1
|
Genuíno MVH, Bessa AFDO, da Silva RT, Câmara GMDS, Panetto JCDC, Machado MA, Caetano SL, Ramos SB, Munari DP, Sonstegard T, Barbosa da Silva MVG, Buzanskas ME. Selection signatures detection in Nelore, Gir, and Red Sindhi cattle breeds. Mamm Genome 2025:10.1007/s00335-025-10125-z. [PMID: 40175575 DOI: 10.1007/s00335-025-10125-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/22/2025] [Indexed: 04/04/2025]
Abstract
Technological advances in genomics and bioinformatics made it possible to study the genetic structure of breeds and understand genome changes caused by selection over generations. Our objective was to evaluate selection signatures (SS) in Nelore, Gir, and Red Sindhi cattle from Brazil and the Asian continent to identify divergent variants due to the history of formation and selection of populations, with a focus on the SS of animals from Brazil. Extended haplotype homozygosities between populations (XP-EHH), the ratio of site-specific extended haplotype homozygosity between populations (Rsb), and the allelic fixation index (Fst) were used to detect SS. Considering a window size of 50-kb, a non-sliding window approach was used to define SS regions. A total of 62, 57, and 72 genes were co-located within SS regions for Nelore, Gir, and Red Sindhi, respectively, and used to perform functional analyses per breed. Most genes were associated with productive and reproductive traits, while others were related to thermotolerance, the immune system, temperament, and coat color. The identified SS demonstrate how animal breeding programs shape the genetic makeup of these breeds to meet production system requirements, given that animals from Brazil and the Asian continent have undergone different selection processes. The identification of genes related to thermotolerance, temperament, and the immune system suggests specific alleles have enabled animals to adapt to environmental conditions and selection criteria in Brazil. Understanding SS can support breeding strategies for Nelore, Gir, and Red Sindhi cattle, contributing to enhanced resistance, adaptation, and productivity to meet food production demands.
Collapse
Affiliation(s)
| | | | - Roney Teixeira da Silva
- School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | | | | | | | - Sabrina Luzia Caetano
- School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Salvador Boccaletti Ramos
- School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Danísio Prado Munari
- School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Tad Sonstegard
- Acceligen, 3388 Mike Collins Drive, Eagan, MN, 55121, USA
| | | | - Marcos Eli Buzanskas
- School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, SP, 18618-681, Brazil.
| |
Collapse
|
2
|
Blumstein M, Webster S, Hopkins R, Basler D, Yun J, Des Marais DL. Genomics highlight an underestimation of phenology sensitivity to the urban heat island effect. Proc Natl Acad Sci U S A 2025; 122:e2408564122. [PMID: 40100635 PMCID: PMC11962471 DOI: 10.1073/pnas.2408564122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 01/16/2025] [Indexed: 03/20/2025] Open
Abstract
The phenological timing of leaf out in temperate forests is a critical transition point each year that alters the global climate system, which in turn, feeds back to plants, driving leaf out to occur nearly 3 d earlier per decade as temperatures rise. To improve predictions of leaf out timing, urban heat islands (UHIs) or densely developed areas that are hotter than surrounding undeveloped regions are often used to approximate warming via space-for-time substitutions (i.e., rural-to-urban temperature gradients). However, more than just environment changes along these gradients-urban regions are highly managed systems with limited-to-no within species diversity. We demonstrate here that recent observations that UHI gradients underpredict leaf out response to temperature when compared to temperature gradients through time is likely because both genetics and environment are changing across rural-to-urban gradients, whereas only environment is changing through time. We tested this hypothesis using genomic, phenological, and temperature data of northern red oak (Quercus rubra) over several years between an urban and rural site. Across our gradient, models that included just temperature predicted moderate advancement of leaf out. However, if we account for the genetic diversity of our trees in our model, leaf out phenology is predicted to advance significantly more in response to temperature. We demonstrate that this stronger relationship between phenological timing and climate is because urban trees have reduced genetic diversity as they are planted from limited stock by humans and, moreover, are most closely related to individuals at the rural site that leaf out later on average.
Collapse
Affiliation(s)
- Meghan Blumstein
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA22903
- School of Architecture, University of Virginia, Charlottesville, VA22903
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Sophie Webster
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
- The Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA02139
| | - Robin Hopkins
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
- The Arnold Arboretum, Boston, MA02130
| | - David Basler
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
- Department of Environmental Sciences, University of Basel, Basel4056, Switzerland
- Swiss Federal Institute for Forest Snow and Landscape Research, Birmensdorf8903, Switzerland
| | - Jie Yun
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - David Lee Des Marais
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
3
|
Heslop AD, Arojju SK, Hofmann RW, Ford JL, Jahufer MZZ, Larking AC, Ashby R, Hefer CA, Dodds KG, Saei A, O’Connor J, Griffiths AG. Local adaptation, genetic diversity and key environmental interactions in a collection of novel red clover germplasm. FRONTIERS IN PLANT SCIENCE 2025; 16:1553094. [PMID: 40166725 PMCID: PMC11955710 DOI: 10.3389/fpls.2025.1553094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/21/2025] [Indexed: 04/02/2025]
Abstract
Red clover (Trifolium pratense L.) is known for its large taproot, nitrogen fixation capabilities and production of forage high in protein and digestibility. It has the potential to strengthen temperate pastural systems against future adverse climatic events by providing higher biomass during periods of water deficit. Being outcrossing and self-incompatible, red clover is a highly heterozygous species. If evaluated and utilized correctly, this genetic diversity can be harnessed to develop productive, persistent cultivars. In this study, we selected 92 geographically diverse red clover novel germplasm populations for assessment in multi-location, multi-year field trials and for genetic diversity and genetic relationship characterization using pooled genotyping-by-sequencing (GBS). Through the development of integrated linear mixed models based on genomic, phenotypic, and environmental information we assessed variance components and genotype-by-environment (G x E) interactions for eight physiological and morphological traits. Key interactions between environmental variables and plant performance were also evaluated using a common garden site at Lincoln. We found that the genetic structure of the 92 populations was highly influenced by country of origin. The expected heterozygosity within populations ranged between 0.08 and 0.17 and varied with geographical origin. For the eight physiological and morphological traits measured there was high narrow-sense heritability (h2 > 0.70). The influence of environmental variables, such as mean precipitation, temperature and isothermality of the original collection locations, on plant and trait performance in the local field trials was also highlighted. Along with the identification of genes associated with these bioclimatic variables that could be used as genetic markers for selection in future breeding programs. Our study identifies the importance of diverse germplasm when adding genetic variation into breeding programs. It also identifies efficient evaluation methods and key climatic variables that should be considered when developing adaptive red clover cultivars.
Collapse
Affiliation(s)
- A. D. Heslop
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
- AgResearch Limited, Lincoln Research Centre, Christchurch, New Zealand
| | - Sai K. Arojju
- Radiata Pine Breeding Company, Building EN27, University of Canterbury, Christchurch, New Zealand
| | - Rainer W. Hofmann
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - John L. Ford
- PGG Wrightson Seeds Limited, C/- Grasslands Research Centre, Palmerston North, New Zealand
| | - M. Zulfi Z. Jahufer
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, Australia
| | - Anna C. Larking
- AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand
| | - Rachael Ashby
- AgResearch Limited, Invermay Agricultural Centre, Mosgiel, New Zealand
| | - Charles A. Hefer
- AgResearch Limited, Lincoln Research Centre, Christchurch, New Zealand
| | - Ken G. Dodds
- AgResearch Limited, Invermay Agricultural Centre, Mosgiel, New Zealand
| | - A. Saei
- AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand
| | - Jessica O’Connor
- AgResearch Limited, Invermay Agricultural Centre, Mosgiel, New Zealand
| | | |
Collapse
|
4
|
Piot A, El‐Kassaby YA, Porth I. Exon disruptive variants in Populus trichocarpa associated with wood properties exhibit distinct gene expression patterns. THE PLANT GENOME 2025; 18:e20541. [PMID: 39632472 PMCID: PMC11726415 DOI: 10.1002/tpg2.20541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 12/07/2024]
Abstract
Forest trees may harbor naturally occurring exon disruptive variants (DVs) in their gene sequences, which potentially impact important ecological and economic phenotypic traits. However, the abundance and molecular regulation of these variants remain largely unexplored. Here, 24,420 DVs were identified by screening 1014 Populus trichocarpa full genomes. The identified DVs were predominantly heterozygous with allelic frequencies below 5% (only 26% of DVs had frequencies greater than 5%). Using common garden-grown trees, DVs were assessed for gene expression variation in the developing xylem, revealing that their gene expression can be significantly altered, particularly for homozygous DVs (in the range of 27%-38% of cases depending on the studied common garden). DVs were further investigated for their correlations with 13 wood quality traits, revealing that, among the 148 discovered DV associations, 15 correlated with more than one wood property and six genes had more than one DV in their coding sequences associated with wood traits. Approximately one-third of DVs correlated with wood property variation also showed significant gene expression variation, confirming their non-spurious impact. These findings offer potential avenues for targeted introduction of homozygous mutations using tree biotechnology, and while the exact mechanisms by which DVs may directly influence wood formation remain to be unraveled, this study lays the groundwork for further investigation.
Collapse
Affiliation(s)
- Anthony Piot
- Department of Wood and Forest SciencesUniversité LavalQuebec CityQuebecCanada
- Institute for System and Integrated Biology (IBIS)Université LavalQuebec CityQuebecCanada
- Centre for Forest ResearchUniversité LavalQuebec CityQuebecCanada
| | - Yousry A. El‐Kassaby
- Department of Forest and Conservation Sciences, Faculty of ForestryThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Ilga Porth
- Department of Wood and Forest SciencesUniversité LavalQuebec CityQuebecCanada
- Institute for System and Integrated Biology (IBIS)Université LavalQuebec CityQuebecCanada
- Centre for Forest ResearchUniversité LavalQuebec CityQuebecCanada
| |
Collapse
|
5
|
Yuan W, Yao F, Liu Y, Xiao H, Sun S, Jiang C, An Y, Chen N, Huang L, Lu M, Zhang J. Identification of the xyloglucan endotransglycosylase/hydrolase genes and the role of PagXTH12 in drought resistance in poplar. FORESTRY RESEARCH 2024; 4:e039. [PMID: 40027451 PMCID: PMC11870306 DOI: 10.48130/forres-0024-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 03/05/2025]
Abstract
The xyloglucan endotransglycosylase/hydrolase (XTH) gene family plays a crucial role in plant cell wall remodeling, facilitating growth and structural changes. However, the divergence of paralogous genes among different species of Populus remains inadequately understood. This study investigates the phylogenetic relationships and expression characteristics of XTH genes in two Populus species: Populus trichocarpa and Populus alba × P. glandulosa '84K'. Forty-one XTHs were identified in P. trichocarpa and 38 and 33 members in the subgenome A and G of '84K' poplar, respectively. Gene expression analysis demonstrated differences among paralogous genes within the same subgenome and between orthologous genes across species, likely influenced by variations in promoter regions. Notably, XTH12 showed a specific response to drought stress among various abiotic stresses. In a population of 549 Populus individuals, functional SNPs in XTH12's coding region did not affect its conserved ExDxE catalytic site, highlighting its irreplaceable function. Furthermore, validation through qRT-PCR and ProPagXTH12::GUS activity, alongside PagXTH12-overexpression poplar lines, substantiated the role of PagXTH12 in modulating the balance between plant biomass and drought resistance. Overall, this research provides valuable insights into the biological functions of XTHs in plant environmental adaptability and offers strategies for targeted regulation of tree growth and stress resistance.
Collapse
Affiliation(s)
- Wenya Yuan
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Fengge Yao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Yijing Liu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Hongci Xiao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Siheng Sun
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Cheng Jiang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Yi An
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Ningning Chen
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Lichao Huang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Mengzhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| |
Collapse
|
6
|
Ployet R, Feng K, Zhang J, Baxter I, Glasgow DC, Andrews HB, Rodriguez M, Chen JG, Tuskan GA, Tschaplinski TJ, Weston DJ, Martin MZ, Muchero W. Elemental profiling and genome-wide association studies reveal genomic variants modulating ionomic composition in Populus trichocarpa leaves. FRONTIERS IN PLANT SCIENCE 2024; 15:1450646. [PMID: 39670268 PMCID: PMC11634625 DOI: 10.3389/fpls.2024.1450646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/04/2024] [Indexed: 12/14/2024]
Abstract
The ionome represents elemental composition in plant tissues and can be an indicator of nutrient status as well as overall plant performance. Thus, identifying genetic determinants governing elemental uptake and storage is an important goal for breeding and engineering biomass feedstocks with improved performance. In this study, we coupled high-throughput ionome characterization of leaf tissues with high-resolution genome-wide association studies (GWAS) to uncover genetic loci that modulate ionomic composition in leaves of poplar (Populus trichocarpa). Significant agreement was observed across the three ionomic profiling platforms tested: inductively coupled plasma-mass spectrometry (ICP-MS), neutron activation analysis (NAA) and laser-induced breakdown spectroscopy (LIBS). Relative quantification of 20 elements using ICP-MS across a population of 584 genotypes, revealed larger variation in micro-nutrients and trace elements content than for macro-nutrients across genotypes. The GWAS performed using a set of high-density (>8.2 million) single nucleotide polymorphisms, identified over 600 loci significantly associated with variations in these mineral elements, pointing to numerous uncharacterized candidate genes. A significant enrichment for genes related to ion homeostasis and transport was observed, including several members of the cation-proton antiporters (CPA) family and MATE efflux transporters, previously reported to be critical for plant growth and fitness in other species. Our results also included a polymorphic copy of the high-affinity molybdenum transporter MOT1 found directly associated to molybdenum content. For the first time in a perennial plant, our results provide evidence of genetic control of mineral content in a model tree species.
