1
|
Bartas M, Petrovič M, Brázda V, Trenz O, Ďurčanský A, Štastný J. CpX Hunter web tool allows high-throughput identification of CpG, CpA, CpT, and CpC islands: A case study in Drosophila genome. J Biol Chem 2025:108537. [PMID: 40286849 DOI: 10.1016/j.jbc.2025.108537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/06/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025] Open
Abstract
With continuous advances in DNA sequencing methods, accessibility to high-quality genomic information for all living organisms is ever increasing. However, to interpret this information effectively and formulate hypotheses, users often require higher level programming skills. Therefore, the generation of web-based tools is becoming increasingly popular. CpG island regions in genomes are often found in gene promoters and are prone to DNA methylation; with their methylation status determining if a gene is expressed. Notably, understanding the biological impact of CpX modifications on genomic regulation is becoming increasingly important as these modifications have been associated with diseases such as cancer and neurodegeneration. However, there is currently no easy-to-use scalable tool to detect and quantify CpX islands in full genomes. We have developed a Java-based web server for CpX island analyses that benefits from the DNA Analyzer Web server environment and overcomes several limitations. For a pilot demonstration study, we selected a well-described model organism Drosophila melanogaster. Subsequent analysis of obtained CpX islands revealed several interesting and previously undescribed phenomena. One of them is the fact, that nearly half of long CpG islands were located on chromosome X, and that long CpA and CpT islands were significantly overrepresented at the subcentromeric regions of autosomes (chr2 and chr3) and also on chromosome Y. Wide genome overlays of predicted CpX islands revealed their co-occurrence with various (epi)genomics features comprising cytosine methylations, accessible chromatin, transposable elements, or binding of transcription factors and other proteins. CpX Hunter is freely available as a web tool at: https://bioinformatics.ibp.cz/#/analyse/cpg.
Collapse
Affiliation(s)
- Martin Bartas
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| | - Michal Petrovič
- Department of Informatics, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Oldřich Trenz
- Department of Informatics, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic
| | - Aleš Ďurčanský
- Department of Informatics, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic
| | - Jiří Štastný
- Department of Informatics, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic; Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69, Brno, Czech Republic.
| |
Collapse
|
2
|
Janeček M, Kührová P, Mlýnský V, Stadlbauer P, Otyepka M, Bussi G, Šponer J, Banáš P. Computer Folding of Parallel DNA G-Quadruplex: Hitchhiker's Guide to the Conformational Space. J Comput Chem 2025; 46:e27535. [PMID: 39653644 PMCID: PMC11628365 DOI: 10.1002/jcc.27535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 12/12/2024]
Abstract
Guanine quadruplexes (GQs) play crucial roles in various biological processes, and understanding their folding pathways provides insight into their stability, dynamics, and functions. This knowledge aids in designing therapeutic strategies, as GQs are potential targets for anticancer drugs and other therapeutics. Although experimental and theoretical techniques have provided valuable insights into different stages of the GQ folding, the structural complexity of GQs poses significant challenges, and our understanding remains incomplete. This study introduces a novel computational protocol for folding an entire GQ from single-strand conformation to its native state. By combining two complementary enhanced sampling techniques, we were able to model folding pathways, encompassing a diverse range of intermediates. Although our investigation of the GQ free energy surface (FES) is focused solely on the folding of the all-anti parallel GQ topology, this protocol has the potential to be adapted for the folding of systems with more complex folding landscapes.
Collapse
Affiliation(s)
- Michal Janeček
- Department of Physical Chemistry, Faculty of SciencePalacký University OlomoucOlomoucCzech Republic
| | - Petra Kührová
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN)Palacký University OlomoucOlomoucCzech Republic
- Institute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic
| | - Vojtěch Mlýnský
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN)Palacký University OlomoucOlomoucCzech Republic
- Institute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic
- IT4InnovationsVŠB—Technical University of OstravaOstravaCzech Republic
| | - Petr Stadlbauer
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN)Palacký University OlomoucOlomoucCzech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN)Palacký University OlomoucOlomoucCzech Republic
- IT4InnovationsVŠB—Technical University of OstravaOstravaCzech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, SISSATriesteItaly
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN)Palacký University OlomoucOlomoucCzech Republic
- Institute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic
- IT4InnovationsVŠB—Technical University of OstravaOstravaCzech Republic
| |
Collapse
|
3
|
M J VK, Mitteaux J, Wang Z, Wheeler E, Tandon N, Yun Jung S, Hudson RHE, Monchaud D, Tsvetkov AS. Small molecule-based regulation of gene expression in human astrocytes switching on and off the G-quadruplex control systems. J Biol Chem 2025; 301:108040. [PMID: 39615684 PMCID: PMC11750478 DOI: 10.1016/j.jbc.2024.108040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025] Open
Abstract
A great deal of attention is being paid to strategies seeking to uncover the biology of the four-stranded nucleic acid structure G-quadruplex (G4) via their stabilization in cells with G4-specific ligands. The conventional definition of chemical biology implies that a complete assessment of G4 biology can only be achieved by implementing a complementary approach involving the destabilization of cellular G4s by ad hoc molecular effectors. We report here on an unprecedented comparison of the cellular consequences of G4 chemical stabilization by pyridostatin (PDS) and destabilization by phenylpyrrolocytosine (PhpC) at both transcriptome- and proteome-wide scales in patient-derived primary human astrocytes. Our results show that the stabilization of G4s by PDS triggers the dysregulation of many cellular circuitries, the most drastic effects originating in the downregulation of 354 transcripts and 158 proteins primarily involved in RNA transactions. In contrast, destabilization of G4s by PhpC modulates the G4 landscapes in a far more focused manner with upregulation of 295 proteins, mostly involved in RNA transactions as well, thus mirroring the effects of PDS. Our study is the first of its kind to report the extent of G4-associated cellular circuitries in human cells by systematically pitting the effect of G4 stabilization against destabilization in a direct and unbiased manner.
Collapse
Affiliation(s)
- Vijay Kumar M J
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, Texas, USA
| | - Jérémie Mitteaux
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), CNRS UMR6302, Dijon, France
| | - Zi Wang
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| | - Ellery Wheeler
- The Department of Neurosurgery, The University of Texas, McGovern Medical School at Houston, Houston, Texas, USA
| | - Nitin Tandon
- The Department of Neurosurgery, The University of Texas, McGovern Medical School at Houston, Houston, Texas, USA
| | - Sung Yun Jung
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas, USA
| | - Robert H E Hudson
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| | - David Monchaud
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), CNRS UMR6302, Dijon, France.
| | - Andrey S Tsvetkov
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, Texas, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA; UTHealth Consortium on Aging, The University of Texas McGovern Medical School, Houston, Texas, USA.
| |
Collapse
|
4
|
Pflughaupt P, Abdullah A, Masuda K, Sahakyan A. Towards the genomic sequence code of DNA fragility for machine learning. Nucleic Acids Res 2024; 52:12798-12816. [PMID: 39441076 PMCID: PMC11602142 DOI: 10.1093/nar/gkae914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/20/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Genomic DNA breakages and the subsequent insertion and deletion mutations are important contributors to genome instability and linked diseases. Unlike the research in point mutations, the relationship between DNA sequence context and the propensity for strand breaks remains elusive. Here, by analyzing the differences and commonalities across myriads of genomic breakage datasets, we extract the sequence-linked rules and patterns behind DNA fragility. We show the overall deconvolution of the sequence influence into short-, mid- and long-range effects, and the stressor-dependent differences in defining the range and compositional effects on DNA fragility. We summarize and release our feature compendium as a library that can be seamlessly incorporated into genomic machine learning procedures, where DNA fragility is of concern, and train a generalized DNA fragility model on cancer-associated breakages. Structural variants (SVs) tend to stabilize regions in which they emerge, with the effect most pronounced for pathogenic SVs. In contrast, the effects of chromothripsis are seen across regions less prone to breakages. We find that viral integration may bring genome fragility, particularly for cancer-associated viruses. Overall, this work offers novel insights into the genomic sequence basis of DNA fragility and presents a powerful machine learning resource to further enhance our understanding of genome (in)stability and evolution.
Collapse
Affiliation(s)
- Patrick Pflughaupt
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Adib A Abdullah
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Kairi Masuda
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Aleksandr B Sahakyan
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| |
Collapse
|
5
|
Sfeir A, Tijsterman M, McVey M. Microhomology-Mediated End-Joining Chronicles: Tracing the Evolutionary Footprints of Genome Protection. Annu Rev Cell Dev Biol 2024; 40:195-218. [PMID: 38857538 DOI: 10.1146/annurev-cellbio-111822-014426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The fidelity of genetic information is essential for cellular function and viability. DNA double-strand breaks (DSBs) pose a significant threat to genome integrity, necessitating efficient repair mechanisms. While the predominant repair strategies are usually accurate, paradoxically, error-prone pathways also exist. This review explores recent advances and our understanding of microhomology-mediated end joining (MMEJ), an intrinsically mutagenic DSB repair pathway conserved across organisms. Central to MMEJ is the activity of DNA polymerase theta (Polθ), a specialized polymerase that fuels MMEJ mutagenicity. We examine the molecular intricacies underlying MMEJ activity and discuss its function during mitosis, where the activity of Polθ emerges as a last-ditch effort to resolve persistent DSBs, especially when homologous recombination is compromised. We explore the promising therapeutic applications of targeting Polθ in cancer treatment and genome editing. Lastly, we discuss the evolutionary consequences of MMEJ, highlighting its delicate balance between protecting genome integrity and driving genomic diversity.
Collapse
Affiliation(s)
- Agnel Sfeir
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA;
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center; Institute of Biology Leiden, Leiden University, Leiden, The Netherlands;
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, Massachusetts, USA;
| |
Collapse
|
6
|
Li X, Perdomo IM, Rodrigues Alves Barbosa V, Diao C, Tarailo-Graovac M. The critical role of the iron-sulfur cluster and CTC components in DOG-1/BRIP1 function in Caenorhabditis elegans. Nucleic Acids Res 2024; 52:9586-9595. [PMID: 39011897 PMCID: PMC11381322 DOI: 10.1093/nar/gkae617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024] Open
Abstract
FANCJ/BRIP1, initially identified as DOG-1 (Deletions Of G-rich DNA) in Caenorhabditis elegans, plays a critical role in genome integrity by facilitating DNA interstrand cross-link repair and resolving G-quadruplex structures. Its function is tightly linked to a conserved [4Fe-4S] cluster-binding motif, mutations of which contribute to Fanconi anemia and various cancers. This study investigates the critical role of the iron-sulfur (Fe-S) cluster in DOG-1 and its relationship with the cytosolic iron-sulfur protein assembly targeting complex (CTC). We found that a DOG-1 mutant, expected to be defective in Fe-S cluster binding, is primarily localized in the cytoplasm, leading to heightened DNA damage sensitivity and G-rich DNA deletions. We further discovered that the deletion of mms-19, a nonessential CTC component, also resulted in DOG-1 sequestered in cytoplasm and increased DNA damage sensitivity. Additionally, we identified that CIAO-1 and CIAO-2B are vital for DOG-1's stability and repair functions but unlike MMS-19 have essential roles in C. elegans. These findings confirm the CTC and Fe-S cluster as key elements in regulating DOG-1, crucial for genome integrity. Additionally, this study advances our understanding of the CTC's role in Fe-S protein regulation and development in C. elegans, offering a model to study its impact on multicellular organism development.
