1
|
Zhang Q, Peng M, Gao Z, Guo W, Sun Z, Zhao Y, Zhou W, Wang M, Mei B, Du XL, Jiang Z, Sun W, Liu C, Zhu Y, Liu YM, He HY, Li ZH, Ma D, Cao Y. Nitrogen-Neighbored Single-Cobalt Sites Enable Heterogeneous Oxidase-Type Catalysis. J Am Chem Soc 2023; 145:4166-4176. [PMID: 36757303 DOI: 10.1021/jacs.2c12586] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The development of biomimetic catalytic systems that can imitate or even surpass natural enzymes remains an ongoing challenge, especially for bioinspired syntheses that can access non-natural reactions. Here, we show how an all-inorganic biomimetic system bearing robust nitrogen-neighbored single-cobalt site/pyridinic-N site (Co-N4/Py-N) pairs can act cooperatively as an oxidase mimic, which renders an engaged coupling of oxygen (O2) reduction with synthetically beneficial chemical transformations. By developing this broadly applicable platform, the scalable synthesis of greater than 100 industrially and pharmaceutically appealing O-silylated compounds including silanols, borasiloxanes, and silyl ethers via the unprecedented aerobic oxidation of hydrosilane under ambient conditions is demonstrated. Moreover, this heterogeneous oxidase mimic also offers the potential for expanding the catalytic scope of enzymatic synthesis. We anticipate that the strategy demonstrated here will pave a new avenue for understanding the underlying nature of redox enzymes and open up a new class of material systems for artificial biomimetics.
Collapse
Affiliation(s)
- Qi Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
- Shanghai Research Institute of Petrochemical Technology, SINOPEC, Shanghai 201208, China
| | - Mi Peng
- Beijing National Laboratory for Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zirui Gao
- Beijing National Laboratory for Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wendi Guo
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Zehui Sun
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Yi Zhao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Wu Zhou
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Wang
- Beijing National Laboratory for Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bingbao Mei
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Xian-Long Du
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Zheng Jiang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Wei Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chao Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yifeng Zhu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Yong-Mei Liu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - He-Yong He
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Zhen Hua Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Ding Ma
- Beijing National Laboratory for Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yong Cao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
2
|
Shumyantseva VV, Koroleva PI, Bulko TV, Shkel TV, Gilep AA, Veselovsky AV. Approaches for increasing the electrocatalitic efficiency of cytochrome P450 3A4. Bioelectrochemistry 2022; 149:108277. [DOI: 10.1016/j.bioelechem.2022.108277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022]
|
3
|
Chen J, Ma Q, Zheng X, Fang Y, Wang J, Dong S. Kinetically restrained oxygen reduction to hydrogen peroxide with nearly 100% selectivity. Nat Commun 2022; 13:2808. [PMID: 35606351 PMCID: PMC9127111 DOI: 10.1038/s41467-022-30411-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/29/2022] [Indexed: 11/09/2022] Open
Abstract
Hydrogen peroxide has been synthesized mainly through the electrocatalytic and photocatalytic oxygen reduction reaction in recent years. Herein, we synthesize a single-atom rhodium catalyst (Rh1/NC) to mimic the properties of flavoenzymes for the synthesis of hydrogen peroxide under mild conditions. Rh1/NC dehydrogenates various substrates and catalyzes the reduction of oxygen to hydrogen peroxide. The maximum hydrogen peroxide production rate is 0.48 mol gcatalyst-1 h-1 in the phosphorous acid aerobic oxidation reaction. We find that the selectivity of oxygen reduction to hydrogen peroxide can reach 100%. This is because a single catalytic site of Rh1/NC can only catalyze the removal of two electrons per substrate molecule; thus, the subsequent oxygen can only obtain two electrons to reduce to hydrogen peroxide through the typical two-electron pathway. Similarly, due to the restriction of substrate dehydrogenation, the hydrogen peroxide selectivity in commercial Pt/C-catalyzed enzymatic reactions can be found to reach 75%, which is 30 times higher than that in electrocatalytic oxygen reduction reactions.