Collapse
Affiliation(s)
- Raphael Ployet
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Kai Feng
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jin Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Ivan Baxter
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| | - David C. Glasgow
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Hunter B. Andrews
- Radioisotopes Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Miguel Rodriguez
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - David J. Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Madhavi Z. Martin
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
7
|
Craig ME, Harman-Ware AE, Cope KR, Kalluri UC. Intraspecific variability in plant and soil chemical properties in a common garden plantation of the energy crop Populus. PLoS One 2024; 19:e0309321. [PMID: 39432492 PMCID: PMC11493264 DOI: 10.1371/journal.pone.0309321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/08/2024] [Indexed: 10/23/2024] Open
Abstract
Optimizing crops for synergistic soil carbon (C) sequestration can enhance CO2 removal in food and bioenergy production systems. Yet, in bioenergy systems, we lack an understanding of how intraspecies variation in plant traits correlates with variation in soil biogeochemistry. This knowledge gap is exacerbated by both the heterogeneity and difficulty of measuring belowground traits. Here, we provide initial observations of C and nutrients in soil and root and stem tissues from a common garden field site of diverse, natural variant, Populus trichocarpa genotypes-established for aboveground biomass-to-biofuels research. Our goal was to explore the value of such field sites for evaluating genotype-specific effects on soil C, which ultimately informs the potential for optimizing bioenergy systems for both aboveground productivity and belowground C storage. To do this, we investigated variation in chemical traits at the scale of individual trees and genotypes and we explored correlations among stem, root, and soil samples. We observed substantial variation in soil chemical properties at the scale of individual trees and specific genotypes. While correlations among elements were observed both within and among sample types (soil, stem, root), above-belowground correlations were generally poor. We did not observe genotype-specific patterns in soil C in the top 10 cm, but we did observe genotype associations with soil acid-base chemistry (soil pH and base cations) and bulk density. Finally, a specific phenotype of interest (high vs low lignin) was unrelated to soil biogeochemistry. Our pilot study supports the usefulness of decade-old, genetically-variable, Populus bioenergy field test plots for understanding plant genotype effects on soil properties. Finally, this study contributes to the advancement of sampling methods and baseline data for Populus systems in the Pacific Northwest, USA. Further species- and region-specific efforts will enhance C predictability across scales in bioenergy systems and, ultimately, accelerate the identification of genotypes that optimize yield and carbon storage.
Collapse
Affiliation(s)
- Matthew E. Craig
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States of America
| | - Anne E. Harman-Ware
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, United States of America
| | - Kevin R. Cope
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States of America
| | - Udaya C. Kalluri
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States of America
| |
Collapse
|
8
|
Shu M, Yates TB, John C, Harman-Ware AE, Happs RM, Bryant N, Jawdy SS, Ragauskas AJ, Tuskan GA, Muchero W, Chen JG. Providing biological context for GWAS results using eQTL regulatory and co-expression networks in Populus. THE NEW PHYTOLOGIST 2024; 244:603-617. [PMID: 39169686 DOI: 10.1111/nph.20026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
Our study utilized genome-wide association studies (GWAS) to link nucleotide variants to traits in Populus trichocarpa, a species with rapid linkage disequilibrium decay. The aim was to overcome the challenge of interpreting statistical associations at individual loci without sufficient biological context, which often leads to reliance solely on gene annotations from unrelated model organisms. We employed an integrative approach that included GWAS targeting multiple traits using three individual techniques for lignocellulose phenotyping, expression quantitative trait loci (eQTL) analysis to construct transcriptional regulatory networks around each candidate locus and co-expression analysis to provide biological context for these networks, using lignocellulose biosynthesis in Populus trichocarpa as a case study. The research identified three candidate genes potentially involved in lignocellulose formation, including one previously recognized gene (Potri.005G116800/VND1, a critical regulator of secondary cell wall formation) and two genes (Potri.012G130000/AtSAP9 and Potri.004G202900/BIC1) with newly identified putative roles in lignocellulose biosynthesis. Our integrative approach offers a framework for providing biological context to loci associated with trait variation, facilitating the discovery of new genes and regulatory networks.
Collapse
Affiliation(s)
- Mengjun Shu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
| | - Timothy B Yates
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
| | - Cai John
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, 37996, TN, USA
| | - Anne E Harman-Ware
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, 80401, CO, USA
| | - Renee M Happs
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, 80401, CO, USA
| | - Nathan Bryant
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, 37996, TN, USA
| | - Sara S Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
| | - Arthur J Ragauskas
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, 37996, TN, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
| |
Collapse
|
9
|
Huang R, Jin Z, Zhang D, Li L, Zhou J, Xiao L, Li P, Zhang M, Tian C, Zhang W, Zhong L, Quan M, Zhao R, Du L, Liu LJ, Li Z, Zhang D, Du Q. Rare variations within the serine/arginine-rich splicing factor PtoRSZ21 modulate stomatal size to determine drought tolerance in Populus. THE NEW PHYTOLOGIST 2024; 243:1776-1794. [PMID: 38978318 DOI: 10.1111/nph.19934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024]
Abstract
Rare variants contribute significantly to the 'missing heritability' of quantitative traits. The genome-wide characteristics of rare variants and their roles in environmental adaptation of woody plants remain unexplored. Utilizing genome-wide rare variant association study (RVAS), expression quantitative trait loci (eQTL) mapping, genetic transformation, and molecular experiments, we explored the impact of rare variants on stomatal morphology and drought adaptation in Populus. Through comparative analysis of five world-wide Populus species, we observed the influence of mutational bias and adaptive selection on the distribution of rare variants. RVAS identified 75 candidate genes correlated with stomatal size (SS)/stomatal density (SD), and a rare haplotype in the promoter of serine/arginine-rich splicing factor PtoRSZ21 emerged as the foremost association signal governing SS. As a positive regulator of drought tolerance, PtoRSZ21 can recruit the core splicing factor PtoU1-70K to regulate alternative splicing (AS) of PtoATG2b (autophagy-related 2). The rare haplotype PtoRSZ21hap2 weakens binding affinity to PtoMYB61, consequently affecting PtoRSZ21 expression and SS, ultimately resulting in differential distribution of Populus accessions in arid and humid climates. This study enhances the understanding of regulatory mechanisms that underlie AS induced by rare variants and might provide targets for drought-tolerant varieties breeding in Populus.
Collapse
Affiliation(s)
- Rui Huang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Zhuoying Jin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Donghai Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Lianzheng Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Jiaxuan Zhou
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Liang Xiao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Peng Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Mengjiao Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Chongde Tian
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Wenke Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Leishi Zhong
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Mingyang Quan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Rui Zhao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Liang Du
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Li-Jun Liu
- College of Forestry, State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agriculture University, Taian, Shandong, 271018, China
| | - Zhonghai Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Deqiang Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Qingzhang Du
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| |
Collapse
|
10
|
LeBoldus JM, Lynch SC, Newhouse AE, Søndreli KL, Newcombe G, Bennett PI, Muchero W, Chen JG, Busby PE, Gordon M, Liang H. Biotechnology and Genomic Approaches to Mitigating Disease Impacts on Forest Health. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:309-335. [PMID: 39251210 DOI: 10.1146/annurev-phyto-021622-114434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Outbreaks of insects and diseases are part of the natural disturbance regime of all forests. However, introduced pathogens have had outsized impacts on many dominant forest tree species over the past century. Mitigating these impacts and restoring these species are dilemmas of the modern era. Here, we review the ecological and economic impact of introduced pathogens, focusing on examples in North America. We then synthesize the successes and challenges of past biotechnological approaches and discuss the integration of genomics and biotechnology to help mitigate the effects of past and future pathogen invasions. These questions are considered in the context of the transgenic American chestnut, which is the most comprehensive example to date of how biotechnological tools have been used to address the impacts of introduced pathogens on naïve forest ecosystems.
Collapse
Affiliation(s)
- Jared M LeBoldus
- Department of Botany and Plant Pathology and Department of Forest Engineering, Resources, and Management, Oregon State University, Corvallis, Oregon, USA;
| | - Shannon C Lynch
- Faculty of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, New York, USA
| | - Andrew E Newhouse
- Faculty of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, New York, USA
| | - Kelsey L Søndreli
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - George Newcombe
- Department of Forest, Rangeland and Fire Sciences, University of Idaho, Moscow, Idaho, USA
| | - Patrick I Bennett
- Rocky Mountain Research Station, United States Forest Service, Moscow, Idaho, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Posy E Busby
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Michael Gordon
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA
| | - Haiying Liang
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
11
|
Gómez Quijano MJ, Gross BL, Etterson JR. Genetic differentiation across a steep and narrow environmental gradient: Quantitative genetic and genomic insights into Lake Superior populations of Quercus rubra. Mol Ecol 2024; 33:e17483. [PMID: 39056407 DOI: 10.1111/mec.17483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Adaptive differentiation of traits and underlying loci can occur at a small geographical scale if natural selection is stronger than countervailing gene flow and drift. We investigated this hypothesis using coupled quantitative genetic and genomic approaches for a wind-pollinated tree species, Quercus rubra, along the steep, narrow gradient of the Lake Superior coast that encompasses four USDA Hardiness Zones within 100 km. For the quantitative genetic component of this study, we examined phenotypic differentiation among eight populations in a common garden, measuring seed mass, germination, height, stem diameter, leaf number, specific leaf area and survival. For the genomic component, we quantified genetic differentiation for 26 populations from the same region using RAD-seq. Because hybridisation with Quercus ellipsoidalis occurs in other parts of the species' range, we included two populations of this congener for comparison. In the common garden study, we found a strong signal of population differentiation that was significantly associated with at least one climate factor for nine of 10 measured traits. In contrast, we found no evidence of genomic differentiation among populations based on FST or any other measures. However, both distance-based and genotype-environment association analyses identified loci showing the signature of selection, with one locus in common across five analyses. This locus was associated with the minimum temperature of the coldest month, a factor that defines the climate zones and was also significant in the common garden analyses. In addition, we documented introgression from Q. ellipsoidalis into Q. rubra, with rates of introgression correlated with the climate gradient. In sum, this study reveals signatures of selection at the quantitative trait and genomic level consistent with climate adaptation, a pattern that is more often documented at a much broader geographical scale, especially in long-lived wind-pollinated species.
Collapse
Affiliation(s)
- María José Gómez Quijano
- Department of Biology, Queen's University, Kingston, Ontario, Canada
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, USA
| | - Briana L Gross
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, USA
| | - Julie R Etterson
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, USA
| |
Collapse
|
12
|
Shi T, Zhang X, Hou Y, Jia C, Dan X, Zhang Y, Jiang Y, Lai Q, Feng J, Feng J, Ma T, Wu J, Liu S, Zhang L, Long Z, Chen L, Street NR, Ingvarsson PK, Liu J, Yin T, Wang J. The super-pangenome of Populus unveils genomic facets for its adaptation and diversification in widespread forest trees. MOLECULAR PLANT 2024; 17:725-746. [PMID: 38486452 DOI: 10.1016/j.molp.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
Understanding the underlying mechanisms and links between genome evolution and adaptive innovations stands as a key goal in evolutionary studies. Poplars, among the world's most widely distributed and cultivated trees, exhibit extensive phenotypic diversity and environmental adaptability. In this study, we present a genus-level super-pangenome comprising 19 Populus genomes, revealing the likely pivotal role of private genes in facilitating local environmental and climate adaptation. Through the integration of pangenomes with transcriptomes, methylomes, and chromatin accessibility mapping, we unveil that the evolutionary trajectories of pangenes and duplicated genes are closely linked to local genomic landscapes of regulatory and epigenetic architectures, notably CG methylation in gene-body regions. Further comparative genomic analyses have enabled the identification of 142 202 structural variants across species that intersect with a significant number of genes and contribute substantially to both phenotypic and adaptive divergence. We have experimentally validated a ∼180-bp presence/absence variant affecting the expression of the CUC2 gene, crucial for leaf serration formation. Finally, we developed a user-friendly web-based tool encompassing the multi-omics resources associated with the Populus super-pangenome (http://www.populus-superpangenome.com). Together, the present pioneering super-pangenome resource in forest trees not only aids in the advancement of breeding efforts of this globally important tree genus but also offers valuable insights into potential avenues for comprehending tree biology.