Collapse
Affiliation(s)
- Xiao Li
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Ivette Maria Menendez Perdomo
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Victoria Rodrigues Alves Barbosa
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Catherine Diao
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Maja Tarailo-Graovac
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| |
Collapse
|
7
|
Richardson TE, Walker JM, Hambardzumyan D, Brem S, Hatanpaa KJ, Viapiano MS, Pai B, Umphlett M, Becher OJ, Snuderl M, McBrayer SK, Abdullah KG, Tsankova NM. Genetic and epigenetic instability as an underlying driver of progression and aggressive behavior in IDH-mutant astrocytoma. Acta Neuropathol 2024; 148:5. [PMID: 39012509 PMCID: PMC11252228 DOI: 10.1007/s00401-024-02761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024]
Abstract
In recent years, the classification of adult-type diffuse gliomas has undergone a revolution, wherein specific molecular features now represent defining diagnostic criteria of IDH-wild-type glioblastomas, IDH-mutant astrocytomas, and IDH-mutant 1p/19q-codeleted oligodendrogliomas. With the introduction of the 2021 WHO CNS classification, additional molecular alterations are now integrated into the grading of these tumors, given equal weight to traditional histologic features. However, there remains a great deal of heterogeneity in patient outcome even within these established tumor subclassifications that is unexplained by currently codified molecular alterations, particularly in the IDH-mutant astrocytoma category. There is also significant intercellular genetic and epigenetic heterogeneity and plasticity with resulting phenotypic heterogeneity, making these tumors remarkably adaptable and robust, and presenting a significant barrier to the design of effective therapeutics. Herein, we review the mechanisms and consequences of genetic and epigenetic instability, including chromosomal instability (CIN), microsatellite instability (MSI)/mismatch repair (MMR) deficits, and epigenetic instability, in the underlying biology, tumorigenesis, and progression of IDH-mutant astrocytomas. We also discuss the contribution of recent high-resolution transcriptomics studies toward defining tumor heterogeneity with single-cell resolution. While intratumoral heterogeneity is a well-known feature of diffuse gliomas, the contribution of these various processes has only recently been considered as a potential driver of tumor aggressiveness. CIN has an independent, adverse effect on patient survival, similar to the effect of histologic grade and homozygous CDKN2A deletion, while MMR mutation is only associated with poor overall survival in univariate analysis but is highly correlated with higher histologic/molecular grade and other aggressive features. These forms of genomic instability, which may significantly affect the natural progression of these tumors, response to therapy, and ultimately clinical outcome for patients, are potentially measurable features which could aid in diagnosis, grading, prognosis, and development of personalized therapeutics.
Collapse
Affiliation(s)
- Timothy E Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA.
| | - Jamie M Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, NY, 10029, USA
- Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, NY, 10029, USA
| | - Steven Brem
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kimmo J Hatanpaa
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mariano S Viapiano
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Balagopal Pai
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Melissa Umphlett
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
| | - Oren J Becher
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, NY, 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health, New York, NY, 10016, USA
| | - Samuel K McBrayer
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kalil G Abdullah
- Department of Neurosurgery, University of Pittsburgh School of Medicine, 200 Lothrop St, Pittsburgh, PA, 15213, USA
- Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Nadejda M Tsankova
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
8
|
Hegedus L, Toth A, Harami GM, Palinkas J, Karatayeva N, Sajben-Nagy E, Bene S, Afzali Jaktajdinani S, Kovacs M, Juhasz S, Burkovics P. Werner helicase interacting protein 1 contributes to G-quadruplex processing in human cells. Sci Rep 2024; 14:15740. [PMID: 38977862 PMCID: PMC11231340 DOI: 10.1038/s41598-024-66425-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
Genome replication is frequently impeded by highly stable DNA secondary structures, including G-quadruplex (G4) DNA, that can hinder the progression of the replication fork. Human WRNIP1 (Werner helicase Interacting Protein 1) associates with various components of the replication machinery and plays a crucial role in genome maintenance processes. However, its detailed function is still not fully understood. Here we show that human WRNIP1 interacts with G4 structures and provide evidence for its contribution to G4 processing. The absence of WRNIP1 results in elevated levels of G4 structures, DNA damage and chromosome aberrations following treatment with PhenDC3, a G4-stabilizing ligand. Additionally, we establish a functional and physical relationship between WRNIP1 and the PIF1 helicase in G4 processing. In summary, our results suggest that WRNIP1 aids genome replication and maintenance by regulating G4 processing and this activity relies on Pif1 DNA helicase.
Collapse
Affiliation(s)
- Lili Hegedus
- Institute of Genetics, Biological Research Centre, HUN-REN Szeged, Szeged, Hungary
| | - Agnes Toth
- Institute of Genetics, Biological Research Centre, HUN-REN Szeged, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gabor M Harami
- ELTE-MTA Momentum Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Janos Palinkas
- ELTE-MTA Momentum Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Nargis Karatayeva
- Institute of Genetics, Biological Research Centre, HUN-REN Szeged, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Eniko Sajben-Nagy
- Institute of Genetics, Biological Research Centre, HUN-REN Szeged, Szeged, Hungary
| | - Szabolcs Bene
- Institute of Genetics, Biological Research Centre, HUN-REN Szeged, Szeged, Hungary
| | - Sara Afzali Jaktajdinani
- Institute of Genetics, Biological Research Centre, HUN-REN Szeged, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Mihaly Kovacs
- ELTE-MTA Momentum Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Szilvia Juhasz
- HCEMM Cancer Microbiome Core Group, Szeged, Hungary.
- Institute of Biochemistry, Biological Research Centre, HUN-REN Szeged, Szeged, Hungary.
| | - Peter Burkovics
- Institute of Genetics, Biological Research Centre, HUN-REN Szeged, Szeged, Hungary.
| |
Collapse
|
9
|
Cui Y, Liu H, Ming Y, Zhang Z, Liu L, Liu R. Prediction of strand-specific and cell-type-specific G-quadruplexes based on high-resolution CUT&Tag data. Brief Funct Genomics 2024; 23:265-275. [PMID: 37357985 DOI: 10.1093/bfgp/elad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/20/2023] [Accepted: 06/01/2023] [Indexed: 06/27/2023] Open
Abstract
G-quadruplex (G4), a non-classical deoxyribonucleic acid structure, is widely distributed in the genome and involved in various biological processes. In vivo, high-throughput sequencing has indicated that G4s are significantly enriched at functional regions in a cell-type-specific manner. Therefore, the prediction of G4s based on computational methods is necessary instead of the time-consuming and laborious experimental methods. Recently, G4 CUT&Tag has been developed to generate higher-resolution sequencing data than ChIP-seq, which provides more accurate training samples for model construction. In this paper, we present a new dataset construction method based on G4 CUT&Tag sequencing data and an XGBoost prediction model based on the machine learning boost method. The results show that our model performs well within and across cell types. Furthermore, sequence analysis indicates that the formation of G4 structure is greatly affected by the flanking sequences, and the GC content of the G4 flanking sequences is higher than non-G4. Moreover, we also identified G4 motifs in the high-resolution dataset, among which we found several motifs for known transcription factors (TFs), such as SP2 and BPC. These TFs may directly or indirectly affect the formation of the G4 structure.
Collapse
Affiliation(s)
- Yizhi Cui
- School of Computer Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, 324003, Zhejiang, China
| | - Hongzhi Liu
- School of Computer Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Yutong Ming
- School of Computer Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Zheng Zhang
- Department of Computer Science and Software Engineering, Auburn University, Auburn, 36830, Alabama, USA
| | - Li Liu
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, 324003, Zhejiang, China
| | - Ruijun Liu
- School of Computer Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
10
|
Alanazi AR, Parkinson GN, Haider S. Structural Motifs at the Telomeres and Their Role in Regulatory Pathways. Biochemistry 2024; 63:827-842. [PMID: 38481135 PMCID: PMC10993422 DOI: 10.1021/acs.biochem.4c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Telomeres are specialized structures, found at the ends of linear chromosomes in eukaryotic cells, that play a crucial role in maintaining the stability and integrity of genomes. They are composed of repetitive DNA sequences, ssDNA overhangs, and several associated proteins. The length of telomeres is linked to cellular aging in humans, and deficiencies in their maintenance are associated with various diseases. Key structural motifs at the telomeres serve to protect vulnerable chromosomal ends. Telomeric DNA also has the ability to form diverse complex DNA higher-order structures, including T-loops, D-loops, R-loops, G-loops, G-quadruplexes, and i-motifs, in the complementary C-rich strand. While many essential proteins at telomeres have been identified, the intricacies of their interactions and structural details are still not fully understood. This Perspective highlights recent advancements in comprehending the structures associated with human telomeres. It emphasizes the significance of telomeres, explores various telomeric structural motifs, and delves into the structural biology surrounding telomeres and telomerase. Furthermore, telomeric loops, their topologies, and the associated proteins that contribute to the safeguarding of telomeres are discussed.
Collapse
Affiliation(s)
- Abeer
F R Alanazi
- UCL
School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Gary N Parkinson
- UCL
School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Shozeb Haider
- UCL
School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
- UCL
Centre for Advanced Research Computing, University College London, London WC1H 9RN, United
Kingdom
| |
Collapse
|
11
|
Richl T, Kuper J, Kisker C. G-quadruplex-mediated genomic instability drives SNVs in cancer. Nucleic Acids Res 2024; 52:2198-2211. [PMID: 38407356 PMCID: PMC10954472 DOI: 10.1093/nar/gkae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/13/2023] [Accepted: 02/21/2024] [Indexed: 02/27/2024] Open
Abstract
G-quadruplex (G4s) DNA structures have been implicated in inducing genomic instability and contributing to cancer development. However, the relationship between G4s and cancer-related single nucleotide variants (cSNVs) in clinical settings remains unclear. In this large-scale study, we integrated experimentally validated G4s with genomic cSNVs from 13480 cancer patients to investigate the spatial association of G4s with the cellular cSNV landscape. Our findings demonstrate an increase in local genomic instability with increasing local G4 content in cancer patients, suggesting a potential role for G4s in driving cSNVs. Notably, we observed distinct spatial patterns of cSNVs and common single nucleotide variants (dbSNVs) in relation to G4s, implying different mechanisms for their generation and accumulation. We further demonstrate large, cancer-specific differences in the relationship of G4s and cSNVs, which could have important implications for a new class of G4-stabilizing cancer therapeutics. Moreover, we show that high G4-content can serve as a prognostic marker for local cSNV density and patient survival rates. Our findings underscore the importance of considering G4s in cancer research and highlight the need for further investigation into the underlying molecular mechanisms of G4-mediated genomic instability, especially in the context of cancer.
Collapse
Affiliation(s)
- Tilmann Richl
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Wuerzburg 97080, Germany
| | - Jochen Kuper
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Wuerzburg 97080, Germany
| | - Caroline Kisker
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Wuerzburg 97080, Germany
| |
Collapse
|
12
|
Sengupta P, Dutta A, Suseela YV, Roychowdhury T, Banerjee N, Dutta A, Halder S, Jana K, Mukherjee G, Chattopadhyay S, Govindaraju T, Chatterjee S. G-quadruplex structural dynamics at MAPK12 promoter dictates transcriptional switch to determine stemness in breast cancer. Cell Mol Life Sci 2024; 81:33. [PMID: 38214819 PMCID: PMC11073236 DOI: 10.1007/s00018-023-05046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 01/13/2024]
Abstract
P38γ (MAPK12) is predominantly expressed in triple negative breast cancer cells (TNBC) and induces stem cell (CSC) expansion resulting in decreased survival of the patients due to metastasis. Abundance of G-rich sequences at MAPK12 promoter implied the functional probability to reverse tumorigenesis, though the formation of G-Quadruplex (G4) structures at MAPK12 promoter is elusive. Here, we identified two evolutionary consensus adjacent G4 motifs upstream of the MAPK12 promoter, forming parallel G4 structures. They exist in an equilibria between G4 and duplex, regulated by the binding turnover of Sp1 and Nucleolin that bind to these G4 motifs and regulate MAPK12 transcriptional homeostasis. To underscore the gene-regulatory functions of G4 motifs, we employed CRISPR-Cas9 system to eliminate G4s from TNBC cells and synthesized a naphthalene diimide (NDI) derivative (TGS24) which shows high-affinity binding to MAPK12-G4 and inhibits MAPK12 transcription. Deletion of G4 motifs and NDI compound interfere with the recruitment of the transcription factors, inhibiting MAPK12 expression in cancer cells. The molecular basis of NDI-induced G4 transcriptional regulation was analysed by RNA-seq analyses, which revealed that MAPK12-G4 inhibits oncogenic RAS transformation and trans-activation of NANOG. MAPK12-G4 also reduces CD44High/CD24Low population in TNBC cells and downregulates internal stem cell markers, arresting the stemness properties of cancer cells.
