1
|
Zhu Y, Wunderlich Z, Lander AD. Epithelial cell competition is promoted by signaling from immune cells. Nat Commun 2025; 16:3710. [PMID: 40251197 PMCID: PMC12008283 DOI: 10.1038/s41467-025-59130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 04/11/2025] [Indexed: 04/20/2025] Open
Abstract
In epithelial tissues, juxtaposition of cells of different phenotypes can trigger cell competition, a process whereby one type of cell drives death and extrusion of another. During growth and homeostasis, cell competition is thought to serve a quality control function, eliminating cells that are "less fit". Tissues may also attack and eliminate newly arising tumor cells, exploiting mechanisms shared with other instances of cell competition, but that differ, reportedly, in the involvement of the immune system. Whereas immune cells have been shown to play a direct role in killing tumor cells, this has not been observed in other cases of cell competition, suggesting that tissues recognize and handle cancer cells differently. Here, we challenge this view, showing that, in the fruit fly Drosophila, innate immune cells play similar roles in cell killing during classical cell competition as in eliminating tumors. These findings suggest that immune suppression of cancer may exploit the same mechanisms as are involved in promoting phenotypic uniformity among epithelial cells.
Collapse
Affiliation(s)
- Yilun Zhu
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, 92697, USA
| | - Zeba Wunderlich
- Department of Biology, Boston University, Boston, MA, 02215, USA
- Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Arthur D Lander
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA.
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, 92697, USA.
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA.
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
2
|
Kumar D, Kanchan R, Chaturvedi NK. Targeting protein synthesis pathways in MYC-amplified medulloblastoma. Discov Oncol 2025; 16:23. [PMID: 39779613 PMCID: PMC11711608 DOI: 10.1007/s12672-025-01761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
MYC is one of the most deregulated oncogenic transcription factors in human cancers. MYC amplification/or overexpression is most common in Group 3 medulloblastoma and is positively associated with poor prognosis. MYC is known to regulate the transcription of major components of protein synthesis (translation) machinery, leading to promoted rates of protein synthesis and tumorigenesis. MTOR signaling-driven deregulated protein synthesis is widespread in various cancers, including medulloblastoma, which can promote the stabilization of MYC. Indeed, our previous studies demonstrate that the key components of protein synthesis machinery, including mTOR signaling and MYC targets, are overexpressed and activated in MYC-amplified medulloblastoma, confirming MYC-dependent addiction of enhanced protein synthesis in medulloblastoma. Further, targeting this enhanced protein synthesis pathway with combined inhibition of MYC transcription and mTOR translation by small-molecule inhibitors, demonstrates preclinical synergistic anti-tumor potential against MYC-driven medulloblastoma in vitro and in vivo. Thus, inhibiting enhanced protein synthesis by targeting the MYC indirectly and mTOR pathways together may present a highly appropriate strategy for treating MYC-driven medulloblastoma and other MYC-addicted cancers. Evidence strongly proposes that MYC/mTOR-driven tumorigenic signaling can predominantly control the translational machinery to elicit cooperative effects on increased cell proliferation, cell cycle progression, and genome dysregulation as a mechanism of cancer initiation. Several small molecule inhibitors of targeting MYC indirectly and mTOR signaling have been developed and used clinically with immunosuppressants and chemotherapy in multiple cancers. Only a few of them have been investigated as treatments for medulloblastoma and other pediatric tumors. This review explores concurrent targeting of MYC and mTOR signaling against MYC-driven medulloblastoma. Based on existing evidence, targeting of MYC and mTOR pathways together produces functional synergy that could be the basis for effective therapies against medulloblastoma.
Collapse
Affiliation(s)
- Devendra Kumar
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE, 986395, USA
| | - Ranjana Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nagendra K Chaturvedi
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE, 986395, USA.
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
3
|
Lawson ME, Hoffman A, Wellik IG, Thompson JS, Stamm J, Rele CP. Gene model for the ortholog of Myc in Drosophila eugracilis. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.000912. [PMID: 39157808 PMCID: PMC11330573 DOI: 10.17912/micropub.biology.000912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024]
Abstract
Gene model for the ortholog of Myc ( Myc ) in the D. eugracilis Apr. 2013 (BCM-HGSC/Deug_2.0) (DeugGB2) Genome Assembly (GenBank Accession: GCA_000236325.2) of Drosophila eugracilis . This ortholog was characterized as part of a developing dataset to study the evolution of the Insulin/insulin-like growth factor signaling pathway (IIS) across the genus Drosophila using the Genomics Education Partnership gene annotation protocol for Course-based Undergraduate Research Experiences.
Collapse
Affiliation(s)
| | | | | | | | - Joyce Stamm
- University of Evansville, Evansville, IN USA
| | | |
Collapse
|
4
|
Hofstetter J, Ogunleye A, Kutschke A, Buchholz LM, Wolf E, Raabe T, Gallant P. Spt5 interacts genetically with Myc and is limiting for brain tumor growth in Drosophila. Life Sci Alliance 2024; 7:e202302130. [PMID: 37935464 PMCID: PMC10629571 DOI: 10.26508/lsa.202302130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/09/2023] Open
Abstract
The transcription factor SPT5 physically interacts with MYC oncoproteins and is essential for efficient transcriptional activation of MYC targets in cultured cells. Here, we use Drosophila to address the relevance of this interaction in a living organism. Spt5 displays moderate synergy with Myc in fast proliferating young imaginal disc cells. During later development, Spt5-knockdown has no detectable consequences on its own, but strongly enhances eye defects caused by Myc overexpression. Similarly, Spt5-knockdown in larval type 2 neuroblasts has only mild effects on brain development and survival of control flies, but dramatically shrinks the volumes of experimentally induced neuroblast tumors and significantly extends the lifespan of tumor-bearing animals. This beneficial effect is still observed when Spt5 is knocked down systemically and after tumor initiation, highlighting SPT5 as a potential drug target in human oncology.
Collapse
Affiliation(s)
- Julia Hofstetter
- Cancer Systems Biology Group, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Ayoola Ogunleye
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - André Kutschke
- Cancer Systems Biology Group, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Lisa Marie Buchholz
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Elmar Wolf
- Cancer Systems Biology Group, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Thomas Raabe
- Molecular Genetics, Biocenter, Am Hubland, University of Würzburg, Würzburg, Germany
| | - Peter Gallant
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Butterfield SP, Sizer RE, Rand E, White RJ. Selection of tRNA Genes in Human Breast Tumours Varies Substantially between Individuals. Cancers (Basel) 2023; 15:3576. [PMID: 37509247 PMCID: PMC10377016 DOI: 10.3390/cancers15143576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Abnormally elevated expression of tRNA is a common feature of breast tumours. Rather than a uniform increase in all tRNAs, some are deregulated more strongly than others. Elevation of particular tRNAs has been associated with poor prognosis for patients, and experimental models have demonstrated the ability of some tRNAs to promote proliferation or metastasis. Each tRNA isoacceptor is encoded redundantly by multiple genes, which are commonly dispersed across several chromosomes. An unanswered question is whether the consistently high expression of a tRNA in a cancer type reflects the consistent activation of the same members of a gene family, or whether different family members are activated from one patient to the next. To address this question, we interrogated ChIP-seq data to determine which tRNA genes were active in individual breast tumours. This revealed that distinct sets of tRNA genes become activated in individual cancers, whereas there is much less variation in the expression patterns of families. Several pathways have been described that are likely to contribute to increases in tRNA gene transcription in breast tumours, but none of these can adequately explain the observed variation in the choice of genes between tumours. Current models may therefore lack at least one level of regulation.
Collapse
Affiliation(s)
| | - Rebecca E Sizer
- Department of Biology, University of York, York YO10 5DD, UK
| | - Emma Rand
- Department of Biology, University of York, York YO10 5DD, UK
| | - Robert J White
- Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
6
|
McMullen E, Hertenstein H, Strassburger K, Deharde L, Brankatschk M, Schirmeier S. Glycolytically impaired Drosophila glial cells fuel neural metabolism via β-oxidation. Nat Commun 2023; 14:2996. [PMID: 37225684 DOI: 10.1038/s41467-023-38813-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/17/2023] [Indexed: 05/26/2023] Open
Abstract
Neuronal function is highly energy demanding and thus requires efficient and constant metabolite delivery by glia. Drosophila glia are highly glycolytic and provide lactate to fuel neuronal metabolism. Flies are able to survive for several weeks in the absence of glial glycolysis. Here, we study how Drosophila glial cells maintain sufficient nutrient supply to neurons under conditions of impaired glycolysis. We show that glycolytically impaired glia rely on mitochondrial fatty acid breakdown and ketone body production to nourish neurons, suggesting that ketone bodies serve as an alternate neuronal fuel to prevent neurodegeneration. We show that in times of long-term starvation, glial degradation of absorbed fatty acids is essential to ensure survival of the fly. Further, we show that Drosophila glial cells act as a metabolic sensor and can induce mobilization of peripheral lipid stores to preserve brain metabolic homeostasis. Our study gives evidence of the importance of glial fatty acid degradation for brain function, and survival, under adverse conditions in Drosophila.