Collapse
Affiliation(s)
- Jinxing Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230026, China
| | - Qian Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230026, China
| | - Xiliang Zheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Youxing Fang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jin Wang
- Department of Chemistry and Physics, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. .,University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
4
|
Romanholo PVV, Razzino CA, Raymundo-Pereira PA, Prado TM, Machado SAS, Sgobbi LF. Biomimetic electrochemical sensors: New horizons and challenges in biosensing applications. Biosens Bioelectron 2021; 185:113242. [PMID: 33915434 DOI: 10.1016/j.bios.2021.113242] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
The urge to meet the ever-growing needs of sensing technology has spurred research to look for new alternatives to traditional analytical methods. In this scenario, the glucometer is the flagship of commercial electrochemical sensing platforms, combining selectivity, reliability and portability. However, other types of enzyme-based biosensors seldom achieve the market, in spite of the large and increasing number of publications. The reasons behind their commercial limitations concern enzyme denaturation, and the high costs associated with procedures for their extraction and purification. In this sense, biomimetic materials that seek to imitate the desired properties of natural enzymes and biological systems have come out as an appealing path for robust and sensitive electrochemical biosensors. We herein portray the historical background of these biomimicking materials, covering from their beginnings until the most impactful applications in the field of electrochemical sensing platforms. Throughout the discussion, we present and critically appraise the major benefits and the most significant drawbacks offered by the bioinspired systems categorized as Nanozymes, Synzymes, Molecularly Imprinted Polymers (MIPs), Nanochannels, and Metal Complexes. Innovative strategies of fabrication and challenging applications are further reviewed and evaluated. In the end, we ponder over the prospects of this emerging field, assessing the most critical issues that shall be faced in the coming decade.
Collapse
Affiliation(s)
- Pedro V V Romanholo
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Claudia A Razzino
- Instituto de Pesquisa e Desenvolvimento, Universidade Do Vale Do Paraíba, São José Dos Campos, SP, 12244-000, Brazil
| | | | - Thiago M Prado
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Sergio A S Machado
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Livia F Sgobbi
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
5
|
Chiral Imidazolium Prolinate Salts as Efficient Synzymatic Organocatalysts for the Asymmetric Aldol Reaction. Molecules 2021; 26:molecules26144190. [PMID: 34299464 PMCID: PMC8303523 DOI: 10.3390/molecules26144190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 11/20/2022] Open
Abstract
Chiral imidazolium l-prolinate salts, providing a complex network of supramolecular interaction in a chiral environment, have been studied as synzymatic catalytic systems. They are demonstrated to be green and efficient chiral organocatalysts for direct asymmetric aldol reactions at room temperature. The corresponding aldol products were obtained with moderate to good enantioselectivities. The influence of the presence of chirality in both the imidazolium cation and the prolinate anion on the transfer of chirality from the organocatalyst to the aldol product has been studied. Moreover, interesting match/mismatch situations have been observed regarding configuration of chirality of the two components through the analysis of results for organocatalysts derived from both enantiomers of prolinate (R/S) and the trans/cis isomers for the chiral fragment of the cation. This is associated with differences in the corresponding reaction rates but also to the different tendencies for the formation of aggregates, as evidenced by nonlinear effects studies (NLE). Excellent activities, selectivities, and enantioselectivities could be achieved by an appropriate selection of the structural elements at the cation and anion.
Collapse
|
6
|
Chen J, Ma Q, Li M, Chao D, Huang L, Wu W, Fang Y, Dong S. Glucose-oxidase like catalytic mechanism of noble metal nanozymes. Nat Commun 2021; 12:3375. [PMID: 34099730 PMCID: PMC8184917 DOI: 10.1038/s41467-021-23737-1] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Au nanoparticles (NPs) have been found to be excellent glucose oxidase mimics, while the catalytic processes have rarely been studied. Here, we reveal that the process of glucose oxidation catalyzed by Au NPs is as the same as that of natural glucose oxidase, namely, a two-step reaction including the dehydrogenation of glucose and the subsequent reduction of O2 to H2O2 by two electrons. Pt, Pd, Ru, Rh, and Ir NPs can also catalyze the dehydrogenation of glucose, except that O2 is preferably reduced to H2O. By the electron transfer feature of noble metal NPs, we overcame the limitation that H2O2 must be produced in the traditional two-step glucose assay and realize the rapid colorimetric detections of glucose. Inspired by the electron transport pathway in the catalytic process of natural enzymes, noble metal NPs have also been found to mimic various enzymatic electron transfer reactions including cytochrome c, coenzymes as well as nitrobenzene reductions.