Collapse
Affiliation(s)
- Tingting Shi
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Xinxin Zhang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yukang Hou
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Changfu Jia
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Xuming Dan
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yulin Zhang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yuanzhong Jiang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Qiang Lai
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jiajun Feng
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jianju Feng
- College of Horticulture and Forestry, Tarim University, Alar 843300, China
| | - Tao Ma
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jiali Wu
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Shuyu Liu
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Lei Zhang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Zhiqin Long
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Liyang Chen
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Nathaniel R Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Västerbotten, Sweden
| | - Pär K Ingvarsson
- Linnean Centre for Plant Biology, Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jianquan Liu
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
| | - Tongming Yin
- The Key Laboratory of Tree Genetics and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, Nanjing, Jiangsu, China.
| | - Jing Wang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
13
|
Simon SJ, Furches A, Chhetri H, Evans L, Abeyratne CR, Jones P, Wimp G, Macaya-Sanz D, Jacobson D, Tschaplinski TJ, Tuskan GA, DiFazio SP. Genetic underpinnings of arthropod community distributions in Populus trichocarpa. THE NEW PHYTOLOGIST 2024; 242:1307-1323. [PMID: 38488269 DOI: 10.1111/nph.19660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/21/2024] [Indexed: 04/12/2024]
Abstract
Community genetics seeks to understand the mechanisms by which natural genetic variation in heritable host phenotypes can encompass assemblages of organisms such as bacteria, fungi, and many animals including arthropods. Prior studies that focused on plant genotypes have been unable to identify genes controlling community composition, a necessary step to predict ecosystem structure and function as underlying genes shift within plant populations. We surveyed arthropods within an association population of Populus trichocarpa in three common gardens to discover plant genes that contributed to arthropod community composition. We analyzed our surveys with traditional single-trait genome-wide association analysis (GWAS), multitrait GWAS, and functional networks built from a diverse set of plant phenotypes. Plant genotype was influential in structuring arthropod community composition among several garden sites. Candidate genes important for higher level organization of arthropod communities had broadly applicable functions, such as terpenoid biosynthesis and production of dsRNA binding proteins and protein kinases, which may be capable of targeting multiple arthropod species. We have demonstrated the ability to detect, in an uncontrolled environment, individual genes that are associated with the community assemblage of arthropods on a host plant, further enhancing our understanding of genetic mechanisms that impact ecosystem structure.
Collapse
Affiliation(s)
- Sandra J Simon
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Anna Furches
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, 37996, USA
| | - Hari Chhetri
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA
- Computational Systems Biology Group, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Luke Evans
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, 80309, USA
| | | | - Piet Jones
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, 37996, USA
| | - Gina Wimp
- Department of Biology, Georgetown University, Washington, DC, 20057, USA
| | - David Macaya-Sanz
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Daniel Jacobson
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, 37996, USA
| | - Timothy J Tschaplinski
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Gerald A Tuskan
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Stephen P DiFazio
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA
| |
Collapse
|
14
|
Schadt C, Martin S, Carrell A, Fortner A, Hopp D, Jacobson D, Klingeman D, Kristy B, Phillips J, Piatkowski B, Miller MA, Smith M, Patil S, Flynn M, Canon S, Clum A, Mungall CJ, Pennacchio C, Bowen B, Louie K, Northen T, Eloe-Fadrosh EA, Mayes MA, Muchero W, Weston DJ, Mitchell J, Doktycz M. An integrated metagenomic, metabolomic and transcriptomic survey of Populus across genotypes and environments. Sci Data 2024; 11:339. [PMID: 38580669 PMCID: PMC10997577 DOI: 10.1038/s41597-024-03069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/13/2024] [Indexed: 04/07/2024] Open
Abstract
Bridging molecular information to ecosystem-level processes would provide the capacity to understand system vulnerability and, potentially, a means for assessing ecosystem health. Here, we present an integrated dataset containing environmental and metagenomic information from plant-associated microbial communities, plant transcriptomics, plant and soil metabolomics, and soil chemistry and activity characterization measurements derived from the model tree species Populus trichocarpa. Soil, rhizosphere, root endosphere, and leaf samples were collected from 27 different P. trichocarpa genotypes grown in two different environments leading to an integrated dataset of 318 metagenomes, 98 plant transcriptomes, and 314 metabolomic profiles that are supported by diverse soil measurements. This expansive dataset will provide insights into causal linkages that relate genomic features and molecular level events to system-level properties and their environmental influences.
Collapse
Affiliation(s)
- Christopher Schadt
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Stanton Martin
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Alyssa Carrell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Allison Fortner
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Dan Hopp
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Dan Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Dawn Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Brandon Kristy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jana Phillips
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Bryan Piatkowski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Division of Computational Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Mark A Miller
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Montana Smith
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Sujay Patil
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mark Flynn
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Shane Canon
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Alicia Clum
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christopher J Mungall
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christa Pennacchio
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Benjamin Bowen
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Katherine Louie
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Trent Northen
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Emiley A Eloe-Fadrosh
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Melanie A Mayes
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Julie Mitchell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Mitchel Doktycz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
15
|
Bano N, Mohammad N, Ansari MI, Ansari SA. Genotyping SNPs in lignin biosynthesis gene (CAD1) and transcription factors (MYB1 and MYB2) exhibits association with wood density in teak (Tectona grandis L.f.). Mol Biol Rep 2024; 51:169. [PMID: 38252339 DOI: 10.1007/s11033-023-09006-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/13/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Teak (Tectona grandis L.f.), an important source of tropical timber with immense economic value, is a highly outcrossing forest tree species. 150 unrelated accessions of teak (Tectona grandis L.f.) plus trees assembled as clones at National Teak Germplasm Bank, Chandrapur, Maharashtra, India was investigated for association mapping of candidate lignin biosynthesis gene (CAD1) and transcription factors (MYB1 and MYB2). METHODS AND RESULTS The CAD1, MYB1 and MYB2 were amplified using specifically designed primers. The amplified sequences were then sequenced and genotyped for 112 SNPs/11 indels. We evaluated the association between SNPs and wood density in teak accessions using GLM and MLM statistical models, with Bonferroni correction applied. The teak accessions recorded an average wood density of 416.69 kg.m-3 (CV 4.97%) and comprised of three loosely structured admixed sub-populations (K = 3), containing 72.05% genetic variation within sub-populations with low intragenic LD (0-21% SNP pairs) at P < 0.05 and high LD decay (33-934 bp) at R2 = 0.1. GLM and MLM models discounting systematic biases (Q and K matrices) to avoid false discovery revealed five loci at rare variants (MAF 0.003) and three loci at common variants (MAF 0.05) to be significantly (P < 0.05) associated with the wood density. However, the stringent Bonferroni correction (4.06-7.04 × 10-4) yielded only a single associated locus (B1485C/A) from exon of MYB1 transcription factor, contributing to about 10.35% phenotypic variation in wood density trait. CONCLUSION Scored SNP locus (B1485C/A) can be developed as a molecular probe for selection of improved planting stock with proven wood density trait for a large-scale teak plantation.
Collapse
Affiliation(s)
- Nuzhat Bano
- ICFRE-Institute of Forest Productivity, Ranchi, 835303, India
| | - Naseer Mohammad
- Genetics and Tree Improvement Division, ICFRE-Tropical Forest Research Institute, Jabalpur, 482021, India
| | | | | |
Collapse
|
16
|
Meger J, Ulaszewski B, Chmura DJ, Burczyk J. Signatures of local adaptation to current and future climate in phenology-related genes in natural populations of Quercus robur. BMC Genomics 2024; 25:78. [PMID: 38243199 PMCID: PMC10797717 DOI: 10.1186/s12864-023-09897-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 12/12/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Local adaptation is a key evolutionary process that enhances the growth of plants in their native habitat compared to non-native habitats, resulting in patterns of adaptive genetic variation across the entire geographic range of the species. The study of population adaptation to local environments and predicting their response to future climate change is important because of climate change. RESULTS Here, we explored the genetic diversity of candidate genes associated with bud burst in pedunculate oak individuals sampled from 6 populations in Poland. Single nucleotide polymorphism (SNP) diversity was assessed in 720 candidate genes using the sequence capture technique, yielding 18,799 SNPs. Using landscape genomic approaches, we identified 8 FST outliers and 781 unique SNPs in 389 genes associated with geography, climate, and phenotypic variables (individual/family spring and autumn phenology, family diameter at breast height (DBH), height, and survival) that are potentially involved in local adaptation. Then, using a nonlinear multivariate model, Gradient Forests, we identified vulnerable areas of the pedunculate oak distribution in Poland that are at risk from climate change. CONCLUSIONS The model revealed that pedunculate oak populations in the eastern part of the analyzed geographical region are the most sensitive to climate change. Our results might offer an initial evaluation of a potential management strategy for preserving the genetic diversity of pedunculate oak.
Collapse
Affiliation(s)
- Joanna Meger
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Bartosz Ulaszewski
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Daniel J Chmura
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Jarosław Burczyk
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064, Bydgoszcz, Poland.
| |
Collapse
|
17
|
Xiang X, Zhou X, Zi H, Wei H, Cao D, Zhang Y, Zhang L, Hu J. Populus cathayana genome and population resequencing provide insights into its evolution and adaptation. HORTICULTURE RESEARCH 2024; 11:uhad255. [PMID: 38274646 PMCID: PMC10809908 DOI: 10.1093/hr/uhad255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/20/2023] [Indexed: 01/27/2024]
Abstract
Populus cathayana Rehder, an indigenous poplar species of ecological and economic importance, is widely distributed in a high-elevation range from southwest to northeast China. Further development of this species as a sustainable poplar resource has been hindered by a lack of genome information the at the population level. Here, we produced a chromosome-level genome assembly of P. cathayana, covering 406.55 Mb (scaffold N50 = 20.86 Mb) and consisting of 19 chromosomes, with 35 977 protein-coding genes. Subsequently, we made a genomic variation atlas of 438 wild individuals covering 36 representative geographic areas of P. cathayana, which were divided into four geographic groups. It was inferred that the Northwest China regions served as the genetic diversity centers and a population bottleneck happened during the history of P. cathayana. By genotype-environment association analysis, 947 environment-association loci were significantly associated with temperature, solar radiation, precipitation, and altitude variables. We identified local adaptation genes involved in DNA repair and UV radiation response, among which UVR8, HY5, and CUL4 had key roles in high-altitude adaptation of P. cathayana. Predictions of adaptive potential under future climate conditions showed that P. cathayana populations in areas with drastic climate change were anticipated to have greater maladaptation risk. These results provide comprehensive insights for understanding wild poplar evolution and optimizing adaptive potential in molecular breeding.
Collapse
Affiliation(s)
- Xiaodong Xiang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xinglu Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Hailing Zi
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Hantian Wei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Demei Cao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yahong Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Lei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
18
|
Ndayambaza B, Si J, Deng Y, Jia B, He X, Zhou D, Wang C, Zhu X, Liu Z, Qin J, Wang B, Bai X. The Euphrates Poplar Responses to Abiotic Stress and Its Unique Traits in Dry Regions of China (Xinjiang and Inner Mongolia): What Should We Know? Genes (Basel) 2023; 14:2213. [PMID: 38137039 PMCID: PMC10743205 DOI: 10.3390/genes14122213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
At the moment, drought, salinity, and low-temperature stress are ubiquitous environmental issues. In arid regions including Xinjiang and Inner Mongolia and other areas worldwide, the area of tree plantations appears to be rising, triggering tree growth. Water is a vital resource in the agricultural systems of countries impacted by aridity and salinity. Worldwide efforts to reduce quantitative yield losses on Populus euphratica by adapting tree plant production to unfavorable environmental conditions have been made in response to the responsiveness of the increasing control of water stress. Although there has been much advancement in identifying the genes that resist abiotic stresses, little is known about how plants such as P. euphratica deal with numerous abiotic stresses. P. euphratica is a varied riparian plant that can tolerate drought, salinity, low temperatures, and climate change, and has a variety of water stress adaptability abilities. To conduct this review, we gathered all available information throughout the Web of Science, the Chinese National Knowledge Infrastructure, and the National Center for Biotechnology Information on the impact of abiotic stress on the molecular mechanism and evolution of gene families at the transcription level. The data demonstrated that P. euphratica might gradually adapt its stomatal aperture, photosynthesis, antioxidant activities, xylem architecture, and hydraulic conductivity to endure extreme drought and salt stress. Our analyses will give readers an understanding of how to manage a gene family in desert trees and the influence of abiotic stresses on the productivity of tree plants. They will also give readers the knowledge necessary to improve biotechnology-based tree plant stress tolerance for sustaining yield and quality trees in China's arid regions.
