1
|
Lambrou GI, Samartzi A, Vlachou E, Tsartsalis AN. Is the Impact of Sodium-Glucose Co-Transporter 2 (SGLT2) Inhibitors on Bone Metabolism and Fracture Incidence a Class or Drug Effect? A Narrative Review. MEDICINES (BASEL, SWITZERLAND) 2025; 12:10. [PMID: 40265356 PMCID: PMC12015893 DOI: 10.3390/medicines12020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025]
Abstract
Background/Objectives: Type 2 diabetes mellitus (T2DM) has a growing prevalence, even in developed countries. Because of the increase in life expectancy, the number of older people with T2DM is also increasing. The management and handling of these patients is challenging due to its co-morbidities. Aim: In the present study, we reviewed the literature in order to investigate the impact of sodium-glucose co-transporter 2 inhibitors (SGLT-2 inhibitors) on bone metabolism and fracture incidence. Methods: We searched the literature using the databases of PubMed, CENTRAL and Cochrane Central Register of Controlled Trials up to December 2024. Results: There is a controversial position in the literature concerning the effects of SGLT2 inhibitors when administered in T2DM, with respect to bone metabolism and bone fracture incidence. Multiple studies suggest the SGLT2 inhibitors have a disadvantageous effect on bone metabolism and fracture incidence, while several others suggest a beneficial effect. Conclusions: Patients with type 2 diabetes mellitus are at high risk of alterations in their bone metabolism. SGLT2 inhibitors are a novel class with pleiotropic effects in many organs, such as the kidneys and heart, although their effect on bone metabolism and fracture incidence is still unclear. Until we have more clinical data, all caregivers (medical and nursing staff) should be aware of possible bone fractures in patients receiving this class of agents.
Collapse
Affiliation(s)
- George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias Str. 8, 11527 Athens, Greece;
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, Thivon & Levadeias Str. 8, 11527 Athens, Greece
- Laboratory for the Research of the Musculoskeletal System “Th. Garofalidis”, Medical School, National and Kapodistrian University of Athens, Athinas Str. 10, 14561 Athens, Greece
| | - Athanasia Samartzi
- Department of Endocrinology Diabetes and Metabolism, Naval Hospital of Athens, Dinokratous 70, 11521 Athens, Greece;
| | - Eugenia Vlachou
- Department of Nursing, School of Health Sciences, University of West Attica, Ag. Spydironos 28, 12243 Athens, Greece;
| | - Athanasios N. Tsartsalis
- Department of Endocrinology Diabetes and Metabolism, Naval Hospital of Athens, Dinokratous 70, 11521 Athens, Greece;
| |
Collapse
|
2
|
Khashayar P, Rad FF, Tabatabaei-Malazy O, Golabchi SM, Khashayar P, Mohammadi M, Ebrahimpour S, Larijani B. Hypoglycemic agents and bone health; an umbrella systematic review of the clinical trials' meta-analysis studies. Diabetol Metab Syndr 2024; 16:310. [PMID: 39716250 DOI: 10.1186/s13098-024-01518-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 11/09/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND No clear consensus exists regarding the safest anti-diabetic drugs with the least adverse events on bone health. This umbrella systematic review therefore aims to assess the published meta-analysis studies of randomized controlled trials (RCTs) conducted in this field. METHODS All relevant meta-analysis studies of RCTs assessing the effects of anti-diabetic agents on bone health in patients with diabetes mellitus (DM) were collected in line with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). English articles published until 15 March 2023 were collected through the search of Cochrane Library, Scopus, ISI Web of Sciences, PubMed, and Embase using the terms "Diabetes mellitus", "anti-diabetic drugs", "Bone biomarker", "Bone fracture, "Bone mineral density" and their equivalents. The methodological and evidence quality assessments were performed for all included studies. RESULTS From among 2220 potentially eligible studies, 71 meta-analyses on diabetic patients were included. Sodium-glucose cotransporter-2 inhibitors (SGLT-is) showed no or equivalent effect on the risk of fracture. Dipeptidyl peptidase-4 inhibitors (DPP-4is) and Glucagon-like peptide-1 receptor agonists (GLP-1Ras) were reported to have controversial effects on bone fracture, with some RCTs pointing out the bone protective effects of certain members of these two medication classes. Thiazolidinediones (TZDs) were linked with increased fracture risk as well as higher concentrations of C-terminal telopeptide of type I collagen (CTx), a bone resorption marker. CONCLUSION The present systematic umbrella review observed varied results on the association between the use of anti-diabetic drugs and DM-related fracture risk. The clinical efficacy of various anti-diabetic drugs, therefore, should be weighed against their risks and benefits in each patient.
Collapse
Affiliation(s)
- Pouria Khashayar
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Farid Farahani Rad
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ozra Tabatabaei-Malazy
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sara MohammadHosseinzadeh Golabchi
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Patricia Khashayar
- Department of Chemistry, Ghent University, Krijgslaan 281-S12, 9000, Gent, Belgium.
| | - Mehdi Mohammadi
- Department of Clinical Pharmacy, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Sholeh Ebrahimpour
- Department of Clinical Pharmacy, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Fadaly WAA, Elshewy A, Nemr MTM, Abdou K, Sayed AM, Kahk NM. Discovery of novel thiazole derivatives containing pyrazole scaffold as PPAR-γ Agonists, α-Glucosidase, α-Amylase and COX-2 inhibitors; Design, synthesis and in silico study. Bioorg Chem 2024; 152:107760. [PMID: 39197383 DOI: 10.1016/j.bioorg.2024.107760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
A novel series of thiazole derivatives with pyrazole scaffold 16a-l as hybrid rosiglitazone/celecoxib analogs was designed, synthesized and tested for its PPAR-γ activation, α-glucosidase, α-amylase and COX-2 inhibitory activities. Regarding the anti-diabetic activity, all compounds were assessed in vitro against PPAR-γ activation, α-glucosidase and α-amylase inhibition in addition to in vivo hypoglycemic activity (one day and 15 days studies). Compounds 16b, 16c, 16e and 16 k showed good PPAR-γ activation (activation % ≈ 72-79 %) compared to that of the reference drug rosiglitazone (74 %). In addition, the same derivatives 16b, 16c, 16e and 16 k showed the highest inhibitory activities against α-glucosidase (IC50 = 0.158, 0.314, 0.305, 0.128 μM, respectively) and against α-amylase (IC50 = 32.46, 23.21, 7.74, 35.85 μM, respectively) compared to the reference drug acarbose (IC50 = 0.161 and 31.46 μM for α-glucosidase and α-amylase, respectively). The most active derivatives 16b, 16c, 16e and 16 k also revealed good in vivo hypoglycemic effect comparable to that of rosiglitazone. In addition, compounds 16b and 16c had the best COX-2 selectivity index (S.I. = 18.7, 31.7, respectively) compared to celecoxib (S.I. = 10.3). In vivo anti-inflammatory activity of the target derivatives 16b, 16c, 16e and 16 k supported the results of in vitro screening as the derivatives 16b and 16c (ED50 = 8.2 and 24 mg/kg, respectively) were more potent than celecoxib (ED50 = 30 mg/kg). In silico docking, ADME, toxicity, and molecular dynamic studies were carried out to explain the interactions of the most active anti-diabetic and anti-inflammatory compounds 16b, 16c, 16e and 16 k with the target enzymes in addition to their physiochemical parameters.
Collapse
Affiliation(s)
- Wael A A Fadaly
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ahmed Elshewy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Eini street 11562, Cairo, Egypt; Department of Natural and Applied Sciences, College of Arts and Sciences, The American University of Iraq-Baghdad (AUIB), Baghdad, Iraq
| | - Mohamed T M Nemr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Eini street 11562, Cairo, Egypt.
| | - Kareem Abdou
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Collage of Pharmacy, Almaaqal University, 61014 Basrah, Iraq
| | - Nesma M Kahk
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
4
|
Brandt IAG, Starup-Linde J, Andersen SS, Viggers R. Diagnosing Osteoporosis in Diabetes-A Systematic Review on BMD and Fractures. Curr Osteoporos Rep 2024; 22:223-244. [PMID: 38509440 DOI: 10.1007/s11914-024-00867-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
PURPOSE OF REVIEW Recently, the American Diabetes Association updated the 2024 guidelines for Standards of Care in Diabetes and recommend that a T-score of - 2.0 in patients with diabetes should be interpreted as equivalent to - 2.5 in people without diabetes. We aimed to evaluate the most recent findings concerning the bone mineral density (BMD)-derived T-score and risk of fractures related to osteoporosis in subjects with diabetes. RECENT FINDINGS The dual-energy X-ray absorptiometry (DXA) scan is the golden standard for evaluating BMD. The BMD-derived T-score is central to fracture prediction and signifies both diagnosis and treatment for osteoporosis. However, the increased fracture risk in diabetes is not sufficiently explained by the T-score, complicating the identification and management of fracture risk in these patients. Recent findings agree that subjects with type 2 diabetes (T2D) have a higher T-score and higher fracture risk compared with subjects without diabetes. However, the actual number of studies evaluating the direct association of higher fracture risk at higher T-score levels is scant. Some studies support the adjustment based on the 0.5 BMD T-score difference between subjects with T2D and subjects without diabetes. However, further data from longitudinal studies is warranted to validate if the T-score treatment threshold necessitates modification to prevent fractures in subjects with diabetes.
Collapse
Affiliation(s)
- Inge Agnete Gerlach Brandt
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark.
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark.
| | - Jakob Starup-Linde
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Sally Søgaard Andersen
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | - Rikke Viggers
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
5
|
Tomasiuk JM, Nowakowska-Płaza A, Wisłowska M, Głuszko P. Osteoporosis and diabetes - possible links and diagnostic difficulties. Reumatologia 2023; 61:294-304. [PMID: 37745139 PMCID: PMC10515121 DOI: 10.5114/reum/170048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/26/2023] [Indexed: 09/26/2023] Open
Abstract
Objectives In this review, the authors aimed to clarify the relationship between the occurrence of osteoporosis and diabetes, analyze the differences between the pathogenesis of osteoporosis in different types of diabetes and propose the most effective diagnostic strategy and fracture risk assessment in diabetic patients. Material and methods A analysis of publications in MEDLINE, COCHRANE and SCOPUS databases was performed, searching for reports on the diagnostics, fracture risk assessment, prevention, and treatment of osteoporosis in patients with diabetes mellitus (DM) published in the years 2016-2022. The key words for the search were: diabetes, osteoporosis, and low-energy fracture. Results Bone complications of T1DM are more severe than T2DM, because of the lack of anabolic effect of insulin on bones. In T2DM the risk of fractures is elevated; however, identifying the mechanisms underlying the increased risk of fractures in T2DM is not clear. The FRAX tool is not appropriate for assessing the fracture risk in young patients with T1DM. It is quite useful in older patients with T2DM, but in these patients the calculated fracture risk may be underestimated. In T2DM the fracture risk often does not correspond to BMD value as measured by dual-energy X-ray absorptiometry (DXA). Diagnostic tools such as the trabecular bone score may play a significant role in this group of patients. Conclusions: Optimal strategies to identify and treat high risk individuals require further research and proper definition. The diagnostic criteria for osteoporosis should be clearly defined as well as fracture risk assessment and choice of anti-osteoporotic medication. In all cases of secondary osteoporosis, treatment of the underlying disease is the most important. The relationship between high risk of fractures and diabetes is inseparable, and its full understanding seems to be the key to effective management.
Collapse
Affiliation(s)
- Joanna Magdalena Tomasiuk
- Department of Rheumatology, National Institute of Geriatric, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Anna Nowakowska-Płaza
- Department of Rheumatology, National Institute of Geriatric, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Małgorzata Wisłowska
- Department of Rheumatology, National Institute of Geriatric, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Piotr Głuszko
- Department of Rheumatology, National Institute of Geriatric, Rheumatology and Rehabilitation, Warsaw, Poland
| |
Collapse
|
6
|
Mehta D, Dankert J, Yim N, Leclerc K, Leucht P. Rosiglitazone induces adipogenesis of both marrow and periosteum derived mesenchymal stem cells during endochondral fracture healing. J Orthop Sci 2023; 28:460-467. [PMID: 34879982 PMCID: PMC9167886 DOI: 10.1016/j.jos.2021.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/21/2021] [Accepted: 11/10/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) afflicts about six percent of the global population, and these patients suffer from a two-fold increased fracture risk. Thiazolidinediones (TZDs), including rosiglitazone, are commonly used medications in T2DM because they have a low incidence of monotherapy failure. It is known that rosiglitazone is associated with secondary osteoporosis, further increasing the fracture risk in an already susceptible population. However, it is not yet understood how rosiglitazone impacts endochondral bone healing after fracture. The aim of this study is to elucidate how rosiglitazone treatment impacts endochondral fracture healing, and how rosiglitazone influences the differentiation of skeletal stem and progenitor cells from the bone marrow and the periosteum. METHODS An in-vivo mouse femur fracture model was employed to evaluate differences in fracture healing between mice treated with and without rosiglitazone chow. Fracture healing was assessed with histology and micro computed tomography (μCT). In-vitro assays utilized isolated mouse bone marrow stromal cells and periosteal cells to investigate how rosiglitazone impacts the osteogenic capability and adipogenicity of these cells. RESULTS The in-vivo mouse femur fracture model showed that fracture callus in mice treated with rosiglitazone had significantly more adipose content than those of control mice that did not receive rosiglitazone. In addition, μCT analysis showed that rosiglitazone treated mice had significantly greater bone volume, but overall greater porosity when compared to control mice. In-vitro experimentation showed significantly less osteogenesis and more adipogenesis in bone marrow derived progenitor cells that were cultured in osteogenic media. In addition, rosiglitazone treatment alone caused significant increases in adipogenesis in both bone marrow and periosteum derived cells. CONCLUSION Rosiglitazone impairs endochondral fracture healing in mice by increasing adipogenesis and decreasing osteogenesis of both bone marrow and periosteum derived skeletal progenitor cells.