Collapse
Affiliation(s)
- Jinxing Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, PR China.,University of Science and Technology of China, Hefei, Anhui, PR China
| | - Qian Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, PR China.,University of Science and Technology of China, Hefei, Anhui, PR China
| | - Minghua Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, PR China
| | - Daiyong Chao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, PR China
| | - Liang Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, PR China.,University of Science and Technology of China, Hefei, Anhui, PR China
| | - Weiwei Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, PR China.,University of Science and Technology of China, Hefei, Anhui, PR China
| | - Youxing Fang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, PR China.
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, PR China. .,University of Science and Technology of China, Hefei, Anhui, PR China.
| |
Collapse
|
7
|
Chen J, Ma Q, Li M, Wu W, Huang L, Liu L, Fang Y, Dong S. Coenzyme-dependent nanozymes playing dual roles in oxidase and reductase mimics with enhanced electron transport. NANOSCALE 2020; 12:23578-23585. [PMID: 33225340 DOI: 10.1039/d0nr06605b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although nanozymes overcome a series of shortcomings of natural enzymes, their wide applications are hampered due to their limited varieties. In this work, we propose a coenzyme-dependent nanozyme, a synergistic composite comprising zeolitic imidazolate frameworks encapsulated with polyethylenimine (PEI) and functionalized with a flavin mononucleotide (PEI/ZIF-FMN). The flavin mononucleotide (FMN) plays the role of a prosthetic group, and the positively charged NH2 groups in PEI readily provide the binding affinity to nicotinamide adenine dinucleotide (NADH), which facilitates the electron transfer from NADH to FMN and terminal electron acceptors (such as O2) with a greatly enhanced (80 times) catalytic performance. The integrated nanoparticle-coenzyme composite works as an NADH oxidase mimic and couples with dehydrogenases for the tandem enzymatic reaction. PEI/ZIF-FMN also mediated the electron transfer from NADH to cytochrome c (Cyt c), thereby exhibiting Cyt c reductase-like activity.
Collapse
Affiliation(s)
- Jinxing Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhang C, Lu M, Lin L, Huang Z, Zhang R, Wu X, Chen Y. Riboflavin Is Directly Involved in N-Dealkylation Catalyzed by Bacterial Cytochrome P450 Monooxygenases. Chembiochem 2020; 21:2297-2305. [PMID: 32243060 DOI: 10.1002/cbic.202000071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/01/2020] [Indexed: 11/09/2022]
Abstract
Like a vast number of enzymes in nature, bacterial cytochrome P450 monooxygenases require an activated form of flavin as a cofactor for catalytic activity. Riboflavin is the precursor of FAD and FMN that serves as indispensable cofactor for flavoenzymes. In contrast to previous notions, herein we describe the identification of an electron-transfer process that is directly mediated by riboflavin for N-dealkylation by bacterial P450 monooxygenases. The electron relay from NADPH to riboflavin and then via activated oxygen to heme was proposed based on a combination of X-ray crystallography, molecular modeling and molecular dynamics simulation, site-directed mutagenesis and biochemical analysis of representative bacterial P450 monooxygenases. This study provides new insights into the electron transfer mechanism in bacterial P450 enzyme catalysis and likely in yeasts, fungi, plants and mammals.