Collapse
Affiliation(s)
- Pallabi Sengupta
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Anindya Dutta
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Y V Suseela
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka, 560064, India
| | - Tanaya Roychowdhury
- Department of Cancer Biology and Inflammatory Disorder, IICB, Kolkata, West Bengal, India
| | - Nilanjan Banerjee
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Ananya Dutta
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Satyajit Halder
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Kuladip Jana
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Gopeswar Mukherjee
- Barasat Cancer Research and Welfare Centre, Barasat, Kolkata, West Bengal, India
| | - Samit Chattopadhyay
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, K. K. Birla Goa Campus, Goa, 403726, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka, 560064, India.
| | - Subhrangsu Chatterjee
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
13
|
Lorenzatti A, Piga EJ, Gismondi M, Binolfi A, Margarit E, Calcaterra N, Armas P. Genetic variations in G-quadruplex forming sequences affect the transcription of human disease-related genes. Nucleic Acids Res 2023; 51:12124-12139. [PMID: 37930868 PMCID: PMC10711447 DOI: 10.1093/nar/gkad948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 11/08/2023] Open
Abstract
Guanine-rich DNA strands can fold into non-canonical four-stranded secondary structures named G-quadruplexes (G4s). G4s folded in proximal promoter regions (PPR) are associated either with positive or negative transcriptional regulation. Given that single nucleotide variants (SNVs) affecting G4 folding (G4-Vars) may alter gene transcription, and that SNVs are associated with the human diseases' onset, we undertook a novel comprehensive study of the G4-Vars genome-wide (G4-variome) to find disease-associated G4-Vars located into PPRs. We developed a bioinformatics strategy to find disease-related SNVs located into PPRs simultaneously overlapping with putative G4-forming sequences (PQSs). We studied five G4-Vars disturbing in vitro the folding and stability of the G4s located into PPRs, which had been formerly associated with sporadic Alzheimer's disease (GRIN2B), a severe familiar coagulopathy (F7), atopic dermatitis (CSF2), myocardial infarction (SIRT1) and deafness (LHFPL5). Results obtained in cultured cells for these five G4-Vars suggest that the changes in the G4s affect the transcription, potentially contributing to the development of the mentioned diseases. Collectively, data reinforce the general idea that G4-Vars may impact on the different susceptibilities to human genetic diseases' onset, and could be novel targets for diagnosis and drug design in precision medicine.
Collapse
Affiliation(s)
- Agustín Lorenzatti
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario S2000EZP, Santa Fe, Argentina
| | - Ernesto J Piga
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario S2000EZP, Santa Fe, Argentina
| | - Mauro Gismondi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 531, Rosario, Santa Fe, Argentina
| | - Andrés Binolfi
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario S2000EZP, Santa Fe, Argentina
- Plataforma Argentina de Biología Estructural y Metabolómica (PLABEM), Ocampo y Esmeralda, Rosario S200EZP, Santa Fe, Argentina
| | - Ezequiel Margarit
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 531, Rosario, Santa Fe, Argentina
| | - Nora B Calcaterra
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario S2000EZP, Santa Fe, Argentina
| | - Pablo Armas
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario S2000EZP, Santa Fe, Argentina
| |
Collapse
|
14
|
Nickoloff JA, Jaiswal AS, Sharma N, Williamson EA, Tran MT, Arris D, Yang M, Hromas R. Cellular Responses to Widespread DNA Replication Stress. Int J Mol Sci 2023; 24:16903. [PMID: 38069223 PMCID: PMC10707325 DOI: 10.3390/ijms242316903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Replicative DNA polymerases are blocked by nearly all types of DNA damage. The resulting DNA replication stress threatens genome stability. DNA replication stress is also caused by depletion of nucleotide pools, DNA polymerase inhibitors, and DNA sequences or structures that are difficult to replicate. Replication stress triggers complex cellular responses that include cell cycle arrest, replication fork collapse to one-ended DNA double-strand breaks, induction of DNA repair, and programmed cell death after excessive damage. Replication stress caused by specific structures (e.g., G-rich sequences that form G-quadruplexes) is localized but occurs during the S phase of every cell division. This review focuses on cellular responses to widespread stress such as that caused by random DNA damage, DNA polymerase inhibition/nucleotide pool depletion, and R-loops. Another form of global replication stress is seen in cancer cells and is termed oncogenic stress, reflecting dysregulated replication origin firing and/or replication fork progression. Replication stress responses are often dysregulated in cancer cells, and this too contributes to ongoing genome instability that can drive cancer progression. Nucleases play critical roles in replication stress responses, including MUS81, EEPD1, Metnase, CtIP, MRE11, EXO1, DNA2-BLM, SLX1-SLX4, XPF-ERCC1-SLX4, Artemis, XPG, FEN1, and TATDN2. Several of these nucleases cleave branched DNA structures at stressed replication forks to promote repair and restart of these forks. We recently defined roles for EEPD1 in restarting stressed replication forks after oxidative DNA damage, and for TATDN2 in mitigating replication stress caused by R-loop accumulation in BRCA1-defective cells. We also discuss how insights into biological responses to genome-wide replication stress can inform novel cancer treatment strategies that exploit synthetic lethal relationships among replication stress response factors.
Collapse
Affiliation(s)
- Jac A. Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Aruna S. Jaiswal
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Elizabeth A. Williamson
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Manh T. Tran
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Dominic Arris
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Ming Yang
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Robert Hromas
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| |
Collapse
|
15
|
Duardo RC, Guerra F, Pepe S, Capranico G. Non-B DNA structures as a booster of genome instability. Biochimie 2023; 214:176-192. [PMID: 37429410 DOI: 10.1016/j.biochi.2023.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Non-canonical secondary structures (NCSs) are alternative nucleic acid structures that differ from the canonical B-DNA conformation. NCSs often occur in repetitive DNA sequences and can adopt different conformations depending on the sequence. The majority of these structures form in the context of physiological processes, such as transcription-associated R-loops, G4s, as well as hairpins and slipped-strand DNA, whose formation can be dependent on DNA replication. It is therefore not surprising that NCSs play important roles in the regulation of key biological processes. In the last years, increasing published data have supported their biological role thanks to genome-wide studies and the development of bioinformatic prediction tools. Data have also highlighted the pathological role of these secondary structures. Indeed, the alteration or stabilization of NCSs can cause the impairment of transcription and DNA replication, modification in chromatin structure and DNA damage. These events lead to a wide range of recombination events, deletions, mutations and chromosomal aberrations, well-known hallmarks of genome instability which are strongly associated with human diseases. In this review, we summarize molecular processes through which NCSs trigger genome instability, with a focus on G-quadruplex, i-motif, R-loop, Z-DNA, hairpin, cruciform and multi-stranded structures known as triplexes.
Collapse
Affiliation(s)
- Renée C Duardo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Federico Guerra
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Simona Pepe
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
16
|
Paniagua I, Jacobs JJL. Freedom to err: The expanding cellular functions of translesion DNA polymerases. Mol Cell 2023; 83:3608-3621. [PMID: 37625405 DOI: 10.1016/j.molcel.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/02/2023] [Accepted: 07/07/2023] [Indexed: 08/27/2023]
Abstract
Translesion synthesis (TLS) DNA polymerases were originally described as error-prone enzymes involved in the bypass of DNA lesions. However, extensive research over the past few decades has revealed that these enzymes play pivotal roles not only in lesion bypass, but also in a myriad of other cellular processes. Such processes include DNA replication, DNA repair, epigenetics, immune signaling, and even viral infection. This review discusses the wide range of functions exhibited by TLS polymerases, including their underlying biochemical mechanisms and associated mutagenicity. Given their multitasking ability to alleviate replication stress, TLS polymerases represent a cellular dependency and a critical vulnerability of cancer cells. Hence, this review also highlights current and emerging strategies for targeting TLS polymerases in cancer therapy.
Collapse
Affiliation(s)
- Inés Paniagua
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Jacqueline J L Jacobs
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands.
| |
Collapse
|
17
|
Sato K, Knipscheer P. G-quadruplex resolution: From molecular mechanisms to physiological relevance. DNA Repair (Amst) 2023; 130:103552. [PMID: 37572578 DOI: 10.1016/j.dnarep.2023.103552] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
Guanine-rich DNA sequences can fold into stable four-stranded structures called G-quadruplexes or G4s. Research in the past decade demonstrated that G4 structures are widespread in the genome and prevalent in regulatory regions of actively transcribed genes. The formation of G4s has been tightly linked to important biological processes including regulation of gene expression and genome maintenance. However, they can also pose a serious threat to genome integrity especially by impeding DNA replication, and G4-associated somatic mutations have been found accumulated in the cancer genomes. Specialised DNA helicases and single stranded DNA binding proteins that can resolve G4 structures play a crucial role in preventing genome instability. The large variety of G4 unfolding proteins suggest the presence of multiple G4 resolution mechanisms in cells. Recently, there has been considerable progress in our detailed understanding of how G4s are resolved, especially during DNA replication. In this review, we first discuss the current knowledge of the genomic G4 landscapes and the impact of G4 structures on DNA replication and genome integrity. We then describe the recent progress on the mechanisms that resolve G4 structures and their physiological relevance. Finally, we discuss therapeutic opportunities to target G4 structures.
Collapse
Affiliation(s)
- Koichi Sato
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
18
|
Abstract
Repetitive elements in the human genome, once considered 'junk DNA', are now known to adopt more than a dozen alternative (that is, non-B) DNA structures, such as self-annealed hairpins, left-handed Z-DNA, three-stranded triplexes (H-DNA) or four-stranded guanine quadruplex structures (G4 DNA). These dynamic conformations can act as functional genomic elements involved in DNA replication and transcription, chromatin organization and genome stability. In addition, recent studies have revealed a role for these alternative structures in triggering error-generating DNA repair processes, thereby actively enabling genome plasticity. As a driving force for genetic variation, non-B DNA structures thus contribute to both disease aetiology and evolution.
Collapse
Affiliation(s)
- Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Paediatric Research Institute, Austin, TX, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Paediatric Research Institute, Austin, TX, USA.
| |
Collapse
|
19
|
Makova KD, Weissensteiner MH. Noncanonical DNA structures are drivers of genome evolution. Trends Genet 2023; 39:109-124. [PMID: 36604282 PMCID: PMC9877202 DOI: 10.1016/j.tig.2022.11.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/04/2022] [Accepted: 11/28/2022] [Indexed: 01/05/2023]
Abstract
In addition to the canonical right-handed double helix, other DNA structures, termed 'non-B DNA', can form in the genomes across the tree of life. Non-B DNA regulates multiple cellular processes, including replication and transcription, yet its presence is associated with elevated mutagenicity and genome instability. These discordant cellular roles fuel the enormous potential of non-B DNA to drive genomic and phenotypic evolution. Here we discuss recent studies establishing non-B DNA structures as novel functional elements subject to natural selection, affecting evolution of transposable elements (TEs), and specifying centromeres. By highlighting the contributions of non-B DNA to repeated evolution and adaptation to changing environments, we conclude that evolutionary analyses should include a perspective of not only DNA sequence, but also its structure.