Collapse
Affiliation(s)
- Devan Mehta
- NYU Grossman School of Medicine - NYU Langone Orthopedic Hospital, Department of Orthopedic Surgery, New York, NY, USA.
| | - John Dankert
- NYU Grossman School of Medicine - NYU Langone Orthopedic Hospital, Department of Orthopedic Surgery, New York, NY, USA.
| | - Nury Yim
- NYU Grossman School of Medicine - NYU Langone Orthopedic Hospital, Department of Orthopedic Surgery, New York, NY, USA.
| | - Kevin Leclerc
- NYU Grossman School of Medicine - NYU Langone Orthopedic Hospital, Department of Orthopedic Surgery, New York, NY, USA.
| | - Philipp Leucht
- NYU Grossman School of Medicine - NYU Langone Orthopedic Hospital, Department of Orthopedic Surgery, New York, NY, USA.
| |
Collapse
|
7
|
Aljofi FE, Alesawy A, Alzaben B, Alshaikh M, Alotaibi N, Aldulaijan HA, Alshehri S, Aljoghaiman E, Al-Dulaijan YA, AlSharief M. Impact of Metformin on Periodontal and Peri-Implant Soft and Hard Tissue. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1095. [PMID: 36673851 PMCID: PMC9859401 DOI: 10.3390/ijerph20021095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Periodontal and peri-implant soft and hard tissue in diabetic patients have always been a topic of interest for researchers and clinicians alike. Among which, a subtopic that has attracted more attention is the beneficial effect of metformin (MF) on periodontal and peri-implant soft and hard tissue. This review aimed to assess the impact of MF on the periodontal and peri-implant soft- and hard-tissue healing among diabetic patients. Research was conducted using the keywords 'metformin', 'diabetes', 'periodontitis', 'implant', and 'peri-implantitis' via the Medline (PubMed) and Google Scholar databases. Selected articles were reviewed. A total of 21 articles, discussing the impact on periodontal health (six animal studies, seven clinical studies, and three systematic reviews) and five studies on peri-implant health (four animal studies and one clinical study) were included. All have reported a positive impact of MF on decreasing the inflammatory response, oxidative stress, and ultimate bone loss. Similarly, human studies reported a positive effect of MF on clinical and radiographic parameters compared with controls. Despite systematic reviews reporting heterogeneity among the included studies, MF has shown a positive impact on periodontal health. In animal, clinical studies, and systematic reviews, MF showed a protective impact on periodontal and peri-implant health.
Collapse
Affiliation(s)
- Faisal E. Aljofi
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Aminah Alesawy
- Fellowship in Periodontics Program, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Bader Alzaben
- Fellowship in Periodontics Program, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Marwa Alshaikh
- Fellowship in Periodontics Program, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Norah Alotaibi
- Fellowship in Periodontics Program, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Hajer A. Aldulaijan
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh P.O. Box 60169, Saudi Arabia
| | - Sami Alshehri
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Eman Aljoghaiman
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Yousif A. Al-Dulaijan
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mishali AlSharief
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
8
|
Muacevic A, Adler JR. Effects of Linagliptin and Pioglitazone on Fracture Healing in an Experimental Type 2 Diabetes Rat Model. Cureus 2022; 14:e32204. [PMID: 36479259 PMCID: PMC9721100 DOI: 10.7759/cureus.32204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
AIM Our study aimed to examine the effects of Linagliptin, Pioglitazone, and their combination on fracture healing in a diabetes rat femur fracture model. MATERIAL AND METHODS Type 2 diabetes mellitus (T2DM) induced rats were randomly divided into four groups: non-treated diabetes group (TD), Pioglitazone group (P), Linagliptin group (L), and Pioglitazone and Linagliptin group (PL). Daily oral dosage of pioglitazone (10 mg/kg/day), linagliptin (10 mg/kg/day), and their combination were administered. Femur fractures were stabilized intramedullary. At weeks 2 and 6, rats were sacrificed for evaluation radiologically, biomechanically, histopathologically, histomorphometrically, and immunohistochemically. RESULTS Flexural strength of the L and PL groups were significantly higher compared to the P group. The highest healing score was in the L group and lowest in the P group, while the highest inflammation score was in the P group and lowest in the L group. A cluster of differentiation (CD) CD 34 reactivity was highest in the L group and lowest in the PL group. CONCLUSION Linagliptin treatment significantly increased histological healing scores, callus volume, biomechanical strength, and vascularity, however, minimized the inflammatory process, which was increased by pioglitazone. The combination of linagliptin and pioglitazone restored BMD and increased biomechanical strength. Linagliptin monotherapy is rarely indicated; hence, T2DM patients with a high risk of bone fractures can be considered for combined therapy of pioglitazone and linagliptin.
Collapse
|
9
|
Spence JD, Viscoli C, Kernan WN, Young LH, Furie K, DeFronzo R, Abdul-Ghani M, Dandona P, Inzucchi SE. Efficacy of lower doses of pioglitazone after stroke or transient ischaemic attack in patients with insulin resistance. Diabetes Obes Metab 2022; 24:1150-1158. [PMID: 35253334 DOI: 10.1111/dom.14687] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 12/30/2022]
Abstract
AIMS Pioglitazone is a potent insulin-sensitizing drug with anti-atherosclerotic properties, but adverse effects have limited its use. We assessed the benefits and risks of lower versus higher doses of pioglitazone taken by participants in the Insulin Resistance Intervention in Stroke Trial. MATERIALS AND METHODS Efficacy [myocardial infarction (MI) or recurrent stroke] new-onset diabetes) and adverse outcomes (oedema, weight gain, heart failure and bone fracture) were examined for subjects assigned to pioglitazone or placebo within strata defined by mode dose of study drug taken (i.e. the dose taken on most days in the study). RESULTS Among the 1938 patients randomized to pioglitazone, the mode dose was <15 mg/day in 546 participants, 15 mg/day in 128, 30 mg/day in 89, and 45 mg/day in 1175. There was no significant effect on stroke/MI or new-onset diabetes with <15 mg/day. For 15 mg/30 mg/day pooled, the adjusted hazard ratios (95% CI) for stroke/MI were 0.48 (0.30, 0.76; p = .002) and 0.74 (0.69, 0.94) for 45 mg/day. For new-onset diabetes, the adjusted hazard ratios were 0.34 (0.15, 0.81; p = .001) and 0.31 (0.59, 0.94; p = .001) respectively. For oedema, weight gain and heart failure, the risk estimates for pioglitazone were lower for subjects taking <45 mg daily. For fractures, the increased risk with pioglitazone was similar across all dose strata. CONCLUSIONS Lower doses of pioglitazone appear to confer much of the benefit with less adverse effects than the full dose. Further study is needed to confirm these findings so that clinicians may optimize dosing of this secondary prevention strategy in patients with stroke.
Collapse
Affiliation(s)
- J David Spence
- Stroke Prevention & Atherosclerosis Research Centre, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Catherine Viscoli
- Section of General Medicine Yale School of Medicine, New Haven, Connecticut, USA
| | - Walter N Kernan
- Section of General Medicine Yale School of Medicine, New Haven, Connecticut, USA
| | - Lawrence H Young
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Karen Furie
- Department of Neurology, Brown University, Providence, Rhode Island, USA
| | - Ralph DeFronzo
- Diabetes Division, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Muhammad Abdul-Ghani
- Diabetes Division, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Paresh Dandona
- Diabetes Center, Millard Fillmore Hospital, Buffalo, New York, USA
| | - Silvio E Inzucchi
- Section of Endocrinology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
10
|
The Impact of GLP1 Agonists on Bone Metabolism: A Systematic Review. Medicina (B Aires) 2022; 58:medicina58020224. [PMID: 35208548 PMCID: PMC8878541 DOI: 10.3390/medicina58020224] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
Background and Objectives: The association between diabetes mellitus and increased risk of bone fractures has led to the investigation of the impact of antidiabetic drugs on bone metabolism. Glucagon-like peptide-1 receptor agonists (GLP1RAs) are a relatively novel and promising class of anti-hyperglycemic drugs. In addition to their blood glucose lowering action, GLP1RAs seem to have additional pleiotropic properties such as a beneficial skeletal effect; although the underlying mechanisms are not completely understood. The present systematic review summarizes current evidence about GLP1RAs and their effects on bone metabolism and fracture. Methods: An extensive literature search was conducted based on electronic databases namely, PubMed, Google Scholar and Cochrane Central Register of Controlled Trials (CENTRAL) through October 2019 to January 2020 for articles related to bone mineral density, diabetes mellitus and GLP1RAs. We included articles published in English. Finally, we included four randomized controlled trials, three meta-analyses, a case-control study and a population-based cohort analysis. Results: Based on the articles included, the animal studies indicated the salutary skeletal effects of GLP1RAs in opposition to what has been commonly observed in human studies, showing that these agents have no impact on bone mineral density (BMD) and the turnover markers. Moreover, it was demonstrated that GLP1 was not associated with fracture risk as compared to other anti-hyperglycemic drugs. Conclusions: Findings from this systematic review have demonstrated the neutral impact of GLP1RAs on BMD. Moreover, further double-blind randomized controlled trials are needed to draw more meaningful and significant conclusions on the efficacy of GLP1RAs on BMD.
Collapse
|
11
|
Abstract
Type two diabetes mellitus (T2DM) represents a chronic condition with increasing prevalence worldwide among the older population. The T2DM condition increases the risk of micro and macrovascular complications as well as the risk of geriatric syndromes such as falls, fractures and cognitive impairment. The management of T2DM in the older population represents a challenge for the clinician, and a Comprehensive Geriatric Assessment should always be prioritized, in order to tailor the glycated hemoglobin target according to functional and cognitive status comorbidities, life expectancy and type of therapy. According to the most recent guidelines, older adults with T2DM should be categorized into three groups: healthy patients with good functional status, patients with complications and reduced functionality and patients at the end of life; for each group the target for glycemic control is different, also according to the type of treatment drug. The therapeutic approach should always begin with lifestyle changes; after that, several lines of therapy are available, with different mechanisms of action and potential effects other than glucose level reduction. Particular interest is growing in sodium-glucose cotransporter-2 inhibitors, due to their effect on the cardiovascular system. In this review, we evaluate the therapeutic options available for the treatment of older diabetic patients, to ensure a correct treatment approach.
Collapse
|
12
|
Mannucci E. Which antidiabetic drug indications are recommended for geriatric DM patients? JOURNAL OF GERONTOLOGY AND GERIATRICS 2021. [DOI: 10.36150/2499-6564-n458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Cucuzzella M, Riley K, Isaacs D. Adapting Medication for Type 2 Diabetes to a Low Carbohydrate Diet. Front Nutr 2021; 8:688540. [PMID: 34434951 PMCID: PMC8380766 DOI: 10.3389/fnut.2021.688540] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022] Open
Abstract
Healthcare professionals in the primary care setting need to be competent to safely adapt diabetes medications when patients with Type 2 Diabetes (T2D) alter their diet. Safe prescribing practice is supported through an understanding of the clinical evidence, basic science, and pharmacology of medications. This review article supports clinicians in the practical application of this knowledge to achieve safe practice. Traditional medical training and clinical practice for chronic disease has long revolved around the teaching of intensifying therapy and evidenced based prescribing, a crucial skill when chronic disease progresses. Now that we are witnessing remission of Type 2 Diabetes through nutritional interventions specifically low carbohydrate diets (LCD) we must apply the same effort and thought to de-prescribing as the underlying metabolic condition improves. There is minimal guidance in the literature on how to actively de-prescribe. The American Diabetes Association in their Standards of Medical Care in Diabetes–2021 acknowledges low carbohydrate nutritional therapy (LCD) as a viable option in the management of Type 2 Diabetes (T2D). Thus, the goal of our paper is to help close the gap between the clinical evidence, basic science, and pharmacology of T2D medications to the practical application and teamwork needed to facilitate safe medication reduction in the primary care setting when applied to a LCD. The LCD is an increasingly popular and effective option for managing T2D and can lead to an improvement in the condition, reduced medication burden, and contribute to significant weight loss. Safe initiation of a LCD in patients on medications requires significant monitoring and medication adjustments to decrease and eliminate the risk of hypoglycemia and hypotension. The health care team including clinicians in primary care, nursing, pharmacy and nutrition need to be competent in adjusting diabetes and antihypertensive medications to achieve safe and effective care. The most immediate and important adjustments are to insulin, sulfonylureas, SGLT2 inhibitors, blood pressure medications and diuretics. Interdisciplinary care teams can individualize therapy while following the guidance, which includes monitoring blood glucose and blood pressure closely, decreasing medications that can cause hypoglycaemia and hypotension, evaluating blood glucose and blood pressure data responses regularly, and open access communication with the team. The article is an international consensus document on de-prescribing that was put together by a multidisciplinary team of clinicians.