Collapse
Affiliation(s)
- Chengchang Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu Province, 211198, P. R. China
| | - Meiling Lu
- Laboratory of Chemical Biology and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu Province, 211198, P. R. China
| | - Lin Lin
- National Center for Protein Science and Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 333 Haike Road, Shanghai, 201210, P. R. China
| | - Zhangjian Huang
- Laboratory of Chemical Biology and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu Province, 211198, P. R. China
| | - Rongguang Zhang
- National Center for Protein Science and Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 333 Haike Road, Shanghai, 201210, P. R. China
| | - Xuri Wu
- Laboratory of Chemical Biology and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu Province, 211198, P. R. China
| | - Yijun Chen
- Laboratory of Chemical Biology and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu Province, 211198, P. R. China
| |
Collapse
|
9
|
Chevalier Y, Lock Toy Ki Y, Herrero C, le Nouën D, Mahy JP, Goddard JP, Avenier F. Characterization in aqueous medium of an FMN semiquinone radical stabilized by the enzyme-like microenvironment of a modified polyethyleneimine. Org Biomol Chem 2020; 18:4386-4389. [PMID: 32469356 DOI: 10.1039/d0ob00864h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The elusive flavin semiquinone intermediate found in flavoproteins such as cryptochromes has been obtained in aqueous solution by single electron reduction of the natural FMN cofactor using sodium ascorbate. This species was formed in the local hydrophobic microenvironment of a modified polyethyleneimine and characterized by UV-Visible, fluorescence and EPR spectroscopies.
Collapse
Affiliation(s)
- Yoan Chevalier
- ICMMO, UMR CNRS 8182, Université Paris Saclay, rue du doyen Georges Poitou, 91405 Orsay, France.
| | - Yvette Lock Toy Ki
- LIMA, UMR CNRS 7042, Université de Haute-Alsace, Université de Strasbourg, 68100 Mulhouse, France.
| | - Christian Herrero
- ICMMO, UMR CNRS 8182, Université Paris Saclay, rue du doyen Georges Poitou, 91405 Orsay, France.
| | - Didier le Nouën
- LIMA, UMR CNRS 7042, Université de Haute-Alsace, Université de Strasbourg, 68100 Mulhouse, France.
| | - Jean-Pierre Mahy
- ICMMO, UMR CNRS 8182, Université Paris Saclay, rue du doyen Georges Poitou, 91405 Orsay, France.
| | - Jean-Philippe Goddard
- LIMA, UMR CNRS 7042, Université de Haute-Alsace, Université de Strasbourg, 68100 Mulhouse, France.
| | - Frédéric Avenier
- ICMMO, UMR CNRS 8182, Université Paris Saclay, rue du doyen Georges Poitou, 91405 Orsay, France.
| |
Collapse
|
10
|
Iyer SN, Behary N, Guan J, Nierstrasz V. Toward Bioluminescent Materials by Plasma Treatment of Microfibrous Nonwovens, Followed by Immobilization of One or Both Enzyme(s) (Luciferase and FMN Reductase) Involved in Luminescent Bacteria. ACS APPLIED BIO MATERIALS 2020; 3:3401-3412. [DOI: 10.1021/acsabm.0c00329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sweta Narayanan Iyer
- Textile Materials Technology, Department of Textile Technology, Faculty of Textiles, Engineering and Business, University of Borås, SE-50190 Borås, Sweden
- ENSAIT-GEMTEX, F-59100 Roubaix, France
- Université Lille Nord de France, F-59000 Lille, France
- College of Textile and Clothing Engineering, Soochow University, 215021 Suzhou, China
| | - Nemeshwaree Behary
- ENSAIT-GEMTEX, F-59100 Roubaix, France
- Université Lille Nord de France, F-59000 Lille, France
| | - Jinping Guan
- College of Textile and Clothing Engineering, Soochow University, 215021 Suzhou, China
| | - Vincent Nierstrasz
- Textile Materials Technology, Department of Textile Technology, Faculty of Textiles, Engineering and Business, University of Borås, SE-50190 Borås, Sweden
| |
Collapse
|
11
|
Yu H, Wang L, Lin Y, Liu W, Tuyiringire D, Jiao Y, Zhang L, Meng Q, Zhang Y. Complete metabolic study by dibutyl phthalate degrading Pseudomonas sp. DNB-S1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110378. [PMID: 32146194 DOI: 10.1016/j.ecoenv.2020.110378] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 05/26/2023]
Abstract
The primary purpose of this study was to systematically explore the complete metabolic pathway and tolerance mechanism of strain DNB-S1 to dibutyl phthalate (DBP), and the effect of DBP on energy metabolism of DNB-S1. Here, DNB-S1, a strain of Pseudomonas sp. that was highly effective in degrading DBP, was identified, and differentially expressed metabolites and metabolic networks of DBP were studied. The results showed that the differentially expressed metabolites were mainly aromatic compounds and lipid compounds, with only a few toxic intermediate metabolites. It speculated that phthalic acid, salicylic acid, 3-hydroxybenzoate acid, 3-Carboxy-cis, cis-muconate, fumarypyravate were intermediate metabolites of DBP. Their up-regulation indicated that there were two metabolic pathways in the degradation of DBP (protocatechuate pathway and gentisate pathway), which had been verified by peak changes at 290 nm, 320 nm, 330 nm, and 375 nm in the enzymatic method. Also, aspartate, GSH, and other metabolites were up-regulation, indicating that DNB-S1 had a high tolerance to DBP and maintained cell homeostasis, which was also one of the essential reasons to ensure the efficient degradation of DBP. Altogether, this study firstly proposed two pathways to degrade DBP and comprehensively explored the effect of DBP on the metabolic function of DNB-S1, which enriched the study of microbial metabolism of organic pollutants, and which provided a basis for the application of metabolomics.