Collapse
Affiliation(s)
- Ellen McMullen
- Department of Molecular Biology and Genetics, University of South Bohemia, České Budějovice, Czech Republic
| | - Helen Hertenstein
- Zoology and Animal Physiology, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Katrin Strassburger
- Zoology and Animal Physiology, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Leon Deharde
- Zoology and Animal Physiology, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Marko Brankatschk
- Biotechnologisches Zentrum, Technische Universität Dresden, Dresden, Germany.
| | - Stefanie Schirmeier
- Zoology and Animal Physiology, Faculty of Biology, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
7
|
Privalova V, Labecka AM, Szlachcic E, Sikorska A, Czarnoleski M. Systemic changes in cell size throughout the body of Drosophila melanogaster associated with mutations in molecular cell cycle regulators. Sci Rep 2023; 13:7565. [PMID: 37160985 PMCID: PMC10169805 DOI: 10.1038/s41598-023-34674-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/05/2023] [Indexed: 05/11/2023] Open
Abstract
Along with different life strategies, organisms have evolved dramatic cellular composition differences. Understanding the molecular basis and fitness effects of these differences is key to elucidating the fundamental characteristics of life. TOR/insulin pathways are key regulators of cell size, but whether their activity determines cell size in a systemic or tissue-specific manner awaits exploration. To that end, we measured cells in four tissues in genetically modified Drosophila melanogaster (rictorΔ2 and Mnt1) and corresponding controls. While rictorΔ2 flies lacked the Rictor protein in TOR complex 2, downregulating the functions of this element in TOR/insulin pathways, Mnt1 flies lacked the transcriptional regulator protein Mnt, weakening the suppression of downstream signalling from TOR/insulin pathways. rictorΔ2 flies had smaller epidermal (leg and wing) and ommatidial cells and Mnt1 flies had larger cells in these tissues than the controls. Females had consistently larger cells than males in the three tissue types. In contrast, dorsal longitudinal flight muscle cells (measured only in males) were not altered by mutations. We suggest that mutations in cell cycle control pathways drive the evolution of systemic changes in cell size throughout the body, but additional mechanisms shape the cellular composition of some tissues independent of these mutations.
Collapse
Affiliation(s)
- Valeriya Privalova
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Anna Maria Labecka
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Ewa Szlachcic
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Anna Sikorska
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Marcin Czarnoleski
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
8
|
Sizer RE, Chahid N, Butterfield SP, Donze D, Bryant NJ, White RJ. TFIIIC-based chromatin insulators through eukaryotic evolution. Gene X 2022; 835:146533. [PMID: 35623477 DOI: 10.1016/j.gene.2022.146533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 11/04/2022] Open
Abstract
Eukaryotic chromosomes are divided into domains with distinct structural and functional properties, such as differing levels of chromatin compaction and gene transcription. Domains of relatively compact chromatin and minimal transcription are termed heterochromatic, whereas euchromatin is more open and actively transcribed. Insulators separate these domains and maintain their distinct features. Disruption of insulators can cause diseases such as cancer. Many insulators contain tRNA genes (tDNAs), examples of which have been shown to block the spread of activating or silencing activities. This characteristic of specific tDNAs is conserved through evolution, such that human tDNAs can serve as barriers to the spread of silencing in fission yeast. Here we demonstrate that tDNAs from the methylotrophic fungus Pichia pastoris can function effectively as insulators in distantly-related budding yeast. Key to the function of tDNAs as insulators is TFIIIC, a transcription factor that is also required for their expression. TFIIIC binds additional loci besides tDNAs, some of which have insulator activity. Although the mechanistic basis of TFIIIC-based insulation has been studied extensively in yeast, it is largely uncharacterized in metazoa. Utilising publicly-available genome-wide ChIP-seq data, we consider the extent to which mechanisms conserved from yeast to man may suffice to allow efficient insulation by TFIIIC in the more challenging chromatin environments of metazoa and suggest features that may have been acquired during evolution to cope with new challenges. We demonstrate the widespread presence at human tDNAs of USF1, a transcription factor with well-established barrier activity in vertebrates. We predict that tDNA-based insulators in higher organisms have evolved through incorporation of modules, such as binding sites for factors like USF1 and CTCF that are absent from yeasts, thereby strengthening function and providing opportunities for regulation between cell types.
Collapse
Affiliation(s)
- Rebecca E Sizer
- Department of Biology, The University of York, York YO10 5DD, UK
| | - Nisreen Chahid
- Department of Biology, The University of York, York YO10 5DD, UK
| | | | - David Donze
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Nia J Bryant
- Department of Biology, The University of York, York YO10 5DD, UK
| | - Robert J White
- Department of Biology, The University of York, York YO10 5DD, UK.
| |
Collapse
|
9
|
Upregulation of ribosome biogenesis via canonical E-boxes is required for Myc-driven proliferation. Dev Cell 2022; 57:1024-1036.e5. [PMID: 35472319 DOI: 10.1016/j.devcel.2022.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 12/29/2021] [Accepted: 03/25/2022] [Indexed: 11/23/2022]
Abstract
The transcription factor Myc drives cell growth across animal phyla and is activated in most forms of human cancer. However, it is unclear which Myc target genes need to be regulated to induce growth and whether multiple targets act additively or if induction of each target is individually necessary. Here, we identified Myc target genes whose regulation is conserved between humans and flies and deleted Myc-binding sites (E-boxes) in the promoters of fourteen of these genes in Drosophila. E-box mutants of essential genes were homozygous viable, indicating that the E-boxes are not required for basal expression. Eight E-box mutations led to Myc-like phenotypes; the strongest mutant, ppanEbox-/-, also made the flies resistant to Myc-induced cell growth without affecting Myc-induced apoptosis. The ppanEbox-/- flies are healthy and display only a minor developmental delay, suggesting that it may be possible to treat or prevent tumorigenesis by targeting individual downstream targets of Myc.
Collapse
|
10
|
Lee JEA, Parsons LM, Quinn LM. MYC function and regulation in flies: how Drosophila has enlightened MYC cancer biology. AIMS GENETICS 2021. [DOI: 10.3934/genet.2014.1.81] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractProgress in our understanding of the complex signaling events driving human cancer would have been unimaginably slow without discoveries from Drosophila genetic studies. Significantly, many of the signaling pathways now synonymous with cancer biology were first identified as a result of elegant screens for genes fundamental to metazoan development. Indeed the name given to many core cancer-signaling cascades tells of their history as developmental patterning regulators in flies—e.g. Wingless (Wnt), Notch and Hippo. Moreover, astonishing insight has been gained into these complex signaling networks, and many other classic oncogenic signaling networks (e.g. EGFR/RAS/RAF/ERK, InR/PI3K/AKT/TOR), using sophisticated fly genetics. Of course if we are to understand how these signaling pathways drive cancer, we must determine the downstream program(s) of gene expression activated to promote the cell and tissue over growth fundamental to cancer. Here we discuss one commonality between each of these pathways: they are all implicated as upstream activators of the highly conserved MYC oncogene and transcription factor. MYC can drive all aspects of cell growth and cell cycle progression during animal development. MYC is estimated to be dysregulated in over 50% of all cancers, underscoring the importance of elucidating the signals activating MYC. We also discuss the FUBP1/FIR/FUSE system, which acts as a ‘cruise control’ on the MYC promoter to control RNA Polymerase II pausing and, therefore, MYC transcription in response to the developmental signaling environment. Importantly, the striking conservation between humans and flies within these major axes of MYC regulation has made Drosophila an extremely valuable model organism for cancer research. We therefore discuss how Drosophila studies have helped determine the validity of signaling pathways regulating MYC in vivo using sophisticated genetics, and continue to provide novel insight into cancer biology.
Collapse
Affiliation(s)
- Jue Er Amanda Lee
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville 3010, Melbourne, Australia
| | - Linda May Parsons
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville 3010, Melbourne, Australia
| | - Leonie M. Quinn
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville 3010, Melbourne, Australia
| |
Collapse
|
11
|
Sarkar S. Shaggy functions downstream of dMyc and their concurrent downregulation confers additive rescue against tau toxicity in Drosophila. Biofactors 2021; 47:461-477. [PMID: 33651466 DOI: 10.1002/biof.1721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/15/2021] [Indexed: 12/16/2022]
Abstract
Neurodegenerative tauopathies such as Alzheimer's and Parkinson's diseases are characterized by hyperphosphorylation of tau protein and their subsequent aggregation in the forms of paired helical filaments and/or neurofibrillary tangles in specific areas of the brain. Despite several attempts, it remains a challenge to develop reliable biomarkers or effective drugs against tauopathies. It is increasingly evident now that due to the involvement of multiple cellular cascades affected by the pathogenic tau molecules, a single genetic modifier or a molecule is unlikely to be efficient enough to provide an inclusive rescue. Hence, multitargets based combinatorial approach(s) have been suggested to provide an efficient rescue against tauopathies. We have reported earlier that targeted downregulation of dmyc (a Drosophila homolog of human cmyc proto-oncogene) restricts tau etiology by limiting tau hyperphosphorylation and heterochromatin loss. Although, dmyc generates a significant rescue; however, it is not proficient enough to provide a complete alleviation against tauopathies. Here, we report that tissue-specific concurrent downregulation of dmyc and gsk3β conveys a near-complete rescue against tau toxicity in Drosophila. We noted that combinatorial downregulation of dmyc and gsk3β reduces tau hyperphosphorylation, restricts the formation of neurofibrillary tangles, and restores heterochromatin loss to the physiological level. Our subsequent investigations revealed that dmyc regulates gsk3β via protein phosphatase 2A (dPP2A) in a dose-dependent manner to regulate tau pathogenesis. We propose that dmyc and gsk3β candidates can be utilized in a synergistic manner for the development of an efficient combinatorial therapeutic approach against the devastating human tauopathies.