Collapse
Affiliation(s)
- Mark Cucuzzella
- West Virginia University School of Medicine, Morgantown, WV, United States
| | - Karen Riley
- Institute for Personalized Therapeutic Nutrition, Vancouver, BC, Canada
| | | |
Collapse
|
14
|
Cugno C, Kizhakayil D, Calzone R, Rahman SM, Halade GV, Rahman MM. Omega-3 fatty acid-rich fish oil supplementation prevents rosiglitazone-induced osteopenia in aging C57BL/6 mice and in vitro studies. Sci Rep 2021; 11:10364. [PMID: 33990655 PMCID: PMC8121944 DOI: 10.1038/s41598-021-89827-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Rosiglitazone is an effective insulin-sensitizer, however associated with bone loss mainly due to increased bone resorption and bone marrow adiposity. We investigated the effect of the co-administration of fish oil rich in omega-3 fatty acids (FAs) on rosiglitazone-induced bone loss in C57BL/6 mice and the mechanisms underlying potential preventive effect. Mice fed the iso-caloric diet supplemented with fish oil exhibited significantly higher levels of bone density in different regions compared to the other groups. In the same cohort of mice, reduced activity of COX-2, enhanced activity of alkaline phosphatase, lower levels of cathepsin k, PPAR-γ, and pro-inflammatory cytokines, and a higher level of anti-inflammatory cytokines were observed. Moreover, fish oil restored rosiglitazone-induced down-regulation of osteoblast differentiation and up-regulation of adipocyte differentiation in C3H10T1/2 cells and inhibited the up-regulation of osteoclast differentiation of RANKL-treated RAW264.7 cells. We finally tested our hypothesis on human Mesenchymal Stromal Cells differentiated to osteocytes and adipocytes confirming the beneficial effect of docosahexaenoic acid (DHA) omega-3 FA during treatment with rosiglitazone, through the down-regulation of adipogenic genes, such as adipsin and FABP4 along the PPARγ/FABP4 axis, and reducing the capability of osteocytes to switch toward adipogenesis. Fish oil may prevent rosiglitazone-induced bone loss by inhibiting inflammation, osteoclastogenesis, and adipogenesis and by enhancing osteogenesis in the bone microenvironment.
Collapse
Affiliation(s)
- Chiara Cugno
- Advanced Cell Therapy Core, Sidra Medicine, Doha, Qatar
| | | | - Rita Calzone
- Advanced Cell Therapy Core, Sidra Medicine, Doha, Qatar
| | - Shaikh Mizanoor Rahman
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Ganesh V Halade
- Division of Cardiovascular Sciences, The University of South Florida Health, Tampa, FL, USA
| | - Md M Rahman
- Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
15
|
Peng H, Yao F, Xiong S, Wu Z, Niu G, Lu T. Strontium in public drinking water and associated public health risks in Chinese cities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23048-23059. [PMID: 33432414 PMCID: PMC8113192 DOI: 10.1007/s11356-021-12378-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/04/2021] [Indexed: 05/09/2023]
Abstract
Due to the fact that strontium (Sr) is not involved in the scope of supervision of drinking water in China, the Sr concentration in public drinking water and its related health risks have been neglected for a long time. In this research, public drinking water samples were collected from 314 cities across the country to reveal the concentration and spatial distribution of Sr in public drinking water. In addition, the Monte Carlo method (a statistical simulation method) was applied to evaluate the Sr intake from drinking water and human health risks among different age groups and different regions. As shown in the results, the Sr was in the concentration range of 0.005-3.11 mg/L with a mean value of 0.360 mg/L. There were significant differences in the Sr concentration in different regions; in general, it was high in the north and low in the south. The Sr intakes of infants, children, teens, and adults from drinking water were 0.273, 0.503, 0.633, and 0.784 mg/day, respectively. There was a significant positive correlation between Sr concentration in drinking water and bone mineral density (BMD) in the elderly. Especially, the correlation coefficients (r) between Sr concentration and the BMD of the elderly whose age fell in the range of 60-70 years were 0.692 (male) and 0.483 (female). In addition, the Sr concentration in drinking water was positively correlated with the incidence of children's rickets (r = 0.411), while the Ca/Br ratio was negatively correlated with the incidence of children's rickets (r = - 0.410). According to the health risk assessment, among people of different ages, infants' hazard index (HI) value was the highest. The mean value and 95th percentile value were 0.066 and 0.247. Non-carcinogenic risk of Sr through drinking water among different people in different regions was less than 1, which meant no significant damage to human health. This study is the first time to systematically investigate Sr in public drinking water across the whole country. More importantly, the conclusions can be applied to risk control and management of public drinking water.
Collapse
Affiliation(s)
- Hao Peng
- School of Environmental Studies, China University of Geoscience, Wuhan, 430078, China
| | - Feifei Yao
- Qingdao Haier Smart Technology R&D Co., Ltd, Qingdao, 266101, China
| | - Shuang Xiong
- Wuhan Zondy W&R Environmental Technology Co., Ltd, Wuhan, 430078, China
| | - Zhonghua Wu
- Qingdao Haier Smart Technology R&D Co., Ltd, Qingdao, 266101, China
| | - Geng Niu
- Wuhan Zondy W&R Environmental Technology Co., Ltd, Wuhan, 430078, China
| | - Taotao Lu
- Department of Hydrology, University of Bayreuth, 95440, Bayreuth, Germany.
| |
Collapse
|
16
|
Tang CY, Wu M, Zhao D, Edwards D, McVicar A, Luo Y, Zhu G, Wang Y, Zhou HD, Chen W, Li YP. Runx1 is a central regulator of osteogenesis for bone homeostasis by orchestrating BMP and WNT signaling pathways. PLoS Genet 2021; 17:e1009233. [PMID: 33476325 PMCID: PMC7819607 DOI: 10.1371/journal.pgen.1009233] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/29/2020] [Indexed: 12/23/2022] Open
Abstract
Runx1 is highly expressed in osteoblasts, however, its function in osteogenesis is unclear. We generated mesenchymal progenitor-specific (Runx1f/fTwist2-Cre) and osteoblast-specific (Runx1f/fCol1α1-Cre) conditional knockout (Runx1 CKO) mice. The mutant CKO mice with normal skeletal development displayed a severe osteoporosis phenotype at postnatal and adult stages. Runx1 CKO resulted in decreased osteogenesis and increased adipogenesis. RNA-sequencing analysis, Western blot, and qPCR validation of Runx1 CKO samples showed that Runx1 regulates BMP signaling pathway and Wnt/β-catenin signaling pathway. ChIP assay revealed direct binding of Runx1 to the promoter regions of Bmp7, Alk3, and Atf4, and promoter mapping demonstrated that Runx1 upregulates their promoter activity through the binding regions. Bmp7 overexpression rescued Alk3, Runx2, and Atf4 expression in Runx1-deficient BMSCs. Runx2 expression was decreased while Runx1 was not changed in Alk3 deficient osteoblasts. Atf4 overexpression in Runx1-deficient BMSCs did not rescue expression of Runx1, Bmp7, and Alk3. Smad1/5/8 activity was vitally reduced in Runx1 CKO cells, indicating Runx1 positively regulates the Bmp7/Alk3/Smad1/5/8/Runx2/ATF4 signaling pathway. Notably, Runx1 overexpression in Runx2-/- osteoblasts rescued expression of Atf4, OCN, and ALP to compensate Runx2 function. Runx1 CKO mice at various osteoblast differentiation stages reduced Wnt signaling and caused high expression of C/ebpα and Pparγ and largely increased adipogenesis. Co-culture of Runx1-deficient and wild-type cells demonstrated that Runx1 regulates osteoblast-adipocyte lineage commitment both cell-autonomously and non-autonomously. Notably, Runx1 overexpression rescued bone loss in OVX-induced osteoporosis. This study focused on the role of Runx1 in different cell populations with regards to BMP and Wnt signaling pathways and in the interacting network underlying bone homeostasis as well as adipogenesis, and has provided new insight and advancement of knowledge in skeletal development. Collectively, Runx1 maintains adult bone homeostasis from bone loss though up-regulating Bmp7/Alk3/Smad1/5/8/Runx2/ATF4 and WNT/β-Catenin signaling pathways, and targeting Runx1 potentially leads to novel therapeutics for osteoporosis.
Collapse
Affiliation(s)
- Chen-Yi Tang
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
- Department of Metabolism & Endocrinology, Hunan provincial Key Laboratory of Metabolic Bone Diseases, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengrui Wu
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
- Institute of Genetics, Life Science College, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Dongfeng Zhao
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
- Shanghai University of Traditional Chinese Medicine, Pudong, Shanghai, China P.R
| | - Diep Edwards
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Abigail McVicar
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Yuan Luo
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Guochun Zhu
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Yongjun Wang
- Shanghai University of Traditional Chinese Medicine, Pudong, Shanghai, China P.R
| | - Hou-De Zhou
- Department of Metabolism & Endocrinology, Hunan provincial Key Laboratory of Metabolic Bone Diseases, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Chen
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
- * E-mail: (WC); (Y-PL)
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
- * E-mail: (WC); (Y-PL)
| |
Collapse
|
17
|
Chen G, Zhuo Y, Tao B, Liu Q, Shang W, Li Y, Wang Y, Li Y, Zhang L, Fang Y, Zhang X, Fang Z, Yu Y. Moderate SMFs attenuate bone loss in mice by promoting directional osteogenic differentiation of BMSCs. Stem Cell Res Ther 2020; 11:487. [PMID: 33198804 PMCID: PMC7667787 DOI: 10.1186/s13287-020-02004-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Background Osteoporosis is a common metabolic bone disease without effective treatment. Bone marrow-derived mesenchymal stem cells (BMSCs) have the potential to differentiate into multiple cell types. Increased adipogenic differentiation or reduced osteogenic differentiation of BMSCs might lead to osteoporosis. Whether static magnetic fields (SMFs) might influence the adipo-osteogenic differentiation balance of BMSCs remains unknown. Methods The effects of SMFs on lineage differentiation of BMSCs and development of osteoporosis were determined by various biochemical (RT-PCR and Western blot), morphological (staining and optical microscopy), and micro-CT assays. Bioinformatics analysis was also used to explore the signaling pathways. Results In this study, we found that SMFs (0.2–0.6 T) inhibited the adipogenic differentiation of BMSCs but promoted their osteoblastic differentiation in an intensity-dependent manner. Whole genomic RNA-seq and bioinformatics analysis revealed that SMF (0.6 T) decreased the PPARγ-mediated gene expression but increased the RUNX2-mediated gene transcription in BMSCs. Moreover, SMFs markedly alleviated bone mass loss induced by either dexamethasone or all-trans retinoic acid in mice. Conclusions Taken together, our results suggested that SMF-based magnetotherapy might serve as an adjunctive therapeutic option for patients with osteoporosis. Supplementary information Supplementary information accompanies this paper at 10.1186/s13287-020-02004-y.