Collapse
Affiliation(s)
- Hui Yu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yulong Lin
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Weixin Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Diogene Tuyiringire
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yaqi Jiao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Lin Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qingjuan Meng
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
12
|
Li L, Guo H, Yang L, Li X, Wang H, He C. Encapsulation of Flavin Cofactor within a Manganese Porphyrin-Based Metal-Organic Polyhedron for Reductive Dioxygen Activation. Inorg Chem 2020; 59:2636-2640. [PMID: 32058709 DOI: 10.1021/acs.inorgchem.9b03430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Encapsulation of flavin mononucleotide (FMN) in a porphyrinatomanganese(III)-based cubic cage allowed the fast reduction of manganese(III) porphyrin in the presence of nicotinamide adenine dinucleotide (NADH). This supramolecular system was capable of efficiently activating dioxygen and catalyzing the oxidation of benzyl alcohol. Control experiments suggested that the close proximity between FMN and manganese(III) porphyrins forced by the host-guest interaction might benefit the electron-transfer process from the FMN cofactor to the metal centers.
Collapse
Affiliation(s)
- LiLi Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Huimin Guo
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Linlin Yang
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Xinxiang 453003, P. R. China
| | - Xuezhao Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Hailing Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
13
|
Kariyawasam K, Ricoux R, Mahy JP. Recent advances in the field of artificial hemoproteins: New efficient eco-compatible biocatalysts for nitrene-, oxene- and carbene-transfer reactions. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424619300222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the last few years, the field of artificial hemoproteins has been expanding through two main strategies involving either the incorporation of synthetic metalloporphyrin derivatives into the chiral cavity of a protein or the directed evolution of natural hemoproteins such as myoglobin and cytochromes P450. First, various synthetic water-soluble porphyrins including ions of transition metals such as iron and manganese have been inserted covalently or by supramolecular anchoring into non-specifically designed native proteins or into proteins modified by a minimum number of mutations. The obtained artificial hemoproteins were able to catalyze oxene transfer reactions such as epoxidation of alkenes or sulfoxidation of sulfides and cyclopropanation reactions with good activities and moderate enantioselectivities. Recently, a second approach, based on the design of the active site of already existing native hemoproteins such as myoglobin and cytochromes P450 by directed evolution, has led to new artificial hemoproteins that are able to catalyze oxene transfer reactions with improved activities as well as with abiological reactions. This approach thus provided promising tools for the catalysis of reactions such as intramolecular or intermolecular carbene and nitrene transfer reactions with high efficiencies. In addition, in all cases, after a few rounds of mutagenesis, mutants that were able to catalyze those reactions with a high enantioselectivity could be obtained. Finally, several groups showed that these new artificial metalloenzymes could also be used for the preparative scale-production of compounds with an excellent enantioselectivity, opening new pathways for the industrial synthesis of compounds of pharmaceutical interest.