Collapse
Affiliation(s)
- Surajit Sarkar
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
12
|
Ansari MZ, Alom SE, Swaminathan R. Ordered structure induced in human c-Myc PEST region upon forming a disulphide bonded dimer. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01889-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Texada MJ, Koyama T, Rewitz K. Regulation of Body Size and Growth Control. Genetics 2020; 216:269-313. [PMID: 33023929 PMCID: PMC7536854 DOI: 10.1534/genetics.120.303095] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
The control of body and organ growth is essential for the development of adults with proper size and proportions, which is important for survival and reproduction. In animals, adult body size is determined by the rate and duration of juvenile growth, which are influenced by the environment. In nutrient-scarce environments in which more time is needed for growth, the juvenile growth period can be extended by delaying maturation, whereas juvenile development is rapidly completed in nutrient-rich conditions. This flexibility requires the integration of environmental cues with developmental signals that govern internal checkpoints to ensure that maturation does not begin until sufficient tissue growth has occurred to reach a proper adult size. The Target of Rapamycin (TOR) pathway is the primary cell-autonomous nutrient sensor, while circulating hormones such as steroids and insulin-like growth factors are the main systemic regulators of growth and maturation in animals. We discuss recent findings in Drosophila melanogaster showing that cell-autonomous environment and growth-sensing mechanisms, involving TOR and other growth-regulatory pathways, that converge on insulin and steroid relay centers are responsible for adjusting systemic growth, and development, in response to external and internal conditions. In addition to this, proper organ growth is also monitored and coordinated with whole-body growth and the timing of maturation through modulation of steroid signaling. This coordination involves interorgan communication mediated by Drosophila insulin-like peptide 8 in response to tissue growth status. Together, these multiple nutritional and developmental cues feed into neuroendocrine hubs controlling insulin and steroid signaling, serving as checkpoints at which developmental progression toward maturation can be delayed. This review focuses on these mechanisms by which external and internal conditions can modulate developmental growth and ensure proper adult body size, and highlights the conserved architecture of this system, which has made Drosophila a prime model for understanding the coordination of growth and maturation in animals.
Collapse
Affiliation(s)
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, 2100, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100, Denmark
| |
Collapse
|
14
|
Zhou F, Green SR, Tsay M, Hsu S, Dibbs R, Beckingham KM. The roles of jim lovell and uninflatable in different endopolyploid larval tissues of Drosophila melanogaster. PLoS One 2020; 15:e0237662. [PMID: 32822370 PMCID: PMC7444548 DOI: 10.1371/journal.pone.0237662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/30/2020] [Indexed: 11/24/2022] Open
Abstract
The larvae of Drosophila melanogaster grow rapidly through use of a highly truncated cell cycle in which mitosis is entirely eliminated. The Drosophila homolog of the protooncogene transcription factor Myc plays a major role in promoting this endopolyploid (EP) growth. We have previously determined that the gene jim lovell (lov), which encodes a member of the BTB/POZ (Bric-a-brac, Tramtrack, Broad/Pox virus zinc finger) domain family of transcription factors, is also required for EP growth in one larval tissue, the trachea. Here we show that lov promotes EP growth in three further tissues indicating a fundamental role in this process. However, epistasis experiments revealed heterogeneity in lov's action in these tissues. Whereas in the tracheae and salivary glands lov acts downstream of Myc, in the fat body, reduced expression of lov does not impede the action of Myc, indicating an upstream action for the gene. We show here that lov's regulation of the gene uninflatable (uif) in the tracheae is a component of this difference. uif is required for tracheal EP growth downstream of Myc and lov but has no equivalent role in the fat body. Although Uif is a transmembrane component of the plasma membrane in the tracheae, its action downstream of Myc suggests an intracellular role for the protein in the tracheae. In addition to regulating uif expression in some tissues we also show that lov locates to the nucleolus, indicating it can function in both polymerase I and polymerase II transcriptional events. Our major finding is that tissue-specific mechanisms can interact with universal growth promotion by Myc to generate the individual endopolyploid organs of the larvae.
Collapse
Affiliation(s)
- Fanli Zhou
- Biosciences Dept, Rice University, Houston, Texas, United States of America
- Data Science Dept, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephanie R. Green
- Biosciences Dept, Rice University, Houston, Texas, United States of America
- McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, United States of America
| | - Michael Tsay
- Biosciences Dept, Rice University, Houston, Texas, United States of America
| | - Safina Hsu
- Biosciences Dept, Rice University, Houston, Texas, United States of America
- UTHealth School of Public Health, Houston, Texas, United States of America
| | - Rami Dibbs
- Biosciences Dept, Rice University, Houston, Texas, United States of America
- Louisiana State University School of Medicine, New Orleans, Louisiana, United States of America
| | | |
Collapse
|
15
|
Systematic Screen for Drosophila Transcriptional Regulators Phosphorylated in Response to Insulin/mTOR Pathway. G3-GENES GENOMES GENETICS 2020; 10:2843-2849. [PMID: 32554565 PMCID: PMC7407460 DOI: 10.1534/g3.120.401383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Insulin/insulin-like growth factor signaling (IIS) is a conserved mechanism to regulate animal physiology in response to nutrition. IIS activity controls gene expression, but only a subset of transcriptional regulators (TRs) targeted by the IIS pathway is currently known. Here we report the results of an unbiased screen for Drosophila TRs phosphorylated in an IIS-dependent manner. To conduct the screen, we built a library of 857 V5/Strep-tagged TRs under the control of Copper-inducible metallothionein promoter (pMt). The insulin-induced phosphorylation changes were detected by using Phos-tag SDS-PAGE and Western blotting. Eight proteins were found to display increased phosphorylation after acute insulin treatment. In each case, the insulin-induced phosphorylation was abrogated by mTORC1 inhibitor rapamycin. The hits included two components of the NURF complex (NURF38 and NURF55), bHLHZip transcription factor Max, as well as the Drosophila ortholog of human proliferation-associated 2G4 (dPA2G4). Subsequent experiments revealed that the expression of the dPA2G4 gene was promoted by the mTOR pathway, likely through transcription factor Myc. Furthermore, NURF38 was found to be necessary for growth in larvae, consistent with the role of IIS/mTOR pathway in growth control.
Collapse
|
16
|
Augert A, Mathsyaraja H, Ibrahim AH, Freie B, Geuenich MJ, Cheng PF, Alibeckoff SP, Wu N, Hiatt JB, Basom R, Gazdar A, Sullivan LB, Eisenman RN, MacPherson D. MAX Functions as a Tumor Suppressor and Rewires Metabolism in Small Cell Lung Cancer. Cancer Cell 2020; 38:97-114.e7. [PMID: 32470392 PMCID: PMC7363581 DOI: 10.1016/j.ccell.2020.04.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/14/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
Small cell lung cancer (SCLC) is a highly aggressive and lethal neoplasm. To identify candidate tumor suppressors we applied CRISPR/Cas9 gene inactivation screens to a cellular model of early-stage SCLC. Among the top hits was MAX, the obligate heterodimerization partner for MYC family proteins that is mutated in human SCLC. Max deletion increases growth and transformation in cells and dramatically accelerates SCLC progression in an Rb1/Trp53-deleted mouse model. In contrast, deletion of Max abrogates tumorigenesis in MYCL-overexpressing SCLC. Max deletion in SCLC resulted in derepression of metabolic genes involved in serine and one-carbon metabolism. By increasing serine biosynthesis, Max-deleted cells exhibit resistance to serine depletion. Thus, Max loss results in metabolic rewiring and context-specific tumor suppression.
Collapse
Affiliation(s)
- Arnaud Augert
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| | - Haritha Mathsyaraja
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ali H Ibrahim
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| | - Brian Freie
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Michael J Geuenich
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Quest University Canada, 3200 University Boulevard, Squamish, BC V8B 0N8, Canada
| | - Pei-Feng Cheng
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Sydney P Alibeckoff
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Nan Wu
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| | - Joseph B Hiatt
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| | - Ryan Basom
- Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| | - Adi Gazdar
- University of Texas, Southwestern, USA, 6000 Harry Hines Boulevard, Dallas, TX 75235, USA
| | - Lucas B Sullivan
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Robert N Eisenman
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - David MacPherson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
17
|
Yang J, Smith DK, Ni H, Wu K, Huang D, Pan S, Sathe AA, Tang Y, Liu ML, Xing C, Zhang CL, Zhuge Q. SOX4-mediated repression of specific tRNAs inhibits proliferation of human glioblastoma cells. Proc Natl Acad Sci U S A 2020; 117:5782-5790. [PMID: 32123087 PMCID: PMC7084149 DOI: 10.1073/pnas.1920200117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transfer RNAs (tRNAs) are products of RNA polymerase III (Pol III) and essential for mRNA translation and ultimately cell growth and proliferation. Whether and how individual tRNA genes are specifically regulated is not clear. Here, we report that SOX4, a well-known Pol II-dependent transcription factor that is critical for neurogenesis and reprogramming of somatic cells, also directly controls, unexpectedly, the expression of a subset of tRNA genes and therefore protein synthesis and proliferation of human glioblastoma cells. Genome-wide location analysis through chromatin immunoprecipitation-sequencing uncovers specific targeting of SOX4 to a subset of tRNA genes, including those for tRNAiMet Mechanistically, sequence-specific SOX4-binding impedes the recruitment of TATA box binding protein and Pol III to tRNA genes and thereby represses their expression. CRISPR/Cas9-mediated down-regulation of tRNAiMet greatly inhibits growth and proliferation of human glioblastoma cells. Conversely, ectopic tRNAiMet partially rescues SOX4-mediated repression of cell proliferation. Together, these results uncover a regulatory mode of individual tRNA genes to control cell behavior. Such regulation may coordinate codon usage and translation efficiency to meet the demands of diverse tissues and cell types, including cancer cells.