Collapse
Affiliation(s)
- Guilin Chen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yujuan Zhuo
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Bo Tao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Qian Liu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Wenlong Shang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yinxiu Li
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yuhong Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yanli Li
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Lei Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yanwen Fang
- Heye Health Industrial Research Institute of Zhejiang Heye Health Technology, Anji, 313300, Zhejiang, China
| | - Xin Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Zhicai Fang
- Heye Health Industrial Research Institute of Zhejiang Heye Health Technology, Anji, 313300, Zhejiang, China
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
18
|
Gholami A, Dabbaghmanesh MH, Ghasemi Y, Talezadeh P, Koohpeyma F, Montazeri-Najafabady N. Probiotics ameliorate pioglitazone-associated bone loss in diabetic rats. Diabetol Metab Syndr 2020. [DOI: 10.1186/s13098-020-00587-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Background
Pioglitazone, as a PPAR gamma agonist, is used for the management of type 2 diabetes mellitus. Nevertheless, evidence showed that the therapeutic modulation of PPAR gamma activity using pioglitazone might be linked with bone mass reduction and fracture risk in type 2 diabetes mellitus patients. The objective of the current research was to inspect the preventive role of some types of probiotic strains, including (Lactobacillus acidophilus, Lactobacillus reuteri, Lactobacillus casei, Bifidobacterium longum, and Bacillus coagulans) against pioglitazone-induced bone loss.
Methods
Streptozotocin (60 mg/kg) was administered for diabetes induction. Diabetic rats were fed orally with pioglitazone (300 mg/kg) and probiotics (1 × 109 CFU/ml/day) alone and in combination for four weeks. Dual-energy X-ray absorptiometry (DXA) was used to assess BMD, BMC, and area of the femur, spine, and tibia at the end of the experiment. Serum glucose, serum calcium (Ca), alkaline phosphatase (ALP), phosphorus (P), Blood urea nitrogen (BUN), creatinine, and urine calcium were also analyzed.
Results
Administration of pioglitazone and probiotics alone and, in combination, significantly reduced elevated blood glucose. Pioglitazone treatment significantly increased urinary calcium and BUN and decreased ALP and creatinine. Co-treatment of probiotics with pioglitazone significantly decreased urinary calcium, creatinine, and ALP. Pioglitazone showed detrimental effects on femur-BMD, whereas treatment with probiotics remarkably ameliorated these effects. Among the tested probiotics, Bifidobacterium longum displayed the best protective effects on pioglitazone-induced bone loss in diabetic rats.
Conclusion
This study suggests probiotic supplementation in diabetic patients on pioglitazone regime could be considering as an excellent strategy to ameliorate bone loss induced by pioglitazone.
Collapse
|
19
|
Coumarin Ameliorates Impaired Bone Turnover by Inhibiting the Formation of Advanced Glycation End Products in Diabetic Osteoblasts and Osteoclasts. Biomolecules 2020; 10:biom10071052. [PMID: 32679814 PMCID: PMC7407361 DOI: 10.3390/biom10071052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/24/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence demonstrates that the risk of osteoporotic fractures increases in patients with diabetes mellitus. Thus, diabetes-induced bone fragility has recently been recognized as a diabetic complication. As the fracture risk is independent of the reduction in bone mineral density, deterioration in bone quality may be the main cause of bone fragility. Coumarin exists naturally in many plants as phenylpropanoids and is present in tonka beans in significantly high concentrations. This study investigated whether coumarin ameliorated the impaired bone turnover and remodeling under diabetic condition. The in vitro study employed murine macrophage Raw 264.7 cells differentiated to multinucleated osteoclasts with receptor activator of nuclear factor-κΒ ligand (RANKL) in the presence of 33 mM glucose and 1–20 μM coumarin for five days. In addition, osteoblastic MC3T3-E1 cells were exposed to 33 mM glucose for up to 21 days in the presence of 1–20 μM coumarin. High glucose diminished tartrate-resistant acid phosphatase activity and bone resorption in RANKL-differentiated osteoclasts, accompanying a reduction of cathepsin K induction and actin ring formation. In contrast, coumarin reversed the defective osteoclastogenesis in diabetic osteoclasts. Furthermore, high glucose diminished alkaline phosphatase activity and collagen type 1 induction of osteoblasts, which was strongly enhanced by submicromolar levels of coumarin to diabetic cells. Furthermore, coumarin restored the induction of RANK and osteoprotegerin in osteoclasts and osteoblasts under glucotoxic condition, indicating a tight coupling of osteoclastogenesis and osteoblastogenesis. Coumarin ameliorated the impaired bone turnover and remodeling in diabetic osteoblasts and osteoclasts by suppressing the interaction between advanced glycation end product (AGE) and its receptor (RAGE). Therefore, coumarin may restore optimal bone turnover of osteoclasts and osteoblasts by disrupting the hyperglycemia-mediated AGE–RAGE interaction.
Collapse
|
20
|
Zuo L, Wang J, Zhang N, Wang J. Pioglitazone Therapy Decreases Bone Mass Density and Increases Fat Mass: A Meta-Analysis. Curr Pharm Des 2019; 25:3590-3596. [PMID: 31538886 DOI: 10.2174/1381612825666190920123129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/12/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pioglitazone is mainly used for the management of type 2 diabetes and other insulinassociated diseases. However, the molecular mechanism of pioglitazone can lead to an imbalance in bone metabolism, thus decreasing bone mass density (BMD) and increasing the risk for fractures. OBJECTIVE To demonstrate the effect of pioglitazone therapy on bone metabolism and fat mass. METHODS A comprehensive search of the PubMed, EMBASE, Web of Science and Cochrane Central databases for randomized controlled trials (RCTs) on the effect of pioglitazone therapy on BMD and fat mass was performed. The primary outcome measures were the measured values of BMD, percentage changes in BMD, measured values of bone turnover markers and bone metabolic hormones, changes in BMI, body and leg fat mass, and fracture rates. The final search was performed in May 2019. RESULTS Six RCTs were included. A total of 749 patients met the inclusion criteria. Pioglitazone therapy was shown to significantly reduce the BMD of the whole body, lumbar spine, and total hip and serum PTH levels and increase BMI, total body fat mass and leg fat mass. In addition, 30 mg/d and 30 mg/d initially for one month followed by 45 mg/d pioglitazone could reduce the BMD of the lumbar spine. Pioglitazone therapy exerted no significant influence on the BMD of the femoral neck, serum BSAP or 25-OHD levels, or fracture rates. CONCLUSION Compared with placebo, pioglitazone therapy reduced BMD and serum PTH levels and increased fat mass and BMI with no difference in serum BSAP or 25-OHD levels or fracture rates; 30 mg/d pioglitazone was sufficient to reduce the BMD of the lumbar spine.
Collapse
Affiliation(s)
- Liyun Zuo
- Medical College of Shanxi Datong University, Shanxi, 037009, China
| | - Jianbin Wang
- Medical College of Shanxi Datong University, Shanxi, 037009, China
| | - Nianping Zhang
- Medical College of Shanxi Datong University, Shanxi, 037009, China
| | - Junjie Wang
- Changzhi Medical College, Changzhi, Shanxi, China
| |
Collapse
|
21
|
CORR® ORS Richard A. Brand Award: Disruption in Peroxisome Proliferator-Activated Receptor-γ (PPARG) Increases Osteonecrosis Risk Through Genetic Variance and Pharmacologic Modulation. Clin Orthop Relat Res 2019; 477:1800-1812. [PMID: 31135556 PMCID: PMC7000017 DOI: 10.1097/corr.0000000000000713] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The pathophysiology of osteonecrosis of the femoral head (ONFH) is poorly understood, and the diagnosis is idiopathic in as many as 40% of patients. Genetic and epigenetic etiologies have been postulated, yet no single nucleotide polymorphisms (SNPs) with intuitive biologic implications have been elucidated. QUESTIONS/PURPOSES (1) Do individuals with ONFH share common biologically relevant genetic variants associated with disease development? (2) What is the mechanism by which these SNPs may impact the expression or function of the affected gene or protein? METHODS This retrospective genome-wide association study (GWAS) evaluated participants from the Mayo Clinic Biobank and Mayo Clinic Genome Consortium between August 2009 and March 2017. We included every patient with atraumatic ONFH in each of these respective registries and every control patient in a previous GWAS with an acceptable platform to perform statistical imputation. The study was performed in two phases, with an initial discovery cohort and a subsequent validation cohort. The initial discovery cohort consisted of 102 patients with ONFH and 4125 controls. A logistic regression analysis was used to evaluate associations between SNPs and the risk of ONFH, adjusted for age and sex. Seven SNPs were identified in a gene of biological interest, peroxisome proliferator-activated receptor gamma (PPARG), which were then evaluated in a subsequent validation cohort of 38 patients with ONFH and 464 controls. Age, sex, race, and previous steroid exposure were similar between patients with ONFH and controls in both the discovery and validation cohorts. Separate from the two-phase genetic investigation, we performed targeted pharmacosurveillance to evaluate the risk association between the use of antidiabetic thiazolidinediones, a class of PPARG agonists, and development of ONFH by referencing 9,638,296 patient records for individuals treated at Mayo Clinic. RESULTS A combined analysis of the discovery and validation cohorts revealed that seven SNPs were tightly clustered adjacent to the 3' end of PPARG, suggesting an association with the risk of ONFH (p = 1.58 x 10-5.50 x10). PPARG gene-level significance was achieved (p = 3.33 x 10) when all seven SNPs were considered. SNP rs980990 had the strongest association with the risk of ONFH (odds ratio [OR], 1.95; 95% CI, 1.46-2.59; p = 5.50 x 10).The seven identified SNPs were mapped to a region near the PPARG gene and fell in a highly conserved region consisting of several critical transcription factor binding sites. Nucleotide polymorphisms at these sites may compromise three-dimensional chromatin organization and alter PPARG 3' end interactions with its 5' promoter and transcription start site. Pharmacosurveillance identified that patients who were exposed to thiazolidinediones had an increased relative risk of developing ONFH of 5.6 (95% CI, 4.5-7.1). CONCLUSIONS We found that disruption of PPARG regulatory domains is linked to an increased risk of ONFH. Mechanistically, aberrant regulation of PPARG compromises musculoskeletal differentiation because this master regulator creates a proadipogenic and antiosteogenic state. Furthermore, PPARG alters steroid metabolism and vasculogenesis, processes that are inextricably linked with ONFH. Pharmacologically, predisposition to ONFH was further exposed with thiazolidinedione use, which upregulates the expression of PPARG and is known to alter bone metabolism. Collectively, these findings provide a foundation to perform confirmatory studies of our proposed mechanism in preclinical models to develop screening diagnostics and potential therapies in patients with limited options. LEVEL OF EVIDENCE Level III, prognostic study.
Collapse
|
22
|
Lipp L, Sharma D, Banerjee A, Singh J. Controlled Delivery of Salmon Calcitonin Using Thermosensitive Triblock Copolymer Depot for Treatment of Osteoporosis. ACS OMEGA 2019; 4:1157-1166. [PMID: 30729223 PMCID: PMC6356892 DOI: 10.1021/acsomega.8b02781] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/25/2018] [Indexed: 05/23/2023]
Abstract
Osteoporosis is a common metabolic bone disorder associated with fragility and bone fracture. Worldwide, osteoporosis results in more than 8.9 million fractures annually. Additionally, steroid treatments can cause osteoporosis as a side effect. Salmon calcitonin (sCT) is injected daily for those on steroid treatments as a means to prevent and treat osteoporosis side effects. Frequent dosing is inconvenient, uncomfortable, and often leads to compliance issues. Our objective was to develop a monomethoxy poly(ethylene glycol) (mPEG) and poly-lactic-co-glycolic acid (PLGA) thermosensitive triblock copolymer (mPEG-PLGA-mPEG)-based controlled release delivery system at an increased lactide to glycolide ratio (3.5:1, 4.5:1, and 5:1) to deliver sCT in its active conformation in a controlled fashion for a prolonged period following a single subcutaneous injection. Increasing lactide to glycolide ratio increases hydrophobicity of the PLGA block, which slows degradation of copolymer, thereby prolonging release and reducing burst release. Proton nuclear magnetic resonance spectroscopy and gel permeation chromatography confirmed structural composition and polydispersity index, respectively. Critical micelle concentration of the copolymer was 25 μg/mL. The delivery system was biocompatible as determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell viability assay. Moreover, the copolymeric system maintained sCT in a conformationally stable form for the entire duration of storage and release.