Collapse
Affiliation(s)
- Boniface Ndayambaza
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhua Si
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
| | - Yanfang Deng
- Qilian Mountain National Park Qinghai Provincial Administration, Xining 810000, China;
| | - Bing Jia
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohui He
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Faculty of Resources and Environment, Baotou Teachers’ College, Inner Mongolia University of Science and Technology, Baotou 014030, China
| | - Dongmeng Zhou
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunlin Wang
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinglin Zhu
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zijin Liu
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Qin
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boyang Wang
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Bai
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Zhou R, Jenkins JW, Zeng Y, Shu S, Jang H, Harding SA, Williams M, Plott C, Barry KW, Koriabine M, Amirebrahimi M, Talag J, Rajasekar S, Grimwood J, Schmitz RJ, Dawe RK, Schmutz J, Tsai CJ. Haplotype-resolved genome assembly of Populus tremula × P. alba reveals aspen-specific megabase satellite DNA. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1003-1017. [PMID: 37675609 DOI: 10.1111/tpj.16454] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023]
Abstract
Populus species play a foundational role in diverse ecosystems and are important renewable feedstocks for bioenergy and bioproducts. Hybrid aspen Populus tremula × P. alba INRA 717-1B4 is a widely used transformation model in tree functional genomics and biotechnology research. As an outcrossing interspecific hybrid, its genome is riddled with sequence polymorphisms which present a challenge for sequence-sensitive analyses. Here we report a telomere-to-telomere genome for this hybrid aspen with two chromosome-scale, haplotype-resolved assemblies. We performed a comprehensive analysis of the repetitive landscape and identified both tandem repeat array-based and array-less centromeres. Unexpectedly, the most abundant satellite repeats in both haplotypes lie outside of the centromeres, consist of a 147 bp monomer PtaM147, frequently span >1 megabases, and form heterochromatic knobs. PtaM147 repeats are detected exclusively in aspens (section Populus) but PtaM147-like sequences occur in LTR-retrotransposons of closely related species, suggesting their origin from the retrotransposons. The genomic resource generated for this transformation model genotype has greatly improved the design and analysis of genome editing experiments that are highly sensitive to sequence polymorphisms. The work should motivate future hypothesis-driven research to probe into the function of the abundant and aspen-specific PtaM147 satellite DNA.
Collapse
Affiliation(s)
- Ran Zhou
- School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA
- Department of Genetics, University of Georgia, Athens, Georgia, USA
- Department of Plant Biology, University of Georgia, Athens, Georgia, USA
| | - Jerry W Jenkins
- HudsonAlpha Institute of Biotechnology, Huntsville, Alabama, USA
| | - Yibing Zeng
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Shengqiang Shu
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Hosung Jang
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Scott A Harding
- School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA
- Department of Genetics, University of Georgia, Athens, Georgia, USA
- Department of Plant Biology, University of Georgia, Athens, Georgia, USA
| | - Melissa Williams
- HudsonAlpha Institute of Biotechnology, Huntsville, Alabama, USA
| | | | - Kerrie W Barry
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Maxim Koriabine
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Mojgan Amirebrahimi
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Jayson Talag
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | - Shanmugam Rajasekar
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | - Jane Grimwood
- HudsonAlpha Institute of Biotechnology, Huntsville, Alabama, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - R Kelly Dawe
- Department of Genetics, University of Georgia, Athens, Georgia, USA
- Department of Plant Biology, University of Georgia, Athens, Georgia, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute of Biotechnology, Huntsville, Alabama, USA
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Chung-Jui Tsai
- School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA
- Department of Genetics, University of Georgia, Athens, Georgia, USA
- Department of Plant Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
20
|
Buell CR, Dardick C, Parrott W, Schmitz RJ, Shih PM, Tsai CJ, Urbanowicz B. Engineering custom morpho- and chemotypes of Populus for sustainable production of biofuels, bioproducts, and biomaterials. FRONTIERS IN PLANT SCIENCE 2023; 14:1288826. [PMID: 37965014 PMCID: PMC10642751 DOI: 10.3389/fpls.2023.1288826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023]
Abstract
Humans have been modifying plant traits for thousands of years, first through selection (i.e., domestication) then modern breeding, and in the last 30 years, through biotechnology. These modifications have resulted in increased yield, more efficient agronomic practices, and enhanced quality traits. Precision knowledge of gene regulation and function through high-resolution single-cell omics technologies, coupled with the ability to engineer plant genomes at the DNA sequence, chromatin accessibility, and gene expression levels, can enable engineering of complex and complementary traits at the biosystem level. Populus spp., the primary genetic model system for woody perennials, are among the fastest growing trees in temperate zones and are important for both carbon sequestration and global carbon cycling. Ample genomic and transcriptomic resources for poplar are available including emerging single-cell omics datasets. To expand use of poplar outside of valorization of woody biomass, chassis with novel morphotypes in which stem branching and tree height are modified can be fabricated thereby leading to trees with altered leaf to wood ratios. These morphotypes can then be engineered into customized chemotypes that produce high value biofuels, bioproducts, and biomaterials not only in specific organs but also in a cell-type-specific manner. For example, the recent discovery of triterpene production in poplar leaf trichomes can be exploited using cell-type specific regulatory sequences to synthesize high value terpenes such as the jet fuel precursor bisabolene specifically in the trichomes. By spatially and temporally controlling expression, not only can pools of abundant precursors be exploited but engineered molecules can be sequestered in discrete cell structures in the leaf. The structural diversity of the hemicellulose xylan is a barrier to fully utilizing lignocellulose in biomaterial production and by leveraging cell-type-specific omics data, cell wall composition can be modified in a tailored and targeted specific manner to generate poplar wood with novel chemical features that are amenable for processing or advanced manufacturing. Precision engineering poplar as a multi-purpose sustainable feedstock highlights how genome engineering can be used to re-imagine a crop species.
Collapse
Affiliation(s)
- C. Robin Buell
- Center for Applied Genetic Technologies, Institute of Plant Breeding, Genetics, and Genomics, Department of Crop and Soil Sciences, University of Georgia, Athens, GA, United States
| | - Christopher Dardick
- Agricultural Research Service, U.S. Department of Agriculture, Kearneysville, WV, United States
| | - Wayne Parrott
- Center for Applied Genetic Technologies, Institute of Plant Breeding, Genetics, and Genomics, Department of Crop and Soil Sciences, University of Georgia, Athens, GA, United States
| | - Robert J. Schmitz
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Patrick M. Shih
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, United States
| | - Chung-Jui Tsai
- Department of Genetics, University of Georgia, Athens, GA, United States
- Department of Plant Biology, University of Georgia, Athens, GA, United States
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States
| | - Breeanna Urbanowicz
- Center for Complex Carbohydrate Research, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
21
|
Xiao L, Fang Y, Zhang H, Quan M, Zhou J, Li P, Wang D, Ji L, Ingvarsson PK, Wu HX, El-Kassaby YA, Du Q, Zhang D. Natural variation in the prolyl 4-hydroxylase gene PtoP4H9 contributes to perennial stem growth in Populus. THE PLANT CELL 2023; 35:4046-4065. [PMID: 37522322 PMCID: PMC10615208 DOI: 10.1093/plcell/koad212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023]
Abstract
Perennial trees must maintain stem growth throughout their entire lifespan to progressively increase in size as they age. The overarching question of the molecular mechanisms that govern stem perennial growth in trees remains largely unanswered. Here we deciphered the genetic architecture that underlies perennial growth trajectories using genome-wide association studies (GWAS) for measures of growth traits across years in a natural population of Populus tomentosa. By analyzing the stem growth trajectory, we identified PtoP4H9, encoding prolyl 4-hydroxylase 9, which is responsible for the natural variation in the growth rate of diameter at breast height (DBH) across years. Quantifying the dynamic genetic contribution of PtoP4H9 loci to stem growth showed that PtoP4H9 played a pivotal role in stem growth regulation. Spatiotemporal expression analysis showed that PtoP4H9 was highly expressed in cambium tissues of poplars of various ages. Overexpression and knockdown of PtoP4H9 revealed that it altered cell expansion to regulate cell wall modification and mechanical characteristics, thereby promoting stem growth in Populus. We showed that natural variation in PtoP4H9 occurred in a BASIC PENTACYSTEINE transcription factor PtoBPC1-binding promoter element controlling PtoP4H9 expression. The geographic distribution of PtoP4H9 allelic variation was consistent with the modes of selection among populations. Altogether, our study provides important genetic insights into dynamic stem growth in Populus, and we confirmed PtoP4H9 as a potential useful marker for breeding or genetic engineering of poplars.
Collapse
Affiliation(s)
- Liang Xiao
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206,China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
| | - Yuanyuan Fang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
| | - He Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871,China
| | - Mingyang Quan
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
| | - Jiaxuan Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
| | - Peng Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
| | - Dan Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
| | - Li Ji
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083,China
| | - Pär K Ingvarsson
- Linnean Center for Plant Biology, Department of Plant Biology, Swedish University of Agricultural Sciences, Box 7080, SE-750 07 Uppsala,Sweden
| | - Harry X Wu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Science, 90183 Umeå,Sweden
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, British Columbia V6T 1Z4,Canada
| | - Qingzhang Du
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083,China
| | - Deqiang Zhang
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206,China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083,China
| |
Collapse
|
22
|
Li P, Xiao L, Du Q, Quan M, Song Y, He Y, Huang W, Xie J, Lv C, Wang D, Zhou J, Li L, Liu Q, El‐Kassaby YA, Zhang D. Genomic insights into selection for heterozygous alleles and woody traits in Populus tomentosa. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2002-2018. [PMID: 37392407 PMCID: PMC10502748 DOI: 10.1111/pbi.14108] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/03/2023] [Accepted: 06/12/2023] [Indexed: 07/03/2023]
Abstract
Heterozygous alleles are widespread in outcrossing and clonally propagated woody plants. The variation in heterozygosity that underlies population adaptive evolution and phenotypic variation, however, remains largely unknown. Here, we describe a de novo chromosome-level genome assembly of Populus tomentosa, an economic and ecologically important native tree in northern China. By resequencing 302 natural accessions, we determined that the South subpopulation (Pop_S) encompasses the ancestral strains of P. tomentosa, while the Northwest subpopulation (Pop_NW) and Northeast subpopulation (Pop_NE) experienced different selection pressures during population evolution, resulting in significant population differentiation and a decrease in the extent of heterozygosity. Analysis of heterozygous selective sweep regions (HSSR) suggested that selection for lower heterozygosity contributed to the local adaptation of P. tomentosa by dwindling gene expression and genetic load in the Pop_NW and Pop_NE subpopulations. Genome-wide association studies (GWAS) revealed that 88 single nucleotide polymorphisms (SNPs) within 63 genes are associated with nine wood composition traits. Among them, the selection for the homozygous AA allele in PtoARF8 is associated with reductions in cellulose and hemicellulose contents by attenuating PtoARF8 expression, and the increase in lignin content is attributable to the selection for decreases in exon heterozygosity in PtoLOX3 during adaptive evolution of natural populations. This study provides novel insights into allelic variations in heterozygosity associated with adaptive evolution of P. tomentosa in response to the local environment and identifies a series of key genes for wood component traits, thereby facilitating genomic-based breeding of important traits in perennial woody plants.
Collapse
Affiliation(s)
- Peng Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Liang Xiao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Qingzhang Du
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Mingyang Quan
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yuepeng Song
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yuling He
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Weixiong Huang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Jianbo Xie
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Chenfei Lv
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Dan Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Jiaxuan Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Lianzheng Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Qing Liu
- CSIRO Agriculture and Food, Black MountainCanberraAustralian Capital TerritoryAustralia
| | - Yousry A. El‐Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences CentreUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Deqiang Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| |
Collapse
|
23
|
Fetter KC, Keller SR. Admixture mapping and selection scans identify genomic regions associated with stomatal patterning and disease resistance in hybrid poplars. Ecol Evol 2023; 13:e10579. [PMID: 37881228 PMCID: PMC10597741 DOI: 10.1002/ece3.10579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/27/2023] Open
Abstract
Variation in fitness components can be linked in some cases to variation in key traits. Metric traits that lie at the intersection of development, defense, and ecological interactions may be expected to experience environmental selection, informing our understanding of evolutionary and ecological processes. Here, we use quantitative genetic and population genomic methods to investigate disease dynamics in hybrid and non-hybrid populations. We focus our investigation on morphological and ecophysiological traits which inform our understanding of physiology, growth, and defense against a pathogen. In particular, we investigate stomata, microscopic pores on the surface of a leaf that regulate gas exchange during photosynthesis and are sites of entry for various plant pathogens. Stomatal patterning traits were highly predictive of disease risk. Admixture mapping identified a polygenic basis of disease resistance. Candidate genes for stomatal and disease resistance map to the same genomic regions and experienced positive selection. Genes with functions to guard cell homeostasis, the plant immune system, components of constitutive defenses, and growth-related transcription factors were identified. Our results indicate positive selection acted on candidate genes for stomatal patterning and disease resistance, potentially acting in concert to structure their variation in naturally formed backcrossing hybrid populations.