Collapse
Affiliation(s)
- Jianjing Yang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Derek K Smith
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Haoqi Ni
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ke Wu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
| | - Dongdong Huang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
| | - Sishi Pan
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Adwait A Sathe
- McDermott Center of Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Yu Tang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Meng-Lu Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Chao Xing
- McDermott Center of Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390;
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Qichuan Zhuge
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000;
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325000
| |
Collapse
|
18
|
Abstract
MYC is a master transcriptional regulator that controls almost all cellular processes. Over the last several decades, researchers have strived to define the context-dependent transcriptional gene programs that are controlled by MYC, as well as the mechanisms that regulate MYC function, in an effort to better understand the contribution of this oncoprotein to cancer progression. There are a wealth of data indicating that deregulation of MYC activity occurs in a large number of cancers and significantly contributes to disease progression, metastatic potential, and therapeutic resistance. Although the therapeutic targeting of MYC in cancer is highly desirable, there remain substantial structural and functional challenges that have impeded direct MYC-targeted drug development and efficacy. While efforts to drug the ‘undruggable’ may seem futile given these challenges and considering the broad reach of MYC, significant strides have been made to identify points of regulation that can be exploited for therapeutic purposes. These include targeting the deregulation of MYC transcription in cancer through small-molecule inhibitors that induce epigenetic silencing or that regulate the G-quadruplex structures within the MYC promoter. Alternatively, compounds that disrupt the DNA-binding activities of MYC have been the long-standing focus of many research groups, since this method would prevent downstream MYC oncogenic activities regardless of upstream alterations. Finally, proteins involved in the post-translational regulation of MYC have been identified as important surrogate targets to reduce MYC activity downstream of aberrant cell stimulatory signals. Given the complex regulation of the MYC signaling pathway, a combination of these approaches may provide the most durable response, but this has yet to be shown. Here, we provide a comprehensive overview of the different therapeutic strategies being employed to target oncogenic MYC function, with a focus on post-translational mechanisms.
Collapse
|
19
|
Mathsyaraja H, Freie B, Cheng PF, Babaeva E, Catchpole JT, Janssens D, Henikoff S, Eisenman RN. Max deletion destabilizes MYC protein and abrogates Eµ- Myc lymphomagenesis. Genes Dev 2019; 33:1252-1264. [PMID: 31395740 PMCID: PMC6719623 DOI: 10.1101/gad.325878.119] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022]
Abstract
Although MAX is regarded as an obligate dimerization partner for MYC, its function in normal development and neoplasia is poorly defined. We show that B-cell-specific deletion of Max has a modest effect on B-cell development but completely abrogates Eµ-Myc-driven lymphomagenesis. While Max loss affects only a few hundred genes in normal B cells, it leads to the global down-regulation of Myc-activated genes in premalignant Eµ-Myc cells. We show that the balance between MYC-MAX and MNT-MAX interactions in B cells shifts in premalignant B cells toward a MYC-driven transcriptional program. Moreover, we found that MAX loss leads to a significant reduction in MYC protein levels and down-regulation of direct transcriptional targets, including regulators of MYC stability. This phenomenon is also observed in multiple cell lines treated with MYC-MAX dimerization inhibitors. Our work uncovers a layer of Myc autoregulation critical for lymphomagenesis yet partly dispensable for normal development.
Collapse
Affiliation(s)
- Haritha Mathsyaraja
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Brian Freie
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Pei-Feng Cheng
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Ekaterina Babaeva
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Jonathen T Catchpole
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Derek Janssens
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Robert N Eisenman
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
20
|
Pérez-Olivares M, Trento A, Rodriguez-Acebes S, González-Acosta D, Fernández-Antorán D, Román-García S, Martinez D, López-Briones T, Torroja C, Carrasco YR, Méndez J, Moreno de Alborán I. Functional interplay between c-Myc and Max in B lymphocyte differentiation. EMBO Rep 2018; 19:embr.201845770. [PMID: 30126925 DOI: 10.15252/embr.201845770] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022] Open
Abstract
The Myc family of oncogenic transcription factors regulates myriad cellular functions. Myc proteins contain a basic region/helix-loop-helix/leucine zipper domain that mediates DNA binding and heterodimerization with its partner Max. Among the Myc proteins, c-Myc is the most widely expressed and relevant in primary B lymphocytes. There is evidence suggesting that c-Myc can perform some of its functions in the absence of Max in different cellular contexts. However, the functional in vivo interplay between c-Myc and Max during B lymphocyte differentiation is not well understood. Using in vivo and ex vivo models, we show that while c-Myc requires Max in primary B lymphocytes, several key biological processes, such as cell differentiation and DNA replication, can initially progress without the formation of c-Myc/Max heterodimers. We also describe that B lymphocytes lacking Myc, Max, or both show upregulation of signaling pathways associated with the B-cell receptor. These data suggest that c-Myc/Max heterodimers are not essential for the initiation of a subset of important biological processes in B lymphocytes, but are required for fine-tuning the initial response after activation.
Collapse
Affiliation(s)
- Mercedes Pérez-Olivares
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Alfonsina Trento
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | | | | | - David Fernández-Antorán
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Sara Román-García
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Dolores Martinez
- Centro Nacional de Investigaciones Oncológicas-CNIO, Madrid, Spain
| | | | - Carlos Torroja
- Centro Nacional de Investigaciones Cardiovasculares-CNIC Carlos III, Madrid, Spain
| | - Yolanda R Carrasco
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Juan Méndez
- Centro Nacional de Investigaciones Oncológicas-CNIO, Madrid, Spain
| | | |
Collapse
|
21
|
The MYC transcription factor network: balancing metabolism, proliferation and oncogenesis. Front Med 2018; 12:412-425. [PMID: 30054853 PMCID: PMC7358075 DOI: 10.1007/s11684-018-0650-z] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/21/2018] [Indexed: 12/28/2022]
Abstract
Transcription factor networks have evolved in order to control, coordinate, and separate, the functions of distinct network modules spatially and temporally. In this review we focus on the MYC network (also known as the MAX-MLX Network), a highly conserved super-family of related basic-helix-loop-helix-zipper (bHLHZ) proteins that functions to integrate extracellular and intracellular signals and modulate global gene expression. Importantly the MYC network has been shown to be deeply involved in a broad spectrum of human and other animal cancers. Here we summarize molecular and biological properties of the network modules with emphasis on functional interactions among network members. We suggest that these network interactions serve to modulate growth and metabolism at the transcriptional level in order to balance nutrient demand with supply, to maintain growth homeostasis, and to influence cell fate. Moreover, oncogenic activation of MYC and/or loss of a MYC antagonist, results in an imbalance in the activity of the network as a whole, leading to tumor initiation, progression and maintenance.
Collapse
|
22
|
Sriskanthadevan-Pirahas S, Deshpande R, Lee B, Grewal SS. Ras/ERK-signalling promotes tRNA synthesis and growth via the RNA polymerase III repressor Maf1 in Drosophila. PLoS Genet 2018; 14:e1007202. [PMID: 29401457 PMCID: PMC5814106 DOI: 10.1371/journal.pgen.1007202] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 02/15/2018] [Accepted: 01/16/2018] [Indexed: 12/28/2022] Open
Abstract
The small G-protein Ras is a conserved regulator of cell and tissue growth. These effects of Ras are mediated largely through activation of a canonical RAF-MEK-ERK kinase cascade. An important challenge is to identify how this Ras/ERK pathway alters cellular metabolism to drive growth. Here we report on stimulation of RNA polymerase III (Pol III)-mediated tRNA synthesis as a growth effector of Ras/ERK signalling in Drosophila. We find that activation of Ras/ERK signalling promotes tRNA synthesis both in vivo and in cultured Drosophila S2 cells. We also show that Pol III function is required for Ras/ERK signalling to drive proliferation in both epithelial and stem cells in Drosophila tissues. We find that the transcription factor Myc is required but not sufficient for Ras-mediated stimulation of tRNA synthesis. Instead we show that Ras signalling promotes Pol III function and tRNA synthesis by phosphorylating, and inhibiting the nuclear localization and function of the Pol III repressor Maf1. We propose that inhibition of Maf1 and stimulation of tRNA synthesis is one way by which Ras signalling enhances protein synthesis to promote cell and tissue growth.