Collapse
Affiliation(s)
- Kalani Kariyawasam
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris-Sud, Université Paris Saclay, 91405 Orsay CEDEX, France
| | - Rémy Ricoux
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris-Sud, Université Paris Saclay, 91405 Orsay CEDEX, France
| | - Jean-Pierre Mahy
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), UMR 8182 CNRS, Laboratoire de Chimie Bioorganique et Bioinorganique, Bât. 420, Université Paris-Sud, Université Paris Saclay, 91405 Orsay CEDEX, France
| |
Collapse
|
14
|
Naim A, Chevalier Y, Bouzidi Y, Gairola P, Mialane P, Dolbecq A, Avenier F, Mahy JP. Aerobic oxidation catalyzed by polyoxometalates associated to an artificial reductase at room temperature and in water. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00442a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Four polyoxometalates (POMs) were combined with an artificial reductase based on polyethyleneimine (PEI) and flavin mononucleotide (FMN) which is capable of delivering single electrons upon addition of nicotinamide adenine dinucleotide (NADH).
Collapse
Affiliation(s)
- Ahmad Naim
- LCBB
- ICMMO
- Univ Paris-Sud
- Université Paris Saclay
- 91405 Orsay
| | - Yoan Chevalier
- LCBB
- ICMMO
- Univ Paris-Sud
- Université Paris Saclay
- 91405 Orsay
| | - Younes Bouzidi
- LCBB
- ICMMO
- Univ Paris-Sud
- Université Paris Saclay
- 91405 Orsay
| | | | - Pierre Mialane
- Université Paris Saclay
- UVSQ
- CNRS
- UMR 8180
- Institut Lavoisier de Versailles
| | - Anne Dolbecq
- Université Paris Saclay
- UVSQ
- CNRS
- UMR 8180
- Institut Lavoisier de Versailles
| | | | | |
Collapse
|
15
|
Desage‐El Murr M. Nature is the Cure: Engineering Natural Redox Cofactors for Biomimetic and Bioinspired Catalysis. ChemCatChem 2019. [DOI: 10.1002/cctc.201901642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Marine Desage‐El Murr
- Institut de Chimie UMR 7177Université de Strasbourg 1 rue Blaise Pascal Strasbourg 67000 France
| |
Collapse
|
16
|
Tian J, Zhang W. Synthesis, self-assembly and applications of functional polymers based on porphyrins. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.05.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Kang C, Wu HL, Xu ML, Yan XF, Liu YJ, Yu RQ. Simultaneously quantifying intracellular FAD and FMN using a novel strategy of intrinsic fluorescence four-way calibration. Talanta 2018; 197:105-112. [PMID: 30771910 DOI: 10.1016/j.talanta.2018.12.076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/13/2018] [Accepted: 12/25/2018] [Indexed: 01/12/2023]
Abstract
The simultaneous quantitative analysis of intracellular metabolic coenzymes flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) is of interest because they participate in many electron-transfer reactions of metabolism. But, the simultaneous quantitative analysis of FAD and FMN is hard to be achieved by traditional analytical methods. This paper proposes a novel strategy of intrinsic fluorescence coupled with four-way calibration method for simultaneous quantitative analysis of intracellular metabolic coenzymes FAD and FMN. Through mathematical separation, this proposed analytical method efficiently achieved the simultaneous quantitative analysis of metabolic coenzymes FAD and FMN in the cell, despite the fact that uncalibrated spectral interferents coexist in the system. The predicted concentrations of FAD and FMN in the cell are 217.0 ± 6.9 and 155.0 ± 1.7 pmol/106 cells respectively, which were validated by the approved liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. This analytical method with second-order advantage simply requires the cell solution to be diluted by a buffer, it could introduce an interesting analytical strategy for multianalyte direct quantitative analysis in complex biological systems. In addition, we explore the third-order advantage of four-way calibration by a comparative study based on this real fluorescence data. The comparisons indicate that a four-way calibration method can provide higher sensitivity and more resolving power than a three-way calibration method.