Collapse
Affiliation(s)
- Karl C. Fetter
- Department of Plant BiologyUniversity of VermontBurlingtonVermontUSA
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Stephen R. Keller
- Department of Plant BiologyUniversity of VermontBurlingtonVermontUSA
| |
Collapse
|
24
|
Lagergren J, Pavicic M, Chhetri HB, York LM, Hyatt D, Kainer D, Rutter EM, Flores K, Bailey-Bale J, Klein M, Taylor G, Jacobson D, Streich J. Few-Shot Learning Enables Population-Scale Analysis of Leaf Traits in Populus trichocarpa. PLANT PHENOMICS (WASHINGTON, D.C.) 2023; 5:0072. [PMID: 37519935 PMCID: PMC10380552 DOI: 10.34133/plantphenomics.0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/27/2023] [Indexed: 08/01/2023]
Abstract
Plant phenotyping is typically a time-consuming and expensive endeavor, requiring large groups of researchers to meticulously measure biologically relevant plant traits, and is the main bottleneck in understanding plant adaptation and the genetic architecture underlying complex traits at population scale. In this work, we address these challenges by leveraging few-shot learning with convolutional neural networks to segment the leaf body and visible venation of 2,906 Populus trichocarpa leaf images obtained in the field. In contrast to previous methods, our approach (a) does not require experimental or image preprocessing, (b) uses the raw RGB images at full resolution, and (c) requires very few samples for training (e.g., just 8 images for vein segmentation). Traits relating to leaf morphology and vein topology are extracted from the resulting segmentations using traditional open-source image-processing tools, validated using real-world physical measurements, and used to conduct a genome-wide association study to identify genes controlling the traits. In this way, the current work is designed to provide the plant phenotyping community with (a) methods for fast and accurate image-based feature extraction that require minimal training data and (b) a new population-scale dataset, including 68 different leaf phenotypes, for domain scientists and machine learning researchers. All of the few-shot learning code, data, and results are made publicly available.
Collapse
Affiliation(s)
- John Lagergren
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Mirko Pavicic
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Hari B Chhetri
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Larry M York
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Doug Hyatt
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - David Kainer
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Erica M Rutter
- Department of Applied Mathematics, University of California, Merced, CA, USA
| | - Kevin Flores
- Department of Mathematics, North Carolina State University, Raleigh, NC, USA
| | - Jack Bailey-Bale
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Marie Klein
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Gail Taylor
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Daniel Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jared Streich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
25
|
Sheng X, Mahendra RA, Wang CT, Brunner AM. CRISPR/Cas9 mutants delineate roles of Populus FT and TFL1/CEN/BFT family members in growth, dormancy release and flowering. TREE PHYSIOLOGY 2023; 43:1042-1054. [PMID: 36892416 DOI: 10.1093/treephys/tpad027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/21/2023] [Indexed: 06/11/2023]
Abstract
Vegetative and reproductive phase change and phenology are economically and ecologically important traits. Trees typically require several years of growth before flowering and, once mature, seasonal control of the transition to flowering and flower development is necessary to maintain vegetative meristems and for reproductive success. Members of two related gene subfamilies, FLOWERING LOCUST (FT) and TERMINAL FLOWER1 (TFL1)/CENTRORADIALIS (CEN)/BROTHER OF FT AND TFL1 (BFT), have antagonistic roles in flowering in diverse species and roles in vegetative phenology in trees, but many details of their functions in trees have yet to be resolved. Here, we used CRISPR/Cas9 to generate single and double mutants involving the five Populus FT and TFL1/CEN/BFT genes. The ft1 mutants exhibited wild-type-like phenotypes in long days and short days, but after chilling, to release dormancy, they showed delayed bud flush and GA3 could compensate for the ft1 mutation. After rooting and generating some phytomers in tissue culture, both cen1 and cen1ft1 mutants produced terminal as well as axillary flowers, indicating that the cen1 flowering phenotype is independent of FT1. The CEN1 showed distinct circannual expression patterns in vegetative and reproductive tissues and comparison with the expression patterns of FT1 and FT2 suggests that the relative levels of CEN1 compared with FT1 and FT2 regulate multiple phases of vegetative and reproductive seasonal development.
Collapse
Affiliation(s)
- Xiaoyan Sheng
- Department of Forest Resources and Environmental Conservation, Virginia Tech, 310 West Campus Drive, Blacksburg, VA 24061, USA
| | - R Ayeshan Mahendra
- Department of Forest Resources and Environmental Conservation, Virginia Tech, 310 West Campus Drive, Blacksburg, VA 24061, USA
| | - Chieh-Ting Wang
- Department of Forest Resources and Environmental Conservation, Virginia Tech, 310 West Campus Drive, Blacksburg, VA 24061, USA
| | - Amy M Brunner
- Department of Forest Resources and Environmental Conservation, Virginia Tech, 310 West Campus Drive, Blacksburg, VA 24061, USA
| |
Collapse
|
26
|
Rapid screening of secondary aromatic metabolites in Populus trichocarpa leaves. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:41. [PMID: 36899393 PMCID: PMC9999501 DOI: 10.1186/s13068-023-02287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/20/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND High-throughput metabolomics analytical methodology is needed for population-scale studies of bioenergy-relevant feedstocks such as poplar (Populus sp.). Here, the authors report the relative abundance of extractable aromatic metabolites in Populus trichocarpa leaves rapidly estimated using pyrolysis-molecular beam mass spectrometry (py-MBMS). Poplar leaves were analyzed in conjunction with and validated by GC/MS analysis of extracts to determine key spectral features used to build PLS models to predict the relative composition of extractable aromatic metabolites in whole poplar leaves. RESULTS The Pearson correlation coefficient for the relative abundance of extractable aromatic metabolites based on ranking between GC/MS analysis and py-MBMS analysis of the Boardman leaf set was 0.86 with R2 = 0.76 using a simplified prediction approach from select ions in MBMS spectra. Metabolites most influential to py-MBMS spectral features in the Clatskanie set included the following compounds: catechol, salicortin, salicyloyl-coumaroyl-glucoside conjugates, α-salicyloylsalicin, tremulacin, as well as other salicylates, trichocarpin, salicylic acid, and various tremuloidin conjugates. Ions in py-MBMS spectra with the highest correlation to the abundance of extractable aromatic metabolites as determined by GC/MS analysis of extracts, included m/z 68, 71, 77, 91, 94, 105, 107, 108, and 122, and were used to develop the simplified prediction approach without PLS models or a priori measurements. CONCLUSIONS The simplified py-MBMS method is capable of rapidly screening leaf tissue for relative abundance of extractable aromatic secondary metabolites to enable prioritization of samples in large populations requiring comprehensive metabolomics that will ultimately inform plant systems biology models and advance the development of optimized biomass feedstocks for renewable fuels and chemicals.
Collapse
|
27
|
Li Y, Wang D, Wang W, Yang W, Gao J, Zhang W, Shan L, Kang M, Chen Y, Ma T. A chromosome-level Populus qiongdaoensis genome assembly provides insights into tropical adaptation and a cryptic turnover of sex determination. Mol Ecol 2023; 32:1366-1380. [PMID: 35712997 DOI: 10.1111/mec.16566] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/24/2022] [Accepted: 06/10/2022] [Indexed: 01/17/2023]
Abstract
Populus species have long been used as model organisms to study the adaptability of trees and the evolution of sex chromosomes. As a species belonging to the section Populus and limited to tropical areas, the P. qiongdaoensis genome contains important information for tropical poplar studies and protection. Here, we report a chromosome-level genome assembly and annotation of a female P. qiongdaoensis. Gene family clustering, positive selection detection and historical reconstruction of population dynamics revealed the tropical adaptation of P. qiongdaoensis, and showed convergent evolution with another tropical poplar, P. ilicifolia, at the molecular level, especially on some functional genes (e.g., PIF3 and PIL1). In addition, we also identified a ZW sex determination system on chromosome 19 of P. qiongdaoensis, and inferred that it seems to have a similar sex determination mechanism to other poplars, controlled by a type-A cytokinin response regulator (RR) gene. However, comparison and phylogenetic analysis of the sex determination regions confirmed a cryptic sex turnover event in the section Populus, which may be caused by the translocation and duplication of the RR gene driven by Helitron-like transposable elements. Our study provides new insights into the environmental adaptation and sex chromosome evolution of poplars, and emphasizes the importance of using long read sequencing in ecological and evolutionary inferences of plants.
Collapse
Affiliation(s)
- Yiling Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Deyan Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Weiwei Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Wenlu Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jinwen Gao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Wenyan Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lanxing Shan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Minghui Kang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Hu Y, Wang X, Xu Y, Yang H, Tong Z, Tian R, Xu S, Yu L, Guo Y, Shi P, Huang S, Yang G, Shi S, Wei F. Molecular mechanisms of adaptive evolution in wild animals and plants. SCIENCE CHINA. LIFE SCIENCES 2023; 66:453-495. [PMID: 36648611 PMCID: PMC9843154 DOI: 10.1007/s11427-022-2233-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2023]
Abstract
Wild animals and plants have developed a variety of adaptive traits driven by adaptive evolution, an important strategy for species survival and persistence. Uncovering the molecular mechanisms of adaptive evolution is the key to understanding species diversification, phenotypic convergence, and inter-species interaction. As the genome sequences of more and more non-model organisms are becoming available, the focus of studies on molecular mechanisms of adaptive evolution has shifted from the candidate gene method to genetic mapping based on genome-wide scanning. In this study, we reviewed the latest research advances in wild animals and plants, focusing on adaptive traits, convergent evolution, and coevolution. Firstly, we focused on the adaptive evolution of morphological, behavioral, and physiological traits. Secondly, we reviewed the phenotypic convergences of life history traits and responding to environmental pressures, and the underlying molecular convergence mechanisms. Thirdly, we summarized the advances of coevolution, including the four main types: mutualism, parasitism, predation and competition. Overall, these latest advances greatly increase our understanding of the underlying molecular mechanisms for diverse adaptive traits and species interaction, demonstrating that the development of evolutionary biology has been greatly accelerated by multi-omics technologies. Finally, we highlighted the emerging trends and future prospects around the above three aspects of adaptive evolution.
Collapse
Affiliation(s)
- Yibo Hu
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiaoping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Yongchao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hui Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zeyu Tong
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ran Tian
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| | - Yalong Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Shuangquan Huang
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| | - Guang Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Fuwen Wei
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
29
|
Lasky JR, Josephs EB, Morris GP. Genotype-environment associations to reveal the molecular basis of environmental adaptation. THE PLANT CELL 2023; 35:125-138. [PMID: 36005926 PMCID: PMC9806588 DOI: 10.1093/plcell/koac267] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/23/2022] [Indexed: 06/14/2023]
Abstract
A fundamental goal in plant biology is to identify and understand the variation underlying plants' adaptation to their environment. Climate change has given new urgency to this goal, as society aims to accelerate adaptation of ecologically important plant species, endangered plant species, and crops to hotter, less predictable climates. In the pre-genomic era, identifying adaptive alleles was painstaking work, leveraging genetics, molecular biology, physiology, and ecology. Now, the rise of genomics and new computational approaches may facilitate this research. Genotype-environment associations (GEAs) use statistical associations between allele frequency and environment of origin to test the hypothesis that allelic variation at a given gene is adapted to local environments. Researchers may scan the genome for GEAs to generate hypotheses on adaptive genetic variants (environmental genome-wide association studies). Despite the rapid adoption of these methods, many important questions remain about the interpretation of GEA findings, which arise from fundamental unanswered questions on the genetic architecture of adaptation and limitations inherent to association-based analyses. We outline strategies to ground GEAs in the underlying hypotheses of genetic architecture and better test GEA-generated hypotheses using genetics and ecophysiology. We provide recommendations for new users who seek to learn about the molecular basis of adaptation. When combined with a rigorous hypothesis testing framework, GEAs may facilitate our understanding of the molecular basis of climate adaptation for plant improvement.
Collapse
Affiliation(s)
- Jesse R Lasky
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Emily B Josephs
- Department of Plant Biology; Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan 48824, USA
| | - Geoffrey P Morris
- Department of Soil and Crop Sciences; Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80526, USA
| |
Collapse
|
30
|
Tremble K, Hoffman JI, Dentinger BTM. Contrasting continental patterns of adaptive population divergence in the holarctic ectomycorrhizal fungus Boletus edulis. THE NEW PHYTOLOGIST 2023; 237:295-309. [PMID: 36200167 DOI: 10.1111/nph.18521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
In the hyperdiverse fungi, the process of speciation is virtually unknown, including for the > 20 000 species of ectomycorrhizal mutualists. To understand this process, we investigated patterns of genome-wide differentiation in the ectomycorrhizal porcini mushroom, Boletus edulis, a globally distributed species complex with broad ecological amplitude. By whole-genome sequencing 160 individuals from across the Northern Hemisphere, we genotyped 792 923 single nucleotide polymorphisms to characterize patterns of genome-wide differentiation and to identify the adaptive processes shaping global population structure. We show that B. edulis exhibits contrasting patterns of genomic divergence between continents, with multiple lineages present across North America, while a single lineage dominates Europe. These geographical lineages are inferred to have diverged 1.62-2.66 million years ago, during a period of climatic upheaval and the onset of glaciation in the Pliocene-Pleistocene boundary. High levels of genomic differentiation were observed among lineages despite evidence of substantial and ongoing introgression. Genome scans, demographic inference, and ecological niche models suggest that genomic differentiation is maintained by environmental adaptation, not physical isolation. Our study uncovers striking patterns of genome-wide differentiation on a global scale and emphasizes the importance of local adaptation and ecologically mediated divergence, rather than prezygotic barriers such as allopatry or genomic incompatibility, in fungal population differentiation.
