRNA at early assembly stages of 90S.
Collapse
Affiliation(s)
- Bing Wang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China.,National Institute of Biological Sciences, Beijing 102206, China.,Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
37
|
Identification and characterization of roles for Puf1 and Puf2 proteins in the yeast response to high calcium. Sci Rep 2017; 7:3037. [PMID: 28596535 PMCID: PMC5465220 DOI: 10.1038/s41598-017-02873-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 04/19/2017] [Indexed: 12/12/2022] Open
Abstract
Members of the yeast family of PUF proteins bind unique subsets of mRNA targets that encode proteins with common functions. They therefore became a paradigm for post-transcriptional gene control. To provide new insights into the roles of the seemingly redundant Puf1 and Puf2 members, we monitored the growth rates of their deletions under many different stress conditions. A differential effect was observed at high CaCl2 concentrations, whereby puf1Δ growth was affected much more than puf2Δ, and inhibition was exacerbated in puf1Δpuf2Δ double knockout. Transcriptome analyses upon CaCl2 application for short and long terms defined the transcriptional response to CaCl2 and revealed distinct expression changes for the deletions. Intriguingly, mRNAs known to be bound by Puf1 or Puf2 were affected mainly in the double knockout. We focused on the cell wall regulator Zeo1 and observed that puf1Δpuf2Δ fails to maintain low levels of its mRNA. Complementarily, puf1Δpuf2Δ growth defect in CaCl2 was repaired upon further deletion of the Zeo1 gene. Thus, these proteins probably regulate the cell-wall integrity pathway by regulating Zeo1 post-transcriptionally. This work sheds new light on the roles of Puf proteins during the cellular response to environmental stress.
Collapse
|
38
|
Abstract
Alterations in regulatory networks contribute to evolutionary change. Transcriptional networks are reconfigured by changes in the binding specificity of transcription factors and their cognate sites. The evolution of RNA-protein regulatory networks is far less understood. The PUF (Pumilio and FBF) family of RNA regulatory proteins controls the translation, stability, and movements of hundreds of mRNAs in a single species. We probe the evolution of PUF-RNA networks by direct identification of the mRNAs bound to PUF proteins in budding and filamentous fungi and by computational analyses of orthologous RNAs from 62 fungal species. Our findings reveal that PUF proteins gain and lose mRNAs with related and emergent biological functions during evolution. We demonstrate at least two independent rewiring events for PUF3 orthologs, independent but convergent evolution of PUF4/5 binding specificity and the rewiring of the PUF4/5 regulons in different fungal lineages. These findings demonstrate plasticity in RNA regulatory networks and suggest ways in which their rewiring occurs.
Collapse
|
39
|
Duy DL, Suda Y, Irie K. Cytoplasmic deadenylase Ccr4 is required for translational repression of LRG1 mRNA in the stationary phase. PLoS One 2017; 12:e0172476. [PMID: 28231297 PMCID: PMC5322899 DOI: 10.1371/journal.pone.0172476] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/05/2017] [Indexed: 02/06/2023] Open
Abstract
Ccr4 is a major cytoplasmic deadenylase involved in mRNA poly(A) tail shortening in Saccharomyces cerevisiae. We have previously shown that Ccr4 negatively regulates expression of LRG1 mRNA encoding a GTPase-activating protein for the small GTPase Rho1, a component of cell wall integrity pathway, and deletion of LRG1 suppresses the temperature-sensitive growth defect of the ccr4Δ mutant. We have also shown that the slow growth of the ccr4Δ mutant is suppressed by deletion of another gene, PBP1, encoding a poly(A)-binding protein (Pab1)-binding protein 1; however, the underlying mechanism still remains unknown. In this study, we investigated how ccr4Δ and pbp1Δ mutations influence on the length of poly(A) tail and LRG1 mRNA and protein levels during long-term cultivation. In the log-phase ccr4Δ mutant cells, LRG1 poly(A) tail was longer and LRG1 mRNA level was higher than those in the log-phase wild-type (WT) cells. Unexpectedly, Lrg1 protein level in the ccr4Δ mutant cells was comparable with that in WT. In the stationary-phase ccr4Δ mutant cells, LRG1 poly(A) tail length was still longer and LRG1 mRNA level was still higher than those in WT cells. In contrast to the log phase, Lrg1 protein level in the stationary-phase ccr4Δ mutant cells was maintained much higher than that in the stationary-phase WT cells. Consistently, active translating ribosomes still remained abundant in the stationary-phase ccr4Δ mutant cells, whereas they were strongly decreased in the stationary-phase WT cells. Loss of PBP1 reduced the LRG1 poly(A) tail length as well as LRG1 mRNA and protein levels in the stationary-phase ccr4Δ mutant cells. Our results suggest that Ccr4 regulates not only LRG1 mRNA level through poly(A) shortening but also the translation of LRG1 mRNA, and that Pbp1 is involved in the Ccr4-mediated regulation of mRNA stability and translation.
