1
|
Zheliuk O, Kreminska Y, Fu Q, Pizzirani D, Ammerlaan ELQN, Wang Y, Hameed S, Wan P, Peng X, Wiedmann S, Liu Z, Ye J, Zeitler U. Quantum Hall effect in a CVD-grown oxide. Nat Commun 2024; 15:10052. [PMID: 39567480 PMCID: PMC11579032 DOI: 10.1038/s41467-024-54014-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
Two-dimensional (2D) electron systems are promising for investigating correlated quantum phenomena. In particular, 2D oxides provide a platform that can host various quantum phases such as quantized Hall effect, superconductivity, or magnetism. The realization of such quantum phases in 2D oxides heavily relies on dedicated heterostructure growths. Here we show the integer quantum Hall effect achieved in chemical vapor deposition grown Bi2O2Se - a representative member of a more accessible oxide family. A single or few subband 2D electron system can be prepared in thin films of Bi2O2Se, where the film thickness acts as the key subband design parameter and the occupation is determined by the electric field effect. This oxide platform exhibits characteristic advantages in structural flexibility due to its layered nature, making it suitable for scalable growth. The unique small mass distinguishes Bi2O2Se from other high-mobility oxides, providing a new platform for exploring quantum Hall physics in 2D oxides.
Collapse
Grants
- HFML-RU/NWO-I, member of the European Magnetic Field Laboratory. Research program number 184.035.011 “HFML-FELIX: A Dutch Centre of Excellence for Science under Extreme Conditions” funded by the Dutch Research Council (NWO).
- Bonus Incentive Scheme, ZIAM, University of Groningen
- Project TOPCORE (project number OCENW.GROOT.2019.048) of the research program Open Competition ENW Groot, partly financed by the Dutch Research Council, and the research program ‘Materials for the Quantum Age’ (QuMat, registration number 024.005.006), part of the Gravitation program funded by the Dutch Ministry of Education, Culture and Science.
- NTU Dual Doctoral Program in Materials and Nanoscience/Engineering
- UOM, Pakistan Scholarship Program
- project TOPCORE (project number OCENW.GROOT.2019.048) of the research program Open Competition ENW Groot, partly financed by the Dutch Research Council, and the research program ‘Materials for the Quantum Age’ (QuMat, registration number 024.005.006), part of the Gravitation program funded by the Dutch Ministry of Education, Culture and Science.
Collapse
Affiliation(s)
- Oleksandr Zheliuk
- High Field Magnet Laboratory (HFML-EMFL), Radboud University, Nijmegen, The Netherlands.
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| | - Yuliia Kreminska
- Device Physics of Complex Materials, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Qundong Fu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Davide Pizzirani
- High Field Magnet Laboratory (HFML-EMFL), Radboud University, Nijmegen, The Netherlands
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Emily L Q N Ammerlaan
- High Field Magnet Laboratory (HFML-EMFL), Radboud University, Nijmegen, The Netherlands
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Ying Wang
- Device Physics of Complex Materials, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Sardar Hameed
- Device Physics of Complex Materials, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
- Department of Physics, University of Malakand, Malakand, Pakistan
| | - Puhua Wan
- Device Physics of Complex Materials, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Xiaoli Peng
- Device Physics of Complex Materials, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Steffen Wiedmann
- High Field Magnet Laboratory (HFML-EMFL), Radboud University, Nijmegen, The Netherlands
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jianting Ye
- Device Physics of Complex Materials, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.
| | - Uli Zeitler
- High Field Magnet Laboratory (HFML-EMFL), Radboud University, Nijmegen, The Netherlands.
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Wójcik P, Szafran B, Czarnecki J, Citro R, Zegrodnik M. Effect of electrostatic confinement on the dome-shaped superconducting phase diagram at the LaAlO 3/SrTiO 3 interface. Sci Rep 2024; 14:26177. [PMID: 39478102 PMCID: PMC11525793 DOI: 10.1038/s41598-024-77460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
The two-dimensional electron gas (2DEG) at the LaAlO[Formula: see text]/SrTiO[Formula: see text] (LAO/STO) interface exhibits gate-tunable superconductivity with a dome-like shape of critical temperature as a function of electron concentration. This behavior has not been unambiguously explained yet. Here, we develop a microscopic model based on the Schrödinger-Poisson approach to determine the electronic structure of the LAO/STO 2DEG, which we then apply to study the principal characteristics of the superconducting phase within the real-space pairing mean-field approach. For the electron concentrations reported in the experiment, we successfully reproduce the dome-like shape of the superconducting gap. According to our analysis such behavior results from the interplay between the Fermi surface topology and the gap symmetry, with the dominant extended s-wave contribution. Similarly as in the experimental report, we observe a bifurcation effect in the superconducting gap dependence on the electron density when the 2DEG is electrostatically doped either with the top gate or the bottom gate. Our findings explains the dome-shaped phase diagram of the considered heterostucture with good agreement with the experimental data which, in turn, strongly suggest the appearance of the extended s-wave symmetry of the gap in 2DEG at the LAO/STO interface.