Collapse
Affiliation(s)
- Chao Kang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China; School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Hai-Long Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China.
| | - Min-Li Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Xiu-Fang Yan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China; College of Tobacco Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Ya-Juan Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Ru-Qin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China.
| |
Collapse
|
18
|
Chevalier Y, Lock Toy Ki Y, le Nouen D, Mahy JP, Goddard JP, Avenier F. Aerobic Baeyer-Villiger Oxidation Catalyzed by a Flavin-Containing Enzyme Mimic in Water. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yoan Chevalier
- Univ Paris Sud; Université Paris Saclay; LCBB, ICMMO, UMR CNRS 8182; 91405 Orsay France
| | - Yvette Lock Toy Ki
- Université de Haute-Alsace; Université de Strasbourg; CNRS, LIMA UMR 7042; 68100 Mulhouse France
| | - Didier le Nouen
- Université de Haute-Alsace; Université de Strasbourg; CNRS, LIMA UMR 7042; 68100 Mulhouse France
| | - Jean-Pierre Mahy
- Univ Paris Sud; Université Paris Saclay; LCBB, ICMMO, UMR CNRS 8182; 91405 Orsay France
| | - Jean-Philippe Goddard
- Université de Haute-Alsace; Université de Strasbourg; CNRS, LIMA UMR 7042; 68100 Mulhouse France
| | - Frédéric Avenier
- Univ Paris Sud; Université Paris Saclay; LCBB, ICMMO, UMR CNRS 8182; 91405 Orsay France
| |
Collapse
|
19
|
Chevalier Y, Lock Toy Ki Y, le Nouen D, Mahy JP, Goddard JP, Avenier F. Aerobic Baeyer-Villiger Oxidation Catalyzed by a Flavin-Containing Enzyme Mimic in Water. Angew Chem Int Ed Engl 2018; 57:16412-16415. [PMID: 30358055 DOI: 10.1002/anie.201810124] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/11/2018] [Indexed: 01/16/2023]
Abstract
Direct incorporation of molecular oxygen into small organic molecules has attracted much attention for the development of new environmentally friendly oxidation processes. In line with this approach, bioinspired systems mimicking enzyme activities are of particular interest since they may perform catalysis in aqueous media. Demonstrated herein is the incorporation of a natural flavin cofactor (FMN) into the specific microenvironment of a water-soluble polymer which allows the efficient reduction of the FMN by NADH in aqueous solution. Once reduced, this artificial flavoenzyme can then activate molecular dioxygen under aerobic conditions and result in the Baeyer-Villiger reaction at room temperature in water.
Collapse
Affiliation(s)
- Yoan Chevalier
- Univ Paris Sud, Université Paris Saclay, LCBB, ICMMO, UMR CNRS 8182, 91405, Orsay, France
| | - Yvette Lock Toy Ki
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA UMR 7042, 68100, Mulhouse, France
| | - Didier le Nouen
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA UMR 7042, 68100, Mulhouse, France
| | - Jean-Pierre Mahy
- Univ Paris Sud, Université Paris Saclay, LCBB, ICMMO, UMR CNRS 8182, 91405, Orsay, France
| | - Jean-Philippe Goddard
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA UMR 7042, 68100, Mulhouse, France
| | - Frédéric Avenier
- Univ Paris Sud, Université Paris Saclay, LCBB, ICMMO, UMR CNRS 8182, 91405, Orsay, France
| |
Collapse
|
20
|
NAD+
Cofactor Regeneration by TMB-Mediated Horseradish-Peroxidase-Catalyzed Reactions. ChemistrySelect 2018. [DOI: 10.1002/slct.201801731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
He F, Mi L, Shen Y, Mori T, Liu S, Zhang Y. Fe-N-C Artificial Enzyme: Activation of Oxygen for Dehydrogenation and Monoxygenation of Organic Substrates under Mild Condition and Cancer Therapeutic Application. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35327-35333. [PMID: 30246526 DOI: 10.1021/acsami.8b15540] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Developing highly efficient biomimetic catalysts that directly use O2 as the terminal oxidant to dehydrogenate and monoxygenate substrates with high selectivity under mild conditions has long been pursued but rarely achieved yet. Herein, we report that heterogeneous Fe-N-C, which is commonly used as an electrocatalyst for oxygen reduction reaction, had unusual biomimetic catalytic activity in both dehydrogenation and monoxygenation of a series of organic molecules (∼100% selectivity) by directly using O2. The Fe-N x center was verified to be the active site that reductively activated O2 by spontaneously generating specific reactive oxygen species (ROS) (1O2, O2•-, and H2O2). Aided by these ROS, under physiological conditions, the Fe-N-C was further successfully exampled to kill proliferative lung cancer cells. Fe-N-C had several striking superior features with respect to natural enzymes, classical heterogeneous nanozymes, and homogeneous artificial enzymes incapable of working under harsh conditions (extreme pH and high temperature), ease of separation and recycling, and direct use of O2. It would open up a new vista of Fe-N-C as an artificial enzyme in biomimetic catalysis, ranging from fundamental simulation of oxidase/oxygenase metabolism to industrial oxidation processes and to disease treatment.