Collapse
Affiliation(s)
- Duong Long Duy
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yasuyuki Suda
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Live Cell Super-resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan
| | - Kenji Irie
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- * E-mail:
| |
Collapse
|
40
|
Bian Q, Cahan P. Computational Tools for Stem Cell Biology. Trends Biotechnol 2016; 34:993-1009. [PMID: 27318512 PMCID: PMC5116400 DOI: 10.1016/j.tibtech.2016.05.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 12/30/2022]
Abstract
For over half a century, the field of developmental biology has leveraged computation to explore mechanisms of developmental processes. More recently, computational approaches have been critical in the translation of high throughput data into knowledge of both developmental and stem cell biology. In the past several years, a new subdiscipline of computational stem cell biology has emerged that synthesizes the modeling of systems-level aspects of stem cells with high-throughput molecular data. In this review, we provide an overview of this new field and pay particular attention to the impact that single cell transcriptomics is expected to have on our understanding of development and our ability to engineer cell fate.
Collapse
Affiliation(s)
- Qin Bian
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Patrick Cahan
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
41
|
Lou TF, Weidmann CA, Killingsworth J, Tanaka Hall TM, Goldstrohm AC, Campbell ZT. Integrated analysis of RNA-binding protein complexes using in vitro selection and high-throughput sequencing and sequence specificity landscapes (SEQRS). Methods 2016; 118-119:171-181. [PMID: 27729296 DOI: 10.1016/j.ymeth.2016.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 10/20/2022] Open
Abstract
RNA-binding proteins (RBPs) collaborate to control virtually every aspect of RNA function. Tremendous progress has been made in the area of global assessment of RBP specificity using next-generation sequencing approaches both in vivo and in vitro. Understanding how protein-protein interactions enable precise combinatorial regulation of RNA remains a significant problem. Addressing this challenge requires tools that can quantitatively determine the specificities of both individual proteins and multimeric complexes in an unbiased and comprehensive way. One approach utilizes in vitro selection, high-throughput sequencing, and sequence-specificity landscapes (SEQRS). We outline a SEQRS experiment focused on obtaining the specificity of a multi-protein complex between Drosophila RBPs Pumilio (Pum) and Nanos (Nos). We discuss the necessary controls in this type of experiment and examine how the resulting data can be complemented with structural and cell-based reporter assays. Additionally, SEQRS data can be integrated with functional genomics data to uncover biological function. Finally, we propose extensions of the technique that will enhance our understanding of multi-protein regulatory complexes assembled onto RNA.