Collapse
Affiliation(s)
- Paweł Wójcik
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Al. Mickiewicza 30, 30-059, Krakow, Poland.
| | - Bartłomiej Szafran
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Al. Mickiewicza 30, 30-059, Krakow, Poland
| | - Julian Czarnecki
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Al. Mickiewicza 30, 30-059, Krakow, Poland
| | - Roberta Citro
- Department of Physics E. R. Caianiello, University of Salerno and CNR-SPIN, Via Giovanni Paolo II 132, Fisciano, SA, Italy
| | - Michał Zegrodnik
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Al. Mickiewicza 30, 30-059, Krakow, Poland
| |
Collapse
|
3
|
Liu Y, Meng Q, Mahmoudi P, Wang Z, Zhang J, Yang J, Li W, Wang D, Li Z, Sorrell CC, Li S. Advancing Superconductivity with Interface Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405009. [PMID: 39104281 DOI: 10.1002/adma.202405009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/01/2024] [Indexed: 08/07/2024]
Abstract
The development of superconducting materials has attracted significant attention not only for their improved performance, such as high transition temperature (TC), but also for the exploration of their underlying physical mechanisms. Recently, considerable efforts have been focused on interfaces of materials, a distinct category capable of inducing superconductivity at non-superconducting material interfaces or augmenting the TC at the interface between a superconducting material and a non-superconducting material. Here, two distinct types of interfaces along with their unique characteristics are reviewed: interfacial superconductivity and interface-enhanced superconductivity, with a focus on the crucial factors and potential mechanisms responsible for enhancing superconducting performance. A series of materials systems is discussed, encompassing both historical developments and recent progress from the perspectives of technical innovations and the exploration of new material classes. The overarching goal is to illuminate pathways toward achieving high TC, expanding the potential of superconducting parameters across interfaces, and propelling superconductivity research toward practical, high-temperature applications.
Collapse
Affiliation(s)
- Yichen Liu
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Qingxiao Meng
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Pezhman Mahmoudi
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Ziyi Wang
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Ji Zhang
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Jack Yang
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Wenxian Li
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Danyang Wang
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Zhi Li
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Charles C Sorrell
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Sean Li
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| |
Collapse
|
4
|
Zhang X, Zhu T, Zhang S, Chen Z, Song A, Zhang C, Gao R, Niu W, Chen Y, Fei F, Tai Y, Li G, Ge B, Lou W, Shen J, Zhang H, Chang K, Song F, Zhang R, Wang X. Light-induced giant enhancement of nonreciprocal transport at KTaO 3-based interfaces. Nat Commun 2024; 15:2992. [PMID: 38582768 PMCID: PMC10998845 DOI: 10.1038/s41467-024-47231-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/25/2024] [Indexed: 04/08/2024] Open
Abstract
Nonlinear transport is a unique functionality of noncentrosymmetric systems, which reflects profound physics, such as spin-orbit interaction, superconductivity and band geometry. However, it remains highly challenging to enhance the nonreciprocal transport for promising rectification devices. Here, we observe a light-induced giant enhancement of nonreciprocal transport at the superconducting and epitaxial CaZrO3/KTaO3 (111) interfaces. The nonreciprocal transport coefficient undergoes a giant increase with three orders of magnitude up to 105 A-1 T-1. Furthermore, a strong Rashba spin-orbit coupling effective field of 14.7 T is achieved with abundant high-mobility photocarriers under ultraviolet illumination, which accounts for the giant enhancement of nonreciprocal transport coefficient. Our first-principles calculations further disclose the stronger Rashba spin-orbit coupling strength and the longer relaxation time in the photocarrier excitation process, bridging the light-property quantitative relationship. Our work provides an alternative pathway to boost nonreciprocal transport in noncentrosymmetric systems and facilitates the promising applications in opto-rectification devices and spin-orbitronic devices.
Collapse
Affiliation(s)
- Xu Zhang
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, State Key Laboratory of Spintronics Devices and Technologies, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Tongshuai Zhu
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
- College of Science, China University of Petroleum (East China), Qingdao, 266580, China
| | - Shuai Zhang
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Zhongqiang Chen
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, State Key Laboratory of Spintronics Devices and Technologies, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Anke Song
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, State Key Laboratory of Spintronics Devices and Technologies, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Chong Zhang
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, State Key Laboratory of Spintronics Devices and Technologies, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Rongzheng Gao
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, State Key Laboratory of Spintronics Devices and Technologies, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Wei Niu
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, State Key Laboratory of Spintronics Devices and Technologies, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Yequan Chen
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, State Key Laboratory of Spintronics Devices and Technologies, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Fucong Fei
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Yilin Tai
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Guoan Li
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Binghui Ge
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Wenkai Lou
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Jie Shen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Haijun Zhang
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Kai Chang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Fengqi Song
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China.
| | - Rong Zhang
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, State Key Laboratory of Spintronics Devices and Technologies, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.