Collapse
Affiliation(s)
| | | | | | - Jagdish Singh
- E-mail: . Phone: +1-701-231-7943. Fax: +1-701-231-8333
| |
Collapse
|
23
|
Raj JP, Venkatachalam S, Shekoba M, Norris JJ, Amaravati RS. Conventional antidiabetic agents and bone health: A pilot case-control study. Perspect Clin Res 2019; 10:177-182. [PMID: 31649868 PMCID: PMC6801990 DOI: 10.4103/picr.picr_125_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background and Objectives: The burden of noncommunicable diseases such as diabetes (type 2 diabetes mellitus [T2DM]) and osteoporosis is increasing with increasing longevity. Uncontrolled T2DM is an independent risk factor for osteoporosis explained by the insulin osteocalcin pathway. Due to limited information on the effect of various commonly used antidiabetic agents (ADA) on bone health, our study aims to analyze the association between the two. Methodology: This is a case–control study, with 100 cases of clinical osteoporosis and 100 age-, sex-, and dietary status-matched controls in whom osteoporosis was ruled out by dual-energy X-ray absorptiometry scan. Prescription details of T2DM, physical activity levels, and disease status were collected using a pretested questionnaire. Exposure to each ADA was compared using the Chi-squared test. Binary logistic regression was performed to adjust the two main confounders, namely glycemic control and physical activity levels, and adjusted risk estimates were calculated. Results: There were a total of 74 T2DM patients, of whom 45 (60.8%) were cases and 29 (39.2%) were controls. Sulfonylureas (adjusted odds ratio [aOR] = 0.164, P = 0.004) and insulin (aOR = 0.248, P = 0.042) showed a significant protective effect on bone health. Biguanides (OR = 1.994, P = 0.029) and thiazolidinediones (OR: 5.444, P = 0.033), which demonstrated that an increased risk of osteoporosis in univariate analysis became insignificant after multivariate analysis. Conclusion: Sulfonylureas and insulin through the insulin osteocalcin pathway show favorable effect on bone health, but the probability of increased fractures secondary to hypoglycemic falls should be borne in mind. We recommend larger prospective studies to confirm this association.
Collapse
Affiliation(s)
- Jeffrey Pradeep Raj
- Department of Pharmacology, St. John's Medical College, Bengaluru, Karnataka, India
| | | | - Mahesh Shekoba
- Department of Orthopaedics, St. John's Medical College, Bengaluru, Karnataka, India
| | | | - Rajkumar S Amaravati
- Department of Orthopaedics, St. John's Medical College, Bengaluru, Karnataka, India
| |
Collapse
|
24
|
Eshraghian A. Current and emerging pharmacological therapy for non-alcoholic fatty liver disease. World J Gastroenterol 2017; 23:7495-7504. [PMID: 29204050 PMCID: PMC5698243 DOI: 10.3748/wjg.v23.i42.7495] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/14/2017] [Accepted: 09/19/2017] [Indexed: 02/06/2023] Open
Abstract
The main treatment of patients with non-alcoholic fatty liver disease (NAFLD) is life style modification including weight reduction and dietary regimen. Majority of patients are safely treated with this management and pharmacologic interventions are not recommended. However, a subgroup of NAFLD patients with non-alcoholic steatohepatitis (NASH) who cannot achieve goals of life style modification may need pharmacological therapy. One major obstacle is measurement of histological outcome by liver biopsy which is an invasive method and is not recommended routinely in these patients. Several medications, mainly targeting baseline mechanism of NAFLD, have been investigated in clinical trials for treatment of NASH with promising results. At present, only pioglitazone acting as insulin sensitizing agent and vitamin E as an anti-oxidant have been recommended for treatment of NASH by international guidelines. Lipid lowering agents including statins and fibrates, pentoxifylline, angiotensin receptor blockers, ursodeoxycholic acid, probiotics and synbiotics are current agents with beneficial effects for treatment of NASH but have not been approved yet. Several emerging medications are in development for treatment of NASH. Obeticholic acid, liraglutide, elafibranor, cenicriviroc and aramchol have been tested in clinical trials or are completing trials. Here in, current and upcoming medications with promising results in clinical trial for treatment of NAFLD were reviewed.
Collapse
Affiliation(s)
- Ahad Eshraghian
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 71937-11351, Iran
| |
Collapse
|
25
|
Wu M, Wang Y, Shao JZ, Wang J, Chen W, Li YP. Cbfβ governs osteoblast-adipocyte lineage commitment through enhancing β-catenin signaling and suppressing adipogenesis gene expression. Proc Natl Acad Sci U S A 2017; 114:10119-10124. [PMID: 28864530 PMCID: PMC5617241 DOI: 10.1073/pnas.1619294114] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The mechanism underlying how transcription factors regulate mesenchymal stem cell lineage commitment remains unclear. To determine the role of core-binding factor subunit beta (Cbfβ) in osteoblast lineage commitment, we generated three mouse models by deleting Cbfβ at different osteoblast lineage stages. We demonstrated that the Cbfβf/fPrx1-Cre, Cbfβf/fCol2α1-Cre, and Cbfβf/fOsx-Cre mice exhibited severe osteoporosis with substantial accumulation of marrow adipocytes resembling aged bone from enhanced adipogenesis, indicating that mesenchymal stem cells and osteoblasts can be programed and reprogramed, respectively, into adipocytes. Consistently, Cbfβ-deficient calvarial cells and bone marrow mesenchymal stem cells displayed strong adipogenic potential, with 5- to ∼70-fold increased adipocyte gene expression, which can be rescued by Cbfβ overexpression. Canonical Wnt signaling was impeded in the Cbfβ-deficient cells, with ∼80% decrease of Wnt10b expression. Accordingly, ChIP and luciferase assays demonstrated that Cbfβ/RUNX2 binds to Wnt10b promoter driving Wnt10b expression. Furthermore, Wnt3a suppressed adipogenesis but did not rescue osteoblastogenesis in Cbfβ-deficient cells. Notably, mixing culture of Cbfβ-deficient with normal cells demonstrates that Cbfβ functions not only through WNT paracrine pathway but also through endogenous signaling. Further analysis shows that Cbfβ/RUNX2 inhibits c/ebpα expression at transcriptional level. Our results show that, besides its osteogenic role, Cbfβ governs osteoblast-adipocyte lineage commitment both cell nonautonomously through enhancing β-catenin signaling and cell autonomously through suppressing adipogenesis gene expression to maintain osteoblast lineage commitment, indicating Cbfβ may be a therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Mengrui Wu
- Institute of Genetics, Life Science College, Zhejiang University, Hangzhou 310058, People's Republic of China
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Yiping Wang
- Institute of Genetics, Life Science College, Zhejiang University, Hangzhou 310058, People's Republic of China
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jian-Zhong Shao
- Institute of Genetics, Life Science College, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jue Wang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Wei Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Yi-Ping Li
- Institute of Genetics, Life Science College, Zhejiang University, Hangzhou 310058, People's Republic of China;
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
26
|
Karsdal MA, Henriksen K, Genovese F, Leeming DJ, Nielsen MJ, Riis BJ, Christiansen C, Byrjalsen I, Schuppan D. Serum endotrophin identifies optimal responders to PPARγ agonists in type 2 diabetes. Diabetologia 2017; 60:50-59. [PMID: 27631136 DOI: 10.1007/s00125-016-4094-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/04/2016] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS The treatment of type 2 diabetes with full peroxisome proliferator-activated receptor gamma (PPARγ) agonists improves insulin sensitivity, but is associated with weight gain, heart failure, peripheral oedema and bone loss. Endotrophin, the C-terminal fragment of the α3 chain of procollagen type VI (also called Pro-C6), is involved in both adipose tissue matrix remodelling and metabolic control. We established a serum assay for endotrophin to assess if this novel adipokine could identify type 2 diabetic patients who respond optimally to PPARγ agonists, improving the risk-to-benefit ratio. METHODS The BALLET trial (NCT00515632) compared the glucose-lowering effects and safety of the partial PPARγ agonist balaglitazone with those of pioglitazone in individuals with type 2 diabetes on stable insulin therapy. The per protocol population (n = 297) was stratified into tertiles based on baseline endotrophin levels. Participants were followed-up after 26 weeks, after which correlational analysis was carried out between endotrophin levels and measures of glucose control. This is a secondary post hoc analysis. RESULTS Endotrophin was significantly associated with therapeutic response to balaglitazone and pioglitazone. At week 26, only individuals in the upper two tertiles showed significant reductions in HbA1c and fasting serum glucose compared with baseline. The OR for a 1% and a 0.5% reduction in HbA1c for individuals in the upper two tertiles were 3.83 (95% CI 1.62, 9.04) p < 0.01, and 3.85 (95% CI 1.94, 7.61) p < 0.001, respectively. Endotrophin levels correlated with adipose tissue mass, insulin resistance and fatty liver index. Notably, PPARγ-associated adverse effects, such as moderate-to-severe lower extremity oedema, only occurred in the lower tertile. CONCLUSIONS/INTERPRETATION Elevated endotrophin serum levels predict response to two insulin sensitisers and reduce the risk of associated adverse effects, thereby, identifying patients with type 2 diabetes who may profit from PPARγ agonist treatment.
Collapse
Affiliation(s)
- Morten A Karsdal
- Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730, Herlev, Denmark.
| | - Kim Henriksen
- Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730, Herlev, Denmark
| | - Federica Genovese
- Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730, Herlev, Denmark
| | - Diana J Leeming
- Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730, Herlev, Denmark
| | - Mette J Nielsen
- Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730, Herlev, Denmark
| | - Bente J Riis
- Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730, Herlev, Denmark
| | - Claus Christiansen
- Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730, Herlev, Denmark
- Center for Clinical and Basic Research (CCBR), Ballerup, Denmark
| | - Inger Byrjalsen
- Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730, Herlev, Denmark
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center of Immune Therapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
27
|
Eom YS, Gwon AR, Kwak KM, Kim JY, Yu SH, Lee S, Kim YS, Park IB, Kim KW, Lee K, Kim BJ. Protective Effects of Vildagliptin against Pioglitazone-Induced Bone Loss in Type 2 Diabetic Rats. PLoS One 2016; 11:e0168569. [PMID: 27997588 PMCID: PMC5172620 DOI: 10.1371/journal.pone.0168569] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/03/2016] [Indexed: 01/03/2023] Open
Abstract
Long-term use of thiazolidinediones (TZDs) is associated with bone loss and an increased risk of fracture in patients with type 2 diabetes (T2DM). Incretin-based drugs (glucagon-like peptide-1 (GLP-1) agonists and dipeptidylpeptidase-4 (DPP-4) inhibitors) have several benefits in many systems in addition to glycemic control. In a previous study, we reported that exendin-4 might increase bone mineral density (BMD) by decreasing the expression of SOST/sclerostin in osteocytes in a T2DM animal model. In this study, we investigated the effects of a DPP-4 inhibitor on TZD-induced bone loss in a T2DM animal model. We randomly divided 12-week-old male Zucker Diabetic Fatty (ZDF) rats into four groups; control, vildagliptin, pioglitazone, and vildagliptin and pioglitazone combination. Animals in each group received the respective treatments for 5 weeks. We performed an intraperitoneal glucose tolerance test (IPGTT) before and after treatment. BMD and the trabecular micro-architecture were measured by DEXA and micro CT, respectively, at the end of the treatment. The circulating levels of active GLP-1, bone turnover markers, and sclerostin were assayed. Vildagliptin treatment significantly increased BMD and trabecular bone volume. The combination therapy restored BMD, trabecular bone volume, and trabecular bone thickness that were decreased by pioglitazone. The levels of the bone formation marker, osteocalcin, decreased and that of the bone resorption marker, tartrate-resistant acid phosphatase (TRAP) 5b increased in the pioglitazone group. These biomarkers were ameliorated and the pioglitazone-induced increase in sclerostin level was lowered to control values by the addition of vildagliptin. In conclusion, our results indicate that orally administered vildagliptin demonstrated a protective effect on pioglitazone-induced bone loss in a type 2 diabetic rat model.
Collapse
Affiliation(s)
- Young Sil Eom
- Department of Internal Medicine, Gachon University School of Medicine, Incheon, South Korea
| | - A-Ryeong Gwon
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, South Korea
| | - Kyung Min Kwak
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, South Korea
| | - Ju-Young Kim
- Imaging Science based Lung and Bone Disease Research Center, Wonkang University, Iksan, Jeonbuk, South Korea
| | - Seung Hee Yu
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, South Korea
| | - Sihoon Lee
- Department of Internal Medicine, Gachon University School of Medicine, Incheon, South Korea
| | - Yeun Sun Kim
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, South Korea
| | - Ie Byung Park
- Department of Internal Medicine, Gachon University School of Medicine, Incheon, South Korea
| | - Kwang-Won Kim
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, South Korea
| | - Kiyoung Lee
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, South Korea
| | - Byung-Joon Kim
- Department of Internal Medicine, Gachon University School of Medicine, Incheon, South Korea
| |
Collapse
|
28
|
Bian H, Lin JZ, Li C, Farmer SR. Myocardin-related transcription factor A (MRTFA) regulates the fate of bone marrow mesenchymal stem cells and its absence in mice leads to osteopenia. Mol Metab 2016; 5:970-979. [PMID: 27689009 PMCID: PMC5034694 DOI: 10.1016/j.molmet.2016.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 01/02/2023] Open
Abstract
Objective Arising from common progenitors in the bone marrow, adipogenesis and osteogenesis are closely associated yet mutually exclusive during bone marrow mesenchymal stem cell (BMSC) development. Previous studies have shown that morphological changes can affect the early commitment of pluripotent BMSCs to the adipose versus osteoblastic lineage via modulation of RhoA activity. The RhoA pathway regulates actin polymerization to promote the incorporation of globular actin (G-actin) into filamentous actin (F-actin). In doing so, myocardin-related transcription factors (MRTFs) dissociate from bound G-actin and enter the nucleus to co-activate serum response factor (SRF) target gene expression. In this study, we investigated whether MRTFA/SRF is acting downstream of the RhoA pathway to regulate BMSC commitment in mice. Methods The effects of knocking out MRTFA on skeletal homeostasis was studied in MRTFA KO mice using micro-CT, QPCR and western blot assays. To determine how MRTFA affects the mechanisms regulating BMSC fate decisions, primary bone marrow stromal cells from WT and MRTFA KO mice as well as C3H10T1/2 cell lines were analyzed in vitro. Results Global MRTFA KO mice have lower whole body weight, shorter femoral and tibial lengths as well as significantly decreased bone mass in their femurs. BMSCs isolated from the KO mice show increased adipogenesis and reduced osteogenesis when compared to WT littermates. KO mice, particularly females, develop osteopenia with age, and this was enhanced by a high fat diet. Over-expression of MRTFA or SRF enhances osteogenesis in CH310T1/2 cell lines. Sca1+, CD45− cells from KO marrow express lower amounts of smooth muscle actin (SMA) and TAZ/YAP target genes compared to WT counterparts. Conclusion This study identified MRTFA as a novel regulator of skeletal homeostasis by regulating the balance between adipogenic and osteogenic differentiation of BMSCs. We propose that MRTFA promotes the osteogenic activity of TAZ/YAP by maintaining SMA production in BMSCs.