Collapse
Affiliation(s)
- Tzu-Fang Lou
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, United States
| | - Chase A Weidmann
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Jordan Killingsworth
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States
| | - Aaron C Goldstrohm
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, United States; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Zachary T Campbell
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, United States.
| |
Collapse
|
42
|
Different Regulations of ROM2 and LRG1 Expression by Ccr4, Pop2, and Dhh1 in the Saccharomyces cerevisiae Cell Wall Integrity Pathway. mSphere 2016; 1:mSphere00250-16. [PMID: 27704052 PMCID: PMC5040787 DOI: 10.1128/msphere.00250-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 09/09/2016] [Indexed: 11/25/2022] Open
Abstract
We find here that Ccr4, Pop2, and Dhh1 modulate the levels of mRNAs for specific Rho1 regulators, Rom2 and Lrg1. In budding yeast, Rho1 activity is tightly regulated both temporally and spatially. It is anticipated that Ccr4, Pop2, and Dhh1 may contribute to the precise spatiotemporal control of Rho1 activity by regulating expression of its regulators temporally and spatially. Our finding on the roles of the components of the Ccr4-Not complex in yeast would give important information for understanding the roles of the evolutionary conserved Ccr4-Not complex. Ccr4, a component of the Ccr4-Not cytoplasmic deadenylase complex, is known to be required for the cell wall integrity (CWI) pathway in the budding yeast Saccharomyces cerevisiae. However, it is not fully understood how Ccr4 and other components of the Ccr4-Not complex regulate the CWI pathway. Previously, we showed that Ccr4 functions in the CWI pathway together with Khd1 RNA binding protein. Ccr4 and Khd1 modulate a signal from Rho1 small GTPase in the CWI pathway by regulating the expression of ROM2 mRNA and LRG1 mRNA, encoding a guanine nucleotide exchange factor (GEF) and a GTPase-activating protein (GAP) for Rho1, respectively. Here we examined the possible involvement of the POP2 gene encoding a subunit of the Ccr4-Not complex and the DHH1 gene encoding a DEAD box RNA helicase that associates with the Ccr4-Not complex in the regulation of ROM2 and LRG1 expression. Neither ROM2 mRNA level nor Rom2 function was impaired by pop2Δ or dhh1Δ mutation. The LRG1 mRNA level was increased in pop2Δ and dhh1Δ mutants, as well as the ccr4Δ mutant, and the growth defects caused by pop2Δ and dhh1Δ mutations were suppressed by lrg1Δ mutation. Our results suggest that LRG1 expression is regulated by Ccr4 together with Pop2 and Dhh1 and that ROM2 expression is regulated by Khd1 and Ccr4, but not by Pop2 and Dhh1. Thus, Rho1 activity in the CWI pathway is precisely controlled by modulation of the mRNA levels for Rho1-GEF Rom2 and Rho1-GAP Lrg1. IMPORTANCE We find here that Ccr4, Pop2, and Dhh1 modulate the levels of mRNAs for specific Rho1 regulators, Rom2 and Lrg1. In budding yeast, Rho1 activity is tightly regulated both temporally and spatially. It is anticipated that Ccr4, Pop2, and Dhh1 may contribute to the precise spatiotemporal control of Rho1 activity by regulating expression of its regulators temporally and spatially. Our finding on the roles of the components of the Ccr4-Not complex in yeast would give important information for understanding the roles of the evolutionary conserved Ccr4-Not complex.