- Department of Physics, Xiamen University, Xiamen, 361005, China.
| | - Xuefeng Wang
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, State Key Laboratory of Spintronics Devices and Technologies, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
5
|
Tuvia G, Burshtein A, Silber I, Aharony A, Entin-Wohlman O, Goldstein M, Dagan Y. Enhanced Nonlinear Response by Manipulating the Dirac Point at the (111) LaTiO_{3}/SrTiO_{3} Interface. PHYSICAL REVIEW LETTERS 2024; 132:146301. [PMID: 38640380 DOI: 10.1103/physrevlett.132.146301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/01/2024] [Indexed: 04/21/2024]
Abstract
Tunable spin-orbit interaction (SOI) is an important feature for future spin-based devices. In the presence of a magnetic field, SOI induces an asymmetry in the energy bands, which can produce nonlinear transport effects (V∼I^{2}). Here, we focus on such effects to study the role of SOI in the (111) LaTiO_{3}/SrTiO_{3} interface. This system is a convenient platform for understanding the role of SOI since it exhibits a single-band Hall response through the entire gate-voltage range studied. We report a pronounced rise in the nonlinear longitudinal resistance at a critical in-plane field H_{cr}. This rise disappears when a small out-of-plane field component is present. We explain these results by considering the location of the Dirac point formed at the crossing of the spin-split energy bands. An in-plane magnetic field pushes this point outside of the Fermi contour, and consequently changes the symmetry of the Fermi contours and intensifies the nonlinear transport. An out-of-plane magnetic field opens a gap at the Dirac point, thereby significantly diminishing the nonlinear effects. We propose that magnetoresistance effects previously reported in interfaces with SOI could be comprehended within our suggested scenario.
Collapse
Affiliation(s)
- G Tuvia
- School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - A Burshtein
- School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - I Silber
- School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - A Aharony
- School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - O Entin-Wohlman
- School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - M Goldstein
- School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Y Dagan
- School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
6
|
Omar GJ, Kong WL, Jani H, Li MS, Zhou J, Lim ZS, Prakash S, Zeng SW, Hooda S, Venkatesan T, Feng YP, Pennycook SJ, Shen L, Ariando A. Experimental Evidence of t_{2g} Electron-Gas Rashba Interaction Induced by Asymmetric Orbital Hybridization. PHYSICAL REVIEW LETTERS 2022; 129:187203. [PMID: 36374676 DOI: 10.1103/physrevlett.129.187203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
We report the control of Rashba spin-orbit interaction by tuning asymmetric hybridization between Ti orbitals at the LaAlO_{3}/SrTiO_{3} interface. This asymmetric orbital hybridization is modulated by introducing a LaFeO_{3} layer between LaAlO_{3} and SrTiO_{3}, which alters the Ti-O lattice polarization and traps interfacial charge carriers, resulting in a large Rashba spin-orbit effect at the interface in the absence of an external bias. This observation is verified through high-resolution electron microscopy, magnetotransport and first-principles calculations. Our results open hitherto unexplored avenues of controlling Rashba interaction to design next-generation spin orbitronics.
Collapse
Affiliation(s)
- G J Omar
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - W L Kong
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - H Jani
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - M S Li
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575
| | - J Zhou
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Z S Lim
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - S Prakash
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - S W Zeng
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - S Hooda
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - T Venkatesan
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Y P Feng
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - S J Pennycook
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575
| | - L Shen
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - A Ariando
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| |
Collapse
|
7
|
Niu W, Fang YW, Liu R, Wu Z, Chen Y, Gan Y, Zhang X, Zhu C, Wang L, Xu Y, Pu Y, Chen Y, Wang X. Fully Optical Modulation of the Two-Dimensional Electron Gas at the γ-Al 2O 3/SrTiO 3 Interface. J Phys Chem Lett 2022; 13:2976-2985. [PMID: 35343699 DOI: 10.1021/acs.jpclett.2c00384] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional electron gas (2DEG) formed at the heterointerface between two oxide insulators hosts plenty of emergent phenomena and provides new opportunities for electronics and photoelectronics. However, despite being long sought after, on-demand properties controlled through a fully optical illumination remain far from being explored. Herein, a giant tunability of the 2DEG at the interface of γ-Al2O3/SrTiO3 through a fully optical gating is discovered. Specifically, photon-generated carriers lead to a delicate tunability of the carrier density and the underlying electronic structure, which is accompanied by the remarkable Lifshitz transition. Moreover, the 2DEG can be optically tuned to possess a maximum Rashba spin-orbit coupling, particularly at the crossing region of the sub-bands with different symmetries. First-principles calculations essentially well explain the optical modulation of γ-Al2O3/SrTiO3. Our fully optical gating opens a new pathway for manipulating emergent properties of the 2DEGs and is promising for on-demand photoelectric devices.