Collapse
Affiliation(s)
- Kateryna D Makova
- Department of Biology, Penn State University, 310 Wartik Laboratory, University Park, PA 16802, USA.
| | | |
Collapse
|
20
|
Stein M, Hile SE, Weissensteiner MH, Lee M, Zhang S, Kejnovský E, Kejnovská I, Makova KD, Eckert KA. Variation in G-quadruplex sequence and topology differentially impacts human DNA polymerase fidelity. DNA Repair (Amst) 2022; 119:103402. [PMID: 36116264 PMCID: PMC9798401 DOI: 10.1016/j.dnarep.2022.103402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/12/2022] [Accepted: 09/02/2022] [Indexed: 12/31/2022]
Abstract
G-quadruplexes (G4s), a type of non-B DNA, play important roles in a wide range of molecular processes, including replication, transcription, and translation. Genome integrity relies on efficient and accurate DNA synthesis, and is compromised by various stressors, to which non-B DNA structures such as G4s can be particularly vulnerable. However, the impact of G4 structures on DNA polymerase fidelity is largely unknown. Using an in vitro forward mutation assay, we investigated the fidelity of human DNA polymerases delta (δ4, four-subunit), eta (η), and kappa (κ) during synthesis of G4 motifs representing those in the human genome. The motifs differ in sequence, topology, and stability, features that may affect DNA polymerase errors. Polymerase error rate hierarchy (δ4 < κ < η) is largely maintained during G4 synthesis. Importantly, we observed unique polymerase error signatures during synthesis of VEGF G4 motifs, stable G4s which form parallel topologies. These statistically significant errors occurred within, immediately flanking, and encompassing the G4 motif. For pol δ4, the errors were deletions, insertions and complex errors within the G4 or encompassing the G4 motif and surrounding sequence. For pol η, the errors occurred in 3' sequences flanking the G4 motif. For pol κ, the errors were frameshift mutations within G-tracts of the G4. Because these error signatures were not observed during synthesis of an antiparallel G4 and, to a lesser extent, a hybrid G4, we suggest that G4 topology and/or stability could influence polymerase fidelity. Using in silico analyses, we show that most polymerase errors are predicted to have minimal effects on predicted G4 stability. Our results provide a unique view of G4s not previously elucidated, showing that G4 motif heterogeneity differentially influences polymerase fidelity within the motif and flanking sequences. Thus, our study advances the understanding of how DNA polymerase errors contribute to G4 mutagenesis.
Collapse
Affiliation(s)
- MaryElizabeth Stein
- Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Penn State University College of Medicine, Hershey, PA, USA
| | - Suzanne E Hile
- Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Penn State University College of Medicine, Hershey, PA, USA
| | | | - Marietta Lee
- Department of Biochemistry & Molecular Biology, New York Medical College, Valhalla, NY, USA
| | - Sufang Zhang
- Department of Biochemistry & Molecular Biology, New York Medical College, Valhalla, NY, USA
| | - Eduard Kejnovský
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Iva Kejnovská
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Kateryna D Makova
- Department of Biology, Penn State University Eberly College of Science, University Park, PA, USA
| | - Kristin A Eckert
- Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Penn State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
21
|
Miglietta G, Marinello J, Russo M, Capranico G. Ligands stimulating antitumour immunity as the next G-quadruplex challenge. Mol Cancer 2022; 21:180. [PMID: 36114513 PMCID: PMC9482198 DOI: 10.1186/s12943-022-01649-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractG-quadruplex (G4) binders have been investigated to discover new anticancer drugs worldwide in past decades. As these ligands are generally not highly cytotoxic, the discovery rational was mainly based on increasing the cell-killing potency. Nevertheless, no G4 binder has been shown yet to be effective in cancer patients. Here, G4 binder activity at low dosages will be discussed as a critical feature to discover ligands with therapeutic effects in cancer patients. Specific effects of G4 binders al low doses have been reported to occur in cancer and normal cells. Among them, genome instability and the stimulation of cytoplasmic processes related to autophagy and innate immune response open to the use of G4 binders as immune-stimulating agents. Thus, we propose a new rational of drug discovery, which is not based on cytotoxic potency but rather on immune gene activation at non-cytotoxic dosage.
Collapse
|
22
|
Mellor C, Perez C, Sale JE. Creation and resolution of non-B-DNA structural impediments during replication. Crit Rev Biochem Mol Biol 2022; 57:412-442. [PMID: 36170051 PMCID: PMC7613824 DOI: 10.1080/10409238.2022.2121803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/02/2022] [Accepted: 08/25/2022] [Indexed: 01/27/2023]
Abstract
During replication, folding of the DNA template into non-B-form secondary structures provides one of the most abundant impediments to the smooth progression of the replisome. The core replisome collaborates with multiple accessory factors to ensure timely and accurate duplication of the genome and epigenome. Here, we discuss the forces that drive non-B structure formation and the evidence that secondary structures are a significant and frequent source of replication stress that must be actively countered. Taking advantage of recent advances in the molecular and structural biology of the yeast and human replisomes, we examine how structures form and how they may be sensed and resolved during replication.
Collapse
Affiliation(s)
- Christopher Mellor
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Consuelo Perez
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Julian E Sale
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
23
|
Brahme A. Quantifying Cellular Repair, Misrepair and Apoptosis Induced by Boron Ions, Gamma Rays and PRIMA-1 Using the RHR Formulation. Radiat Res 2022; 198:271-296. [PMID: 35834822 DOI: 10.1667/rade-22-00011.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 06/14/2022] [Indexed: 11/03/2022]
Abstract
The recent interaction cross-section-based formulation for radiation-induced direct cellular inactivation, mild and severe sublethal damage, DNA-repair and cell survival have been developed to accurately describe cellular repair, misrepair and apoptosis in TP53 wild-type and mutant cells. The principal idea of this new non-homologous repairable-homologous repairable (RHR) damage formulation is to separately describe the mild damage that can be rapidly handled by the most basic repair processes including the non-homologous end joining (NHEJ), and more complex damage requiring longer repair times and high-fidelity homologous recombination (HR) repair. Taking the interaction between these two key mammalian DNA repair processes more accurately into account has significantly improved the method as indicated in the original publication. Based on the principal mechanisms of 7 repair and 8 misrepair processes presently derived, it has been possible to quite accurately describe the probability that some of these repair processes when unsuccessful can induce cellular apoptosis with increasing doses of γrays, boron ions and PRIMA-1. Interestingly, for all LETs studied (≈0.3-160 eV/nm) the increase in apoptosis saturates when the cell survival reaches about 10% and the fraction of un-hit cells is well below the 1% level. It is shown that most of the early cell kill for low-to-medium LETs are due to apoptosis since the cell survival as well as the non-apoptotic cells agree very well at low doses and other death processes dominate beyond D > 1 Gy. The low-dose apoptosis is due to the fact that the full activation of the checkpoint kinases ATM and Chk2 requires >8 and >18 DSBs per cell to phosphorylate p53 at serine 15 and 20. Therefore, DNA repair is not fully activated until well after 1/2 Gy, and the cellular response may be apoptotic by default before the low-dose hyper sensitivity (LDHS) is replaced by an increased radiation tolerance as the DNA repair processes get maximal efficiency. In effect, simultaneously explaining the LDHS and inverse dose rate phenomena. The partial contributions by the eight newly derived misrepair processes was determined so they together accurately described the experimental apoptosis induction data for γ rays and boron ions. Through these partial misrepair contributions it was possible to predict the apoptotic response based solely on carefully analyzed cell survival data, demonstrating the usefulness of an accurate DNA repair-based cell survival approach. The peak relative biological effectiveness (RBE) of the boron ions was 3.5 at 160 eV/nm whereas the analogous peak relative apoptotic effectiveness (RAE) was 3.4 but at 40 eV/nm indicating the clinical value of the lower LET light ion (15 \le {\rm{LET}} \le 55{\rm{\ eV}}/{\rm{nm}},{\rm{\ }}2 \le Z \le 5) in therapeutic applications to maximize tumor apoptosis and senescence. The new survival expressions were also applied on mouse embryonic fibroblasts with key knocked-out repair genes, showing a good agreement between the principal non-homologous and homologous repair terms and also a reasonable prediction of the associated apoptotic induction. Finally, the formulation was used to estimate the increase in DNA repair and apoptotic response in combination with the mutant p53 reactivating compound PRIMA-1 and γ rays, indicating a 10-2 times increase in apoptosis with 5 μM of the compound reaching apoptosis levels not far from peak apoptosis boron ions in a TP53 mutant cell line. To utilize PRIMA-1 induced apoptosis and cellular sensitization for reactive oxygen species (ROS), concomitant biologically optimized radiation therapy is proposed to maximize the complication free tumor cure for the multitude of TP53 mutant tumors seen in the clinic. The experimental data also indicated the clinically very important high-absorbed dose ROS effect of PRIMA-1.
Collapse
Affiliation(s)
- Anders Brahme
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
24
|
Dai Y, Guo H, Liu N, Chen W, Ai X, Li H, Sun B, Hou X, Rety S, Xi X. Structural mechanism underpinning Thermus oshimai Pif1-mediated G-quadruplex unfolding. EMBO Rep 2022; 23:e53874. [PMID: 35736675 PMCID: PMC9253758 DOI: 10.15252/embr.202153874] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 05/04/2022] [Accepted: 05/16/2022] [Indexed: 08/05/2023] Open
Abstract
G-quadruplexes (G4s) are unusual stable DNA structures that cause genomic instability. To overcome the potential barriers formed by G4s, cells have evolved different families of proteins that unfold G4s. Pif1 is a DNA helicase from superfamily 1 (SF1) conserved from bacteria to humans with high G4-unwinding activity. Here, we present the first X-ray crystal structure of the Thermus oshimai Pif1 (ToPif1) complexed with a G4. Our structure reveals that ToPif1 recognizes the entire native G4 via a cluster of amino acids at domains 1B/2B which constitute a G4-Recognizing Surface (GRS). The overall structure of the G4 maintains its three-layered propeller-type G4 topology, without significant reorganization of G-tetrads upon protein binding. The three G-tetrads in G4 are recognized by GRS residues mainly through electrostatic, ionic interactions, and hydrogen bonds formed between the GRS residues and the ribose-phosphate backbone. Compared with previously solved structures of SF2 helicases in complex with G4, our structure reveals how helicases from distinct superfamilies adopt different strategies for recognizing and unfolding G4s.