Collapse
Affiliation(s)
- Keaton Tremble
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
- Natural History Museum of Utah, Salt Lake City, UT, 84108, USA
| | - J I Hoffman
- Department of Animal Behaviour, Bielefeld University, Bielefeld, 33501, Germany
| | - Bryn T M Dentinger
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
- Natural History Museum of Utah, Salt Lake City, UT, 84108, USA
| |
Collapse
|
31
|
Li L, Jin Z, Huang R, Zhou J, Song F, Yao L, Li P, Lu W, Xiao L, Quan M, Zhang D, Du Q. Leaf physiology variations are modulated by natural variations that underlie stomatal morphology in Populus. PLANT, CELL & ENVIRONMENT 2023; 46:150-170. [PMID: 36285358 DOI: 10.1111/pce.14471] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 06/16/2023]
Abstract
Stomata are essential for photosynthesis and abiotic stress tolerance. Here, we used multiomics approaches to dissect the genetic architecture and adaptive mechanisms that underlie stomatal morphology in Populus tomentosa juvenile natural population (303 accessions). We detected 46 candidate genes and 15 epistatic gene-pairs, associated with 5 stomatal morphologies and 18 leaf development and photosynthesis traits, through genome-wide association studies. Expression quantitative trait locus mapping revealed that stomata-associated gene loci were significantly associated with the expression of leaf-related genes; selective sweep analysis uncovered significant differentiation in the allele frequencies of genes that underlie stomatal variations. An allelic regulatory network operating under drought stress and adequate precipitation conditions, with three key regulators (DUF538, TRA2 and AbFH2) and eight interacting genes, was identified that might regulate leaf physiology via modulation of stomatal shape and density. Validation of candidate gene variations in drought-tolerant and F1 hybrid populations of P. tomentosa showed that the DUF538, TRA2 and AbFH2 loci cause functional stabilisation of spatiotemporal regulatory, whose favourable alleles can be faithfully transmitted to offspring. This study provides insights concerning leaf physiology and stress tolerance via the regulation of stomatal determination in perennial plants.
Collapse
Affiliation(s)
- Lianzheng Li
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Zhuoying Jin
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Rui Huang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Jiaxuan Zhou
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Fangyuan Song
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Liangchen Yao
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Peng Li
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Wenjie Lu
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Liang Xiao
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Mingyang Quan
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Deqiang Zhang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Qingzhang Du
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| |
Collapse
|
32
|
Freeman JS, Slavov GT, Butler JB, Frickey T, Graham NJ, Klápště J, Lee J, Telfer EJ, Wilcox P, Dungey HS. High density linkage maps, genetic architecture, and genomic prediction of growth and wood properties in Pinus radiata. BMC Genomics 2022; 23:731. [PMID: 36307760 PMCID: PMC9617409 DOI: 10.1186/s12864-022-08950-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 10/10/2022] [Indexed: 11/19/2022] Open
Abstract
Background The growing availability of genomic resources in radiata pine paves the way for significant advances in fundamental and applied genomic research. We constructed robust high-density linkage maps based on exome-capture genotyping in two F1 populations, and used these populations to perform quantitative trait locus (QTL) scans, genomic prediction and quantitative analyses of genetic architecture for key traits targeted by tree improvement programmes. Results Our mapping approach used probabilistic error correction of the marker data, followed by an iterative approach based on stringent parameters. This approach proved highly effective in producing high-density maps with robust marker orders and realistic map lengths (1285–4674 markers per map, with sizes ranging from c. 1643–2292 cM, and mean marker intervals of 0.7–2.1 cM). Colinearity was high between parental linkage maps, although there was evidence for a large chromosomal rearrangement (affecting ~ 90 cM) in one of the parental maps. In total, 28 QTL were detected for growth (stem diameter) and wood properties (wood density and fibre properties measured by Silviscan) in the QTL discovery population, with 1–3 QTL of small to moderate effect size detected per trait in each parental map. Four of these QTL were validated in a second, unrelated F1 population. Results from genomic prediction and analyses of genetic architecture were consistent with those from QTL scans, with wood properties generally having moderate to high genomic heritabilities and predictive abilities, as well as somewhat less complex genetic architectures, compared to growth traits. Conclusions Despite the economic importance of radiata pine as a plantation forest tree, robust high-density linkage maps constructed from reproducible, sequence-anchored markers have not been published to date. The maps produced in this study will be a valuable resource for several applications, including the selection of marker panels for genomic prediction and anchoring a recently completed de novo whole genome assembly. We also provide the first map-based evidence for a large genomic rearrangement in radiata pine. Finally, results from our QTL scans, genomic prediction, and genetic architecture analyses are informative about the genomic basis of variation in important phenotypic traits. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08950-6.
Collapse
|
33
|
Genome Wide Analysis of Family-1 UDP Glycosyltransferases in Populus trichocarpa Specifies Abiotic Stress Responsive Glycosylation Mechanisms. Genes (Basel) 2022; 13:genes13091640. [PMID: 36140806 PMCID: PMC9498546 DOI: 10.3390/genes13091640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
Populus trichocarpa (Black cottonwood) is a dominant timber-yielding tree that has become a notable model plant for genome-level insights in forest trees. The efficient transport and solubility of various glycoside-associated compounds is linked to Family-1 UDP-glycosyltransferase (EC 2.4.1.x; UGTs) enzymes. These glycosyltransferase enzymes play a vital role in diverse plant functions, such as regulation of hormonal homeostasis, growth and development (seed, flower, fiber, root, etc.), xenobiotic detoxification, stress response (salt, drought, and oxidative), and biosynthesis of secondary metabolites. Here, we report a genome-wide analysis of the P. trichocarpa genome that identified 191 putative UGTs distributed across all chromosomes (with the exception of chromosome 20) based on 44 conserved plant secondary product glycosyltransferase (PSPG) motif amino acid sequences. Phylogenetic analysis of the 191 Populus UGTs together with 22 referenced UGTs from Arabidopsis and maize clustered the putative UGTs into 16 major groups (A–P). Whole-genome duplication events were the dominant pattern of duplication among UGTs in Populus. A well-conserved intron insertion was detected in most intron-containing UGTs across eight examined eudicots, including Populus. Most of the UGT genes were found preferentially expressed in leaf and root tissues in general. The regulation of putative UGT expression in response to drought, salt and heat stress was observed based on microarray and available RNA sequencing datasets. Up- and down-regulated UGT expression models were designed, based on transcripts per kilobase million values, confirmed their maximally varied expression under drought, salt and heat stresses. Co-expression networking of putative UGTs indicated their maximum co-expression with cytochrome P450 genes involved in triterpenoid biosynthesis. Our results provide an important resource for the identification of functional UGT genes to manipulate abiotic stress responsive glycosylation in Populus.
Collapse
|
34
|
Wang X, Hu Y, He W, Yu K, Zhang C, Li Y, Yang W, Sun J, Li X, Zheng F, Zhou S, Kong L, Ling H, Zhao S, Liu D, Zhang A. Whole-genome resequencing of the wheat A subgenome progenitor Triticum urartu provides insights into its demographic history and geographic adaptation. PLANT COMMUNICATIONS 2022; 3:100345. [PMID: 35655430 PMCID: PMC9483109 DOI: 10.1016/j.xplc.2022.100345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/23/2022] [Accepted: 05/30/2022] [Indexed: 01/17/2023]
Abstract
Triticum urartu is the progenitor of the A subgenome in tetraploid and hexaploid wheat. Uncovering the landscape of genetic variations in T. urartu will help us understand the evolutionary and polyploid characteristics of wheat. Here, we investigated the population genomics of T. urartu by genome-wide sequencing of 59 representative accessions collected around the world. A total of 42.2 million high-quality single-nucleotide polymorphisms and 3 million insertions and deletions were obtained by mapping reads to the reference genome. The ancient T. urartu population experienced a significant reduction in effective population size (Ne) from ∼3 000 000 to ∼140 000 and subsequently split into eastern Mediterranean coastal and Mesopotamian-Transcaucasian populations during the Younger Dryas period. A map of allelic drift paths displayed splits and mixtures between different geographic groups, and a strong genetic drift towards hexaploid wheat was also observed, indicating that the direct donor of the A subgenome originated from northwestern Syria. Genetic changes were revealed between the eastern Mediterranean coastal and Mesopotamian-Transcaucasian populations in genes orthologous to those regulating plant development and stress responses. A genome-wide association study identified two single-nucleotide polymorphisms in the exonic regions of the SEMI-DWARF 37 ortholog that corresponded to the different T. urartu ecotype groups. Our study provides novel insights into the origin and genetic legacy of the A subgenome in polyploid wheat and contributes a gene repertoire for genomics-enabled improvements in wheat breeding.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yafei Hu
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Weiming He
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Kang Yu
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China; BGI Institute of Applied Agriculture, BGI-Agro, Shenzhen 518120, China
| | - Chi Zhang
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Yiwen Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenlong Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiazhu Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Fengya Zheng
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Shengjun Zhou
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Hongqing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Shancen Zhao
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China; BGI Institute of Applied Agriculture, BGI-Agro, Shenzhen 518120, China.
| | - Dongcheng Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding 071001, China.
| | - Aimin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology/Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
35
|
Blumstein M, Sala A, Weston DJ, Holbrook NM, Hopkins R. Plant carbohydrate storage: intra- and inter-specific trade-offs reveal a major life history trait. THE NEW PHYTOLOGIST 2022; 235:2211-2222. [PMID: 35524463 DOI: 10.1111/nph.18213] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Trade-offs among carbon sinks constrain how trees physiologically, ecologically, and evolutionarily respond to their environments. These trade-offs typically fall along a productive growth to conservative, bet-hedging continuum. How nonstructural carbohydrates (NSCs) stored in living tree cells (known as carbon stores) fit in this trade-off framework is not well understood. We examined relationships between growth and storage using both within species genetic variation from a common garden, and across species phenotypic variation from a global database. We demonstrate that storage is actively accumulated, as part of a conservative, bet-hedging life history strategy. Storage accumulates at the expense of growth both within and across species. Within the species Populus trichocarpa, genetic trade-offs show that for each additional unit of wood area growth (in cm2 yr-1 ) that genotypes invest in, they lose 1.2 to 1.7 units (mg g-1 NSC) of storage. Across species, for each additional unit of area growth (in cm2 yr-1 ), trees, on average, reduce their storage by 9.5% in stems and 10.4% in roots. Our findings impact our understanding of basic plant biology, fit storage into a widely used growth-survival trade-off spectrum describing life history strategy, and challenges the assumptions of passive storage made in ecosystem models today.
Collapse
Affiliation(s)
- Meghan Blumstein
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St, Cambridge, MA, 02138, USA
- Civil and Environmental Engineering, Massachusetts Institute of Technology, 15 Vassar St, Cambridge, MA, 02139, USA
| | - Anna Sala
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Noel Michelle Holbrook
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St, Cambridge, MA, 02138, USA
| | - Robin Hopkins
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St, Cambridge, MA, 02138, USA
- The Arnold Arboretum, 1300 Centre St, Boston, MA, 02130, USA
| |
Collapse
|
36
|
Mostert‐O'Neill MM, Tate H, Reynolds SM, Mphahlele MM, van den Berg G, Verryn SD, Acosta JJ, Borevitz JO, Myburg AA. Genomic consequences of artificial selection during early domestication of a wood fibre crop. THE NEW PHYTOLOGIST 2022; 235:1944-1956. [PMID: 35657639 PMCID: PMC9541791 DOI: 10.1111/nph.18297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
From its origins in Australia, Eucalyptus grandis has spread to every continent, except Antarctica, as a wood crop. It has been cultivated and bred for over 100 yr in places such as South Africa. Unlike most annual crops and fruit trees, domestication of E. grandis is still in its infancy, representing a unique opportunity to interrogate the genomic consequences of artificial selection early in the domestication process. To determine how a century of artificial selection has changed the genome of E. grandis, we generated single nucleotide polymorphism genotypes for 1080 individuals from three advanced South African breeding programmes using the EUChip60K chip, and investigated population structure and genome-wide differentiation patterns relative to wild progenitors. Breeding and wild populations appeared genetically distinct. We found genomic evidence of evolutionary processes known to have occurred in other plant domesticates, including interspecific introgression and intraspecific infusion from wild material. Furthermore, we found genomic regions with increased linkage disequilibrium and genetic differentiation, putatively representing early soft sweeps of selection. This is, to our knowledge, the first study of genomic signatures of domestication in a timber species looking beyond the first few generations of cultivation. Our findings highlight the importance of intra- and interspecific hybridization during early domestication.