Collapse
Affiliation(s)
- Wei Niu
- New Energy Technology Engineering Laboratory of Jiangsu Province and School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Yue-Wen Fang
- Laboratory for Materials and Structures and Tokyo Tech World Research Hub Initiative (WRHI), Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- NYU-ECNU Institute of Physics, New York University Shanghai, Shanghai 200122, China
| | - Ruxin Liu
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Zhenqi Wu
- New Energy Technology Engineering Laboratory of Jiangsu Province and School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yongda Chen
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Yulin Gan
- Beijing National Laboratory for Condensed Matter and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoqian Zhang
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chunhui Zhu
- College of Physics, Hebei Normal University, Shijiazhuang 050024, China
| | - Lixia Wang
- New Energy Technology Engineering Laboratory of Jiangsu Province and School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yongbing Xu
- New Energy Technology Engineering Laboratory of Jiangsu Province and School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Yong Pu
- New Energy Technology Engineering Laboratory of Jiangsu Province and School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yunzhong Chen
- Beijing National Laboratory for Condensed Matter and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuefeng Wang
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
8
|
On the Superconducting Critical Temperature of Heavily Disordered Interfaces Hosting Multi-Gap Superconductivity. COATINGS 2021. [DOI: 10.3390/coatings12010030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
LaAlO3/SrTiO3 interfaces are a nice example of a two-dimensional electron gas, whose carrier density can be varied by top- and back-gating techniques. Due to the electron confinement near the interface, the two-dimensional band structure is split into sub-bands, and more than one sub-band can be filled when the carrier density increases. These interfaces also host superconductivity, and the interplay of two-dimensionality, multi-band character, with the possible occurrence of multi-gap superconductivity and disorder calls for a better understanding of finite-bandwidth effects on the superconducting critical temperature of heavily disordered multi-gap superconductors.
Collapse
|
9
|
Tuvia G, Frenkel Y, Rout PK, Silber I, Kalisky B, Dagan Y. Ferroelectric Exchange Bias Affects Interfacial Electronic States. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000216. [PMID: 32510654 DOI: 10.1002/adma.202000216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/20/2020] [Indexed: 06/11/2023]
Abstract
In polar oxide interfaces phenomena such as superconductivity, magnetism, 1D conductivity, and quantum Hall states can emerge at the polar discontinuity. Combining controllable ferroelectricity at such interfaces can affect the superconducting properties and sheds light on the mutual effects between the polar oxide and the ferroelectric oxide. Here, the interface between the polar oxide LaAlO3 and the ferroelectric Ca-doped SrTiO3 is studied by means of electrical transport combined with local imaging of the current flow with the use of scanning a superconducting quantum interference device (SQUID). Anomalous behavior of the interface resistivity is observed at low temperatures. The scanning SQUID maps of the current flow suggest that this behavior originates from an intrinsic bias induced by the polar LaAlO3 layer. Such intrinsic bias combined with ferroelectricity can constrain the possible structural domain tiling near the interface. The use of this intrinsic bias is recommended as a method of controlling and tuning the initial state of ferroelectric materials by the design of the polar structure. The hysteretic dependence of the normal and the superconducting state properties on gate voltage can be utilized in multifaceted controllable memory devices.
Collapse
Affiliation(s)
- Gal Tuvia
- Raymond and Beverly Sackler School of Physics, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Yiftach Frenkel
- Department of Physics and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Prasanna K Rout
- Raymond and Beverly Sackler School of Physics, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Itai Silber
- Raymond and Beverly Sackler School of Physics, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Beena Kalisky
- Department of Physics and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Yoram Dagan
- Raymond and Beverly Sackler School of Physics, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
10
|
Khanna U, Rout PK, Mograbi M, Tuvia G, Leermakers I, Zeitler U, Dagan Y, Goldstein M. Symmetry and Correlation Effects on Band Structure Explain the Anomalous Transport Properties of (111) LaAlO_{3}/SrTiO_{3}. PHYSICAL REVIEW LETTERS 2019; 123:036805. [PMID: 31386445 DOI: 10.1103/physrevlett.123.036805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Indexed: 06/10/2023]
Abstract
The interface between the two insulating oxides SrTiO_{3} and LaAlO_{3} gives rise to a two-dimensional electron system with intriguing transport phenomena, including superconductivity, which are controllable by a gate. Previous measurements on the (001) interface have shown that the superconducting critical temperature, the Hall density, and the frequency of quantum oscillations, vary nonmonotonically and in a correlated fashion with the gate voltage. In this Letter we experimentally demonstrate that the (111) interface features a qualitatively distinct behavior, in which the frequency of Shubnikov-de Haas oscillations changes monotonically, while the variation of other properties is nonmonotonic albeit uncorrelated. We develop a theoretical model, incorporating the different symmetries of these interfaces as well as electronic-correlation-induced band competition. We show that the latter dominates at (001), leading to similar nonmonotonicity in all observables, while the former is more important at (111), giving rise to highly curved Fermi contours, and accounting for all its anomalous transport measurements.