Collapse
Affiliation(s)
- Yang‐Xue Dai
- College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Hai‐Lei Guo
- College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Na‐Nv Liu
- College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Wei‐Fei Chen
- College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Xia Ai
- College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Hai‐Hong Li
- College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Bo Sun
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Xi‐Miao Hou
- College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Stephane Rety
- LBMCENS de LyonCNRS UMR 5239INSERM U1293Universite Claude Bernard Lyon 1LyonFrance
| | - Xu‐Guang Xi
- College of Life SciencesNorthwest A&F UniversityYanglingChina
- Laboratoire de Biologie et Pharmacologie Appliquée (LBPA)UMR8113 CNRSENS Paris‐SaclayUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| |
Collapse
|
25
|
Severov V, Tsvetkov V, Barinov N, Babenko V, Klinov D, Pozmogova G. Spontaneous DNA Synapsis by Forming Noncanonical Intermolecular Structures. Polymers (Basel) 2022; 14:polym14102118. [PMID: 35632001 PMCID: PMC9144187 DOI: 10.3390/polym14102118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/14/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
We report the spontaneous formation of DNA-DNA junctions in solution in the absence of proteins visualised using atomic force microscopy. The synapsis position fits with potential G-quadruplex (G4) sites. In contrast to the Holliday structure, these conjugates have an affinity for G4 antibodies. Molecular modelling was used to elucidate the possible G4/IM-synaptic complex structures. Our results indicate a new role of the intermolecular noncanonical structures in chromatin architecture and genomic rearrangement.
Collapse
Affiliation(s)
- Viacheslav Severov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, 119435 Moscow, Russia; (N.B.); (V.B.); (D.K.); (G.P.)
- Correspondence: (V.S.); (V.T.)
| | - Vladimir Tsvetkov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, 119435 Moscow, Russia; (N.B.); (V.B.); (D.K.); (G.P.)
- Institute of Biodesign and Complex System Modeling, I.M. Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia
- A.V. Topchiev Institute of Petrochemical Synthesis, Leninsky prospect Str. 29, 119991 Moscow, Russia
- Correspondence: (V.S.); (V.T.)
| | - Nikolay Barinov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, 119435 Moscow, Russia; (N.B.); (V.B.); (D.K.); (G.P.)
| | - Vladislav Babenko
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, 119435 Moscow, Russia; (N.B.); (V.B.); (D.K.); (G.P.)
| | - Dmitry Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, 119435 Moscow, Russia; (N.B.); (V.B.); (D.K.); (G.P.)
- Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str.6, 117198 Moscow, Russia
| | - Galina Pozmogova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, 119435 Moscow, Russia; (N.B.); (V.B.); (D.K.); (G.P.)
| |
Collapse
|
26
|
Venkata Suseela Y, Sengupta P, Roychowdhury T, Panda S, Talukdar S, Chattopadhyay S, Chatterjee S, Govindaraju T. Targeting Oncogene Promoters and Ribosomal RNA Biogenesis by G-Quadruplex Binding Ligands Translate to Anticancer Activity. ACS BIO & MED CHEM AU 2022; 2:125-139. [PMID: 37101746 PMCID: PMC10114666 DOI: 10.1021/acsbiomedchemau.1c00039] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
G-Quadruplex (GQ) nucleic acids are promising therapeutic targets in anticancer research due to their structural robustness, polymorphism, and gene-regulatory functions. Here, we presented the structure-activity relationship of carbazole-based monocyanine ligands using region-specific functionalization with benzothiazole (TCA and TCZ), lepidine (LCA and LCZ), and quinaldine (QCA and QCZ) acceptor moieties and evaluated their binding profiles with different oncogenic GQs. Their differential turn-on fluorescence emission upon GQ binding confirmed the GQ-to-duplex selectivity of all carbazole ligands, while the isothermal titration calorimetry results showed selective interactions of TCZ and TCA to c-MYC and BCL-2 GQs, respectively. The aldehyde group in TCA favors stacking interactions with the tetrad of BCL-2 GQ, whereas TCZ provides selective groove interactions with c-MYC GQ. Dual-luciferase assay and chromatin immunoprecipitation (ChIP) showed that these molecules interfere with the recruitment of specific transcription factors at c-MYC and BCL-2 promoters and stabilize the promoter GQ structures to inhibit their constitutive transcription in cancer cells. Their intrinsic turn-on fluorescence response with longer lifetimes upon GQ binding allowed real-time visualization of GQ structures at subcellular compartments. Confocal microscopy revealed the uptake of these ligands in the nucleoli, resulting in nucleolar stress. ChIP studies further confirmed the inhibition of Nucleolin occupancy at multiple GQ-enriched regions of ribosomal DNA (rDNA) promoters, which arrested rRNA biogenesis. Therefore, carbazole ligands act as the "double-edged swords" to arrest c-MYC and BCL-2 overexpression as well as rRNA biogenesis, triggering synergistic inhibition of multiple oncogenic pathways and apoptosis in cancer cells.
Collapse
Affiliation(s)
- Yelisetty Venkata Suseela
- Bioorganic
Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, P.O., Bengaluru, Karnataka 560064, India
| | - Pallabi Sengupta
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kankurgachi, Kolkata 700054, India
| | - Tanaya Roychowdhury
- Cancer
Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Suman Panda
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kankurgachi, Kolkata 700054, India
| | - Sangita Talukdar
- Bioorganic
Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, P.O., Bengaluru, Karnataka 560064, India
| | - Samit Chattopadhyay
- Cancer
Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Subhrangsu Chatterjee
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kankurgachi, Kolkata 700054, India
| | - Thimmaiah Govindaraju
- Bioorganic
Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, P.O., Bengaluru, Karnataka 560064, India
| |
Collapse
|
27
|
Martella M, Pichiorri F, Chikhale RV, Abdelhamid MAS, Waller ZAE, Smith S. i-Motif formation and spontaneous deletions in human cells. Nucleic Acids Res 2022; 50:3445-3455. [PMID: 35253884 PMCID: PMC8989526 DOI: 10.1093/nar/gkac158] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 02/01/2022] [Accepted: 02/26/2022] [Indexed: 01/14/2023] Open
Abstract
Concatemers of d(TCCC) that were first detected through their association with deletions at the RACK7 locus, are widespread throughout the human genome. Circular dichroism spectra show that d(GGGA)n sequences form G-quadruplexes when n > 3, while i-motif structures form at d(TCCC)n sequences at neutral pH when n ≥ 7 in vitro. In the PC3 cell line, deletions are observed only when the d(TCCC)n variant is long enough to form significant levels of unresolved i-motif structure at neutral pH. The presence of an unresolved i-motif at a representative d(TCCC)n element at RACK7 was suggested by experiments showing that that the region containing the d(TCCC)9 element was susceptible to bisulfite attack in native DNA and that d(TCCC)9 oligo formed an i-motif structure at neutral pH. This in turn suggested that that the i-motif present at this site in native DNA must be susceptible to bisulfite mediated deamination even though it is a closed structure. Bisulfite deamination of the i-motif structure in the model oligodeoxynucleotide was confirmed using mass spectrometry analysis. We conclude that while G-quadruplex formation may contribute to spontaneous mutation at these sites, deletions actually require the potential for i-motif to form and remain unresolved at neutral pH.
Collapse
Affiliation(s)
- Marianna Martella
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Flavia Pichiorri
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Rupesh V Chikhale
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Mahmoud A S Abdelhamid
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Zoë A E Waller
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Steven S Smith
- Department of Hematologic Malignancies Translational Science, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
- Beckman Research Institute of the City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| |
Collapse
|
28
|
Ramsden DA, Carvajal-Garcia J, Gupta GP. Mechanism, cellular functions and cancer roles of polymerase-theta-mediated DNA end joining. Nat Rev Mol Cell Biol 2022; 23:125-140. [PMID: 34522048 DOI: 10.1038/s41580-021-00405-2] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 02/08/2023]
Abstract
Cellular pathways that repair chromosomal double-strand breaks (DSBs) have pivotal roles in cell growth, development and cancer. These DSB repair pathways have been the target of intensive investigation, but one pathway - alternative end joining (a-EJ) - has long resisted elucidation. In this Review, we highlight recent progress in our understanding of a-EJ, especially the assignment of DNA polymerase theta (Polθ) as the predominant mediator of a-EJ in most eukaryotes, and discuss a potential molecular mechanism by which Polθ-mediated end joining (TMEJ) occurs. We address possible cellular functions of TMEJ in resolving DSBs that are refractory to repair by non-homologous end joining (NHEJ), DSBs generated following replication fork collapse and DSBs present owing to stalling of repair by homologous recombination. We also discuss how these context-dependent cellular roles explain how TMEJ can both protect against and cause genome instability, and the emerging potential of Polθ as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Dale A Ramsden
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Juan Carvajal-Garcia
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gaorav P Gupta
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
29
|
Qi M, Stenson PD, Ball EV, Tainer JA, Bacolla A, Kehrer-Sawatzki H, Cooper DN, Zhao H. Distinct sequence features underlie microdeletions and gross deletions in the human genome. Hum Mutat 2021; 43:328-346. [PMID: 34918412 PMCID: PMC9069542 DOI: 10.1002/humu.24314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/02/2021] [Accepted: 12/14/2021] [Indexed: 11/18/2022]
Abstract
Microdeletions and gross deletions are important causes (~20%) of human inherited disease and their genomic locations are strongly influenced by the local DNA sequence environment. This notwithstanding, no study has systematically examined their underlying generative mechanisms. Here, we obtained 42,098 pathogenic microdeletions and gross deletions from the Human Gene Mutation Database (HGMD) that together form a continuum of germline deletions ranging in size from 1 to 28,394,429 bp. We analyzed the DNA sequence within 1 kb of the breakpoint junctions and found that the frequencies of non‐B DNA‐forming repeats, GC‐content, and the presence of seven of 78 specific sequence motifs in the vicinity of pathogenic deletions correlated with deletion length for deletions of length ≤30 bp. Further, we found that the presence of DR, GQ, and STR repeats is important for the formation of longer deletions (>30 bp) but not for the formation of shorter deletions (≤30 bp) while significantly (χ2, p < 2E−16) more microhomologies were identified flanking short deletions than long deletions (length >30 bp). We provide evidence to support a functional distinction between microdeletions and gross deletions. Finally, we propose that a deletion length cut‐off of 25–30 bp may serve as an objective means to functionally distinguish microdeletions from gross deletions.
Collapse
Affiliation(s)
- Mengling Qi
- Department of Medical Research Center, Sun Yat-sen Memorial Hospital; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
| | - Peter D Stenson
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Edward V Ball
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - John A Tainer
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Albino Bacolla
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Huiying Zhao
- Department of Medical Research Center, Sun Yat-sen Memorial Hospital; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
| |
Collapse
|
30
|
Helicase Q promotes homology-driven DNA double-strand break repair and prevents tandem duplications. Nat Commun 2021; 12:7126. [PMID: 34880204 PMCID: PMC8654963 DOI: 10.1038/s41467-021-27408-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 11/16/2021] [Indexed: 11/09/2022] Open
Abstract
DNA double-strand breaks are a major threat to cellular survival and genetic integrity. In addition to high fidelity repair, three intrinsically mutagenic DNA break repair routes have been described, i.e. single-strand annealing (SSA), polymerase theta-mediated end-joining (TMEJ) and residual ill-defined microhomology-mediated end-joining (MMEJ) activity. Here, we identify C. elegans Helicase Q (HELQ-1) as being essential for MMEJ as well as for SSA. We also find HELQ-1 to be crucial for the synthesis-dependent strand annealing (SDSA) mode of homologous recombination (HR). Loss of HELQ-1 leads to increased genome instability: patchwork insertions arise at deletion junctions due to abortive rounds of polymerase theta activity, and tandem duplications spontaneously accumulate in genomes of helq-1 mutant animals as a result of TMEJ of abrogated HR intermediates. Our work thus implicates HELQ activity for all DSB repair modes guided by complementary base pairs and provides mechanistic insight into mutational signatures common in HR-defective cancers.