Collapse
Affiliation(s)
- Shrivani Sriskanthadevan-Pirahas
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Calgary, Alberta, Canada
| | - Rujuta Deshpande
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Calgary, Alberta, Canada
| | - Byoungchun Lee
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Calgary, Alberta, Canada
| | - Savraj S. Grewal
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
23
|
The MXL-3/SBP-1 Axis Is Responsible for Glucose-Dependent Fat Accumulation in C. elegans. Genes (Basel) 2017; 8:genes8110307. [PMID: 29113111 PMCID: PMC5704220 DOI: 10.3390/genes8110307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 12/26/2022] Open
Abstract
Chronic exposure to elevated glucose levels leads to fatty acid accumulation, which promotes the development of metabolic diseases such as obesity and type 2 diabetes. MXL-3 is a conserved transcriptional factor that modulates the inhibition of lipolysis in Caenorhabditis elegans. However, the role of MXL-3 in lipid metabolism during nutrient excess remains unknown. We hypothesized that inhibition of MXL-3 prevents glucose-dependent fat accumulation. Nematodes from wild-type N2, MXL-3::GFP and sbp-1 or mxl-3 null strains were grown on standard, high glucose or high glucose plus metformin plates for 24 h. Using laser-scanning confocal microscopy, we monitored the glucose-induced activation of MXL-3 labeled with GFP (MXL-3::GFP). Lipid levels were determined by Oil Red O (ORO) staining and gas chromatography/mass spectrometry, and gene expression was assessed by qRT-PCR. We found that high glucose activated MXL-3 by increasing its rate of nuclear entry, which in turn increased lipid levels via sterol regulatory element-binding protein (SBP-1). This activated critical genes that synthesize long chain unsaturated fatty acids (MUFAs and PUFAs) and repress lipolytic genes. Interestingly, the anti-diabetic drug metformin inhibited MXL-3 activation and subsequently prevented glucose-dependent fat accumulation. These findings highlight the importance of the MXL-3/SBP-1 axis in the regulation of lipid metabolism during nutritional excess and provide new insight into the mechanism by which metformin prevents lipid accumulation. This study also suggests that inhibition of MXL-3 may serve as a potential target for the treatment of chronic metabolic diseases, including obesity, type 2 diabetes, and cardiovascular disease.
Collapse
|
24
|
PAF1 complex component Leo1 helps recruit Drosophila Myc to promoters. Proc Natl Acad Sci U S A 2017; 114:E9224-E9232. [PMID: 29078288 DOI: 10.1073/pnas.1705816114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Myc oncogene is a transcription factor with a powerful grip on cellular growth and proliferation. The physical interaction of Myc with the E-box DNA motif has been extensively characterized, but it is less clear whether this sequence-specific interaction is sufficient for Myc's binding to its transcriptional targets. Here we identify the PAF1 complex, and specifically its component Leo1, as a factor that helps recruit Myc to target genes. Since the PAF1 complex is typically associated with active genes, this interaction with Leo1 contributes to Myc targeting to open promoters.
Collapse
|
25
|
Deliu LP, Ghosh A, Grewal SS. Investigation of protein synthesis in Drosophila larvae using puromycin labelling. Biol Open 2017. [PMID: 28642244 PMCID: PMC5576084 DOI: 10.1242/bio.026294] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Translational control of gene expression is an important regulator of growth, homeostasis and aging in Drosophila. The ability to measure changes in protein synthesis in response to genetic and environmental cues is therefore important in studying these processes. Here we describe a simple and cost-effective approach to assay protein synthesis in Drosophila larval cells and tissues. The method is based on the incorporation of puromycin into nascent peptide chains. Using an ex vivo approach, we label newly synthesized peptides in larvae with puromycin and then measure levels of new protein synthesis using an anti-puromycin antibody. We show that this method can detect changes in protein synthesis in specific cells and tissues in the larvae, either by immunostaining or western blotting. We find that the assay reliably detects changes in protein synthesis induced by two known stimulators of mRNA translation – the nutrient/TORC1 kinase pathway and the transcription factor dMyc. We also use the assay to describe how protein synthesis changes through larval development and in response to two environmental stressors – hypoxia and heat shock. We propose that this puromycin-labelling assay is a simple but robust method to detect protein synthesis changes at the levels of cells, tissues or whole body in Drosophila. Summary: This paper describes a simple approach, using puromycin-labelling of nascent peptides, to assay protein synthesis in response to growth and stress signals in Drosophila larvae.
Collapse
Affiliation(s)
- Lisa P Deliu
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Abhishek Ghosh
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Savraj S Grewal
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
26
|
Yesudhas D, Batool M, Anwar MA, Panneerselvam S, Choi S. Proteins Recognizing DNA: Structural Uniqueness and Versatility of DNA-Binding Domains in Stem Cell Transcription Factors. Genes (Basel) 2017; 8:genes8080192. [PMID: 28763006 PMCID: PMC5575656 DOI: 10.3390/genes8080192] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/22/2017] [Accepted: 07/25/2017] [Indexed: 12/17/2022] Open
Abstract
Proteins in the form of transcription factors (TFs) bind to specific DNA sites that regulate cell growth, differentiation, and cell development. The interactions between proteins and DNA are important toward maintaining and expressing genetic information. Without knowing TFs structures and DNA-binding properties, it is difficult to completely understand the mechanisms by which genetic information is transferred between DNA and proteins. The increasing availability of structural data on protein-DNA complexes and recognition mechanisms provides deeper insights into the nature of protein-DNA interactions and therefore, allows their manipulation. TFs utilize different mechanisms to recognize their cognate DNA (direct and indirect readouts). In this review, we focus on these recognition mechanisms as well as on the analysis of the DNA-binding domains of stem cell TFs, discussing the relative role of various amino acids toward facilitating such interactions. Unveiling such mechanisms will improve our understanding of the molecular pathways through which TFs are involved in repressing and activating gene expression.
Collapse
Affiliation(s)
- Dhanusha Yesudhas
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| | - Maria Batool
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| | - Muhammad Ayaz Anwar
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| | - Suresh Panneerselvam
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| |
Collapse
|
27
|
Kumari A, Folk WP, Sakamuro D. The Dual Roles of MYC in Genomic Instability and Cancer Chemoresistance. Genes (Basel) 2017; 8:genes8060158. [PMID: 28590415 PMCID: PMC5485522 DOI: 10.3390/genes8060158] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 12/18/2022] Open
Abstract
Cancer is associated with genomic instability and aging. Genomic instability stimulates tumorigenesis, whereas deregulation of oncogenes accelerates DNA replication and increases genomic instability. It is therefore reasonable to assume a positive feedback loop between genomic instability and oncogenic stress. Consistent with this premise, overexpression of the MYC transcription factor increases the phosphorylation of serine 139 in histone H2AX (member X of the core histone H2A family), which forms so-called γH2AX, the most widely recognized surrogate biomarker of double-stranded DNA breaks (DSBs). Paradoxically, oncogenic MYC can also promote the resistance of cancer cells to chemotherapeutic DNA-damaging agents such as cisplatin, clearly implying an antagonistic role of MYC in genomic instability. In this review, we summarize the underlying mechanisms of the conflicting functions of MYC in genomic instability and discuss when and how the oncoprotein exerts the contradictory roles in induction of DSBs and protection of cancer-cell genomes.
Collapse
Affiliation(s)
- Alpana Kumari
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Tumor Signaling and Angiogenesis Program, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA.
| | - Watson P Folk
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Tumor Signaling and Angiogenesis Program, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA.
- Biochemistry and Cancer Biology Program, The Graduate School, Augusta University, Augusta, GA 30912, USA.
| | - Daitoku Sakamuro
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Tumor Signaling and Angiogenesis Program, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA.
- Biochemistry and Cancer Biology Program, The Graduate School, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
28
|
c-MYC-Making Liver Sick: Role of c-MYC in Hepatic Cell Function, Homeostasis and Disease. Genes (Basel) 2017; 8:genes8040123. [PMID: 28422055 PMCID: PMC5406870 DOI: 10.3390/genes8040123] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/30/2017] [Accepted: 04/12/2017] [Indexed: 12/20/2022] Open
Abstract
Over 35 years ago, c-MYC, a highly pleiotropic transcription factor that regulates hepatic cell function, was identified. In recent years, a considerable increment in the number of publications has significantly shifted the way that the c-MYC function is perceived. Overexpression of c-MYC alters a wide range of roles including cell proliferation, growth, metabolism, DNA replication, cell cycle progression, cell adhesion and differentiation. The purpose of this review is to broaden the understanding of the general functions of c-MYC, to focus on c-MYC-driven pathogenesis in the liver, explain its mode of action under basal conditions and during disease, and discuss efforts to target c-MYC as a plausible therapy for liver disease.
Collapse
|
29
|
Di Giacomo S, Sollazzo M, Paglia S, Grifoni D. MYC, Cell Competition, and Cell Death in Cancer: The Inseparable Triad. Genes (Basel) 2017; 8:genes8040120. [PMID: 28420161 PMCID: PMC5406867 DOI: 10.3390/genes8040120] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/09/2017] [Accepted: 04/12/2017] [Indexed: 01/07/2023] Open
Abstract
Deregulation of MYC family proteins in cancer is associated with a global reprogramming of gene expression, ultimately promoting glycolytic pathways, cell growth, and proliferation. It is well known that MYC upregulation triggers cell-autonomous apoptosis in normal tissues, while frankly malignant cells develop resistance to apoptotic stimuli, partly resulting from MYC addiction. As well as inducing cell-autonomous apoptosis, MYC upregulation is able to trigger non cell-autonomous apoptotic death through an evolutionarily conserved mechanism known as “cell competition”. With regard to this intimate and dual relationship between MYC and cell death, recent evidence obtained in Drosophila models of cancer has revealed that, in early tumourigenesis, MYC upregulation guides the clonal expansion of mutant cells, while the surrounding tissue undergoes non-cell autonomous death. Apoptosis inhibition in this context was shown to restrain tumour growth and to restore a wild-type phenotype. This suggests that cell-autonomous and non cell-autonomous apoptosis dependent on MYC upregulation may shape tumour growth in different ways, soliciting the need to reconsider the role of cell death in cancer in the light of this new level of complexity. Here we review recent literature about MYC and cell competition obtained in Drosophila, with a particular emphasis on the relevance of cell death to cell competition and, more generally, to cancer. Possible implications of these findings for the understanding of mammalian cancers are also discussed.