Collapse
Affiliation(s)
- Udit Khanna
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel Aviv, 6997801, Israel
| | - P K Rout
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel Aviv, 6997801, Israel
| | - Michael Mograbi
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel Aviv, 6997801, Israel
| | - Gal Tuvia
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel Aviv, 6997801, Israel
| | - Inge Leermakers
- High Field Magnet Laboratory (HFML-EFML), Radboud University, 6525 ED Nijmegen, Netherlands
| | - Uli Zeitler
- High Field Magnet Laboratory (HFML-EFML), Radboud University, 6525 ED Nijmegen, Netherlands
| | - Yoram Dagan
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel Aviv, 6997801, Israel
| | - Moshe Goldstein
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
11
|
Manca N, Bothner D, Monteiro AMRVL, Davidovikj D, Sağlam YG, Jenkins M, Gabay M, Steele GA, Caviglia AD. Bimodal Phase Diagram of the Superfluid Density in LaAlO_{3}/SrTiO_{3} Revealed by an Interfacial Waveguide Resonator. PHYSICAL REVIEW LETTERS 2019; 122:036801. [PMID: 30735404 DOI: 10.1103/physrevlett.122.036801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Indexed: 06/09/2023]
Abstract
We explore the superconducting phase diagram of the two-dimensional electron system at the LaAlO_{3}/SrTiO_{3} interface by monitoring the frequencies of the cavity modes of a coplanar waveguide resonator fabricated in the interface itself. We determine the phase diagram of the superconducting transition as a function of the temperature and electrostatic gating, finding that both the superfluid density and the transition temperature follow a dome shape but that the two are not monotonically related. The ground state of this two-dimensional electron system is interpreted as a Josephson junction array, where a transition from long- to short-range order occurs as a function of the electronic doping. The synergy between correlated oxides and superconducting circuits is revealed to be a promising route to investigate these exotic compounds, complementary to standard magnetotransport measurements.
Collapse
Affiliation(s)
- Nicola Manca
- Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, Netherlands
| | - Daniel Bothner
- Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, Netherlands
| | - Ana M R V L Monteiro
- Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, Netherlands
| | - Dejan Davidovikj
- Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, Netherlands
| | - Yildiz G Sağlam
- Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, Netherlands
| | - Mark Jenkins
- Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, Netherlands
| | - Marc Gabay
- Laboratoire de Physique des Solides, Universite Paris-Sud and CNRS, Batiment 510, 91450 Orsay, France
| | - Gary A Steele
- Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, Netherlands
| | - Andrea D Caviglia
- Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, Netherlands
| |
Collapse
|
12
|
Wakatsuki R, Nagaosa N. Nonreciprocal Current in Noncentrosymmetric Rashba Superconductors. PHYSICAL REVIEW LETTERS 2018; 121:026601. [PMID: 30085693 DOI: 10.1103/physrevlett.121.026601] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Indexed: 06/08/2023]
Abstract
We study theoretically the nonreciprocal charge transport in two-dimensional noncentrosymmetric superconductors with the Rashba spin-orbit interaction. The resistivity R depends on the current I linearly under the external magnetic field B, i.e., R=R_{0}(1+γBI), which is called the magnetochiral anisotropy. It is found that the coefficient γ is gigantically enhanced by the superconducting fluctuation with the components of both spin singlet and triplet pairings, compared with that in the normal state. This finding offers a method to quantitatively estimate the ratio of the pairing interactions between the singlet and triplet channels including its sign.
Collapse
Affiliation(s)
- Ryohei Wakatsuki
- Department of Applied Physics, University of Tokyo, Hongo 7-3-1, 113-8656, Japan
| | - Naoto Nagaosa
- Department of Applied Physics, University of Tokyo, Hongo 7-3-1, 113-8656, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| |
Collapse
|
13
|
Veit MJ, Arras R, Ramshaw BJ, Pentcheva R, Suzuki Y. Nonzero Berry phase in quantum oscillations from giant Rashba-type spin splitting in LaTiO 3/SrTiO 3 heterostructures. Nat Commun 2018; 9:1458. [PMID: 29654231 PMCID: PMC5899139 DOI: 10.1038/s41467-018-04014-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/26/2018] [Indexed: 11/17/2022] Open
Abstract
The manipulation of the spin degrees of freedom in a solid has been of fundamental and technological interest recently for developing high-speed, low-power computational devices. There has been much work focused on developing highly spin-polarized materials and understanding their behavior when incorporated into so-called spintronic devices. These devices usually require spin splitting with magnetic fields. However, there is another promising strategy to achieve spin splitting using spatial symmetry breaking without the use of a magnetic field, known as Rashba-type splitting. Here we report evidence for a giant Rashba-type splitting at the interface of LaTiO3 and SrTiO3. Analysis of the magnetotransport reveals anisotropic magnetoresistance, weak anti-localization and quantum oscillation behavior consistent with a large Rashba-type splitting. It is surprising to find a large Rashba-type splitting in 3d transition metal oxide-based systems such as the LaTiO3/SrTiO3 interface, but it is promising for the development of a new kind of oxide-based spintronics. Rashba-type splitting is an effective way to manipulate the spin degrees of freedom in a solid without external magnetic field. Here, the authors demonstrate a strong Rashba-type splitting at the interface of LaTiO3 and SrTiO3 which is promising for the development of oxide-based spintronics.