Collapse
|
43
|
Weidmann CA, Qiu C, Arvola RM, Lou TF, Killingsworth J, Campbell ZT, Tanaka Hall TM, Goldstrohm AC. Drosophila Nanos acts as a molecular clamp that modulates the RNA-binding and repression activities of Pumilio. eLife 2016; 5. [PMID: 27482653 PMCID: PMC4995099 DOI: 10.7554/elife.17096] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/01/2016] [Indexed: 01/03/2023] Open
Abstract
Collaboration among the multitude of RNA-binding proteins (RBPs) is ubiquitous, yet our understanding of these key regulatory complexes has been limited to single RBPs. We investigated combinatorial translational regulation by Drosophila Pumilio (Pum) and Nanos (Nos), which control development, fertility, and neuronal functions. Our results show how the specificity of one RBP (Pum) is modulated by cooperative RNA recognition with a second RBP (Nos) to synergistically repress mRNAs. Crystal structures of Nos-Pum-RNA complexes reveal that Nos embraces Pum and RNA, contributes sequence-specific contacts, and increases Pum RNA-binding affinity. Nos shifts the recognition sequence and promotes repression complex formation on mRNAs that are not stably bound by Pum alone, explaining the preponderance of sub-optimal Pum sites regulated in vivo. Our results illuminate the molecular mechanism of a regulatory switch controlling crucial gene expression programs, and provide a framework for understanding how the partnering of RBPs evokes changes in binding specificity that underlie regulatory network dynamics. DOI:http://dx.doi.org/10.7554/eLife.17096.001 Molecules of DNA contain the instructions needed to make proteins inside cells. Proteins perform many different roles and each needs to be produced at the right time and in the right amounts to enable the cells to survive. The DNA is first copied to make molecules of ribonucleic acid (RNA), which are then used as templates to make the proteins. One way to control protein production is to regulate the RNA molecules. A family of proteins called RNA-binding proteins can recognise and bind to specific RNA molecules and determine whether a RNA molecule is destroyed, used to produce proteins, or stored for later use. In effect, these RNA-binding proteins act as switches that turn protein production on or off. Nanos and Pumilio are two RNA-binding proteins that are found in many organisms, including humans and other animals. Genetic studies in fruit flies show that these two proteins influence development, the nervous system and the behaviour of stem cells by switching off the production of certain proteins. To investigate how Nanos and Pumilio work together to regulate protein production, Weidmann, Qiu et al. used a variety of techniques to study the activity of these proteins in cells taken from fruit fly embryos. The experiments reveal that Nanos acts like a clamp to hold Pumilio close to specific RNAs, which allows Pumilio to switch off the production of the corresponding proteins. The presence of Nanos allows Pumilio to regulate RNAs that it cannot bind to alone. Therefore, the experiments show that by working together with Nanos, Pumilio is able to regulate a wider variety of RNAs than it would otherwise be able to. These findings provide a molecular understanding for why fruit fly mutants that lack Nanos or Pumilio have severe body defects and reduced fertility. The next challenge is to identify the specific RNAs targeted by Nanos and Pumilio in stem cells, the nervous system and during development. DOI:http://dx.doi.org/10.7554/eLife.17096.002
Collapse
Affiliation(s)
- Chase A Weidmann
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Chen Qiu
- Epigenetics and Stem Cell Biology Laboratory, National Institutes of Health, Research Triangle Park, United States.,National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - René M Arvola
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Tzu-Fang Lou
- Department of Biological Sciences, University of Texas at Dallas, Richardson, United States
| | - Jordan Killingsworth
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Zachary T Campbell
- Department of Biological Sciences, University of Texas at Dallas, Richardson, United States
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institutes of Health, Research Triangle Park, United States.,National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - Aaron C Goldstrohm
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, United States
| |
Collapse
|
44
|
Prasad A, Porter DF, Kroll-Conner PL, Mohanty I, Ryan AR, Crittenden SL, Wickens M, Kimble J. The PUF binding landscape in metazoan germ cells. RNA (NEW YORK, N.Y.) 2016; 22:1026-43. [PMID: 27165521 PMCID: PMC4911911 DOI: 10.1261/rna.055871.116] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 04/14/2016] [Indexed: 05/09/2023]
Abstract
PUF (Pumilio/FBF) proteins are RNA-binding proteins and conserved stem cell regulators. The Caenorhabditis elegans PUF proteins FBF-1 and FBF-2 (collectively FBF) regulate mRNAs in germ cells. Without FBF, adult germlines lose all stem cells. A major gap in our understanding of PUF proteins, including FBF, is a global view of their binding sites in their native context (i.e., their "binding landscape"). To understand the interactions underlying FBF function, we used iCLIP (individual-nucleotide resolution UV crosslinking and immunoprecipitation) to determine binding landscapes of C. elegans FBF-1 and FBF-2 in the germline tissue of intact animals. Multiple iCLIP peak-calling methods were compared to maximize identification of both established FBF binding sites and positive control target mRNAs in our iCLIP data. We discovered that FBF-1 and FBF-2 bind to RNAs through canonical as well as alternate motifs. We also analyzed crosslinking-induced mutations to map binding sites precisely and to identify key nucleotides that may be critical for FBF-RNA interactions. FBF-1 and FBF-2 can bind sites in the 5'UTR, coding region, or 3'UTR, but have a strong bias for the 3' end of transcripts. FBF-1 and FBF-2 have strongly overlapping target profiles, including mRNAs and noncoding RNAs. From a statistically robust list of 1404 common FBF targets, 847 were previously unknown, 154 were related to cell cycle regulation, three were lincRNAs, and 335 were shared with the human PUF protein PUM2.