Collapse
Affiliation(s)
- Fei He
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School , Southeast University , Nanjing 211189 , China
| | - Li Mi
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School , Southeast University , Nanjing 211189 , China
| | - Yanfei Shen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School , Southeast University , Nanjing 211189 , China
| | - Toshiyuki Mori
- Global Research Center for Environment and Energy Based on Nanomaterials Science (GREEN) , National Institute for Materials Sciences (NIMS) , 1-1 Namiki , Ibaraki 305-0044 , Japan
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School , Southeast University , Nanjing 211189 , China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Medical School , Southeast University , Nanjing 211189 , China
| |
Collapse
|
22
|
Gonçalves AC, Carneiro ZA, Oliveira CG, Danuello A, Guerra W, Oliveira RJ, Ferreira FB, Veloso-Silva LL, Batista FA, Borges JC, de Albuquerque S, Deflon VM, Maia PI. Pt II , Pd II and Au III complexes with a thiosemicarbazone derived from diacethylmonooxime: Structural analysis, trypanocidal activity, cytotoxicity and first insight into the antiparasitic mechanism of action. Eur J Med Chem 2017; 141:615-631. [DOI: 10.1016/j.ejmech.2017.10.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/19/2017] [Accepted: 10/07/2017] [Indexed: 11/28/2022]
|
23
|
Mahammed A, Gross Z. Metallocorroles as Electrocatalysts for the Oxygen Reduction Reaction (ORR). Isr J Chem 2016. [DOI: 10.1002/ijch.201600027] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Atif Mahammed
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 3200008 Israel
| | - Zeev Gross
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 3200008 Israel
| |
Collapse
|
24
|
Cheaib K, Roux Y, Herrero C, Trehoux A, Avenier F, Mahy JP. Reduction of a tris(picolyl)amine copper(ii) complex by a polymeric flavo-reductase model in water. Dalton Trans 2016; 45:18098-18101. [DOI: 10.1039/c6dt03710k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An artificial reductase, made by incorporation of FMN cofactors into the locally hydrophobic micro-environment of a modified polyethyleneimine, catalytically reduces Cu(ii) complexes in water.
Collapse
Affiliation(s)
- K. Cheaib
- Laboratoire de Chimie Bioorganique et Bioinorganique
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (UMR CNRS 8182)
- Univ Paris Sud
- Université Paris Saclay
- 91405 Orsay
| | - Y. Roux
- Laboratoire de Chimie Bioorganique et Bioinorganique
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (UMR CNRS 8182)
- Univ Paris Sud
- Université Paris Saclay
- 91405 Orsay
| | - C. Herrero
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (UMR CNRS 8182)
- Univ Paris Sud
- Université Paris Saclay
- 91405 Orsay
- France
| | - A. Trehoux
- Laboratoire de Chimie Bioorganique et Bioinorganique
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (UMR CNRS 8182)
- Univ Paris Sud
- Université Paris Saclay
- 91405 Orsay
| | - F. Avenier
- Laboratoire de Chimie Bioorganique et Bioinorganique
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (UMR CNRS 8182)
- Univ Paris Sud
- Université Paris Saclay
- 91405 Orsay
| | - J.-P. Mahy
- Laboratoire de Chimie Bioorganique et Bioinorganique
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (UMR CNRS 8182)
- Univ Paris Sud
- Université Paris Saclay
- 91405 Orsay
| |
Collapse
|