Collapse
Affiliation(s)
- M J Veit
- Department of Applied Physics and Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, 94305, USA.
| | - R Arras
- CEMES, University of Toulouse, CNRS, UPS, 29, rue Jeanne Marvig, 31055, Toulouse, France
| | - B J Ramshaw
- Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.,Laboratory for Atomic and Solid State Physics, Cornell University, Ithaca, NY, 14853, USA
| | - R Pentcheva
- Department of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Lotharstrasse 1, 47057, Duisburg, Germany
| | - Y Suzuki
- Department of Applied Physics and Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
14
|
Pai YY, Tylan-Tyler A, Irvin P, Levy J. Physics of SrTiO 3-based heterostructures and nanostructures: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:036503. [PMID: 29424362 DOI: 10.1088/1361-6633/aa892d] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This review provides a summary of the rich physics expressed within SrTiO3-based heterostructures and nanostructures. The intended audience is researchers who are working in the field of oxides, but also those with different backgrounds (e.g., semiconductor nanostructures). After reviewing the relevant properties of SrTiO3 itself, we will then discuss the basics of SrTiO3-based heterostructures, how they can be grown, and how devices are typically fabricated. Next, we will cover the physics of these heterostructures, including their phase diagram and coupling between the various degrees of freedom. Finally, we will review the rich landscape of quantum transport phenomena, as well as the devices that elicit them.
Collapse
Affiliation(s)
- Yun-Yi Pai
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, United States of America. Pittsburgh Quantum Institute, Pittsburgh, PA 15260, United States of America
| | | | | | | |
Collapse
|
15
|
Singh G, Jouan A, Benfatto L, Couëdo F, Kumar P, Dogra A, Budhani RC, Caprara S, Grilli M, Lesne E, Barthélémy A, Bibes M, Feuillet-Palma C, Lesueur J, Bergeal N. Competition between electron pairing and phase coherence in superconducting interfaces. Nat Commun 2018; 9:407. [PMID: 29379023 PMCID: PMC5789063 DOI: 10.1038/s41467-018-02907-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/08/2018] [Indexed: 11/29/2022] Open
Abstract
In LaAlO3/SrTiO3 heterostructures, a gate tunable superconducting electron gas is confined in a quantum well at the interface between two insulating oxides. Remarkably, the gas coexists with both magnetism and strong Rashba spin-orbit coupling. However, both the origin of superconductivity and the nature of the transition to the normal state over the whole doping range remain elusive. Here we use resonant microwave transport to extract the superfluid stiffness and the superconducting gap energy of the LaAlO3/SrTiO3 interface as a function of carrier density. We show that the superconducting phase diagram of this system is controlled by the competition between electron pairing and phase coherence. The analysis of the superfluid density reveals that only a very small fraction of the electrons condenses into the superconducting state. We propose that this corresponds to the weak filling of high-energy dxz/dyz bands in the quantum well, more apt to host superconductivity.
Collapse
Affiliation(s)
- G Singh
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI Paris, PSL Research University, CNRS, 10 Rue Vauquelin, 75005, Paris, France
- Université Pierre and Marie Curie, Sorbonne-Universités, 75005, Paris, France
| | - A Jouan
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI Paris, PSL Research University, CNRS, 10 Rue Vauquelin, 75005, Paris, France
- Université Pierre and Marie Curie, Sorbonne-Universités, 75005, Paris, France
| | - L Benfatto
- Institute for Complex Systems (ISC-CNR), UOS Sapienza, Piazzale A. Moro 5, 00185, Roma, Italy.