Collapse
Affiliation(s)
- Marja M. Mostert‐O'Neill
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPrivate Bag X20Pretoria0028South Africa
| | - Hannah Tate
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPrivate Bag X20Pretoria0028South Africa
| | - S. Melissa Reynolds
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPrivate Bag X20Pretoria0028South Africa
| | - Makobatjatji M. Mphahlele
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPrivate Bag X20Pretoria0028South Africa
- Mondi Forests, Tree Improvement Technology Programme, Trahar Technology Centre – TTCMountain Home Estate, Off Dennis Shepstone Dr.Hilton3245South Africa
| | - Gert van den Berg
- Sappi Forests Research, Shaw Research CentrePO Box 473Howick3290South Africa
| | - Steve D. Verryn
- Creation Breeding Innovations75 Kafue St.Lynnwood Glen0081South Africa
| | - Juan J. Acosta
- Camcore, Department of Forestry and Environmental ResourcesNorth Carolina State UniversityPO Box 7626RaleighNC27695USA
| | - Justin O. Borevitz
- Research School of Biology and Centre for Biodiversity Analysis, ARC Centre of Excellence in Plant Energy BiologyAustralian National UniversityCanberraACT0200Australia
| | - Alexander A. Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPrivate Bag X20Pretoria0028South Africa
| |
Collapse
|
37
|
Borthakur D, Busov V, Cao XH, Du Q, Gailing O, Isik F, Ko JH, Li C, Li Q, Niu S, Qu G, Vu THG, Wang XR, Wei Z, Zhang L, Wei H. Current status and trends in forest genomics. FORESTRY RESEARCH 2022; 2:11. [PMID: 39525413 PMCID: PMC11524260 DOI: 10.48130/fr-2022-0011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2024]
Abstract
Forests are not only the most predominant of the Earth's terrestrial ecosystems, but are also the core supply for essential products for human use. However, global climate change and ongoing population explosion severely threatens the health of the forest ecosystem and aggravtes the deforestation and forest degradation. Forest genomics has great potential of increasing forest productivity and adaptation to the changing climate. In the last two decades, the field of forest genomics has advanced quickly owing to the advent of multiple high-throughput sequencing technologies, single cell RNA-seq, clustered regularly interspaced short palindromic repeats (CRISPR)-mediated genome editing, and spatial transcriptomes, as well as bioinformatics analysis technologies, which have led to the generation of multidimensional, multilayered, and spatiotemporal gene expression data. These technologies, together with basic technologies routinely used in plant biotechnology, enable us to tackle many important or unique issues in forest biology, and provide a panoramic view and an integrative elucidation of molecular regulatory mechanisms underlying phenotypic changes and variations. In this review, we recapitulated the advancement and current status of 12 research branches of forest genomics, and then provided future research directions and focuses for each area. Evidently, a shift from simple biotechnology-based research to advanced and integrative genomics research, and a setup for investigation and interpretation of many spatiotemporal development and differentiation issues in forest genomics have just begun to emerge.
Collapse
Affiliation(s)
- Dulal Borthakur
- Dulal Borthakur, Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, USA
| | - Victor Busov
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Xuan Hieu Cao
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Qingzhang Du
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Fikret Isik
- Cooperative Tree Improvement Program, North Carolina State University, Raleigh, NC 27695, USA
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, P.R. China
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100093, P.R. China
| | - Shihui Niu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, P.R. China
| | - Thi Ha Giang Vu
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, Umeå 90187, Sweden
| | - Zhigang Wei
- College of Life Sciences, Heilongjiang University, Harbin 150080, P. R. China
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, Hunan Province, P.R. China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
38
|
Cooper HF, Best RJ, Andrews LV, Corbin JPM, Garthwaite I, Grady KC, Gehring CA, Hultine KR, Whitham TG, Allan GJ. Evidence of climate-driven selection on tree traits and trait plasticity across the climatic range of a riparian foundation species. Mol Ecol 2022; 31:5024-5040. [PMID: 35947510 DOI: 10.1111/mec.16645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
Selection on quantitative traits by heterogeneous climatic conditions can lead to substantial trait variation across a species range. In the context of rapidly changing environments, however, it is equally important to understand selection on trait plasticity. To evaluate the role of selection in driving divergences in traits and their associated plasticities within a widespread species, we compared molecular and quantitative trait variation in Populus fremontii (Fremont cottonwood), a foundation riparian distributed throughout Arizona. Using SNP data and genotypes from 16 populations reciprocally planted in three common gardens, we first performed QST -FST analyses to detect selection on traits and trait plasticity. We then explored the environmental drivers of selection using trait-climate and plasticity-climate regressions. Three major findings emerged: 1) There was significant genetic variation in traits expressed in each of the common gardens and in the phenotypic plasticity of traits across gardens, both of which were heritable. 2) Based on QST -FST comparisons, there was evidence of selection in all traits measured; however, this result varied from no effect in one garden to highly significant in another, indicating that detection of past selection is environmentally dependent. We also found strong evidence of divergent selection on plasticity across environments for two traits. 3) Traits and/or their plasticity were often correlated with population source climate (R2 up to 0.77 and 0.66, respectively). These results suggest that steep climate gradients across the Southwest have played a major role in shaping the evolution of divergent phenotypic responses in populations and genotypes now experiencing climate change.
Collapse
Affiliation(s)
- Hillary F Cooper
- Department of Biological Science, Northern Arizona University, Flagstaff, AZ, USA.,Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, USA
| | - Rebecca J Best
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ, USA
| | - Lela V Andrews
- Department of Biological Science, Northern Arizona University, Flagstaff, AZ, USA
| | - Jaclyn P M Corbin
- Department of Biological Science, Northern Arizona University, Flagstaff, AZ, USA.,Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, USA
| | - Iris Garthwaite
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ, USA
| | - Kevin C Grady
- School of Forestry, Northern Arizona University, Flagstaff, AZ, USA
| | - Catherine A Gehring
- Department of Biological Science, Northern Arizona University, Flagstaff, AZ, USA.,Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, USA
| | - Kevin R Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ, USA
| | - Thomas G Whitham
- Department of Biological Science, Northern Arizona University, Flagstaff, AZ, USA.,Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, USA
| | - Gerard J Allan
- Department of Biological Science, Northern Arizona University, Flagstaff, AZ, USA.,Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
39
|
Zhang M, Lu N, Jiang L, Liu B, Fei Y, Ma W, Shi C, Wang J. Multiple dynamic models reveal the genetic architecture for growth in height of Catalpa bungei in the field. TREE PHYSIOLOGY 2022; 42:1239-1255. [PMID: 34940852 DOI: 10.1093/treephys/tpab171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Growth in height (GH) is a critical determinant for tree survival and development in forests and can be depicted using logistic growth curves. Our understanding of the genetic mechanism underlying dynamic GH, however, is limited, particularly under field conditions. We applied two mapping models (Funmap and FVTmap) to find quantitative trait loci responsible for dynamic GH and two epistatic models (2HiGWAS and 1HiGWAS) to detect epistasis in Catalpa bungei grown in the field. We identified 13 co-located quantitative trait loci influencing the growth curve by Funmap and three heterochronic parameters (the timing of the inflection point, maximum acceleration and maximum deceleration) by FVTmap. The combined use of FVTmap and Funmap reduced the number of candidate genes by >70%. We detected 76 significant epistatic interactions, amongst which a key gene, COMT14, co-located by three models (but not 1HiGWAS) interacted with three other genes, implying that a novel network of protein interaction centered on COMT14 may control the dynamic GH of C. bungei. These findings provide new insights into the genetic mechanisms underlying the dynamic growth in tree height in natural environments and emphasize the necessity of incorporating multiple dynamic models for screening more reliable candidate genes.
Collapse
Affiliation(s)
- Miaomiao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Nan Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Libo Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Bingyang Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yue Fei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Chaozhong Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
40
|
Identification and Comparative Analysis of Conserved and Species-Specific microRNAs in Four Populus Sections. FORESTS 2022. [DOI: 10.3390/f13060873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The conservation and diversity of microRNA (miRNA) families provide insights into the evolution of miRNA genes. However, there are few studies to explore the miRNA genes at the genus level in plants. Here, we identified 1194 miRNA loci in four Populus species P. deltoides, P. euphratica, P. tremula, and P. trichocarpa from Aigeiros, Turanga, Populus, and Tacamahaca sections, respectively, by combining de novo and homolog-based approaches. Our results indicated that a similar number of miRNA loci exist in each species (296–301 miRNA loci). Among the identified 143 miRNA families, 68 families are shared by the studied four species, and 31 families are species-specific, which might be related to local adaptation. Additionally, multiple miRNA-related single nucleotide polymorphisms (SNPs) were found, indicating that polymorphisms in pre-miRNA hairpins were likely to affect miRNA biogenesis. This study expanded the breadth and depth of miRNA annotations and provided valuable resources for further exploring the diversity and function of poplar miRNAs.
Collapse
|
41
|
Duarte INH, Bessa AFDO, Rola LD, Genuíno MVH, Rocha IM, Marcondes CR, Regitano LCDA, Munari DP, Berry DP, Buzanskas ME. Cross-population selection signatures in Canchim composite beef cattle. PLoS One 2022; 17:e0264279. [PMID: 35363779 PMCID: PMC8975110 DOI: 10.1371/journal.pone.0264279] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
Analyses of livestock genomes have been used to detect selection signatures, which are genomic regions associated with traits under selection leading to a change in allele frequency. The objective of the present study was to characterize selection signatures in Canchim composite beef cattle using cross-population analyses with the founder Nelore and Charolais breeds. High-density single nucleotide polymorphism genotypes were available on 395 Canchim representing the target population, along with genotypes from 809 Nelore and 897 Charolais animals representing the reference populations. Most of the selection signatures were co-located with genes whose functions agree with the expectations of the breeding programs; these genes have previously been reported to associate with meat quality, as well as reproductive traits. Identified genes were related to immunity, adaptation, morphology, as well as behavior, could give new perspectives for understanding the genetic architecture of Canchim. Some selection signatures identified genes that were recently introduced in Canchim, such as the loci related to the polled trait.
Collapse
Affiliation(s)
| | | | - Luciana Diniz Rola
- Departamento de Zootecnia, Universidade Federal da Paraíba, Areia, Paraíba, Brazil
| | | | - Iasmin Marques Rocha
- Departamento de Zootecnia, Universidade Federal da Paraíba, Areia, Paraíba, Brazil
| | | | | | - Danísio Prado Munari
- Departamento de Engenharia e Ciências Exatas, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - Donagh Pearse Berry
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy Co. Cork., Ireland
| | - Marcos Eli Buzanskas
- Departamento de Zootecnia, Universidade Federal da Paraíba, Areia, Paraíba, Brazil
- * E-mail:
| |
Collapse
|
42
|
Liang YY, Chen XY, Zhou BF, Mitchell-Olds T, Wang B. Globally Relaxed Selection and Local Adaptation in Boechera stricta. Genome Biol Evol 2022; 14:evac043. [PMID: 35349686 PMCID: PMC9011030 DOI: 10.1093/gbe/evac043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
The strength of selection varies among populations and across the genome, but the determinants of efficacy of selection remain unclear. In this study, we used whole-genome sequencing data from 467 Boechera stricta accessions to quantify the strength of selection and characterize the pattern of local adaptation. We found low genetic diversity on 0-fold degenerate sites and conserved non-coding sites, indicating functional constraints on these regions. The estimated distribution of fitness effects and the proportion of fixed substitutions suggest relaxed negative and positive selection in B. stricta. Among the four population groups, the NOR and WES groups have smaller effective population size (Ne), higher proportions of effectively neutral sites, and lower rates of adaptive evolution compared with UTA and COL groups, reflecting the effect of Ne on the efficacy of natural selection. We also found weaker selection on GC-biased sites compared with GC-conservative (unbiased) sites, suggested that GC-biased gene conversion has affected the strength of selection in B. stricta. We found mixed evidence for the role of the recombination rate on the efficacy of selection. The positive and negative selection was stronger in high-recombination regions compared with low-recombination regions in COL but not in other groups. By scanning the genome, we found different subsets of selected genes suggesting differential adaptation among B. stricta groups. These results show that differences in effective population size, nucleotide composition, and recombination rate are important determinants of the efficacy of selection. This study enriches our understanding of the roles of natural selection and local adaptation in shaping genomic variation.