Collapse
|
31
|
Vaziri C, Rogozin IB, Gu Q, Wu D, Day TA. Unravelling roles of error-prone DNA polymerases in shaping cancer genomes. Oncogene 2021; 40:6549-6565. [PMID: 34663880 PMCID: PMC8639439 DOI: 10.1038/s41388-021-02032-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/01/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
Mutagenesis is a key hallmark and enabling characteristic of cancer cells, yet the diverse underlying mutagenic mechanisms that shape cancer genomes are not understood. This review will consider the emerging challenge of determining how DNA damage response pathways-both tolerance and repair-act upon specific forms of DNA damage to generate mutations characteristic of tumors. DNA polymerases are typically the ultimate mutagenic effectors of DNA repair pathways. Therefore, understanding the contributions of DNA polymerases is critical to develop a more comprehensive picture of mutagenic mechanisms in tumors. Selection of an appropriate DNA polymerase-whether error-free or error-prone-for a particular DNA template is critical to the maintenance of genome stability. We review different modes of DNA polymerase dysregulation including mutation, polymorphism, and over-expression of the polymerases themselves or their associated activators. Based upon recent findings connecting DNA polymerases with specific mechanisms of mutagenesis, we propose that compensation for DNA repair defects by error-prone polymerases may be a general paradigm molding the mutational landscape of cancer cells. Notably, we demonstrate that correlation of error-prone polymerase expression with mutation burden in a subset of patient tumors from The Cancer Genome Atlas can identify mechanistic hypotheses for further testing. We contrast experimental approaches from broad, genome-wide strategies to approaches with a narrower focus on a few hundred base pairs of DNA. In addition, we consider recent developments in computational annotation of patient tumor data to identify patterns of mutagenesis. Finally, we discuss the innovations and future experiments that will develop a more comprehensive portrait of mutagenic mechanisms in human tumors.
Collapse
Affiliation(s)
- Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, Chapel Hill, NC, 27599, USA
| | - Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Qisheng Gu
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3101 McGavran-Greenberg Hall, Chapel Hill, NC, 27599, USA
| | - Di Wu
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3101 McGavran-Greenberg Hall, Chapel Hill, NC, 27599, USA
| | - Tovah A Day
- Department of Biology, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
32
|
Linke R, Limmer M, Juranek SA, Heine A, Paeschke K. The Relevance of G-Quadruplexes for DNA Repair. Int J Mol Sci 2021; 22:12599. [PMID: 34830478 PMCID: PMC8620898 DOI: 10.3390/ijms222212599] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/28/2023] Open
Abstract
DNA molecules can adopt a variety of alternative structures. Among these structures are G-quadruplex DNA structures (G4s), which support cellular function by affecting transcription, translation, and telomere maintenance. These structures can also induce genome instability by stalling replication, increasing DNA damage, and recombination events. G-quadruplex-driven genome instability is connected to tumorigenesis and other genetic disorders. In recent years, the connection between genome stability, DNA repair and G4 formation was further underlined by the identification of multiple DNA repair proteins and ligands which bind and stabilize said G4 structures to block specific DNA repair pathways. The relevance of G4s for different DNA repair pathways is complex and depends on the repair pathway itself. G4 structures can induce DNA damage and block efficient DNA repair, but they can also support the activity and function of certain repair pathways. In this review, we highlight the roles and consequences of G4 DNA structures for DNA repair initiation, processing, and the efficiency of various DNA repair pathways.
Collapse
Affiliation(s)
- Rebecca Linke
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michaela Limmer
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
| | - Stefan A. Juranek
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
| | - Annkristin Heine
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
| | - Katrin Paeschke
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
| |
Collapse
|
33
|
Impact of G-Quadruplexes and Chronic Inflammation on Genome Instability: Additive Effects during Carcinogenesis. Genes (Basel) 2021; 12:genes12111779. [PMID: 34828385 PMCID: PMC8619830 DOI: 10.3390/genes12111779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023] Open
Abstract
Genome instability is an enabling characteristic of cancer, essential for cancer cell evolution. Hotspots of genome instability, from small-scale point mutations to large-scale structural variants, are associated with sequences that potentially form non-B DNA structures. G-quadruplex (G4) forming motifs are enriched at structural variant endpoints in cancer genomes. Chronic inflammation is a physiological state underlying cancer development, and oxidative DNA damage is commonly invoked to explain how inflammation promotes genome instability. We summarize where G4s and oxidative stress overlap, with a focus on DNA replication. Guanine has low ionization potential, making G4s vulnerable to oxidative damage. Impacts to G4 structure are dependent upon lesion type, location, and G4 conformation. Occasionally, G4s pose a challenge to replicative DNA polymerases, requiring specialized DNA polymerases to maintain genome stability. Therefore, chronic inflammation creates a dual challenge for DNA polymerases to maintain genome stability: faithful G4 synthesis and bypassing unrepaired oxidative lesions. Inflammation is also accompanied by global transcriptome changes that may impact mutagenesis. Several studies suggest a regulatory role for G4s within cancer- and inflammatory-related gene promoters. We discuss the extent to which inflammation could influence gene regulation by G4s, thereby impacting genome instability, and highlight key areas for new investigation.
Collapse
|
34
|
Sato K, Martin-Pintado N, Post H, Altelaar M, Knipscheer P. Multistep mechanism of G-quadruplex resolution during DNA replication. SCIENCE ADVANCES 2021; 7:eabf8653. [PMID: 34559566 PMCID: PMC8462899 DOI: 10.1126/sciadv.abf8653] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
G-quadruplex (or G4) structures form in guanine-rich DNA sequences and threaten genome stability when not properly resolved. G4 unwinding occurs during S phase via an unknown mechanism. Using Xenopus egg extracts, we define a three-step G4 unwinding mechanism that acts during DNA replication. First, the replicative helicase composed of Cdc45, MCM2-7 and GINS (CMG) stalls at a leading strand G4 structure. Second, the DEAH-box helicase 36 (DHX36) mediates bypass of the CMG past the intact G4 structure, allowing approach of the leading strand to the G4. Third, G4 structure unwinding by the Fanconi anemia complementation group J helicase (FANCJ) enables DNA polymerase to synthesize past the G4 motif. A G4 on the lagging strand template does not stall CMG but still requires DNA replication for unwinding. DHX36 and FANCJ have partially redundant roles, conferring pathway robustness. This previously unknown genome maintenance pathway promotes faithful G4 replication, thereby avoiding genome instability.
Collapse
Affiliation(s)
- Koichi Sato
- Oncode Institute, Hubrecht Institute–KNAW and University Medical Center Utrecht, Uppsalalaan 8, Utrecht 3584 CT, Netherlands
| | - Nerea Martin-Pintado
- Oncode Institute, Hubrecht Institute–KNAW and University Medical Center Utrecht, Uppsalalaan 8, Utrecht 3584 CT, Netherlands
| | - Harm Post
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, Utrecht 3584 CH, Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, Utrecht 3584 CH, Netherlands
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute–KNAW and University Medical Center Utrecht, Uppsalalaan 8, Utrecht 3584 CT, Netherlands
- Corresponding author.
| |
Collapse
|
35
|
Pavlova AV, Kubareva EA, Monakhova MV, Zvereva MI, Dolinnaya NG. Impact of G-Quadruplexes on the Regulation of Genome Integrity, DNA Damage and Repair. Biomolecules 2021; 11:1284. [PMID: 34572497 PMCID: PMC8472537 DOI: 10.3390/biom11091284] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
DNA G-quadruplexes (G4s) are known to be an integral part of the complex regulatory systems in both normal and pathological cells. At the same time, the ability of G4s to impede DNA replication plays a critical role in genome integrity. This review summarizes the results of recent studies of G4-mediated genomic and epigenomic instability, together with associated DNA damage and repair processes. Although the underlying mechanisms remain to be elucidated, it is known that, among the proteins that recognize G4 structures, many are linked to DNA repair. We analyzed the possible role of G4s in promoting double-strand DNA breaks, one of the most deleterious DNA lesions, and their repair via error-prone mechanisms. The patterns of G4 damage, with a focus on the introduction of oxidative guanine lesions, as well as their removal from G4 structures by canonical repair pathways, were also discussed together with the effects of G4s on the repair machinery. According to recent findings, there must be a delicate balance between G4-induced genome instability and G4-promoted repair processes. A broad overview of the factors that modulate the stability of G4 structures in vitro and in vivo is also provided here.
Collapse
Affiliation(s)
- Anzhela V. Pavlova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (M.I.Z.); (N.G.D.)
| | - Elena A. Kubareva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (E.A.K.); (M.V.M.)
| | - Mayya V. Monakhova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (E.A.K.); (M.V.M.)
| | - Maria I. Zvereva
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (M.I.Z.); (N.G.D.)
| | - Nina G. Dolinnaya
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (M.I.Z.); (N.G.D.)
| |
Collapse
|
36
|
Zahn KE, Jensen RB. Polymerase θ Coordinates Multiple Intrinsic Enzymatic Activities during DNA Repair. Genes (Basel) 2021; 12:1310. [PMID: 34573292 PMCID: PMC8470613 DOI: 10.3390/genes12091310] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
The POLQ gene encodes DNA polymerase θ, a 2590 amino acid protein product harboring DNA-dependent ATPase, template-dependent DNA polymerase, dNTP-dependent endonuclease, and 5'-dRP lyase functions. Polymerase θ participates at an essential step of a DNA double-strand break repair pathway able to join 5'-resected substrates by locating and pairing microhomologies present in 3'-overhanging single-stranded tails, cleaving the extraneous 3'-DNA by dNTP-dependent end-processing, before extending the nascent 3' end from the microhomology annealing site. Metazoans require polymerase θ for full resistance to DNA double-strand break inducing agents but can survive knockout of the POLQ gene. Cancer cells with compromised homologous recombination, or other DNA repair defects, over-utilize end-joining by polymerase θ and often over-express the POLQ gene. This dependency points to polymerase θ as an ideal drug target candidate and multiple drug-development programs are now preparing to enter clinical trials with small-molecule inhibitors. Specific inhibitors of polymerase θ would not only be predicted to treat BRCA-mutant cancers, but could thwart accumulated resistance to current standard-of-care cancer therapies and overcome PARP-inhibitor resistance in patients. This article will discuss synthetic lethal strategies targeting polymerase θ in DNA damage-response-deficient cancers and summarize data, describing molecular structures and enzymatic functions.
Collapse
Affiliation(s)
- Karl E. Zahn
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Repare Therapeutics, 7210 Rue Frederick Banting, Montreal, QC H4S 2A1, Canada
| | - Ryan B. Jensen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
37
|
Butler TJ, Estep KN, Sommers JA, Maul RW, Moore AZ, Bandinelli S, Cucca F, Tuke MA, Wood AR, Bharti SK, Bogenhagen DF, Yakubovskaya E, Garcia-Diaz M, Guilliam TA, Byrd AK, Raney KD, Doherty AJ, Ferrucci L, Schlessinger D, Ding J, Brosh RM. Mitochondrial genetic variation is enriched in G-quadruplex regions that stall DNA synthesis in vitro. Hum Mol Genet 2021; 29:1292-1309. [PMID: 32191790 DOI: 10.1093/hmg/ddaa043] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/27/2020] [Accepted: 03/18/2020] [Indexed: 01/08/2023] Open
Abstract
As the powerhouses of the eukaryotic cell, mitochondria must maintain their genomes which encode proteins essential for energy production. Mitochondria are characterized by guanine-rich DNA sequences that spontaneously form unusual three-dimensional structures known as G-quadruplexes (G4). G4 structures can be problematic for the essential processes of DNA replication and transcription because they deter normal progression of the enzymatic-driven processes. In this study, we addressed the hypothesis that mitochondrial G4 is a source of mutagenesis leading to base-pair substitutions. Our computational analysis of 2757 individual genomes from two Italian population cohorts (SardiNIA and InCHIANTI) revealed a statistically significant enrichment of mitochondrial mutations within sequences corresponding to stable G4 DNA structures. Guided by the computational analysis results, we designed biochemical reconstitution experiments and demonstrated that DNA synthesis by two known mitochondrial DNA polymerases (Pol γ, PrimPol) in vitro was strongly blocked by representative stable G4 mitochondrial DNA structures, which could be overcome in a specific manner by the ATP-dependent G4-resolving helicase Pif1. However, error-prone DNA synthesis by PrimPol using the G4 template sequence persisted even in the presence of Pif1. Altogether, our results suggest that genetic variation is enriched in G-quadruplex regions that impede mitochondrial DNA replication.