- Dipartimento di Fisica Università di Roma "La Sapienza", Piazzale A. Moro 5, 00185, Roma, Italy.
| | - F Couëdo
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI Paris, PSL Research University, CNRS, 10 Rue Vauquelin, 75005, Paris, France
- Université Pierre and Marie Curie, Sorbonne-Universités, 75005, Paris, France
| | - P Kumar
- National Physical Laboratory, Council of Scientific and Industrial Research (CSIR), Dr. K.S. Krishnan Marg, New Delhi, 110012, India
| | - A Dogra
- National Physical Laboratory, Council of Scientific and Industrial Research (CSIR), Dr. K.S. Krishnan Marg, New Delhi, 110012, India
| | - R C Budhani
- Condensed Matter Low Dimensional Systems Laboratory, Department of Physics, Indian Institute of Technology, Kanpur, 208016, India
| | - S Caprara
- Institute for Complex Systems (ISC-CNR), UOS Sapienza, Piazzale A. Moro 5, 00185, Roma, Italy
- Dipartimento di Fisica Università di Roma "La Sapienza", Piazzale A. Moro 5, 00185, Roma, Italy
| | - M Grilli
- Institute for Complex Systems (ISC-CNR), UOS Sapienza, Piazzale A. Moro 5, 00185, Roma, Italy
- Dipartimento di Fisica Università di Roma "La Sapienza", Piazzale A. Moro 5, 00185, Roma, Italy
| | - E Lesne
- Unité Mixte de Physique CNRS-Thales, 1 Av. A. Fresnel, 91767, Palaiseau, France
| | - A Barthélémy
- Unité Mixte de Physique CNRS-Thales, 1 Av. A. Fresnel, 91767, Palaiseau, France
| | - M Bibes
- Unité Mixte de Physique CNRS-Thales, 1 Av. A. Fresnel, 91767, Palaiseau, France
| | - C Feuillet-Palma
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI Paris, PSL Research University, CNRS, 10 Rue Vauquelin, 75005, Paris, France
- Université Pierre and Marie Curie, Sorbonne-Universités, 75005, Paris, France
| | - J Lesueur
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI Paris, PSL Research University, CNRS, 10 Rue Vauquelin, 75005, Paris, France
- Université Pierre and Marie Curie, Sorbonne-Universités, 75005, Paris, France
| | - N Bergeal
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI Paris, PSL Research University, CNRS, 10 Rue Vauquelin, 75005, Paris, France.
- Université Pierre and Marie Curie, Sorbonne-Universités, 75005, Paris, France.
| |
Collapse
|
16
|
Bano A, Gaur NK. Interfacial Coupling Effect on Electron Transport in MoS 2/SrTiO 3 Heterostructure: An Ab-initio Study. Sci Rep 2018; 8:714. [PMID: 29335594 PMCID: PMC5768749 DOI: 10.1038/s41598-017-18984-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/15/2017] [Indexed: 11/24/2022] Open
Abstract
A variety of theoretical and experimental works have reported several potential applications of MoS2 monolayer based heterostructures (HSs) such as light emitting diodes, photodetectors and field effect transistors etc. In the present work, we have theoretically performed as a model case study, MoS2 monolayer deposited over insulating SrTiO3 (001) to study the band alignment at TiO2 termination. The interfacial characteristics are found to be highly dependent on the interface termination. With an insulating oxide material, a significant band gap (0.85eV) is found in MoS2/TiO2 interface heterostructure (HS). A unique electronic band profile with an indirect band gap (0.67eV) is observed in MoS2 monolayer when confined in a cubic environment of SrTiO3 (STO). Adsorption analysis showed the chemisorption of MoS2 on the surface of STO substrate with TiO2 termination which is justified by the charge density calculations that shows the existence of covalent bonding at the interface. The fabrication of HS of such materials paves the path for developing the unprecedented 2D materials with exciting properties such as semiconducting devices, thermoelectric and optoelectronic applications.
Collapse
Affiliation(s)
- Amreen Bano
- Department of Physics, Barkatullah University, Bhopal, 462026, India.
| | - N K Gaur
- Department of Physics, Barkatullah University, Bhopal, 462026, India
| |
Collapse
|
17
|
Rout PK, Maniv E, Dagan Y. Link between the Superconducting Dome and Spin-Orbit Interaction in the (111) LaAlO_{3}/SrTiO_{3} Interface. PHYSICAL REVIEW LETTERS 2017; 119:237002. [PMID: 29286685 DOI: 10.1103/physrevlett.119.237002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 06/07/2023]
Abstract
We measure the gate voltage (V_{g}) dependence of the superconducting properties and the spin-orbit interaction in the (111)-oriented LaAlO_{3}/SrTiO_{3} interface. Superconductivity is observed in a dome-shaped region in the carrier density-temperature phase diagram with the maxima of superconducting transition temperature T_{c} and the upper critical fields lying at the same V_{g}. The spin-orbit interaction determined from the superconducting parameters and confirmed by weak-antilocalization measurements follows the same gate voltage dependence as T_{c}. The correlation between the superconductivity and spin-orbit interaction as well as the enhancement of the parallel upper critical field, well beyond the Chandrasekhar-Clogston limit, suggest that superconductivity and the spin-orbit interaction are linked in a nontrivial fashion. We propose possible scenarios to explain this unconventional behavior.