Collapse
Affiliation(s)
- Hejiao Bian
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, K606A, Boston, MA 02118, USA
| | - Jean Z Lin
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, K606A, Boston, MA 02118, USA
| | - Chendi Li
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, K606A, Boston, MA 02118, USA
| | - Stephen R Farmer
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, K606A, Boston, MA 02118, USA.
| |
Collapse
|
29
|
Pioglitazone affects the OPG/RANKL/RANK system and increase osteoclastogenesis. Mol Med Rep 2016; 14:2289-96. [DOI: 10.3892/mmr.2016.5515] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 04/07/2016] [Indexed: 11/05/2022] Open
|
30
|
Sauer S. Ligands for the Nuclear Peroxisome Proliferator-Activated Receptor Gamma. Trends Pharmacol Sci 2016; 36:688-704. [PMID: 26435213 DOI: 10.1016/j.tips.2015.06.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/29/2015] [Accepted: 06/30/2015] [Indexed: 01/09/2023]
Abstract
Nuclear receptors are ligand-activated transcription factors, which represent a primary class of drug targets. The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) is a key player in various biological processes. PPARγ is widely known as the target protein of the thiazolidinediones for treating type 2 diabetes. Moreover, PPARγ ligands can induce anti-inflammatory and potentially additional beneficial effects. Recent mechanistic insights of PPARγ modulation give hope the next generation of efficient PPARγ-based drugs with fewer side effects can be developed. Furthermore, chemical approaches that make use of synergistic action of combinatorial ligands are promising alternatives for providing tailored medicine. Lessons learned from fine-tuning the action of PPARγ can provide avenues for efficient molecular intervention via many other nuclear receptors to combat common diseases.
Collapse
Affiliation(s)
- Sascha Sauer
- Otto-Warburg Laboratory, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany; University of Würzburg, CU Systems Medicine, Josef-Schneider-Straße 2, Building D15, 97070 Wuerzburg, Germany.
| |
Collapse
|
31
|
Kang JH, Kwak HJ, Choi HE, Kim J, Hong S, Kim OH, Oh BC, Cheon HG. Involvement of Prolyl Hydroxylase Domain Protein in the Rosiglitazone-Induced Suppression of Osteoblast Differentiation. PLoS One 2015; 10:e0139093. [PMID: 26418009 PMCID: PMC4587972 DOI: 10.1371/journal.pone.0139093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 09/09/2015] [Indexed: 01/10/2023] Open
Abstract
Rosiglitazone is a well-known anti-diabetic drug that increases insulin sensitivity via peroxisome proliferator-activated receptor γ (PPARγ) activation, but unfortunately it causes bone loss in animals and humans. A previous study showed that prolyl hydroxylase domain protein (PHD) plays a role in rosiglitazone-induced adipocyte differentiation. Based on the inverse relationship between adipocyte and osteoblast differentiation, we investigated whether PHD is involved in the effects of rosiglitazone on osteoblast differentiation. Rosiglitazone inhibited osteoblast differentiation in a concentration-dependent manner, and in parallel induced three PHD isoforms (PHD1, 2, and 3). PHD inhibitors and knockdown of each isoform prevented the inhibitory effects of rosiglitazone on osteoblast differentiation and increased the expression of Runx2, a transcription factor essential for osteoblastogenesis. MG-132, a proteasomal inhibitor also prevented the rosiglitazone-induced degradation of Runx2. Furthermore, both increased PHD isoform expressions and reduced osteoblast differentiation by rosiglitazone were prevented by PPARγ antagonists, indicating these effects were mediated via PPARγ activation. In vivo oral administration of rosiglitazone to female ICR mice for 8 weeks reduced bone mineral densities and plasma alkaline phosphatase (ALP) activity, and increased PHD expression in femoral primary bone marrow cells and the ubiquitination of Runx2. Together, this suggests that the rosiglitazone-induced suppression of osteoblast differentiation is at least partly induced via PPARγ-mediated PHD induction and subsequent promotion of the ubiquitination and degradation of Runx2.
Collapse
Affiliation(s)
- Ju-Hee Kang
- Department of Pharmacology, School of Medicine, Gachon University, Incheon, Republic of Korea
| | - Hyun Jeong Kwak
- Department of Pharmacology, School of Medicine, Gachon University, Incheon, Republic of Korea
| | - Hye-Eun Choi
- Department of Pharmacology, School of Medicine, Gachon University, Incheon, Republic of Korea
| | - Juyoung Kim
- Department of Pharmacology, School of Medicine, Gachon University, Incheon, Republic of Korea
| | - Sangmee Hong
- Department of Molecular Medicine, Gachon University, Incheon, Republic of Korea
| | - Ok-Hee Kim
- Department of Molecular Medicine, Gachon University, Incheon, Republic of Korea
| | - Byung Chul Oh
- Department of Molecular Medicine, Gachon University, Incheon, Republic of Korea
| | - Hyae Gyeong Cheon
- Department of Pharmacology, School of Medicine, Gachon University, Incheon, Republic of Korea
- Gachon Medical Research Institute, Gil Medical Center, Incheon, Republic of Korea
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW This review will outline the screening, diagnosis and management of cystic fibrosis related diabetes (CFRD). It will also discuss advances in the detection of early glucose abnormalities, their clinical significance and the emerging role for early insulin therapy. RECENT FINDINGS Before the onset of diabetes (as currently defined), patients with cystic fibrosis (CF) display glucose abnormalities, detectable either by 30-minutely sampled oral glucose tolerance testing (OGTT), or by continuous ambulatory interstitial glucose monitoring (CGM). These early glucose abnormalities are associated with the presence of glucose in airway fluid, potentially promoting the growth of airway pathogens and contributing to the progression of respiratory disease. Progressive insulin deficiency underlies these glucose abnormalities, and insulin deficiency also causes catabolism. Pilot studies of once-daily insulin therapy in the early stages of insulin deficiency show improved lung function and weight gain (important predictors of survival in CF). SUMMARY Early stages of insulin deficiency may be contributing to catabolism and deteriorating lung function in CF. It is plausible that early insulin therapy may prevent this deterioration, a view supported by pilot studies. Randomized controlled trials of early insulin therapy will now determine whether insulin therapy should be commenced earlier than current practice in CF.
Collapse
|
33
|
Cao Y, Gomes SA, Rangel EB, Paulino EC, Fonseca TL, Li J, Teixeira MB, Gouveia CH, Bianco AC, Kapiloff MS, Balkan W, Hare JM. S-nitrosoglutathione reductase-dependent PPARγ denitrosylation participates in MSC-derived adipogenesis and osteogenesis. J Clin Invest 2015; 125:1679-91. [PMID: 25798618 DOI: 10.1172/jci73780] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 02/06/2015] [Indexed: 01/04/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) are a common precursor of both adipocytes and osteoblasts. While it is appreciated that PPARγ regulates the balance between adipogenesis and osteogenesis, the roles of additional regulators of this process remain controversial. Here, we show that MSCs isolated from mice lacking S-nitrosoglutathione reductase, a denitrosylase that regulates protein S-nitrosylation, exhibited decreased adipogenesis and increased osteoblastogenesis compared with WT MSCs. Consistent with this cellular phenotype, S-nitrosoglutathione reductase-deficient mice were smaller, with reduced fat mass and increased bone formation that was accompanied by elevated bone resorption. WT and S-nitrosoglutathione reductase-deficient MSCs exhibited equivalent PPARγ expression; however, S-nitrosylation of PPARγ was elevated in S-nitrosoglutathione reductase-deficient MSCs, diminishing binding to its downstream target fatty acid-binding protein 4 (FABP4). We further identified Cys 139 of PPARγ as an S-nitrosylation site and demonstrated that S-nitrosylation of PPARγ inhibits its transcriptional activity, suggesting a feedback regulation of PPARγ transcriptional activity by NO-mediated S-nitrosylation. Together, these results reveal that S-nitrosoglutathione reductase-dependent modification of PPARγ alters the balance between adipocyte and osteoblast differentiation and provides checkpoint regulation of the lineage bifurcation of these 2 lineages. Moreover, these findings provide pathophysiological and therapeutic insights regarding MSC participation in adipogenesis and osteogenesis.
Collapse
|
34
|
Nallamshetty S, Le PT, Wang H, Issacsohn MJ, Reeder DJ, Rhee EJ, Kiefer FW, Brown JD, Rosen CJ, Plutzky J. Retinaldehyde dehydrogenase 1 deficiency inhibits PPARγ-mediated bone loss and marrow adiposity. Bone 2014; 67:281-91. [PMID: 25064526 PMCID: PMC4209126 DOI: 10.1016/j.bone.2014.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/16/2014] [Accepted: 07/02/2014] [Indexed: 10/25/2022]
Abstract
PPARγ, a ligand-activated nuclear receptor, regulates fundamental aspects of bone homeostasis and skeletal remodeling. PPARγ-activating anti-diabetic thiazolidinediones in clinical use promote marrow adiposity, bone loss, and skeletal fractures. As such, delineating novel regulatory pathways that modulate the action of PPARγ, and its obligate heterodimeric partner RXR, may have important implications for our understanding and treatment of disorders of low bone mineral density. We present data here establishing retinaldehyde dehydrogenase 1 (Aldh1a1) and its substrate retinaldehyde (Rald) as novel determinants of PPARγ-RXR actions in the skeleton. When compared to wild type (WT) controls, retinaldehyde dehydrogenase-deficient (Aldh1a1(-/-)) mice were protected against bone loss and marrow adiposity induced by either the thiazolidinedione rosiglitazone or a high fat diet, both of which potently activate the PPARγ-RXR complex. Consistent with these results, Rald, which accumulates in vivo in Aldh1a1(-/-) mice, protects against rosiglitazone-mediated inhibition of osteoblastogenesis in vitro. In addition, Rald potently inhibits in vitro adipogenesis and osteoclastogenesis in WT mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) respectively. Primary Aldh1a1(-/-) HSCs also demonstrate impaired osteoclastogenesis in vitro compared to WT controls. Collectively, these findings identify Rald and retinoid metabolism through Aldh1a1 as important novel modulators of PPARγ-RXR transactivation in the marrow niche.
Collapse
Affiliation(s)
- Shriram Nallamshetty
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Phuong T. Le
- Center for Clinical & Translational Research, Maine Medical Center Research Institute, Scarborough, Maine
| | - Hong Wang
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Maya J. Issacsohn
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - David J. Reeder
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Eun-Jung Rhee
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Florian W. Kiefer
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jonathan D. Brown
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Clifford J. Rosen
- Center for Clinical & Translational Research, Maine Medical Center Research Institute, Scarborough, Maine
- Corresponding authors. Address all correspondence and requests for reprints to: Jorge Plutzky, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 77 Ave. Louis Pasteur, NRB 742, Boston, Massachusetts 02115. Telephone: 617-525-4360 Fax: 617-525-4366
| | - Jorge Plutzky
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Corresponding authors. Address all correspondence and requests for reprints to: Jorge Plutzky, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 77 Ave. Louis Pasteur, NRB 742, Boston, Massachusetts 02115. Telephone: 617-525-4360 Fax: 617-525-4366
| |
Collapse
|
35
|
Piccinin MA, Khan ZA. Pathophysiological role of enhanced bone marrow adipogenesis in diabetic complications. Adipocyte 2014; 3:263-72. [PMID: 26317050 DOI: 10.4161/adip.32215] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/16/2014] [Accepted: 07/30/2014] [Indexed: 12/12/2022] Open
Abstract
Diabetes leads to complications in select organ systems primarily by disrupting the vasculature of the target organs. These complications include both micro- (cardiomyopathy, retinopathy, nephropathy, and neuropathy) and macro-(atherosclerosis) angiopathies. Bone marrow angiopathy is also evident in both experimental models of the disease as well as in human diabetes. In addition to vascular disruption, bone loss and increased marrow adiposity have become hallmarks of the diabetic bone phenotype. Emerging evidence now implicates enhanced marrow adipogenesis and changes to cellular makeup of the marrow in a novel mechanistic link between various secondary complications of diabetes. In this review, we explore the mechanisms of enhanced marrow adipogenesis in diabetes and the link between changes to marrow cellular composition, and disruption and depletion of reparative stem cells.