Collapse
Affiliation(s)
- Simone Di Giacomo
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| | - Manuela Sollazzo
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| | - Simona Paglia
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| | - Daniela Grifoni
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| |
Collapse
|
30
|
The Cellular Protein Complex Associated with a Transforming Region of E1A Contains c-MYC. J Virol 2015; 90:1070-9. [PMID: 26559831 DOI: 10.1128/jvi.02039-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/02/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The cell-transforming activity of human adenovirus 5 (hAd5) E1A is mediated by the N-terminal half of E1A, which interacts with three different major cellular protein complexes, p300/CBP, TRRAP/p400, and pRb family members. Among these protein interactions, the interaction of pRb family proteins with conserved region 2 (CR2) of E1A is known to promote cell proliferation by deregulating the activities of E2F family transcription factors. The functional consequences of interaction with the other two protein complexes in regulating the transforming activity of E1A are not well defined. Here, we report that the E1A N-terminal region also interacted with the cellular proto-oncoprotein c-MYC and the homolog of enhancer of yellow 2 (ENY2). Our results suggested that these proteins interacted with an essential E1A transforming domain spanning amino acid residues 26 to 35 which also interacted with TRRAP and p400. Small interfering RNA (siRNA)-mediated depletion of TRRAP reduced c-MYC interaction with E1A, while p400 depletion did not. In contrast, depletion of TRRAP enhanced ENY2 interaction with E1A, suggesting that ENY2 and TRRAP may interact with E1A in a competitive manner. The same E1A region additionally interacted with the constituents of a deubiquitinase complex consisting of USP22, ATXN7, and ATXN7L3 via TRRAP. Acute short hairpin RNA (shRNA)-mediated depletion of c-MYC reduced the E1A transforming activity, while depletion of ENY2 and MAX did not. These results suggested that the association of c-MYC with E1A may, at least partially, play a role in the E1A transformation activity, independently of MAX. IMPORTANCE The transforming region of adenovirus E1A consists of three short modules which complex with different cellular protein complexes. The mechanism by which one of the transforming modules, CR2, promotes cell proliferation, through inactivating the activities of the pRb family proteins, is better understood than the activities of the other domains. Our analysis of the E1A proteome revealed the presence of the proto-oncoprotein c-MYC and of ENY2. We mapped these interactions to a critical transforming module of E1A that was previously known to interact with the scaffolding molecule TRRAP and the E1A-binding protein p400. We showed that c-MYC interacted with E1A through TRRAP, while ENY2 interacted with it independently. The data reported here indicated that depletion of c-MYC in normal human cells reduced the transforming activity of E1A. Our result raises a novel paradigm in oncogenic transformation by a DNA viral oncogene, the E1A gene, that may exploit the activity of a cellular oncogene, the c-MYC gene, in addition to inactivation of the tumor suppressors, such as pRb.
Collapse
|
31
|
Diolaiti D, McFerrin L, Carroll PA, Eisenman RN. Functional interactions among members of the MAX and MLX transcriptional network during oncogenesis. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1849:484-500. [PMID: 24857747 PMCID: PMC4241192 DOI: 10.1016/j.bbagrm.2014.05.016] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/23/2014] [Accepted: 05/14/2014] [Indexed: 01/27/2023]
Abstract
The transcription factor MYC and its related family members MYCN and MYCL have been implicated in the etiology of a wide spectrum of human cancers. Compared to other oncoproteins, such as RAS or SRC, MYC is unique because its protein coding region is rarely mutated. Instead, MYC's oncogenic properties are unleashed by regulatory mutations leading to unconstrained high levels of expression. Under both normal and pathological conditions MYC regulates multiple aspects of cellular physiology including proliferation, differentiation, apoptosis, growth and metabolism by controlling the expression of thousands of genes. How a single transcription factor exerts such broad effects remains a fascinating puzzle. Notably, MYC is part of a network of bHLHLZ proteins centered on the MYC heterodimeric partner MAX and its counterpart, the MAX-like protein MLX. This network includes MXD1-4, MNT, MGA, MONDOA and MONDOB proteins. With some exceptions, MXD proteins have been functionally linked to cell cycle arrest and differentiation, while MONDO proteins control cellular metabolism. Although the temporal expression patterns of many of these proteins can differ markedly they are frequently expressed simultaneously in the same cellular context, and potentially bind to the same, or similar DNA consensus sequence. Here we review the activities and interactions among these proteins and propose that the broad spectrum of phenotypes elicited by MYC deregulation is intimately connected to the functions and regulation of the other network members. Furthermore, we provide a meta-analysis of TCGA data suggesting that the coordinate regulation of the network is important in MYC driven tumorigenesis. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.
Collapse
Affiliation(s)
- Daniel Diolaiti
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, USA
| | - Lisa McFerrin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, USA
| | - Patrick A Carroll
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, USA
| | - Robert N Eisenman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, USA.
| |
Collapse
|
32
|
Sadeghifar F, Böhm S, Vintermist A, Östlund Farrants AK. The B-WICH chromatin-remodelling complex regulates RNA polymerase III transcription by promoting Max-dependent c-Myc binding. Nucleic Acids Res 2015; 43:4477-90. [PMID: 25883140 PMCID: PMC4482074 DOI: 10.1093/nar/gkv312] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 03/27/2015] [Indexed: 01/11/2023] Open
Abstract
The chromatin-remodelling complex B-WICH, comprised of William syndrome transcription factor, the ATPase SNF2h and nuclear myosin, specifically activates RNA polymerase III transcription of the 5S rRNA and 7SL genes. However, the underlying mechanism is unknown. Using high-resolution MN walking we demonstrate here that B-WICH changes the chromatin structure in the vicinity of the 5S rRNA and 7SL RNA genes during RNA polymerase III transcription. The action of B-WICH is required for the binding of the RNA polymerase machinery and the regulatory factors c-Myc at the 5S rRNA and 7SL RNA genes. In addition to the c-Myc binding site at the 5S genes, we have revealed a novel c-Myc and Max binding site in the intergenic spacer of the 5S rDNA. This region also contains a region remodelled by B-WICH. We demonstrate that c-Myc binds to both sites in a Max-dependent way, and thereby activate transcription by acetylating histone H3. The novel binding patterns of c-Myc and Max link transcription of 5S rRNA to the Myc/Max/Mxd network. Since B-WICH acts prior to c-Myc and other factors, we propose a model in which the B-WICH complex is required to maintain an open chromatin structure at these RNA polymerase III genes. This is a prerequisite for the binding of additional regulatory factors.
Collapse
Affiliation(s)
- Fatemeh Sadeghifar
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Stefanie Böhm
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Anna Vintermist
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | | |
Collapse
|
33
|
Herter EK, Stauch M, Gallant M, Wolf E, Raabe T, Gallant P. snoRNAs are a novel class of biologically relevant Myc targets. BMC Biol 2015; 13:25. [PMID: 25888729 PMCID: PMC4430873 DOI: 10.1186/s12915-015-0132-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/19/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Myc proteins are essential regulators of animal growth during normal development, and their deregulation is one of the main driving factors of human malignancies. They function as transcription factors that (in vertebrates) control many growth- and proliferation-associated genes, and in some contexts contribute to global gene regulation. RESULTS We combine chromatin immunoprecipitation-sequencing (ChIPseq) and RNAseq approaches in Drosophila tissue culture cells to identify a core set of less than 500 Myc target genes, whose salient function resides in the control of ribosome biogenesis. Among these genes we find the non-coding snoRNA genes as a large novel class of Myc targets. All assayed snoRNAs are affected by Myc, and many of them are subject to direct transcriptional activation by Myc, both in Drosophila and in vertebrates. The loss of snoRNAs impairs growth during normal development, whereas their overexpression increases tumor mass in a model for neuronal tumors. CONCLUSIONS This work shows that Myc acts as a master regulator of snoRNP biogenesis. In addition, in combination with recent observations of snoRNA involvement in human cancer, it raises the possibility that Myc's transforming effects are partially mediated by this class of non-coding transcripts.
Collapse
Affiliation(s)
- Eva K Herter
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany. .,Comprehensive Cancer Center Mainfranken, Würzburg, Germany.
| | - Maria Stauch
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany. .,Comprehensive Cancer Center Mainfranken, Würzburg, Germany.
| | - Maria Gallant
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany. .,Comprehensive Cancer Center Mainfranken, Würzburg, Germany.
| | - Elmar Wolf
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany. .,Comprehensive Cancer Center Mainfranken, Würzburg, Germany.
| | - Thomas Raabe
- Institute for Medical Radiation and Cell Research, Würzburg, Germany.
| | - Peter Gallant
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany. .,Comprehensive Cancer Center Mainfranken, Würzburg, Germany.
| |
Collapse
|
34
|
Bennett D, Lyulcheva E, Cobbe N. Drosophila as a Potential Model for Ocular Tumors. Ocul Oncol Pathol 2015; 1:190-9. [PMID: 27172095 DOI: 10.1159/000370155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 11/26/2014] [Indexed: 01/14/2023] Open
Abstract
Drosophila has made many contributions to our understanding of cancer genes and mechanisms that have subsequently been validated in mammals. Despite anatomical differences between fly and human eyes, flies offer a tractable genetic model in which to dissect the functional importance of genetic lesions found to be affected in human ocular tumors. Here, we discuss different approaches for using Drosophila as a model for ocular cancer and how studies on ocular cancer genes in flies have begun to reveal potential strategies for therapeutic intervention. We also discuss recent developments in the use of Drosophila for drug discovery, which is coming to the fore as Drosophila models are becoming tailored to study tumor types found in the clinic.