Collapse
Affiliation(s)
- P K Rout
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 69978, Israel
| | - E Maniv
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Y Dagan
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
18
|
Niu W, Zhang Y, Gan Y, Christensen DV, Soosten MV, Garcia-Suarez EJ, Riisager A, Wang X, Xu Y, Zhang R, Pryds N, Chen Y. Giant Tunability of the Two-Dimensional Electron Gas at the Interface of γ-Al 2O 3/SrTiO 3. NANO LETTERS 2017; 17:6878-6885. [PMID: 28968124 DOI: 10.1021/acs.nanolett.7b03209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Two-dimensional electron gases (2DEGs) formed at the interface between two oxide insulators provide a rich platform for the next generation of electronic devices. However, their high carrier density makes it rather challenging to control the interface properties under a low electric field through a dielectric solid insulator, that is, in the configuration of conventional field-effect transistors. To surpass this long-standing limit, we used ionic liquids as the dielectric layer for electrostatic gating of oxide interfaces in an electric double layer transistor (EDLT) configuration. Herein, we reported giant tunability of the physical properties of 2DEGs at the spinel/perovskite interface of γ-Al2O3/SrTiO3 (GAO/STO). By modulating the carrier density thus the band filling with ionic-liquid gating, the system experiences a Lifshitz transition at a critical carrier density of 3.0 × 1013 cm-2, where a remarkably strong enhancement of Rashba spin-orbit interaction and an emergence of Kondo effect at low temperatures are observed. Moreover, as the carrier concentration depletes with decreasing gating voltage, the electron mobility is enhanced by more than 6 times in magnitude, leading to the observation of clear quantum oscillations. The great tunability of GAO/STO interface by EDLT gating not only shows promise for design of oxide devices with on-demand properties but also sheds new light on the electronic structure of 2DEG at the nonisostructural spinel/perovskite interface.
Collapse
Affiliation(s)
- Wei Niu
- Department of Energy Conversion and Storage, Technical University of Denmark , Risø Campus, 4000 Roskilde, Denmark
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University , 210093 Nanjing, China
| | - Yu Zhang
- Department of Energy Conversion and Storage, Technical University of Denmark , Risø Campus, 4000 Roskilde, Denmark
| | - Yulin Gan
- Department of Energy Conversion and Storage, Technical University of Denmark , Risø Campus, 4000 Roskilde, Denmark
| | - Dennis V Christensen
- Department of Energy Conversion and Storage, Technical University of Denmark , Risø Campus, 4000 Roskilde, Denmark
| | - Merlin V Soosten
- Department of Energy Conversion and Storage, Technical University of Denmark , Risø Campus, 4000 Roskilde, Denmark
| | - Eduardo J Garcia-Suarez
- Center for Catalysis and Sustainable Chemistry, Department of Chemistry, Technical University of Denmark , 2800 Lyngby, Denmark
| | - Anders Riisager
- Center for Catalysis and Sustainable Chemistry, Department of Chemistry, Technical University of Denmark , 2800 Lyngby, Denmark
| | - Xuefeng Wang
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University , 210093 Nanjing, China
| | - Yongbing Xu
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University , 210093 Nanjing, China
| | - Rong Zhang
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University , 210093 Nanjing, China
| | - Nini Pryds
- Department of Energy Conversion and Storage, Technical University of Denmark , Risø Campus, 4000 Roskilde, Denmark
| | - Yunzhong Chen
- Department of Energy Conversion and Storage, Technical University of Denmark , Risø Campus, 4000 Roskilde, Denmark
| |
Collapse
|
19
|
Smink AEM, de Boer JC, Stehno MP, Brinkman A, van der Wiel WG, Hilgenkamp H. Gate-Tunable Band Structure of the LaAlO_{3}-SrTiO_{3} Interface. PHYSICAL REVIEW LETTERS 2017; 118:106401. [PMID: 28339281 DOI: 10.1103/physrevlett.118.106401] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Indexed: 06/06/2023]
Abstract
The two-dimensional electron system at the interface between LaAlO_{3} and SrTiO_{3} has several unique properties that can be tuned by an externally applied gate voltage. In this work, we show that this gate tunability extends to the effective band structure of the system. We combine a magnetotransport study on top-gated Hall bars with self-consistent Schrödinger-Poisson calculations and observe a Lifshitz transition at a density of 2.9×10^{13}cm^{-2}. Above the transition, the carrier density of one of the conducting bands decreases with increasing gate voltage. This surprising decrease is accurately reproduced in the calculations if electronic correlations are included. These results provide a clear, intuitive picture of the physics governing the electronic structure at complex-oxide interfaces.
Collapse
Affiliation(s)
- A E M Smink
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - J C de Boer
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - M P Stehno
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - A Brinkman
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - W G van der Wiel
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - H Hilgenkamp
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
20
|
Maniv E, Dagan Y, Goldstein M. Correlation-Induced Band Competition in SrTiO3/LaAlO3. ACTA ACUST UNITED AC 2017. [DOI: 10.1557/adv.2017.92] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|