Collapse
|
36
|
The effects of thiazolidinediones on human bone marrow stromal cell differentiation in vitro and in thiazolidinedione-treated patients with type 2 diabetes. Transl Res 2013; 161:145-55. [PMID: 23022285 PMCID: PMC3546231 DOI: 10.1016/j.trsl.2012.08.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/24/2012] [Accepted: 08/28/2012] [Indexed: 02/07/2023]
Abstract
Thiazolidinedione (TZD) therapy has been associated with an increased risk of bone fractures. Studies in rodents have led to a model in which decreased bone quality in response to TZDs is due to a competition of lineage commitment between osteoblasts (OBs) and adipocytes (ADs) for a common precursor cell, resulting in decreased OB numbers. Our goal was to investigate the effects of TZD exposure on OB-AD lineage determination from primary human bone marrow stromal cells (hBMSCs) both in vitro and in vivo from nondiabetic subjects and patients with type 2 diabetics. Our experimental design included 2 phases. Phase 1 was an in vitro study of TZD effects on the differentiation of hBMSCs into OBs and ADs in nondiabetic subjects. Phase 2 was a randomized, placebo-controlled trial to determine the effects of 6-month pioglitazone treatment in vivo on hBMSC differentiation using AD/OB colony forming unit assays in patients with type 2 diabetes. In vitro, TZDs (pioglitazone and rosiglitazone) enhanced the adipogenesis of hBMSCs, whereas neither altered OB differentiation or function as measured by alkaline phosphatase activity, gene expression, and mineralization. The ability of TZDs to enhance adipogenesis occurred at a specific time/stage of the differentiation process, and pretreating with TZDs did not further enhance adipogenesis. In vivo, 6-month TZD treatment decreased OB precursors, increased AD precursors, and increased total colony number in patients with type 2 diabetes. Our results indicate that TZD exposure in vitro potently stimulates adipogenesis but does not directly alter OB differentiation/mineralization or lineage commitment from hBMSCs. However, TZD treatment in type 2 diabetic patients results in decreased osteoblastogenesis from hBMSCs compared with placebo, indicating an indirect negative effect on OBs and suggesting an alternative model by which TZDs might negatively regulate bone quality.
Collapse
|
37
|
Raza S, Srivastava SP, Srivastava DS, Srivastava AK, Haq W, Katti SB. Thiazolidin-4-one and thiazinan-4-one derivatives analogous to rosiglitazone as potential antihyperglycemic and antidyslipidemic agents. Eur J Med Chem 2013; 63:611-20. [PMID: 23567949 DOI: 10.1016/j.ejmech.2013.01.054] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 12/28/2012] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
Abstract
A number of thiazolidin-4-one and thiazinan-4-one derivatives were prepared by three component condensation in one pot reaction method. These compounds were evaluated for anti-hyperglycemic activity by in vitro and in vivo assay systems. The compounds with thiazolidin-4-one and thiazinan-4-one moieties exhibited significant anti-hyperglycemic activity. A few compounds (3a, 3b, 4a and 4b) have exhibited both anti-hyperglycemic and anti-dyslipidemic activities. Among them the thiazinan-4-one derivative 4a showed maximal (45%) improvement in oral glucose tolerance test in db/db mice at 30 mg/kg oral dose.
Collapse
Affiliation(s)
- Saman Raza
- Medicinal and Process Chemistry Division, CSIR - Central Drug Research Institute, Lucknow 226001, India
| | | | | | | | | | | |
Collapse
|
38
|
Prashantha Kumar B, Baig NR, Sudhir S, Kar K, Kiranmai M, Pankaj M, Joghee NM. Discovery of novel glitazones incorporated with phenylalanine and tyrosine: Synthesis, antidiabetic activity and structure–activity relationships. Bioorg Chem 2012; 45:12-28. [DOI: 10.1016/j.bioorg.2012.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 07/22/2012] [Accepted: 08/03/2012] [Indexed: 10/28/2022]
|
39
|
Minguell JJ, Allers C, Lasala GP. Mesenchymal stem cells and the treatment of conditions and diseases: the less glittering side of a conspicuous stem cell for basic research. Stem Cells Dev 2012; 22:193-203. [PMID: 23025629 DOI: 10.1089/scd.2012.0417] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Not too long ago, several motivated and forward-looking articles were published describing the cellular and molecular properties of mesenchymal stem cells (MSCs), specially highlighting their potential for self-renewal, commitment, differentiation, and maturation into specific mesoderm-derived lineages. A very influential publication of that period entitled "Mesenchymal stem cells: No longer second class marrow citizens" [1] raised the point of view that "…challenges to harness MSC cell therapy to treat diseases … need to wait for the full comprehension that marrow is a rich source of mesenchyme-derived cells whose potential is still far from fully appreciated." Whether or not the prophecy of Gerson was fulfilled, in the last 8 years it has become evident that infusing MSCs into patients suffering a variety of disorders represents a viable option for medical treatment. Accordingly, a vast number of articles have explored the privileged cellular and molecular features of MSCs prepared from sources other than the canonical, represented by the bone marrow. This review will provide more information neither related to the biological attractiveness of MSCs nor to the success after their clinical use. Rather, we would like to underscore several "critical and tangential" issues, not always discussed in biomedical publications, but relevant to the clinical utilization of bone-marrow-derived MSCs.
Collapse
Affiliation(s)
- Jose J Minguell
- TCA Cellular Therapy, 101 Judge Tanner Boulevard, Covington, LA 70433, USA.
| | | | | |
Collapse
|
40
|
SUN LIJUN, WANG HAOYU, XU HAO, WEI JINHONG, SHI LIANG, LIU XIAOGANG, ZHANG JIANBAO. EFFECTS OF FLUID SHEAR STRESS AND CIGLITAZONE ON OSTEOBLASTS. J MECH MED BIOL 2012. [DOI: 10.1142/s0219519412005022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Long-term use of thiazolidinedione (TZD) antidiabetic agents in patients with type 2 diabetes mellitus has been shown to increase the incidence of osteoporosis. Mechanical loading can enhance bone mass by promoting bone formation and suppressing bone resorption, which may be beneficial to patients with TZD-induced osteoporosis. In this study, we examined the cooperative effect of fluid shear stress (FSS) and ciglitazone (CIG), a type of TZD, on osteoblasts. The proliferation, osteoblast differentiation-related mRNA expression and translocation of nuclear factor κB (NFκB) of osteoblasts were assessed. The results show that CIG significantly decreased the proliferation of osteoblasts, inhibited the translocation of NFκB to the nucleus and reduced the mRNA expression of COX-2, IGF, Runx2 and OCN. At the same time, CIG also increased the mRNA expression of PPARγ. Conversely, FSS significantly increased the proliferation of osteoblasts, promoted the translocation of NFκB to the nucleus and increased the mRNA expression of COX-2, IGF, Runx2 and OCN but decreased the mRNA expression of PPARγ. When FSS and CIG were combined, FSS counteracted the effects of CIG on osteoblasts. Taken together, the current results suggest that FSS is able to arrest the effects of CIG on the proliferation and differentiation of osteoblasts.
Collapse
Affiliation(s)
- LIJUN SUN
- The Key Laboratory of Biomedical Information, Engineering of Ministry of Education, School of Life Science and Technology Xi'an Jiaotong University, Xi'an, 710049, China
| | - HAOYU WANG
- The Key Laboratory of Biomedical Information, Engineering of Ministry of Education, School of Life Science and Technology Xi'an Jiaotong University, Xi'an, 710049, China
| | - HAO XU
- The Key Laboratory of Biomedical Information, Engineering of Ministry of Education, School of Life Science and Technology Xi'an Jiaotong University, Xi'an, 710049, China
| | - JINHONG WEI
- The Key Laboratory of Biomedical Information, Engineering of Ministry of Education, School of Life Science and Technology Xi'an Jiaotong University, Xi'an, 710049, China
| | - LIANG SHI
- The Key Laboratory of Biomedical Information, Engineering of Ministry of Education, School of Life Science and Technology Xi'an Jiaotong University, Xi'an, 710049, China
| | - XIAOGANG LIU
- The Key Laboratory of Biomedical Information, Engineering of Ministry of Education, School of Life Science and Technology Xi'an Jiaotong University, Xi'an, 710049, China
| | - JIANBAO ZHANG
- The Key Laboratory of Biomedical Information, Engineering of Ministry of Education, School of Life Science and Technology Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
41
|
Oxidative stress and heme oxygenase-1 regulated human mesenchymal stem cells differentiation. Int J Hypertens 2012; 2012:890671. [PMID: 22518296 PMCID: PMC3296285 DOI: 10.1155/2012/890671] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 11/09/2011] [Accepted: 11/14/2011] [Indexed: 12/21/2022] Open
Abstract
This paper describes the effect of increased expression of HO-1 protein and increased levels of HO activity on differentiation of bone-marrow-derived human MSCs. MSCs are multipotent cells that proliferate and differentiate into many different cell types including adipocytes and osteoblasts. HO, the rate-limiting enzyme in heme catabolism, plays an important role during MSCs differentiation. HO catalyzes the stereospecific degradation of heme to biliverdin, with the concurrent release of iron and carbon monoxide. Upregulation of HO-1 expression and increased HO activity are essential for MSC growth and differentiation to the osteoblast lineage consistent with the role of HO-1 in hematopoietic stem cell differentiation. HO-1 participates in the MSC differentiation process shifting the balance of MSC differentiation in favor of the osteoblast lineage by decreasing PPARγ and increasing osteogenic markers such as alkaline phosphatase and BMP-2. In this paper, we define HO-1 as a target molecule in the modulation of adipogenesis and osteogenesis from MSCs and examine the role of the HO system in diabetes, inflammation, osteoporosis, hypertension, and other pathologies, a burgeoning area of research.
Collapse
|
42
|
Avogaro A, Federici M, Betteridge J, Bonadonna R, Campbell IW, Schernthaner GH, Staels B, Farinaro E, Crepaldi G. Which is the eligible patient to be treated with pioglitazone? The expert view. J Endocrinol Invest 2011; 34:781-7. [PMID: 22234178 DOI: 10.1007/bf03346725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Pioglitazone has an important role in the treatment of patients with Type 2 diabetes. The drug can help patients to achieve sustained glycemic control and may delay the requirement for insulin. Pioglitazone may provide benefits beyond its effects on glycemia, with data suggesting it may confer anti-atherosclerotic and cardioprotective properties. Attention should be given to possible side effects relating to class effects of TZD, and selection of appropriate patients to be prescribed pioglitazone will enable optimum benefits to be derived from pioglitazone treatment.
Collapse
Affiliation(s)
- A Avogaro
- Department of Clinical and Experimental Medicine, University of Padua, Via Giustiniani 2, 35128 Padua, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
DLK (dual leucine zipper-bearing kinase) is a key regulator of development, cell differentiation and apoptosis. Interestingly, recent studies have shown that DLK expression is up-regulated in 3T3-L1 cells induced to differentiate into adipocytes and that DLK knockdown impairs the expression of PPARγ (peroxisome-proliferator-activated receptor γ), a master regulator of adipogenesis. Because the PPARγ agonist rosiglitazone was found to increase DLK expression in 3T3-L1 cells, we hypothesized that PPARγ is required for the transcriptional activation of the DLK gene. To test this hypothesis, we first examined the effects of pharmacological inhibition or shRNA (small-hairpin RNA)-mediated depletion of PPARγ on DLK accumulation in 3T3-L1 cells undergoing differentiation. In addition to blocking adipocyte conversion of 3T3-L1 cells, inhibition of PPARγ suppressed DLK expression at both the mRNA and protein levels. Moreover, supporting a role for PPARγ in DLK regulation, two potential PPARγ-binding sites identified by bioinformatic tools at positions -611 and -767 upstream of the DLK gene transcriptional start site were shown by electrophoretic mobility-shift assay and chromatin immunoprecipitation to bind PPARγ and its essential heterodimer partner retinoid X receptor as differentiation proceeds. Collectively, these results show that DLK is a novel transcriptional target of PPARγ with functional PPARγ-binding sites in its promoter.