Collapse
Affiliation(s)
- Daimark Bennett
- Institute of Integrative Biology, University of Liverpool, Liverpool, Salford, UK
| | - Ekaterina Lyulcheva
- Institute of Integrative Biology, University of Liverpool, Liverpool, Salford, UK; North Western Deanery, Salford Royal NHS Foundation Trust, Salford, UK
| | - Neville Cobbe
- Institute of Integrative Biology, University of Liverpool, Liverpool, Salford, UK
| |
Collapse
|
35
|
Grewal SS. Why should cancer biologists care about tRNAs? tRNA synthesis, mRNA translation and the control of growth. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:898-907. [PMID: 25497380 DOI: 10.1016/j.bbagrm.2014.12.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/01/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
Abstract
Transfer RNAs (tRNAs) are essential for mRNA translation. They are transcribed in the nucleus by RNA polymerase III and undergo many modifications before contributing to cytoplasmic protein synthesis. In this review I highlight our understanding of how tRNA biology may be linked to the regulation of mRNA translation, growth and tumorigenesis. First, I review how oncogenes and tumour suppressor signalling pathways, such as the PI3 kinase/TORC1, Ras/ERK, Myc, p53 and Rb pathways, regulate Pol III and tRNA synthesis. In several cases, this regulation contributes to cell, tissue and body growth, and has implications for our understanding of tumorigenesis. Second, I highlight some recent work, particularly in model organisms such as yeast and Drosophila, that shows how alterations in tRNA synthesis may be not only necessary, but also sufficient to drive changes in mRNA translation and growth. These effects may arise due to both absolute increases in total tRNA levels, but also changes in the relative levels of tRNAs in the overall pool. Finally, I review some recent studies that have revealed how tRNA modifications (amino acid acylation, base modifications, subcellular shuttling, and cleavage) can be regulated by growth and stress cues to selectively influence mRNA translation. Together these studies emphasize the importance of the regulation of tRNA synthesis and modification as critical control points in protein synthesis and growth. This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- Savraj S Grewal
- Department of Biochemistry and Molecular Biology, Clark H. Smith Brain Tumour Centre, Southern Alberta Cancer Research Institute, University of Calgary, HRIC, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
36
|
Signaling by the engulfment receptor draper: a screen in Drosophila melanogaster implicates cytoskeletal regulators, Jun N-terminal Kinase, and Yorkie. Genetics 2014; 199:117-34. [PMID: 25395664 DOI: 10.1534/genetics.114.172544] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Draper, the Drosophila melanogaster homolog of the Ced-1 protein of Caenorhabditis elegans, is a cell-surface receptor required for the recognition and engulfment of apoptotic cells, glial clearance of axon fragments and dendritic pruning, and salivary gland autophagy. To further elucidate mechanisms of Draper signaling, we screened chromosomal deficiencies to identify loci that dominantly modify the phenotype of overexpression of Draper isoform II (suppressed differentiation of the posterior crossvein in the wing). We found evidence for 43 genetic modifiers of Draper II. Twenty-four of the 37 suppressor loci and 3 of the 6 enhancer loci were identified. An additional 5 suppressors and 2 enhancers were identified among mutations in functionally related genes. These studies reveal positive contributions to Drpr signaling for the Jun N-terminal Kinase pathway, supported by genetic interactions with hemipterous, basket, jun, and puckered, and for cytoskeleton regulation as indicated by genetic interactions with rac1, rac2, RhoA, myoblast city, Wiskcott-Aldrich syndrome protein, and the formin CG32138, and for yorkie and expanded. These findings indicate that Jun N-terminal Kinase activation and cytoskeletal remodeling collaborate in Draper signaling. Relationships between Draper signaling and Decapentaplegic signaling, insulin signaling, Salvador/Warts/Hippo signaling, apical-basal cell polarity, and cellular responses to mechanical forces are also discussed.
Collapse
|
37
|
Grifoni D, Bellosta P. Drosophila Myc: A master regulator of cellular performance. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:570-81. [PMID: 25010747 DOI: 10.1016/j.bbagrm.2014.06.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/26/2014] [Accepted: 06/30/2014] [Indexed: 11/25/2022]
Abstract
The identification of the Drosophila homolog of the human MYC oncogene has fostered a series of studies aimed to address its functions in development and cancer biology. Due to its essential roles in many fundamental biological processes it is hard to imagine a molecular mechanism in which MYC function is not required. For this reason, the easily manipulated Drosophila system has greatly helped in the dissection of the genetic and molecular pathways that regulate and are regulated by MYC function. In this review, we focus on studies of MYC in the fruitfly with particular emphasis on metabolism and cell competition, highlighting the contributions of this model system in the last decade to our understanding of MYC's complex biological nature. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.
Collapse
Affiliation(s)
- Daniela Grifoni
- Department of "Farmacia e Biotecnologie", University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| | - Paola Bellosta
- Department of "Bioscienze", University of Milan, Via Celoria 26, 20133 Milan, Italy.
| |
Collapse
|
38
|
Abstract
The MYC oncogene is a multifunctional protein that is aberrantly expressed in a significant fraction of tumors from diverse tissue origins. Because of its multifunctional nature, it has been difficult to delineate the exact contributions of MYC's diverse roles to tumorigenesis. Here, we review the normal role of MYC in regulating DNA replication as well as its ability to generate DNA replication stress when overexpressed. Finally, we discuss the possible mechanisms by which replication stress induced by aberrant MYC expression could contribute to genomic instability and cancer.
Collapse
Affiliation(s)
| | - Jean Gautier
- Institute for Cancer Genetics, Columbia University, New York, New York 10032 Department of Genetics and Development, Columbia University, New York, New York 10032
| |
Collapse
|
39
|
Campbell KJ, White RJ. MYC regulation of cell growth through control of transcription by RNA polymerases I and III. Cold Spring Harb Perspect Med 2014; 4:4/5/a018408. [PMID: 24789877 DOI: 10.1101/cshperspect.a018408] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MYC's tumorigenic potential involves increased ribosome biogenesis and translational capacity, which supply the cell with protein required for enhanced cell growth and subsequent cell division. In addition to activation of protein-encoding genes transcribed by RNA polymerase II, MYC must stimulate transcription by RNA polymerase I and RNA polymerase III to meet this synthetic demand. In the past decade our knowledge of the mechanisms and importance of MYC regulation of RNA polymerases I and III has flourished. Here we discuss MYC's influence on transcription by these "odd" RNA polymerases and the physiological impact of this regulation is evaluated with relevance to cancer development and treatment.
Collapse
|
40
|
Link JM, Hurlin PJ. The activities of MYC, MNT and the MAX-interactome in lymphocyte proliferation and oncogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:554-62. [PMID: 24731854 DOI: 10.1016/j.bbagrm.2014.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/25/2014] [Accepted: 04/04/2014] [Indexed: 12/29/2022]
Abstract
The MYC family of proteins plays essential roles in embryonic development and in oncogenesis. Efforts over the past 30 years to define the transcriptional activities of MYC and how MYC functions to promote proliferation have produced evolving models of MYC function. One picture that has emerged of MYC and its partner protein MAX is of a transcription factor complex with a seemingly unique ability to stimulate the transcription of genes that are epigenetically poised for transcription and to amplify the transcription of actively transcribed genes. During lymphocyte activation, MYC is upregulated and stimulates a pro-proliferative program in part through the upregulation of a wide variety of metabolic effector genes that facilitate cell growth and cell cycle progression. MYC upregulation simultaneously sensitizes cells to apoptosis and activated lymphocytes and lymphoma cells have pro-survival attributes that allow MYC-driven proliferation to prevail. For example, the MAX-interacting protein MNT is upregulated in activated lymphocytes and was found to protect lymphocytes from MYC-dependent apoptosis. Here we review the activities of MYC, MNT and other MAX interacting proteins in the setting of T and B cell activation and oncogenesis. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.
Collapse
Affiliation(s)
- Jason M Link
- Shriners Hospitals for Children Portland, 3101 SW Sam Jackson Park Road, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | - Peter J Hurlin
- Shriners Hospitals for Children Portland, 3101 SW Sam Jackson Park Road, Portland, OR 97239, USA; Department of Cell and Developmental Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
41
|
Abstract
MYC dimerizes with MAX to bind DNA, with a preference for the E-box consensus CACGTG and several variant motifs. In cells, MYC binds DNA preferentially within transcriptionally active promoter regions. Although several thousand promoters are bound under physiological (low MYC) conditions, these represent only a fraction of all accessible, active promoters. MYC overexpression-as commonly observed in cancer cells-leads to invasion of virtually all active promoters, as well as of distal enhancer elements. We summarize here what is currently known about the mechanisms that may guide this process. We propose that binding site recognition is determined by low-affinity protein-protein interactions between MYC/MAX dimers and components of the basal transcriptional machinery, other chromatin-associated protein complexes, and/or DNA-bound transcription factors. DNA binding occurs subsequently, without an obligate requirement for sequence recognition. Local DNA scanning then leads to preferential stabilization of the MYC/MAX dimer on high-affinity DNA elements. This model is consistent with the invasion of all active promoters that occurs at elevated MYC levels, but posits that important differences in affinity persist between physiological target sites and the newly invaded elements, which may not all be bound in a productive regulatory mode. The implications of this model for transcriptional control by MYC in normal and cancer cells are discussed in the light of the latest literature.