Collapse
Affiliation(s)
- Aman Prasad
- Department of Biochemistry, and Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Douglas F Porter
- Department of Biochemistry, and Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Peggy L Kroll-Conner
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Ipsita Mohanty
- Department of Biochemistry, and Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Anne R Ryan
- Department of Biochemistry, and Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Sarah L Crittenden
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Marvin Wickens
- Department of Biochemistry, and Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Judith Kimble
- Department of Biochemistry, and Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
45
|
de Beauchene IC, de Vries SJ, Zacharias M. Fragment-based modelling of single stranded RNA bound to RNA recognition motif containing proteins. Nucleic Acids Res 2016; 44:4565-80. [PMID: 27131381 PMCID: PMC4889956 DOI: 10.1093/nar/gkw328] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/12/2016] [Indexed: 12/12/2022] Open
Abstract
Protein-RNA complexes are important for many biological processes. However, structural modeling of such complexes is hampered by the high flexibility of RNA. Particularly challenging is the docking of single-stranded RNA (ssRNA). We have developed a fragment-based approach to model the structure of ssRNA bound to a protein, based on only the protein structure, the RNA sequence and conserved contacts. The conformational diversity of each RNA fragment is sampled by an exhaustive library of trinucleotides extracted from all known experimental protein–RNA complexes. The method was applied to ssRNA with up to 12 nucleotides which bind to dimers of the RNA recognition motifs (RRMs), a highly abundant eukaryotic RNA-binding domain. The fragment based docking allows a precise de novo atomic modeling of protein-bound ssRNA chains. On a benchmark of seven experimental ssRNA–RRM complexes, near-native models (with a mean heavy-atom deviation of <3 Å from experiment) were generated for six out of seven bound RNA chains, and even more precise models (deviation < 2 Å) were obtained for five out of seven cases, a significant improvement compared to the state of the art. The method is not restricted to RRMs but was also successfully applied to Pumilio RNA binding proteins.
Collapse
Affiliation(s)
| | - Sjoerd J de Vries
- Physics Department T38, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Martin Zacharias
- Physics Department T38, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
46
|
Verma-Gaur J, Traven A. Post-transcriptional gene regulation in the biology and virulence of Candida albicans. Cell Microbiol 2016; 18:800-6. [PMID: 26999710 PMCID: PMC5074327 DOI: 10.1111/cmi.12593] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/28/2016] [Accepted: 03/16/2016] [Indexed: 11/27/2022]
Abstract
In the human fungal pathogen Candida albicans, remodelling of gene expression drives host adaptation and virulence. Recent studies revealed that in addition to transcription, post‐transcriptional mRNA control plays important roles in virulence‐related pathways. Hyphal morphogenesis, biofilm formation, stress responses, antifungal drug susceptibility and virulence in animal models require post‐transcriptional regulators. This includes RNA binding proteins that control mRNA localization, decay and translation, as well as the cytoplasmic mRNA decay pathway. Comprehensive understanding of how modulation of gene expression networks drives C. albicans virulence will necessitate integration of our knowledge on transcriptional and post‐transcriptional mRNA control.