Collapse
Affiliation(s)
- Thomas J Butler
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Katrina N Estep
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD 21224, USA
| | - Joshua A Sommers
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD 21224, USA
| | - Robert W Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD 21224, USA
| | - Ann Zenobia Moore
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | | | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato 09042, Italy
| | - Marcus A Tuke
- Genetics of Complex Traits, University of Exeter Medical School, Exeter EX1 2LU, UK
| | - Andrew R Wood
- Genetics of Complex Traits, University of Exeter Medical School, Exeter EX1 2LU, UK
| | - Sanjay Kumar Bharti
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD 21224, USA
| | - Daniel F Bogenhagen
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | - Elena Yakubovskaya
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | - Thomas A Guilliam
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Aidan J Doherty
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - David Schlessinger
- Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD 21224, USA
| | - Jun Ding
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD 21224, USA
| |
Collapse
|
38
|
Single-molecule imaging reveals replication fork coupled formation of G-quadruplex structures hinders local replication stress signaling. Nat Commun 2021; 12:2525. [PMID: 33953191 PMCID: PMC8099879 DOI: 10.1038/s41467-021-22830-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
Guanine-rich DNA sequences occur throughout the human genome and can transiently form G-quadruplex (G4) structures that may obstruct DNA replication, leading to genomic instability. Here, we apply multi-color single-molecule localization microscopy (SMLM) coupled with robust data-mining algorithms to quantitatively visualize replication fork (RF)-coupled formation and spatial-association of endogenous G4s. Using this data, we investigate the effects of G4s on replisome dynamics and organization. We show that a small fraction of active replication forks spontaneously form G4s at newly unwound DNA immediately behind the MCM helicase and before nascent DNA synthesis. These G4s locally perturb replisome dynamics and organization by reducing DNA synthesis and limiting the binding of the single-strand DNA-binding protein RPA. We find that the resolution of RF-coupled G4s is mediated by an interplay between RPA and the FANCJ helicase. FANCJ deficiency leads to G4 accumulation, DNA damage at G4-associated replication forks, and silencing of the RPA-mediated replication stress response. Our study provides first-hand evidence of the intrinsic, RF-coupled formation of G4 structures, offering unique mechanistic insights into the interference and regulation of stable G4s at replication forks and their effect on RPA-associated fork signaling and genomic instability.
Collapse
|
39
|
van Schendel R, Romeijn R, Buijs H, Tijsterman M. Preservation of lagging strand integrity at sites of stalled replication by Pol α-primase and 9-1-1 complex. SCIENCE ADVANCES 2021; 7:eabf2278. [PMID: 34138739 PMCID: PMC8133754 DOI: 10.1126/sciadv.abf2278] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/31/2021] [Indexed: 05/03/2023]
Abstract
During genome duplication, the replication fork encounters a plethora of obstacles in the form of damaged bases, DNA-cross-linked proteins, and secondary structures. How cells protect DNA integrity at sites of stalled replication is currently unknown. Here, by engineering "primase deserts" into the Caenorhabditis elegans genome close to replication-impeding G-quadruplexes, we show that de novo DNA synthesis downstream of the blocked fork suppresses DNA loss. We next identify the pol α-primase complex to limit deletion mutagenesis, a conclusion substantiated by whole-genome analysis of animals carrying mutated POLA2/DIV-1. We subsequently identify a new role for the 9-1-1 checkpoint clamp in protecting Okazaki fragments from resection by EXO1. Together, our results provide a mechanistic model for controlling the fate of replication intermediates at sites of stalled replication.
Collapse
Affiliation(s)
- Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Ron Romeijn
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Helena Buijs
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands.
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| |
Collapse
|
40
|
Long Q, Liu Z, Gullerova M. Sweet Melody or Jazz? Transcription Around DNA Double-Strand Breaks. Front Mol Biosci 2021; 8:655786. [PMID: 33959637 PMCID: PMC8096065 DOI: 10.3389/fmolb.2021.655786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/22/2021] [Indexed: 12/23/2022] Open
Abstract
Genomic integrity is continuously threatened by thousands of endogenous and exogenous damaging factors. To preserve genome stability, cells developed comprehensive DNA damage response (DDR) pathways that mediate the recognition of damaged DNA lesions, the activation of signaling cascades, and the execution of DNA repair. Transcription has been understood to pose a threat to genome stability in the presence of DNA breaks. Interestingly, accumulating evidence in recent years shows that the transient transcriptional activation at DNA double-strand break (DSB) sites is required for efficient repair, while the rest of the genome exhibits temporary transcription silencing. This genomic shut down is a result of multiple signaling cascades involved in the maintenance of DNA/RNA homeostasis, chromatin stability, and genome fidelity. The regulation of transcription of protein-coding genes and non-coding RNAs has been extensively studied; however, the exact regulatory mechanisms of transcription at DSBs remain enigmatic. These complex processes involve many players such as transcription-associated protein complexes, including kinases, transcription factors, chromatin remodeling complexes, and helicases. The damage-derived transcripts themselves also play an essential role in DDR regulation. In this review, we summarize the current findings on the regulation of transcription at DSBs and discussed the roles of various accessory proteins in these processes and consequently in DDR.
Collapse
Affiliation(s)
| | | | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
41
|
G-quadruplex stabilization via small-molecules as a potential anti-cancer strategy. Biomed Pharmacother 2021; 139:111550. [PMID: 33831835 DOI: 10.1016/j.biopha.2021.111550] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/16/2022] Open
Abstract
G-quadruplexes (G4) are secondary four-stranded DNA helical structures consisting of guanine-rich nucleic acids, which can be formed in the promoter regions of several genes under proper conditions. Several cancer cells have been shown to emerge from genomic changes in the expression of crucial growth-regulating genes that allow cells to develop and begin to propagate in an undifferentiated state. Recent attempts have focused on producing treatments targeted at particular protein products of genes that are abnormally expressed. Many of the proteins found are hard to target and considered undruggable due to structural challenges, protein overexpression, or mutations that affect treatment resistance. The utilization of small molecules that stabilize secondary DNA structures existing in several possible oncogenes' promoters and modulate their transcription is a new strategy that avoids some of these problems. In this review, we outline the function of G-quadruplex stabilization in cancer by small-molecules with the aim to improve cancer therapy.
Collapse
|
42
|
Guiblet WM, Cremona MA, Harris RS, Chen D, Eckert KA, Chiaromonte F, Huang YF, Makova KD. Non-B DNA: a major contributor to small- and large-scale variation in nucleotide substitution frequencies across the genome. Nucleic Acids Res 2021; 49:1497-1516. [PMID: 33450015 PMCID: PMC7897504 DOI: 10.1093/nar/gkaa1269] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/14/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Approximately 13% of the human genome can fold into non-canonical (non-B) DNA structures (e.g. G-quadruplexes, Z-DNA, etc.), which have been implicated in vital cellular processes. Non-B DNA also hinders replication, increasing errors and facilitating mutagenesis, yet its contribution to genome-wide variation in mutation rates remains unexplored. Here, we conducted a comprehensive analysis of nucleotide substitution frequencies at non-B DNA loci within noncoding, non-repetitive genome regions, their ±2 kb flanking regions, and 1-Megabase windows, using human-orangutan divergence and human single-nucleotide polymorphisms. Functional data analysis at single-base resolution demonstrated that substitution frequencies are usually elevated at non-B DNA, with patterns specific to each non-B DNA type. Mirror, direct and inverted repeats have higher substitution frequencies in spacers than in repeat arms, whereas G-quadruplexes, particularly stable ones, have higher substitution frequencies in loops than in stems. Several non-B DNA types also affect substitution frequencies in their flanking regions. Finally, non-B DNA explains more variation than any other predictor in multiple regression models for diversity or divergence at 1-Megabase scale. Thus, non-B DNA substantially contributes to variation in substitution frequencies at small and large scales. Our results highlight the role of non-B DNA in germline mutagenesis with implications to evolution and genetic diseases.
Collapse
Affiliation(s)
- Wilfried M Guiblet
- Bioinformatics and Genomics Graduate Program, Penn State University, UniversityPark, PA 16802, USA
| | - Marzia A Cremona
- Department of Statistics, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Operations and Decision Systems, Université Laval, Canada
- CHU de Québec – Université Laval Research Center, Canada
| | - Robert S Harris
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Di Chen
- Intercollege Graduate Degree Program in Genetics, Huck Institutes of the Life Sciences, Penn State University, UniversityPark, PA 16802, USA
| | - Kristin A Eckert
- Department of Pathology, Penn State University, College of Medicine, Hershey, PA 17033, USA
- Center for Medical Genomics, Penn State University, University Park and Hershey, PA, USA
| | - Francesca Chiaromonte
- Department of Statistics, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Medical Genomics, Penn State University, University Park and Hershey, PA, USA
- EMbeDS, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Yi-Fei Huang
- Department of Biology, Penn State University, University Park, PA 16802, USA
- Center for Medical Genomics, Penn State University, University Park and Hershey, PA, USA
| | - Kateryna D Makova
- Department of Biology, Penn State University, University Park, PA 16802, USA
- Center for Medical Genomics, Penn State University, University Park and Hershey, PA, USA
| |
Collapse
|
43
|
Savva L, Georgiades SN. Recent Developments in Small-Molecule Ligands of Medicinal Relevance for Harnessing the Anticancer Potential of G-Quadruplexes. Molecules 2021; 26:molecules26040841. [PMID: 33562720 PMCID: PMC7914483 DOI: 10.3390/molecules26040841] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
G-quadruplexes, a family of tetraplex helical nucleic acid topologies, have emerged in recent years as novel targets, with untapped potential for anticancer research. Their potential stems from the fact that G-quadruplexes occur in functionally-important regions of the human genome, such as the telomere tandem sequences, several proto-oncogene promoters, other regulatory regions and sequences of DNA (e.g., rDNA), as well as in mRNAs encoding for proteins with roles in tumorigenesis. Modulation of G-quadruplexes, via interaction with high-affinity ligands, leads to their stabilization, with numerous observed anticancer effects. Despite the fact that only a few lead compounds for G-quadruplex modulation have progressed to clinical trials so far, recent advancements in the field now create conditions that foster further development of drug candidates. This review highlights biological processes through which G-quadruplexes can exert their anticancer effects and describes, via selected case studies, progress of the last few years on the development of efficient and drug-like G-quadruplex-targeted ligands, intended to harness the anticancer potential offered by G-quadruplexes. The review finally provides a critical discussion of perceived challenges and limitations that have previously hampered the progression of G-quadruplex-targeted lead compounds to clinical trials, concluding with an optimistic future outlook.