Collapse
Affiliation(s)
- Arianna Sabò
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia, 20139 Milan, Italy
| | | |
Collapse
|
42
|
Conacci-Sorrell M, McFerrin L, Eisenman RN. An overview of MYC and its interactome. Cold Spring Harb Perspect Med 2014; 4:a014357. [PMID: 24384812 DOI: 10.1101/cshperspect.a014357] [Citation(s) in RCA: 326] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review is intended to provide a broad outline of the biological and molecular functions of MYC as well as of the larger protein network within which MYC operates. We present a view of MYC as a sensor that integrates multiple cellular signals to mediate a broad transcriptional response controlling many aspects of cell behavior. We also describe the larger transcriptional network linked to MYC with emphasis on the MXD family of MYC antagonists. Last, we discuss evidence that the network has evolved for millions of years, dating back to the emergence of animals.
Collapse
|
43
|
MAX Inactivation in Small Cell Lung Cancer Disrupts MYC–SWI/SNF Programs and Is Synthetic Lethal with BRG1. Cancer Discov 2013; 4:292-303. [DOI: 10.1158/2159-8290.cd-13-0799] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Abstract
Drosophila contains a single MYC gene. Like its vertebrate homologs, it encodes a transcription factor that activates many targets, including prominently genes involved in ribosome biogenesis and translation. This activity makes Myc a central regulator of growth and/or proliferation of many cell types, such as imaginal disc cells, polyploid cells, stem cells, and blood cells. Importantly, not only does Myc act cell autonomously but it also affects the fate of adjacent cells and tissues. This potential of Myc is harnessed by many different signaling pathways, involving, among others, Wg, Dpp, Hpo, ecdysone, insulin, and mTOR.
Collapse
Affiliation(s)
- Peter Gallant
- Julius-Maximilians-Universität Würzburg, Lehrstuhl für Biochemie und Molekularbiologie, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
45
|
Greer C, Lee M, Westerhof M, Milholland B, Spokony R, Vijg J, Secombe J. Myc-dependent genome instability and lifespan in Drosophila. PLoS One 2013; 8:e74641. [PMID: 24040302 PMCID: PMC3765364 DOI: 10.1371/journal.pone.0074641] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 08/05/2013] [Indexed: 01/21/2023] Open
Abstract
The Myc family of transcription factors are key regulators of cell growth and proliferation that are dysregulated in a large number of human cancers. When overexpressed, Myc family proteins also cause genomic instability, a hallmark of both transformed and aging cells. Using an in vivo lacZ mutation reporter, we show that overexpression of Myc in Drosophila increases the frequency of large genome rearrangements associated with erroneous repair of DNA double-strand breaks (DSBs). In addition, we find that overexpression of Myc shortens adult lifespan and, conversely, that Myc haploinsufficiency reduces mutation load and extends lifespan. Our data provide the first evidence that Myc may act as a pro-aging factor, possibly through its ability to greatly increase genome instability.
Collapse
Affiliation(s)
- Christina Greer
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Moonsook Lee
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Maaike Westerhof
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Brandon Milholland
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Rebecca Spokony
- Department of Human Genetics, The University of Chicago, Knapp Center for Biomedical Discovery, Chicago, Illinois, United States of America
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Julie Secombe
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
46
|
Abstract
The study of MYC has led to pivotal discoveries in cancer biology, induced pluripotency, and transcriptional regulation. In this review, continuing advances in our understanding of the function of MYC as a transcription factor and how its transcriptional activity controls normal vertebrate development and contributes to developmental disorders is discussed.
Collapse
Affiliation(s)
- Peter J Hurlin
- Shriners Hospitals for Children Portland, Portland, Oregon 97239
| |
Collapse
|
47
|
MYC degradation under low O2 tension promotes survival by evading hypoxia-induced cell death. Mol Cell Biol 2013; 33:3494-504. [PMID: 23816886 DOI: 10.1128/mcb.00853-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells encounter oxygen deprivation (hypoxia) in various physiological and pathological contexts. Adaptation to hypoxic stress occurs in part by suppressing MYC, a key regulator of cellular metabolism, proliferation, and survival. Hypoxia has been reported to inhibit MYC through multiple means, including disruption of MYC transcriptional complexes and decreased MYC protein abundance. Here we identify enhanced proteasomal degradation and cathepsin-mediated proteolysis as important mechanisms for hypoxic MYC inhibition in human colon carcinoma cells. MYC protein levels were similarly reduced in hypoxic primary keratinocytes. Increased MYC turnover at low O2 tension was dependent on the E3 ubiquitin ligases FBXW7 and DDB1, as well as hypoxic induction of cathepsins D and S. Reduced MYC protein levels coincided with hypoxic inhibition of RNA polymerase III-dependent MYC target genes, which MYC regulates independently of its binding partner MAX. Finally, MYC overexpression in hypoxic cells promoted cell cycle progression but also enhanced cell death via increased expression of the proapoptotic genes NOXA and PUMA. Collectively, these results indicate that hypoxic cells promote MYC degradation as an adaptive strategy to reduce proliferation, suppress biosynthetic processes, and promote cell survival under low O2 tension.
Collapse
|
48
|
Arif S, Hilbrant M, Hopfen C, Almudi I, Nunes MDS, Posnien N, Kuncheria L, Tanaka K, Mitteroecker P, Schlötterer C, McGregor AP. Genetic and developmental analysis of differences in eye and face morphology between Drosophila simulans and Drosophila mauritiana. Evol Dev 2013; 15:257-67. [PMID: 23809700 PMCID: PMC3799016 DOI: 10.1111/ede.12027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Eye and head morphology vary considerably among insects and even between closely related species of Drosophila. Species of the D. melanogaster subgroup, and other Drosophila species, exhibit a negative correlation between eye size and face width (FW); for example, D. mauritiana generally has bigger eyes composed of larger ommatidia and conversely a narrower face than its sibling species. To better understand the evolution of eye and head morphology, we investigated the genetic and developmental basis of differences in eye size and FW between male D. mauritiana and D. simulans. QTL mapping of eye size and FW showed that the major loci responsible for the interspecific variation in these traits are localized to different genomic regions. Introgression of the largest effect QTL underlying the difference in eye size resulted in flies with larger eyes but no significant difference in FW. Moreover, introgression of a QTL region on the third chromosome that contributes to the FW difference between these species affected FW, but not eye size. We also observed that this difference in FW is detectable earlier in the development of the eye-antennal disc than the difference in the size of the retinal field. Our results suggest that different loci that act at different developmental stages underlie changes in eye size and FW. Therefore, while there is a negative correlation between these traits in Drosophila, we show genetically that they also have the potential to evolve independently and this may help to explain the evolution of these traits in other insects.
Collapse
Affiliation(s)
- Saad Arif
- Max Planck Institute for Biology of Ageing, Robert‐Koch‐Straße 21, D‐50931 Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Gherardi S, Valli E, Erriquez D, Perini G. MYCN-mediated transcriptional repression in neuroblastoma: the other side of the coin. Front Oncol 2013; 3:42. [PMID: 23482921 PMCID: PMC3593680 DOI: 10.3389/fonc.2013.00042] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/12/2013] [Indexed: 01/02/2023] Open
Abstract
Neuroblastoma is the most common extra cranial solid tumor in childhood and the most frequently diagnosed neoplasm during the infancy. MYCN amplification and overexpression occur in about 25% of total neuroblastoma cases and this percentage increases at 30% in advanced stage neuroblastoma. So far, MYCN expression profile is still one of the most robust and significant prognostic markers for neuroblastoma outcome. MYCN is a transcription factor that belongs to the family of MYC oncoproteins, comprising c-MYC and MYCL genes. Deregulation of MYC oncoprotein expression is a crucial event involved in the occurrence of different types of malignant tumors. MYCN, as well as c-MYC, can heterodimerize with its partner MAX and activate the transcription of several target genes containing E-Box sites in their promoter regions. However, recent several lines of evidence have revealed that MYCN can repress at least as many genes as it activates, thus proposing a novel function of this protein in neuroblastoma biology. Whereas the mechanism by which MYCN can act as a transcriptional activator is relatively well known, very few studies has been done in the attempt to explain how MYCN can exert its transcription repression function. Here, we will review current knowledge about the mechanism of MYCN-mediated transcriptional repression and will emphasize its role as a repressor in the recruitment of a precise set of proteins to form complexes capable of down-regulating specific subsets of genes whose function is actively involved in apoptosis, cell differentiation, chemosensitivity, and cell motility. The finding that MYCN can also act as a repressor has widen our view on its role in oncogenesis and has posed the bases to search for novel therapeutic drugs that can specifically target its transcriptional repression function.
Collapse
Affiliation(s)
- Samuele Gherardi
- Department of Pharmacy and Biotechnology, University of Bologna Bologna, Italy ; Health Sciences and Technologies - Interdepartmental Center for Industrial Research University of Bologna Bologna, Italy
| | | | | | | |
Collapse
|