Collapse
Affiliation(s)
- Jiyoti Verma-Gaur
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ana Traven
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
47
|
Hodko D, Ward T, Chanfreau G. The Rtr1p CTD phosphatase autoregulates its mRNA through a degradation pathway involving the REX exonucleases. RNA (NEW YORK, N.Y.) 2016; 22:559-570. [PMID: 26843527 PMCID: PMC4793211 DOI: 10.1261/rna.055723.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
Rtr1p is a phosphatase that impacts gene expression by modulating the phosphorylation status of the C-terminal domain of the large subunit of RNA polymerase II. Here, we show that Rtr1p is a component of a novel mRNA degradation pathway that promotes its autoregulation through turnover of its own mRNA. We show that the 3'UTR of the RTR1 mRNA contains a cis element that destabilizes this mRNA. RTR1 mRNA turnover is achieved through binding of Rtr1p to the RTR1 mRNP in a manner that is dependent on this cis element. Genetic evidence shows that Rtr1p-mediated decay of the RTR1 mRNA involves the 5'-3' DExD/H-box RNA helicase Dhh1p and the 3'-5' exonucleases Rex2p and Rex3p. Rtr1p and Rex3p are found associated with Dhh1p, suggesting a model for recruiting the REX exonucleases to the RTR1 mRNA for degradation. Rtr1p-mediated decay potentially impacts additional transcripts, including the unspliced BMH2 pre-mRNA. We propose that Rtr1p may imprint its RNA targets cotranscriptionally and determine their downstream degradation mechanism by directing these transcripts to a novel turnover pathway that involves Rtr1p, Dhh1p, and the REX family of exonucleases.
Collapse
Affiliation(s)
- Domagoj Hodko
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Taylor Ward
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Guillaume Chanfreau
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, USA Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
48
|
De-coding and re-coding RNA recognition by PUF and PPR repeat proteins. Curr Opin Struct Biol 2016; 36:116-21. [PMID: 26874972 DOI: 10.1016/j.sbi.2016.01.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 11/22/2022]
Abstract
PUF and PPR proteins are two families of α-helical repeat proteins that recognize single-stranded RNA sequences. Both protein families hold promise as scaffolds for designed RNA-binding domains. A modular protein RNA recognition code was apparent from the first crystal structures of a PUF protein in complex with RNA, and recent studies continue to advance our understanding of natural PUF protein recognition (de-coding) and our ability to engineer specificity (re-coding). Degenerate recognition motifs make de-coding specificity of individual PPR proteins challenging. Nevertheless, re-coding PPR protein specificity using a consensus recognition code has been successful.
Collapse
|
49
|
Protein-RNA networks revealed through covalent RNA marks. Nat Methods 2015; 12:1163-70. [PMID: 26524240 PMCID: PMC4707952 DOI: 10.1038/nmeth.3651] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/05/2015] [Indexed: 12/29/2022]
Abstract
Protein-RNA networks are ubiquitous and central in biological control. We present an approach, termed “RNA Tagging,” that identifies protein-RNA interactions in vivo by analyzing purified cellular RNA, without protein purification or crosslinking. An RNA-binding protein of interest is fused to an enzyme that adds uridines to the end of RNA. RNA targets bound by the chimeric protein in vivo are covalently marked with uridines and subsequently identified from extracted RNA using high-throughput sequencing. We used this approach to identify hundreds of RNAs bound by a Saccharomyces cerevisiae PUF protein, Puf3p. The method revealed that while RNA-binding proteins productively bind specific RNAs to control their function, they also “sample” RNAs without exerting a regulatory effect. We exploited the method to uncover hundreds of new and likely regulated targets for a protein without canonical RNA-binding domains, Bfr1p. The RNA Tagging approach is well-suited to detect and analyze protein-RNA networks in vivo.
Collapse
|