Collapse
|
44
|
Miglietta G, Russo M, Capranico G. G-quadruplex-R-loop interactions and the mechanism of anticancer G-quadruplex binders. Nucleic Acids Res 2020; 48:11942-11957. [PMID: 33137181 PMCID: PMC7708042 DOI: 10.1093/nar/gkaa944] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/17/2022] Open
Abstract
Genomic DNA and cellular RNAs can form a variety of non-B secondary structures, including G-quadruplex (G4) and R-loops. G4s are constituted by stacked guanine tetrads held together by Hoogsteen hydrogen bonds and can form at key regulatory sites of eukaryote genomes and transcripts, including gene promoters, untranslated exon regions and telomeres. R-loops are 3-stranded structures wherein the two strands of a DNA duplex are melted and one of them is annealed to an RNA. Specific G4 binders are intensively investigated to discover new effective anticancer drugs based on a common rationale, i.e.: the selective inhibition of oncogene expression or specific impairment of telomere maintenance. However, despite the high number of known G4 binders, such a selective molecular activity has not been fully established and several published data point to a different mode of action. We will review published data that address the close structural interplay between G4s and R-loops in vitro and in vivo, and how these interactions can have functional consequences in relation to G4 binder activity. We propose that R-loops can play a previously-underestimated role in G4 binder action, in relation to DNA damage induction, telomere maintenance, genome and epigenome instability and alterations of gene expression programs.
Collapse
Affiliation(s)
- Giulia Miglietta
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126 Bologna, Italy
| | - Marco Russo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126 Bologna, Italy
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126 Bologna, Italy
| |
Collapse
|
45
|
Kuznetsova AA, Fedorova OS, Kuznetsov NA. Lesion Recognition and Cleavage of Damage-Containing Quadruplexes and Bulged Structures by DNA Glycosylases. Front Cell Dev Biol 2020; 8:595687. [PMID: 33330484 PMCID: PMC7734321 DOI: 10.3389/fcell.2020.595687] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/10/2020] [Indexed: 12/22/2022] Open
Abstract
Human telomeres as well as more than 40% of human genes near the promoter regions have been found to contain the sequence that may form a G-quadruplex structure. Other non-canonical DNA structures comprising bulges, hairpins, or bubbles may have a functionally important role during transcription, replication, or recombination. The guanine-rich regions of DNA are hotspots of oxidation that forms 7,8-dihydro-8-oxoguanine, thymine glycol, and abasic sites: the lesions that are handled by the base excision repair pathway. Nonetheless, the features of DNA repair processes in non-canonical DNA structures are still poorly understood. Therefore, in this work, a comparative analysis of the efficiency of the removal of a damaged nucleotide from various G-quadruplexes and bulged structures was performed using endonuclease VIII-like 1 (NEIL1), human 8-oxoguanine-DNA glycosylase (OGG1), endonuclease III (NTH1), and prokaryotic formamidopyrimidine-DNA glycosylase (Fpg), and endonuclease VIII (Nei). All the tested enzymes were able to cleave damage-containing bulged DNA structures, indicating their important role in the repair process when single-stranded DNA and intermediate non–B-form structures such as bubbles and bulges are formed. Nevertheless, our results suggest that the ability to cleave damaged quadruplexes is an intrinsic feature of members of the H2tH structural family, suggesting that these enzymes can participate in the modulation of processes controlled by the formation of quadruplex structures in genomic DNA.
Collapse
Affiliation(s)
| | - Olga S Fedorova
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
46
|
Paeschke K, Burkovics P. Mgs1 function at G-quadruplex structures during DNA replication. Curr Genet 2020; 67:225-230. [PMID: 33237336 PMCID: PMC8032586 DOI: 10.1007/s00294-020-01128-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 11/03/2022]
Abstract
The coordinated action of DNA polymerases and DNA helicases is essential at genomic sites that are hard to replicate. Among these are sites that harbour G-quadruplex DNA structures (G4). G4s are stable alternative DNA structures, which have been implicated to be involved in important cellular processes like the regulation of gene expression or telomere maintenance. G4 structures were shown to hinder replication fork progression and cause genomic deletions, mutations and recombination events. Many helicases unwind G4 structures and preserve genome stability, but a detailed understanding of G4 replication and the re-start of stalled replication forks around formed G4 structures is not clear, yet. In our recent study, we identified that Mgs1 preferentially binds to G4 DNA structures in vitro and is associated with putative G4-forming chromosomal regions in vivo. Mgs1 binding to G4 motifs in vivo is partially dependent on the helicase Pif1. Pif1 is the major G4-unwinding helicase in S. cerevisiae. In the absence of Mgs1, we determined elevated gross chromosomal rearrangement (GCR) rates in yeast, similar to Pif1 deletion. Here, we highlight the recent findings and set these into context with a new mechanistic model. We propose that Mgs1's functions support DNA replication at G4-forming regions.
Collapse
Affiliation(s)
- Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany.
| | - Peter Burkovics
- Institute of Genetics, Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
47
|
Patterson-Fortin J, D'Andrea AD. Exploiting the Microhomology-Mediated End-Joining Pathway in Cancer Therapy. Cancer Res 2020; 80:4593-4600. [PMID: 32651257 PMCID: PMC7641946 DOI: 10.1158/0008-5472.can-20-1672] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/13/2020] [Accepted: 07/07/2020] [Indexed: 01/16/2023]
Abstract
Repair of DNA double-strand breaks (DSB) is performed by two major pathways, homology-dependent repair and classical nonhomologous end-joining. Recent studies have identified a third pathway, microhomology-mediated end-joining (MMEJ). MMEJ has similarities to homology-dependent repair, in that repair is initiated with end resection, leading to single-stranded 3' ends, which require microhomology upstream and downstream of the DSB. Importantly, the MMEJ pathway is commonly upregulated in cancers, especially in homologous recombination-deficient cancers, which display a distinctive mutational signature. Here, we review the molecular process of MMEJ as well as new targets and approaches exploiting the MMEJ pathway in cancer therapy.
Collapse
Affiliation(s)
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
48
|
Meier B, Volkova NV, Gerstung M, Gartner A. Analysis of mutational signatures in C. elegans: Implications for cancer genome analysis. DNA Repair (Amst) 2020; 95:102957. [PMID: 32980770 DOI: 10.1016/j.dnarep.2020.102957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 01/02/2023]
Abstract
Genome integrity is constantly challenged by exogenous and endogenous insults, and mutations are associated with inherited disease and cancer. Here we summarize recent studies that utilized C. elegans whole genome next generation sequencing to experimentally determine mutational signatures associated with mutagen exposure, DNA repair deficiency or a combination of both and discuss the implications of these results for the understanding of cancer genome evolution. The experimental analysis of wild-type and DNA repair deficient nematodes propagated under unchallenged conditions over many generations revealed increased mutagenesis in approximately half of all DNA repair deficient strains, its rate, except for DNA mismatch repair, only being moderately increased. The exposure of wild-type and DNA repair defective strains to selected genotoxins, including UV-B and ionizing radiation, alkylating compounds, aristolochic acid, aflatoxin-B1, and cisplatin enabled the systematic analysis of the relative contributions of redundant repair modalities that mend DNA damage. Combining genotoxin exposure with DNA repair deficiency can manifest as altered mutation rates and/or as a change in mutational profiles, and reveals how different DNA alterations induced by one genotoxin are repaired by separate DNA repair pathways, often in a highly redundant way. Cancer genomes provide a snapshot of all mutational events that happened prior to cancer detection and sequencing, necessitating computational models to deduce mutational signatures using mathematical best fit approaches. While computationally deducing signatures from cancer genomes has been tremendously successful in associating some signatures to known mutagenic causes, many inferred signatures lack a clear link to a known mutagenic process. Moreover, analytical signatures might not reflect any distinct mutagenic processes. Nonetheless, combined effects of mutagen exposure and DNA damage-repair deficiency are also present in cancer genomes, but cannot be as easily detected owing to the unknown histories of genotoxic exposures and because biallelic in contrast to monoallelic DNA repair deficiency is rare. The impact of damage-repair interactions also manifests through selective pressure for DNA repair gene inactivation during cancer evolution. Using these considerations, we discuss a theoretical framework that explains why minute mutagenic changes, possibly too small to manifest as change in a signature, can have major effects in oncogenesis. Overall, the experimental analysis of mutational processes underscores that the interpretation of mutational signatures requires considering both the primary DNA lesion and repair status and imply that mutational signatures derived from cancer genomes may be more variable than currently anticipated.
Collapse
Affiliation(s)
- Bettina Meier
- Centre for Gene Regulation and Expression, University of Dundee, Scotland, UK
| | - Nadezda V Volkova
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Moritz Gerstung
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK; European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Anton Gartner
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea; Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea.
| |
Collapse
|
49
|
De Magis A, Götz S, Hajikazemi M, Fekete-Szücs E, Caterino M, Juranek S, Paeschke K. Zuo1 supports G4 structure formation and directs repair toward nucleotide excision repair. Nat Commun 2020; 11:3907. [PMID: 32764578 PMCID: PMC7413387 DOI: 10.1038/s41467-020-17701-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 07/14/2020] [Indexed: 01/02/2023] Open
Abstract
Nucleic acids can fold into G-quadruplex (G4) structures that can fine-tune biological processes. Proteins are required to recognize G4 structures and coordinate their function. Here we identify Zuo1 as a novel G4-binding protein in vitro and in vivo. In vivo in the absence of Zuo1 fewer G4 structures form, cell growth slows and cells become UV sensitive. Subsequent experiments reveal that these cellular changes are due to reduced levels of G4 structures. Zuo1 function at G4 structures results in the recruitment of nucleotide excision repair (NER) factors, which has a positive effect on genome stability. Cells lacking functional NER, as well as Zuo1, accumulate G4 structures, which become accessible to translesion synthesis. Our results suggest a model in which Zuo1 supports NER function and regulates the choice of the DNA repair pathway nearby G4 structures.
Collapse
Affiliation(s)
- Alessio De Magis
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Silvia Götz
- Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
- European Research Institute for the Biology of Ageing, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Mona Hajikazemi
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Enikő Fekete-Szücs
- European Research Institute for the Biology of Ageing, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Marco Caterino
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Stefan Juranek
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
- Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
- European Research Institute for the Biology of Ageing, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
50
|
Varshney D, Spiegel J, Zyner K, Tannahill D, Balasubramanian S. The regulation and functions of DNA and RNA G-quadruplexes. Nat Rev Mol Cell Biol 2020; 21:459-474. [PMID: 32313204 PMCID: PMC7115845 DOI: 10.1038/s41580-020-0236-x] [Citation(s) in RCA: 743] [Impact Index Per Article: 148.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 02/06/2023]
Abstract
DNA and RNA can adopt various secondary structures. Four-stranded G-quadruplex (G4) structures form through self-recognition of guanines into stacked tetrads, and considerable biophysical and structural evidence exists for G4 formation in vitro. Computational studies and sequencing methods have revealed the prevalence of G4 sequence motifs at gene regulatory regions in various genomes, including in humans. Experiments using chemical, molecular and cell biology methods have demonstrated that G4s exist in chromatin DNA and in RNA, and have linked G4 formation with key biological processes ranging from transcription and translation to genome instability and cancer. In this Review, we first discuss the identification of G4s and evidence for their formation in cells using chemical biology, imaging and genomic technologies. We then discuss possible functions of DNA G4s and their interacting proteins, particularly in transcription, telomere biology and genome instability. Roles of RNA G4s in RNA biology, especially in translation, are also discussed. Furthermore, we consider the emerging relationships of G4s with chromatin and with RNA modifications. Finally, we discuss the connection between G4 formation and synthetic lethality in cancer cells, and recent progress towards considering G4s as therapeutic targets in human diseases.
Collapse
Affiliation(s)
- Dhaval Varshney
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Jochen Spiegel
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Katherine Zyner
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - David Tannahill
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Shankar Balasubramanian
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK.
- Department of Chemistry, University of Cambridge, Cambridge, UK.
- School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|