Collapse
|
44
|
Hameed S, Jaffé A, Verge CF. Cystic fibrosis related diabetes (CFRD)--the end stage of progressive insulin deficiency. Pediatr Pulmonol 2011; 46:747-60. [PMID: 21626717 DOI: 10.1002/ppul.21495] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 04/07/2011] [Accepted: 04/09/2011] [Indexed: 01/30/2023]
Abstract
In cystic fibrosis, gradual pancreatic destruction causes progressive insulin deficiency, culminating in cystic fibrosis related diabetes (CFRD). As a consequence of insulin deficiency, elevated glucose levels can be detected (well before the diagnosis of CFRD), by continuous ambulatory subcutaneous interstitial fluid glucose monitoring or 30-min sampled oral glucose tolerance test (OGTT). Current diagnostic criteria for CFRD (based on 0 and 120-min OGTT blood glucose levels) were originally designed to forecast microvascular disease in type 2 diabetes, rather than CF-specific outcomes such as declining weight or lung function. In CF, decline in either weight or lung function predicts early mortality. Both may precede the diagnosis of CFRD by several years. Insulin, a potent anabolic hormone, is recommended treatment for CFRD, but use in earlier stages of insulin deficiency is not established. Conventional dosing (with four or more insulin injections per day) is burdensome and carries substantial risk of hypoglycemia. However, recent uncontrolled trials suggest that once-daily injection of intermediate or long-acting insulin improves weight and lung function, with minimal hypoglycemia risk, in CFRD and also in early insulin deficiency. It is plausible that insulin may be of greater benefit to respiratory function when given prior to the diagnosis of CFRD, after which structural lung disease may be irreversible. It is also plausible that early insulin treatment may prolong the lifespan of the remaining insulin-secreting β-cells. Randomized controlled trials are now needed to determine whether or not current clinical practice should be altered toward the earlier commencement of insulin in CF.
Collapse
Affiliation(s)
- Shihab Hameed
- Department of Endocrinology, Sydney Children's Hospital, Randwick, NSW, Australia.
| | | | | |
Collapse
|
45
|
Yanik SC, Baker AH, Mann KK, Schlezinger JJ. Organotins are potent activators of PPARγ and adipocyte differentiation in bone marrow multipotent mesenchymal stromal cells. Toxicol Sci 2011; 122:476-88. [PMID: 21622945 DOI: 10.1093/toxsci/kfr140] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adipocyte differentiation in bone marrow is potentially deleterious to both bone integrity and lymphopoiesis. Here, we examine the hypothesis that organotins, common environmental contaminants that are dual ligands for peroxisome proliferator-activated receptor (PPAR) γ and its heterodimerization partner retinoid X receptor (RXR), are potent activators of bone marrow adipogenesis. A C57Bl/6-derived bone marrow multipotent mesenchymal stromal cell (MSC) line, BMS2, was treated with rosiglitazone, a PPARγ agonist, bexarotene, an RXR agonist, or a series of organotins. Rosiglitazone and bexarotene potently activated adipocyte differentiation; however, bexarotene had a maximal efficacy of only 20% of that induced by rosiglitazone. Organotins (tributyltin [TBT], triphenyltin, and dibutyltin) also stimulated adipocyte differentiation (EC₅₀ of 10-20 nM) but with submaximal, structure-dependent efficacy. In coexposures, both bexarotene and TBT enhanced rosiglitazone-induced adipogenesis. To investigate the contribution of PPARγ to TBT-induced adipogenesis, we examined expression of PPARγ2, as well as its transcriptional target FABP4. TBT-induced PPARγ2 and FABP4 protein expression with an efficacy intermediate between rosiglitazone and bexarotene, similar to lipid accumulation. A PPARγ antagonist and PPARγ-specific small hairpin RNA suppressed TBT-induced differentiation, although to a lesser extent than rosiglitazone-induced differentiation, suggesting that TBT may engage alternate pathways. TBT and bexarotene, but not rosiglitazone, also induced the expression of TGM2 (an RXR target) and ABCA1 (a liver X receptor target). The results show that an environmental contaminant, acting with the same potency as a therapeutic drug, induces PPARγ-dependent adipocyte differentiation in bone marrow MSCs. Activation of multiple nuclear receptor pathways by organotins may have significant implications for bone physiology.
Collapse
Affiliation(s)
- Susan C Yanik
- Department of Environmental Health, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
46
|
Henriksen K, Byrjalsen I, Qvist P, Beck-Nielsen H, Hansen G, Riis BJ, Perrild H, Svendsen OL, Gram J, Karsdal MA, Christiansen C. Efficacy and safety of the PPARγ partial agonist balaglitazone compared with pioglitazone and placebo: a phase III, randomized, parallel-group study in patients with type 2 diabetes on stable insulin therapy. Diabetes Metab Res Rev 2011; 27:392-401. [PMID: 21328517 DOI: 10.1002/dmrr.1187] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Treatment of patients with perioxisome proliferator-activated receptor-γ full agonists are associated with weight gain, heart failure, peripheral oedema, and bone loss. However, the safety of partial perioxisome proliferator-activated receptor-γ agonists has not been established in a clinical trial. The BALaglitazone glucose Lowering Efficacy Trial aimed to establish the glucose-lowering effects and safety parameters of the perioxisome proliferator-activated receptor-γ partial agonist balaglitazone in diabetic patients on stable insulin therapy. METHODS Four hundred and nine subjects from three countries with type 2 diabetes on stable insulin therapy were randomized to 26 weeks of double-blind treatment with once daily doses of 10 or 20 mg balaglitazone, 45 mg pioglitazone, or matching placebo (n ≥ 99 in each group). The primary endpoint was the efficacy of balaglitazone 10 and 20 mg versus placebo on the absolute change in haemoglobin A(1c) . Secondary endpoints included levels of fasting serum glucose, and changes in body composition and bone mineral density as measured by dual energy X-ray absorptiometry, in comparison to pioglitazone 45 mg. This study is registered with Clinicaltrials.gov identifier: NCT00515632. RESULTS In the 10- and 20-mg balaglitazone groups, and in the 45-mg pioglitazone group, significant reductions in haemoglobin A(1c) levels were observed (−0.99, −1.11, and −1.22%, respectively; p < 0.0001) versus placebo. Fasting serum glucose was similarly reduced in all treatment arms. Dual energy X-ray absorptiometry analyses showed that, while balaglitazone at 10 mg caused weight gain and fluid retention compared to placebo, the magnitude of these effects was significantly smaller than that of pioglitazone 45 mg and balaglitazone 20mg. Balaglitazone at either dose did not appear to reduce bone mineral density, while Pioglitazone showed a trend towards a reduction. CONCLUSION Patients treated with balaglitazone at 10 mg and 20 mg and pioglitazone at 45 mg showed clinically meaningful improvements in glucose levels and HbA(1c) . With the 10 mg dose, the benefits (glucose & HgA(1c) lowering) and untoward effects (fluid and fat accumulation) were less, results that encourage further studies of this drug candidate.
Collapse
|
47
|
Kaplan FS, Pignolo RJ, Shore EM. Viewing FOP through rosi-colored glasses. J Bone Miner Res 2010; 25:2295-6. [PMID: 20717980 PMCID: PMC4957688 DOI: 10.1002/jbmr.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Frederick S Kaplan
- Department of Orthopaedic Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
48
|
Malik AK, Khaldoyanidi S, Auci DL, Miller SC, Ahlem CN, Reading CL, Page T, Frincke JM. 5-Androstene-3β,7β,17β-triol (β-AET) slows thermal injury induced osteopenia in mice: relation to aging and osteoporosis. PLoS One 2010; 5:e13566. [PMID: 21042414 PMCID: PMC2958849 DOI: 10.1371/journal.pone.0013566] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 09/24/2010] [Indexed: 01/06/2023] Open
Abstract
5-androstene-3β,7β,17β-triol (β-AET), an active metabolite of dehydroepiandrosterone (DHEA), reversed glucocorticoid (GC)-induced suppression of IL-6, IL-8 and osteoprotegerin production by human osteoblast-like MG-63 cells and promoted osteoblast differentiation of human mesenchymal stem cells (MSCs). In a murine thermal injury model that includes glucocorticoid-induced osteopenia, β-AET significantly (p<0.05) preserved bone mineral content, restored whole body bone mineral content and endochondral growth, suggesting reversal of GC-mediated decreases in chondrocyte proliferation, maturation and osteogenesis in the growth plate. In men and women, levels of β-AET decline with age, consistent with a role for β-AET relevant to diseases associated with aging. β-AET, related compounds or synthetic derivatives may be part of effective therapeutic strategies to accelerate tissue regeneration and prevent or treat diseases associated with aging such as osteoporosis.
Collapse
Affiliation(s)
- Ajay K. Malik
- Harbor Biosciences, Inc., San Diego, California, United States of America
| | - Sophia Khaldoyanidi
- Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
| | - Dominick L. Auci
- Harbor Biosciences, Inc., San Diego, California, United States of America
- * E-mail:
| | - Scott C. Miller
- Radiobiology Division, University of Utah, Salt Lake City, Utah, United States of America
| | - Clarence N. Ahlem
- Harbor Biosciences, Inc., San Diego, California, United States of America
| | | | - Theodore Page
- Harbor Biosciences, Inc., San Diego, California, United States of America
| | - James M. Frincke
- Harbor Biosciences, Inc., San Diego, California, United States of America
| |
Collapse
|
49
|
Nishikawa K, Nakashima T, Takeda S, Isogai M, Hamada M, Kimura A, Kodama T, Yamaguchi A, Owen MJ, Takahashi S, Takayanagi H. Maf promotes osteoblast differentiation in mice by mediating the age-related switch in mesenchymal cell differentiation. J Clin Invest 2010; 120:3455-65. [PMID: 20877012 DOI: 10.1172/jci42528] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 07/14/2010] [Indexed: 12/13/2022] Open
Abstract
Aging leads to the disruption of the homeostatic balance of multiple biological systems. In bone marrow multipotent mesenchymal cells undergo differentiation into various anchorage-dependent cell types, including osteoblasts and adipocytes. With age as well as with treatment of antidiabetic drugs such as thiazolidinediones, mesenchymal cells favor differentiation into adipocytes, resulting in an increased number of adipocytes and a decreased number of osteoblasts, causing osteoporosis. The mechanism behind this differentiation switch is unknown. Here we show an age-related decrease in the expression of Maf in mouse mesenchymal cells, which regulated mesenchymal cell bifurcation into osteoblasts and adipocytes by cooperating with the osteogenic transcription factor Runx2 and inhibiting the expression of the adipogenic transcription factor Pparg. The crucial role of Maf in both osteogenesis and adipogenesis was underscored by in vivo observations of delayed bone formation in perinatal Maf(-/-) mice and an accelerated formation of fatty marrow associated with bone loss in aged Maf(+/-) mice. This study identifies a transcriptional mechanism for an age-related switch in cell fate determination and may provide a molecular basis for novel therapeutic strategies against age-related bone diseases.
Collapse
Affiliation(s)
- Keizo Nishikawa
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Diabetes mellitus is an established risk factor for cardiovascular disease and the leading cause of end-stage renal disease in the Western World. Thiazolidinediones (TZDs) represent a class of antidiabetic agents that exert their glucose-lowering effects by reducing insulin resistance, through stimulation of a type of nuclear receptor, called peroxisome proliferator-activated receptor-γ. Apart from improving glycemic control, TZDs were shown to exert beneficial effects on several components of the metabolic syndrome and cardiovascular risk markers. Furthermore, background and human studies have shown that TZDs reduce urinary albumin and protein excretion and interfere with most of the pathogenentic pathways involved in the development and progression of diabetic nephropathy. On the other hand, currently used TZDs have side effects, most important of which is fluid retention leading to wait gain and heart failure deterioration. With regards to cardiovascular outcomes, the anticipated benefit of TZDs was demonstrated for pioglitazone, whereas a series of previous meta-analyses linking rosiglitazone treatment with increased risk of myocardial infarction and cardiovascular death raised uncertainty around the cardiovascular safety of rosiglitazone. This article will discuss the effects of TZDs on established and emerging cardiovascular risk factors, the data on possible beneficial renal effects of these compounds, and the existing evidence from large-scale clinical trials and meta-analyses on their effects on cardiovascular outcomes, aiming to provide an overview of the cardio- and renoprotective properties of these drugs.
Collapse
Affiliation(s)
- Pantelis A Sarafidis
- Section of Nephrology and Hypertension, 1st Department of Medicine, AHEPA Hospital, Aristotle University of Thessaloniki, Greece
| | | | | |
Collapse
|