Collapse
Affiliation(s)
- Yi-Ye Liang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences,
Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xue-Yan Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences,
Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Biao-Feng Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences,
Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | | | - Baosheng Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences,
Guangzhou, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
43
|
Climate Adaptation, Drought Susceptibility, and Genomic-Informed Predictions of Future Climate Refugia for the Australian Forest Tree Eucalyptus globulus. FORESTS 2022. [DOI: 10.3390/f13040575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Understanding the capacity of forest tree species to adapt to climate change is of increasing importance for managing forest genetic resources. Through a genomics approach, we modelled spatial variation in climate adaptation within the Australian temperate forest tree Eucalyptus globulus, identified putative climate drivers of this genomic variation, and predicted locations of future climate refugia and populations at-risk of future maladaptation. Using 812,158 SNPs across 130 individuals from 30 populations (i.e., localities) spanning the species’ natural range, a gradientForest algorithm found 1177 SNPs associated with locality variation in home-site climate (climate-SNPs), putatively linking them to climate adaptation. Very few climate-SNPs were associated with population-level variation in drought susceptibility, signalling the multi-faceted nature and complexity of climate adaptation. Redundancy analysis (RDA) showed 24% of the climate-SNP variation could be explained by annual precipitation, isothermality, and maximum temperature of the warmest month. Spatial predictions of the RDA climate vectors associated with climate-SNPs allowed mapping of genomically informed climate selective surfaces across the species’ range under contemporary and projected future climates. These surfaces suggest over 50% of the current distribution of E. globulus will be outside the modelled adaptive range by 2070 and at risk of climate maladaptation. Such surfaces present a new integrated approach for natural resource managers to capture adaptive genetic variation and plan translocations in the face of climate change.
Collapse
|
44
|
VanWallendael A, Lowry DB, Hamilton JA. One hundred years into the study of ecotypes, new advances are being made through large-scale field experiments in perennial plant systems. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102152. [PMID: 35065527 DOI: 10.1016/j.pbi.2021.102152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 06/14/2023]
Abstract
A hundred years after Turesson first clearly described how locally adaptive variation is distributed within species, plant biologists are making major breakthroughs in our understanding of mechanisms underlying adaptation from local populations to the scale of continents. Although the genetics of local adaptation has typically been studied in smaller reciprocal transplant experiments, it is now being evaluated with whole genomes in large-scale networks of common garden experiments with perennial switchgrass and poplar trees. These studies support the hypothesis that a complex combination of loci, both with and without adaptive trade-offs, underlies local adaptation and that hybridization and adaptive introgression play a key role in the evolution of these species. Future studies incorporating high-throughput phenotyping, gene expression, and modeling will be used to predict responses of these species to climate change.
Collapse
Affiliation(s)
- Acer VanWallendael
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA; Department of Energy Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA; Program in Ecology, Evolution, and Behaviour, Michigan State University, East Lansing, MI, 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - David B Lowry
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA; Department of Energy Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA; Program in Ecology, Evolution, and Behaviour, Michigan State University, East Lansing, MI, 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA.
| | - Jill A Hamilton
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, 16801, USA
| |
Collapse
|
45
|
Liu Y. Conservation prioritization based on past cascading climatic effects on genetic diversity and population size dynamics: Insights from a temperate tree species. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Yang Liu
- Department of Forest and Conservation Sciences University of British Columbia Vancouver British Columbia Canada
- Department of Archaeology University of Cambridge Cambridge UK
| |
Collapse
|
46
|
Abstract
Traditional tree improvement is cumbersome and costly. Our main objective was to assess the extent to which genomic data can currently accelerate and improve decision making in this field. We used diameter at breast height (DBH) and wood density (WD) data for 4430 tree genotypes and single-nucleotide polymorphism (SNP) data for 2446 tree genotypes. Pedigree reconstruction was performed using a combination of maximum likelihood parentage assignment and matching based on identity-by-state (IBS) similarity. In addition, we used best linear unbiased prediction (BLUP) methods to predict phenotypes using SNP markers (GBLUP), recorded pedigree information (ABLUP), and single-step “blended” BLUP (HBLUP) combining SNP and pedigree information. We substantially improved the accuracy of pedigree records, resolving the inconsistent parental information of 506 tree genotypes. This led to substantially increased predictive ability (i.e., by up to 87%) in HBLUP analyses compared to a baseline from ABLUP. Genomic prediction was possible across populations and within previously untested families with moderately large training populations (N = 800–1200 tree genotypes) and using as few as 2000–5000 SNP markers. HBLUP was generally more effective than traditional ABLUP approaches, particularly after dealing appropriately with pedigree uncertainties. Our study provides evidence that genome-wide marker data can significantly enhance tree improvement. The operational implementation of genomic selection has started in radiata pine breeding in New Zealand, but further reductions in DNA extraction and genotyping costs may be required to realise the full potential of this approach.
Collapse
|
47
|
Perry A, Wachowiak W, Beaton J, Iason G, Cottrell J, Cavers S. Identifying and testing marker-trait associations for growth and phenology in three pine species: Implications for genomic prediction. Evol Appl 2022; 15:330-348. [PMID: 35233251 PMCID: PMC8867712 DOI: 10.1111/eva.13345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/02/2022] Open
Abstract
In tree species, genomic prediction offers the potential to forecast mature trait values in early growth stages, if robust marker-trait associations can be identified. Here we apply a novel multispecies approach using genotypes from a new genotyping array, based on 20,795 single nucleotide polymorphisms (SNPs) from three closely related pine species (Pinus sylvestris, Pinus uncinata and Pinus mugo), to test for associations with growth and phenology data from a common garden study. Predictive models constructed using significantly associated SNPs were then tested and applied to an independent multisite field trial of P. sylvestris and the capability to predict trait values was evaluated. One hundred and eighteen SNPs showed significant associations with the traits in the pine species. Common SNPs (MAF > 0.05) associated with bud set were only found in genes putatively involved in growth and development, whereas those associated with growth and budburst were also located in genes putatively involved in response to environment and, to a lesser extent, reproduction. At one of the two independent sites, the model we developed produced highly significant correlations between predicted values and observed height data (YA, height 2020: r = 0.376, p < 0.001). Predicted values estimated with our budburst model were weakly but positively correlated with duration of budburst at one of the sites (GS, 2015: r = 0.204, p = 0.034; 2018: r = 0.205, p = 0.034-0.037) and negatively associated with budburst timing at the other (YA: r = -0.202, p = 0.046). Genomic prediction resulted in the selection of sets of trees whose mean height was taller than the average for each site. Our results provide tentative support for the capability of prediction models to forecast trait values in trees, while highlighting the need for caution in applying them to trees grown in different environments.
Collapse
Affiliation(s)
- Annika Perry
- UK Centre for Ecology & Hydrology EdinburghPenicuikUK
| | - Witold Wachowiak
- Institute of Environmental BiologyFaculty of BiologyAdam Mickiewicz University in PoznańPoznańPoland
| | | | | | | | | |
Collapse
|
48
|
Monroe JG, Srikant T, Carbonell-Bejerano P, Becker C, Lensink M, Exposito-Alonso M, Klein M, Hildebrandt J, Neumann M, Kliebenstein D, Weng ML, Imbert E, Ågren J, Rutter MT, Fenster CB, Weigel D. Mutation bias reflects natural selection in Arabidopsis thaliana. Nature 2022; 602:101-105. [PMID: 35022609 PMCID: PMC8810380 DOI: 10.1038/s41586-021-04269-6] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/17/2021] [Indexed: 12/24/2022]
Abstract
Since the first half of the twentieth century, evolutionary theory has been dominated by the idea that mutations occur randomly with respect to their consequences1. Here we test this assumption with large surveys of de novo mutations in the plant Arabidopsis thaliana. In contrast to expectations, we find that mutations occur less often in functionally constrained regions of the genome-mutation frequency is reduced by half inside gene bodies and by two-thirds in essential genes. With independent genomic mutation datasets, including from the largest Arabidopsis mutation accumulation experiment conducted to date, we demonstrate that epigenomic and physical features explain over 90% of variance in the genome-wide pattern of mutation bias surrounding genes. Observed mutation frequencies around genes in turn accurately predict patterns of genetic polymorphisms in natural Arabidopsis accessions (r = 0.96). That mutation bias is the primary force behind patterns of sequence evolution around genes in natural accessions is supported by analyses of allele frequencies. Finally, we find that genes subject to stronger purifying selection have a lower mutation rate. We conclude that epigenome-associated mutation bias2 reduces the occurrence of deleterious mutations in Arabidopsis, challenging the prevailing paradigm that mutation is a directionless force in evolution.
Collapse
Affiliation(s)
- J Grey Monroe
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
- Department of Plant Sciences, University of California Davis, Davis, CA, USA.
| | - Thanvi Srikant
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | | | - Claude Becker
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Faculty of Biology, Ludwig Maximilian University, Martinsried, Germany
| | - Mariele Lensink
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Moises Exposito-Alonso
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Marie Klein
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Julia Hildebrandt
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Manuela Neumann
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Daniel Kliebenstein
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Mao-Lun Weng
- Department of Biology, Westfield State University, Westfield, MA, USA
| | - Eric Imbert
- ISEM, University of Montpellier, Montpellier, France
| | - Jon Ågren
- Department of Ecology and Genetics, EBC, Uppsala University, Uppsala, Sweden
| | - Matthew T Rutter
- Department of Biology, College of Charleston, Charleston, SC, USA
| | - Charles B Fenster
- Oak Lake Field Station, South Dakota State University, Brookings, SD, USA
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| |
Collapse
|
49
|
Transcriptome and Metabolite Insights into Domestication Process of Cultivated Barley in China. PLANTS 2022; 11:plants11020209. [PMID: 35050097 PMCID: PMC8779797 DOI: 10.3390/plants11020209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 11/16/2022]
Abstract
The domestication process of cultivated barley in China remains under debate because of the controversial origins of barley. Here, we analyzed transcriptomic and non-targeted metabolic data from 29 accessions together with public resequencing data from 124 accessions to explore the domestication process of cultivated barley in China (Cb-C). These analyses revealed that both Cb-C and Tibetan wild barley (Wb-T) were the descendants of wild barley from the Near East Fertile Crescent (Wb-NE), yielding little support for a local origin of Wb-T. Wb-T was more likely an intermediate in the domestication process from Wb-NE to Cb-C. Wb-T contributed more genetically to Cb-C than Wb-NE, and was domesticated into Cb-C about 3300 years ago. These results together seem to support that Wb-T may be a feralized or hybrid form of cultivated barley from the Near East Fertile Crescent or central Asia. Additionally, the metabolite analysis revealed divergent metabolites of alkaloids and phenylpropanoids and these metabolites were specifically targeted for selection in the evolutionary stages from Wb-NE to Wb-T and from Wb-T to Cb-C. The key missense SNPs in the genes HORVU6Hr1G027650 and HORVU4Hr1G072150 might be responsible for the divergence of metabolites of alkaloids and phenylpropanoids during domestication. Our findings allow for a better understanding of the domestication process of cultivated barley in China.
Collapse
|
50
|
Liu S, Zhang L, Sang Y, Lai Q, Zhang X, Jia C, Long Z, Wu J, Ma T, Mao K, Street NR, Ingvarsson PK, Liu J, Wang J. Demographic history and natural selection shape patterns of deleterious mutation load and barriers to introgression across Populus genome. Mol Biol Evol 2022; 39:6505222. [PMID: 35022759 PMCID: PMC8826634 DOI: 10.1093/molbev/msac008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Hybridization and resulting introgression are important processes shaping the tree of life and appear to be far more common than previously thought. However, how the genome evolution was shaped by various genetic and evolutionary forces after hybridization remains unresolved. Here we used whole-genome resequencing data of 227 individuals from multiple widespread Populus species to characterize their contemporary patterns of hybridization and to quantify genomic signatures of past introgression. We observe a high frequency of contemporary hybridization and confirm that multiple previously ambiguous species are in fact F1 hybrids. Seven species were identified, which experienced different demographic histories that resulted in strikingly varied efficacy of selection and burdens of deleterious mutations. Frequent past introgression has been found to be a pervasive feature throughout the speciation of these Populus species. The retained introgressed regions, more generally, tend to contain reduced genetic load and to be located in regions of high recombination. We also find that in pairs of species with substantial differences in effective population size, introgressed regions are inferred to have undergone selective sweeps at greater than expected frequencies in the species with lower effective population size, suggesting that introgression likely have higher potential to provide beneficial variation for species with small populations. Our results, therefore, illustrate that demography and recombination have interplayed with both positive and negative selection in determining the genomic evolution after hybridization.
Collapse
Affiliation(s)
- Shuyu Liu
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science & State Key Lab of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Lei Zhang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science & State Key Lab of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Yupeng Sang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science & State Key Lab of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Qiang Lai
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science & State Key Lab of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Xinxin Zhang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science & State Key Lab of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Changfu Jia
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science & State Key Lab of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Zhiqin Long
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science & State Key Lab of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Jiali Wu
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science & State Key Lab of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Tao Ma
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science & State Key Lab of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Kangshan Mao
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science & State Key Lab of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Nathaniel R Street
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Pär K Ingvarsson
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jianquan Liu
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science & State Key Lab of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Jing Wang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science & State Key Lab of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| |
Collapse
|